csi pesticides white paper - cannabis safety institute...

19
Pesticide Use on Cannabis All rights reserved. Cannabis Safety Institute, 2014 1 Pesticide Use on Cannabis Cannabis Safety Institute June 2015 Authors and Contributors Rodger Voelker, PhD 1 Mowgli Holmes, PhD 2 1 OG Analytical, Eugene, OR 2 Phylos Bioscience, Portland, OR

Upload: truongnhu

Post on 29-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   1  

 

   

 

Pesticide  Use  on  Cannabis        

Cannabis  Safety  Institute    June  2015  

             

Authors  and  Contributors  Rodger  Voelker,  PhD1  

          Mowgli  Holmes,  PhD2                                      1OG  Analytical,  Eugene,  OR  2Phylos  Bioscience,  Portland,  OR                                                                                                                    

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   2  

   

 

Contents          

   1.  Abstract                       3    2.  Introduction                     3    3.  Regulatory  structure  for  the  enforcement  of  pesticide  regulations       4    4.  Pesticide  residues  on  medical  Cannabis  in  Oregon.           5       4a.  Current  Cannabis  testing  landscape  in  Oregon.         6       4b.  Study  outline.                   7       4c.  Frequency  of  pesticide  detection.             8       4d.  Levels  of  pesticides  detected.               9       4e.  Concentration  of  pesticides  in  Cannabis  extracts.         10       4f.  Discussion                     11    5.  Recommendations                     13       5a.  Resources                     16       5b.  Summary  of  Recommendations               16        References                       17    Appendix  A:    Target  list  of  pesticides  to  be  screened  for  on  Cannabis.       18    

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   3  

1. Abstract  

Legalized  cannabis  production  is  a  rapidly  growing  agricultural  industry.  However,  given  that  cannabis  production  has  developed  and  operated  in  an  unregulated  setting  various  practices  have  been  adopted  that  are  at  odds  with  accepted  regulations  regarding  human  safety  and  environmental  impacts.  Chief  amongst  these  is  the  unregulated  use  of  pesticides,  which  has  potentially  serious  public  health  and  environmental  consequences.  In  the  absence  of  guidance  from  the  Environmental  Protection  Agency  on  this  subject,  it  is  critical  that  state  regulators  enact  programs  to  protect  workers,  the  environment,  and  Cannabis  consumers.      This  paper  presents  data  indicating  that  pesticide  use  is  widespread  in  the  Cannabis  industry,  and  that  pesticide  residue  on  retail  Cannabis  products  is  often  found  at  levels  exceeding  the  allowable  levels  on  any  agricultural  product.  In  addition,  a  set  of  basic  recommendations  is  presented  that  will  allow  states  to  move  forward  safely  until  more  detailed  Cannabis-­‐specific  pesticide  data  is  available.    2.  Introduction      

Pesticide  use  on  Cannabis  is  an  emerging  public  health  threat.  Cannabis  is  a  high-­‐value  crop  that  is  frequently  damaged  by  molds  and  insects1,2,  and  the  recent  surge  in  sales  of  immature  clones  has  spread  plant  diseases  widely  across  several  states.  Pesticide  use  has  been  increasing  rapidly  in  response.  Most  research  on  pesticide  toxicity  is  based  on  oral  ingestion  exposure,  and  this  is  the  data  used  for  determining  acceptable  residual  tolerance  levels  on  crops.  Inhalation  exposure  through  smoking  presents  a  different  set  of  risks.  Smoking  can  create  pyrolysis  compounds  with  unknown  toxicities,  and  inhaled  chemicals  enter  the  bloodstream  without  first  undergoing  first-­‐pass  metabolism  by  the  digestive  and  hepatic  systems.  As  a  result,  inhaled  chemicals  are  typically  present  at  much  higher  levels  in  the  body  than  those  that  are  orally  ingested.  Research  has  shown  that  pesticides  on  Cannabis  can  be  transferred  into  Cannabis  smoke  with  efficiences  as  high  as  70%3.      The  data  presented  in  this  paper  indicate  that  pesticides  can  now  be  found  on  close  to  half  of  the  Cannabis  sold  in  Oregon  dispensaries.  The  potential  dangers  of  this  situation  are  magnified  by  the  increase  in  popularity  of  Cannabis  extracts.  These  are  made  by  processes  that  appear  to  concentrate  pesticides,  leading  to  extremely  high  levels  in  the  final  product.  Cannabis  extracts  are  often  smoked  directly  and  most  edible  Cannabis  products  are  made  by  adding  these  extracts  into  foods.        This  issue  is  so  far  the  most  stark  example  of  a  situation  which  states  have  faced  as  they  seek  to  implement  legal  Cannabis  programs—which  is  that  the  absence  of  federal  approval  is  often  less  problematic  than  the  complete  absence  of  federal  guidance.  The  Environmental  Protection  Agency  (EPA),  in  a  complex  and  data-­‐driven  process,  sets  tolerances  and  regulates  pesticide  sale  and  usage.  Approvals  and  tolerance  limits  are  established  by  the  EPA  in  a  manner  that  is  specific  to  each  crop,  to  each  type  of  application  site,  and  to  each  pesticide  compound.  It  is  technically  illegal  to  apply  pesticides  to  any  crop  for  which  they  are  not  specifically  approved  (see  US  code  7  U.S.C  136j).  More  troubling,  in  this  case,  is  that  safety  data  is  not  available  for  any  pesticides  on  Cannabis.  This  puts  Cannabis  growers  in  a  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   4  

difficult  position,  as  many  of  them  are  now  dependent  to  some  degree  on  chemical  pest  management  techniques.  Cannabis  growers  are  using  a  wide  range  of  federally  registered  pesticides,  yet  they  lack  the  guidance  that  other  agricultural  industries  normally  receive  from  the  EPA,  the  USDA,  and  from  land-­‐grant  universities  that  do  agricultural  extension  work4.  In  response  to  requests  from  Colorado  and  Washington  the  EPA  did  recently  release  a  letter  indicating  that  they  would  accept  applications  for  Special  Local  Need  (SLN)  registrations  for  pesticides  intended  for  use  on  Cannabis.  This  is  an  extraordinary  step,  as  it  represents  the  first  real  acknowledgment  of  the  Cannabis  industry  by  a  federal  agency  that  normally  regulates  traditional  agriculture.  Nonetheless,  SLN  applications  (though  not  as  difficult  and  time-­‐consuming  as  normal  pesticide  registrations)  are  still  quite  arduous  and  restricting,  and  at  present  it  is  unlikely  that  any  company  or  state  government  will  be  willing  to  invest  in  the  necessary  application  process.      This  issue  also  puts  independent  Cannabis  testing  labs  (ITLs)  in  a  difficult  position.  In  some  states  they  have  been  instructed  to  test  for  pesticides,  but  have  not  been  given  clear  guidance  as  to  how  to  do  so  or  what  to  test  for.  Regulatory  agencies  in  multiple  states  are  now  attempting  to  determine  guidelines  for  pesticide  use  on  Cannabis,  but  doing  so  will  require  not  only  guidance  for  growers  as  to  what  compounds  or  methods  are  acceptable,  but  also  guidance  for  growers  and  ITLs  as  to  what  compounds  are  unacceptable,  and  therefore  must  be  tested  for.      This  paper  is  a  comprehensive  survey  of  pesticide  use  on  Cannabis,  compiled  from  data  collected  by  Oregon  Growers  Analytical  laboratory,  in  Eugene  OR.  The  data  is  alarming,  both  because  of  the  range  of  pesticides  that  were  detected  and  because  of  the  high  levels  that  were  found.  It  also  provides  strong  evidence  that  the  production  of  Cannabis  extracts  leads  to  the  concentration  of  pesticides  in  the  final  product.  Given  the  current  lack  of  data  regarding  pesticide  occurrence  on  Cannabis  we  hope  the  data  presented  here  can  serve  as  a  foundation  for  the  development  of  guidelines  for  pesticide  use  on  Cannabis.    The  Cannabis  Safety  Institute,  in  conjunction  with  a  number  of  agricultural  pesticide  experts  in  several  states,  has  assembled  a  set  of  recommendations  that  we  believe  will  allow  states  to  address  this  issue  effectively  until  the  federal  government  is  willing  to  bring  the  full  resources  of  the  EPA  to  bear.  These  recommendations  necessarily  involve  compromises  that  are  unavoidable  until  we  have  higher  quality  data  regarding  the  toxicity,  behavior,  and  chemistry  of  each  relevant  compound  in  both  Cannabis  flowers  and  concentrates.  Nonetheless,  they  provide  a  set  of  guidelines  that  will  protect  public  health,  and  allow  growers,  ITLs,  and  state  regulators  to  move  forward.  These  recommendations  are  outlined  in  the  final  section  of  this  document.    3.  Regulatory  structure  for  the  enforcement  of  pesticide  regulations    

Most  states  have  existing  programs  for  the  regulation  of  pesticide  usage  on  agricultural  crops.  One  of  the  goals  of  this  document  is  to  explore  how  such  programs  can  be  adapted  to  the  production  of  Cannabis  and  to  identify  those  challenges  that  are  unique  to  this  commodity.  A  working  regulatory  system  for  agricultural  pesticides  requires  interactions  between  producers,  government,  and  ITLs.  The  critical  components  of  this  structure  are  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   5  

depicted  in  Fig.  1.  The  government  (in  this  case,  the  state  government  alone)  plays  a  central  role  in  this  system  in  that  it  must  establish  the  overall  rules  and  implement  a  program  for  inspection  and  enforcement.  With  regards  to  growers,  the  governing  body  must  (1)  establish  licensing  requirements,  (2)  provide  of  a  list  of  allowed  pesticides,  and  (3)  set  up  a  system  for  on-­‐site  inspections.  Growers  must  be  required  to  obtain  appropriate  licenses  for  the  application  of  pesticides  and  must  report  pesticide  usage  to  the  governing  agency.    With  regards  to  ITLs,  the  government  must  (1)  establish  licensing  requirements,  which  should  include  the  requirement  that  the  ITL  is  accredited  to  an  appropriate  standard  set  forth  by  the  government,  (2)  establish  a  minimal  list  of  pesticides  that  the  ITL  is  required  to  include  in  analytical  screens,  (3)  establish  maximum  residue  limits  for  pesticides  that  may  be  found,  and  (4)  set  up  a  system  for  on-­‐site  laboratory  inspections.  In  turn  ITLs  must  be  required  to  maintain  appropriate  accreditation  and  report  their  accreditation  status  to  the  governing  body.  In  addition  a  system  must  be  established  to  allow  ITLs  to  report  samples  that  are  in  violation  so  appropriate  actions  can  be  taken.    

 

 Figure 1. Regulatory structure for pesticide use on agricultural products.  

4.  Pesticide  residues  on  medical  Cannabis  in  Oregon.    

Because  of  state-­‐to-­‐state  differences  in  Cannabis  regulations  each  state  is  facing  unique  challenges  in  implementing  effective  programs  for  managing  pesticide  usage  on  Cannabis.    The  data  presented  below  was  collected  in  Oregon,  and  it  is  best  understood  in  the  context  of  the  current  Cannabis  testing  landscape  in  that  state.  Although  some  of  the  issues  discussed  are  unique  to  Oregon,  many  are  likely  to  be  shared  by  other  states.  All  of  them  provide  important  context  for  the  difficulties  of  instituting  pesticide  regulations  for  a  new  agricultural  crop  in  the  absence  of  federal  involvement.  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   6  

 4a.  Current  Cannabis  testing  landscape  in  Oregon.    

In  Feb.  2014  Oregon  adopted  rules  (OAR  333-­‐008)  governing  the  sale  of  medical  marijuana  in  Oregon.  Included  in  these  rules  was  the  requirement  that  marijuana  and  marijuana  products  must  be  tested  to  ensure  that  they  are  free  of  pesticide  contamination.  These  rules  have  several  serious  flaws  that  in  effect  lead  to  a  false  sense  of  assurance  regarding  the  actual  safety  of  Cannabis  products  sold  within  the  state.  However,  the  ways  that  these  rules  backfired  is  instructive,  and  make  it  relatively  clear  how  they  should  be  written  in  the  future.      OAR  333-­‐008-­‐1190  states  that  marijuana  must  be  tested  for  “pesticides  by  testing  for  the  following  analytes:  (i)  chlorinated  hydrocarbons,  (ii)  organophosphates,  (iii)  carbamates,  and  (iv)  pyrethroids.”  And  that  a  “sample  of  usable  marijuana  shall  be  deemed  to  test  positive  for  pesticides  with  a  detection  of  more  than  0.1  parts  per  million  of  any  pesticide”.    In  other  words,  four  classes  of  pesticides  must  be  tested  for,  and  samples  failed  if  they  have  levels  above  a  given  cutoff  (0.1ppm).  These  four  classes  of  pesticides  are  actually  composed  of  hundreds  of  compounds  (according  to  the  PAN  database  -­‐-­‐  www.pesticideinfo.org    -­‐-­‐  491  individual  compounds  fall  into  these  categories).  Pesticide  screening  involves  identifying  individual  compounds,  not  classes  of  compounds.  Thus,  in  order  to  actually  meet  the  rule  each  sample  would  have  to  be  screened  for  491  individual  compounds.  This  is  quite  simply  impossible  and  would  cost  an  inordinate  amount  of  money  to  attempt.      In  addition,  many  of  the  pesticides  that  are  actually  being  used  on  Cannabis  do  not  fall  into  these  arbitrarily  chosen  classes.  The  specified  categories  include  many  potentially  dangerous  chemical  insecticides,  but  they  exclude  many  others.  In  addition,  they  do  not  include  fungicides  or  plant  growth  regulators  (PGRs),  both  of  which  are  commonly  used  on  Cannabis.    The  state-­‐specified  categories  carry  the  quite  dangerous  implication  for  growers  that  other  types  of  compounds  are,  by  definition,  acceptable.  It  is,  in  effect,  a  list  of  compounds  that  includes  many  that  are  irrelevant  (for  instance  haven’t  been  available  in  the  US  for  decades),  many  that  cannot  be  screened  for,  and  fails  to  include  many  others  that  are  actually  being  used.      This  Oregon  state  law  was  passed  with  good  intentions,  and  at  the  time  it  was  one  of  the  few  laws  anywhere  that  required  pesticide  testing  on  medical  marijuana.  Nonetheless,  it  is  an  excellent  example  of  the  dangers  of  enacting  science-­‐based  legislation  without  adequate  oversight  by  scientists.  The  law  did  not  specify  a  list  of  allowable  pesticides,  or  a  meaningful  list  of  disallowed  pesticides.  It  put  ITLs  in  the  position  of  choosing  arbitrary  lists  of  compounds  to  screen  for,  because  the  full  list  was  impossible,  and  it  put  them  in  the  position  of  having  to  pass  samples  that  were  clearly  contaminated  by  dangerous  compounds  that  were  not  in  the  classes  specified  by  law.      This  law  put  no  regulatory  structure  or  enforcement  protocols  in  place,  and  did  not  require  that  laboratories  meet  any  standard  of  accreditation  whatsoever.  It  therefore  led  to  a  vigorously  expanding  testing  industry  in  which  most  labs  were  using  inappropriate  techniques  to  screen  for  arbitrarily  chosen  lists  of  compounds  using  unvalidated  protocols.  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   7  

Growers  had  no  guidance  as  to  what  they  could  use,  ITLs  had  no  guidance  on  what  to  test  for,  and  consumers  were  given  products  with  labels  that  implied  they  were  “pesticide-­‐free”.  These  labels  were  generally  misleading,  as  the  data  below  illustrates.    4b.  Study  outline.    

Despite  the  shortcomings  of  the  current  regulatory  system,  OAR  333-­‐008  forced  ITLs  to  develop  pesticide-­‐screening  methods  for  Cannabis.  Amongst  these  was  Oregon  Growers  Analytical  (OGA),  which  is  a  Cannabis-­‐testing  laboratory,  located  in  Eugene  OR  and  for  which  one  of  the  authors  (Rodger  Voelker)  is  lab  director.    Between  March  and  July  of  2014  OGA  worked  on  developing  and  validating  methods  suitable  for  the  determination  of  pesticide  residues  on  Cannabis  and  Cannabis  extracts.  The  method  that  was  adopted  is  based  upon  the  universally  accepted  AOAC  2007.01  multi-­‐residue  method  (generally  known  as  QuEChERS)  with  specific  adaptations  for  Cannabis  and  Cannabis  extracts.  The  primary  technical  challenge  associated  with  the  use  of  the  QuEChERS  method  for  Cannabis  is  the  high  level  of  Cannabis  related  compounds  during  the  initial  extraction.  These  co-­‐extractives  are  largely  composed  of  terpenes,  cannabinoids,  and  various  alkanes.  OGA  therefore  developed  a  solid-­‐phase  extraction  (SPE)  cleanup  step  to  remove  as  many  of  these  compounds  as  possible.  After  cleanup  the  extracts  are  analyzed  using  a  combination  of  GC-­‐MS  (using  an  Agilent  6890  GC  coupled  to  an  Agilent  5973  single-­‐quad  MS)  and  LC-­‐MS/MS  (using  an  Agilent  1100  HPLC  coupled  to  an  AB  Sciex  API3200  triple-­‐quad  MS/MS).  Method  detection  limits  (MDLs)  range  from  10  –  1000  ppb  depending  upon  the  analyte.    The  data  presented  is  from  389  samples  of  Cannabis  flowers  and  154  samples  of  concentrates,  analyzed  between  October  and  December  of  2014.  A  list  of  65  compounds  was  tested  for.  This  list  was  developed  based  on  USGS  pesticide  use  data,  extensive  conversations  with  growers,  and  a  set  of  sales  data  provided  to  the  Cannabis  Safety  Institute  by  two  major  grow-­‐supply  shops  that  service  the  industry.  We  believe  this  list  provides  good  coverage  of  the  pesticides  likely  to  be  in  use  in  the  Cannabis  industry.  Of  the  65  compounds  that  were  screened  for,  the  24  shown  in  Table  I  were  detected  on  Cannabis  flowers  or  extracts.  With  further  method  development,  and  an  expanded  list  of  analytes,  it  is  likely  we  would  find  further  compounds  that  we  did  not  discover  in  this  study.    

Organophosphates              Organochlorines                Other  Chlorpyrifos                4,4’-­‐DDE                  Abamectin    Coumaphos                cis-­‐Chlordane                  Azadirachtin    Diazinon                trans-­‐Chlordane                  Bifenazate    Dichlorvos                    Imidacloprid    Ethoprophos                Pyrethroid                Myclobutanil    Malathion                Bifenthrin                  Paclobutrazol    Mevinphos                Cypermethrin                  Piperonyl  Butoxide                  Permethrin                  Metalaxyl  N-­‐methyl  Carbamates                          Chlorfenapyr  Carbaryl        Propoxur      

Table 1: Pesticides detected on Cannabis products in this study.

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   8  

4c.  Frequency  of  pesticide  detection.    A  large  proportion  of  samples  in  this  study  tested  positive  for  pesticides.  If  this  were  a  different  agricultural  crop,  that  alone  would  not  necessarily  be  cause  for  concern.  The  EPA  establishes  specific  tolerances  for  each  pesticide  on  each  crop.  However,  many  of  these  Cannabis  samples  would  also  fail  typical  EPA  guidelines  for  agricultural  products.  Figure  2A  shows  the  distribution  of  samples  that  tested  positive  (ie,  above  the  method  detection  limit)  for  one  or  more  of  the  pesticides  listed  in  Table  1.  Figure  2B  shows  the  distribution  of  samples  that  exceeded  Oregon  tolerances  as  defined  in  OAR  333-­‐008  (see  section  4a)  for  one  or  more  of  the  organophosphate,  organochlorine,  N-­‐methylcarbamate,  or  pyrethroids  listed  in  Table  1.  Figure  2C  shows  the  distribution  of  samples  that  contained  any  of  the  compounds  listed  in  Table  1  at  levels  that  would  reasonably  be  considered  to  violate  EPA  rules.  Since  the  EPA  has  not  registered  any  pesticides  for  use  on  Cannabis,  technically  any  application  of  a  pesticide  to  Cannabis  is  a  violation  of  EPA  rules.  For  the  purposes  of  this  analysis,  we  consider  samples  to  be  in  violation  of  EPA  guidelines  if  they  have  greater  than  100  ppb  of  any  pesticide  in  Table  1  with  the  exception  of  azadirachtin  and  piperonyl  butoxide  (PBO).  Azadirachtin  is  a  naturally  occurring  compound  found  in  Neem  seeds,  has  low  toxicity  and  according  to  40CFR  180.905  is  exempt  from  EPA  tolerances.  Detections  of  

Figure 2: (A) Proportion of samples that tested positive for any detectable level of pesticide residue. (B) Proportion of samples having greater than 100 ppb of one or more pesticides covered by the current OHA rules. (C) Proportion of samples having greater than 100 ppb of any pesticide in Table 1 with qualifications as described in the text.

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   9  

azadirachtin  were  therefore  omitted  from  this  analysis.  PBO  is  a  synergist  that  is  frequently  added  to  pesticides  to  increase  their  effectiveness.  PBO  is  not  itself  a  pesticide,  but  it  has  been  given  an  EPA  tolerance  of  8000  ppb  for  fruits  and  vegetables.  For  the  sake  of  this  analysis  detection  of  >10,000  ppb  of  PBO  was  deemed  a  failure.  Using  these  guidelines,  14%  of  the  flowers  would  fail  and  nearly  half  of  the  concentrates  would  fail.      After  PBO,  the  next  most  commonly  detected  pesticides  were  bifenazate  and  myclobutanil.  These  are  not  currently  covered  by  OHA  tolerances  but  are  found  in  nearly  10%  of  all  samples.  The  most  commonly  found  compounds  that  are  currently  covered  by  the  OHA  rules  are  bifenthrin  (found  in  7%  of  samples)  and  malathion  (found  in  3%  of  samples).      4d.  Levels  of  pesticides  detected.    

The  EPA  sets  strict  guidelines  for  allowable  levels  of  pesticides  on  raw  commodities  sold  within  the  US.  These  are  set  individually  for  each  combination  of  product  and  pesticide,  but  values  typically  range  from  10  ppb  to  10,000  ppb.  The  levels  of  the  most  commonly  found  pesticides  on  Cannabis  and  Cannabis  products  are  shown  in  Figure  4.  Note  that  the  Y-­‐axis  is  

Figure 3. Distribution of observed levels as a function of compound and product type. Shown are boxplots for each compound indicating the mean (solid black line) and quartiles. Overlayed on each boxplot are individual data points colored by product type (see legend). 100 ppb is indicated as a hashed line. Note: the y axis is log scaled so each increment represents a 10x level than the previous increment.

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   10  

logarithmically  scaled  to  accommodate  the  wide  range  of  observed  levels.  The  mean  levels  for  most  pesticides  are  between  1000  –  5000  ppb.  More  significantly,  however,  12%    of  samples  have  levels  that  exceed  10,000  ppb,  and  1.9%  of  samples  have  levels  even  greater  than  100,000  ppm.      4e.  Concentration  of  pesticides  in  Cannabis  extracts.    

Further  inspection  of  the  data  indicate  that  the  mean  levels  of  pesticides  in  concentrates  is  higher  than  that  found  in  flowers.  The  high  levels  of  pesticide  residue  in  concentrates  is  consistent  with  the  hypothesis  that  processes  used  to  concentrate  cannabinoids  (ie.  butane,  pentane,  CO2  extraction)  also  concentrate  pesticides.  This  phenomenon  is  more  clearly  demonstrated  in  Figure  4  which  shows  the  distributions  of  PBO  and  bifenthrin  levels  observed  for  flowers  versus  concentrates.  In  both  cases  the  mean  level  observed  on  concentrates  is  roughly  10x  higher  than  the  mean  for  Cannabis  flowers.    

 It  is  not  surprising  that  cannabinoid  extraction  techniques  also  extract  and  concentrate    pesticides.  This  is  consistent  with  the  fact  that  many  pesticides  have  chemical  properties  (e.g.  polarity  and  solubility)  that  are  similar  to  cannabinoids.  However,  the  observation  that  the  mean  level  of  pesticides  appears  to  be  roughly  10x  higher  in  concentrates  versus  flowers  is  somewhat  surprising,  given  that  cannabinoids  are  only  about  2-­‐5x  more  concentrated  in  extracted  products.  Several  factors  could  be  contributing  to  this  phenomenon,  including  (1)  that  some  pesticides  are  more  efficiently  concentrated  by  these  extraction  techniques  than  cannabinoids  are,  (2)  that  chronic  contamination  of  equipment  and  solvents  may  lead  to  cross  contamination  of  later  products,  and/or  (3)  because  it  is  a  common  practice  to  make  concentrates  from  ‘trim’  which  is  left  over  after  harvesting  the  

Figure 4. Distributions of the levels of PBO and bifenthrin for flowers versus concentrates. The OHA limit of 100 ppb is shown with a black hashed line. Note: The Y-axis is log scaled.

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   11  

quality  buds  and  the  ‘trim’  may  be  more  heavily  contaminated  than  the  buds  which  are  sold  and  analyzed  separately.      4f.  Discussion    

Since  the  EPA  has  not  established  tolerances  for  pesticides  in  Cannabis  it  is  difficult  to  determine  how  many  samples  should  be  considered  to  have  levels  that  are  excessive.  However,  pesticide  tolerances  generally  range  from  10  –  10,000  ppb  for  other  commodities.  Using  this  standard  it  is  clear  that  a  significant  proportion  of  Cannabis  products  contain  problematic  levels  of  pesticides,  and  the  observation  that  nearly  5%  of  concentrates  have  pesticide  contamination  at  levels  that  exceed  50,000  ppb  is  particularly  disturbing.  Even  more  alarming  is  the  discovery  that  some  concentrates  contain  compounds  such  as  PBO,  carbaryl,  myclobutanil,  and  chlorfenapyr  at  levels  greater  than  100,000  ppb  (figure  4  and  table  2).  These  levels  grossly  exceed  tolerances  for  pesticides  on  any  commodity,  and  it  is  important  to  note  that  chlorfenapyr  is  not  registered  for  use  on  any  food  commodities.      Table  2  is  a  list  of  individual  samples  with  the  highest  levels  of  pesticides  observed  so  far.  These  results  clearly  demonstrate  that  many  products,  especially  concentrates,  have  levels  of  pesticides  that  greatly  exceed  EPA  tolerances  for  these  compounds  on  any  commodities.  It  can  also  be  clearly  seen  that  the  highest  levels  of  pesticides  observed  in  concentrates  greatly  exceeds  the  highest  levels  found  on  Cannabis  flowers.  

Flowers    

Concentrates  ID   Matrix   Pesticide   Conc  (ppb)  

 ID   Matrix   Pesticide   Conc  (ppb)  

**76   Flower   Imidacloprid   64,000    

***52   BHO   Carbaryl   415,000  ***33   Flower   Azadirachtin   36,000  

 **12   BHO   PBO   407,000  

**94   Flower   PBO   22,700    

**19   CO2   Myclobutanil   392,000  ***34   Flower   Azadirachtin   16,700  

 **69   BHO   PBO   220,000  

**64   Flower   Imidacloprid   15,300    

***83   BHO   PBO   180,000  ***37   Flower   Azadirachtin   14,274  

 **06   BHO   Myclobutanil   160,000  

***98   Flower   PBO   13,500    

**67   BHO   PBO   137,000  ***39   Flower   Azadirachtin   13,200  

 **20   RSO   Azadirachtin   123,000  

***38   Flower   Azadirachtin   11,450    

**81   CO2   Myclobutanil   110,000  ***35   Flower   Azadirachtin   11,300  

 ***32   BHO   PBO   106,700  

***69   Flower   PBO   9,040    

**19   CO2   Chlorfenapyr   100,000  ***09   Flower   Dichlorvos   8,058  

 ***34   BHO   Myclobutanil   64,310  

***84   Flower   Myclobutanil   8,039    

**29   CO2   PBO   52,000  ***36   Flower   Azadirachtin   7,200  

 ***34   BHO   PBO   48,160  

***17   Flower   Bifenthrin   5,621    

***56   BHO   PBO   46,440  ***18   Flower   Bifenthrin   4,925  

 **24   CO2   PBO   44,500  

**96   Flower   PBO   4,450    

***50   BHO   Myclobutanil   43,600  

 In  addition  to  chlorfenapyr  this  study  revealed  the  use  of  other  products  that  are  not  registered  for  use  on  consumed  commodities.  Discussions  with  growers  revealed  that  plant  growth  regulators  (PGRs)  are  sometimes  used  on  Cannabis.  We  therefore  included  

Table 2: Specific examples of samples with high levels of pesticide residues. Note: Sample IDs have been masked.

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   12  

paclobutrazol,  which  is  a  PGR  that  is  not  registered  for  use  on  food  crops.  Consistent  with  the  anecdotal  information,  we  have  so  far  identified  9  samples  having  paclobutrazol  contamination.    The  most  commonly  observed  contaminant  is  PBO.  PBO  is  not  itself  a  pesticide  but  is  a  synergist  that  is  often  mixed  with  products  containing  pyrethroids  and  carbamates  to  increase  their  toxicity.  It  is  generally  considered  to  be  relatively  non-­‐toxic,  in  comparison  to  other  pesticides,  but  it  is  listed  as  potentially  carcinogenic  by  the  EPA,  and  it  is  potentially  hazardous  to  multiple  species  in  the  environment.  PBO  is  regulated  by  the  EPA  as  a  pesticide  and  strict  tolerances  have  been  established.  PBO  is  an  ingredient  in  over  1600  registered  pest  control  products,  and  it  is  likely  that  the  frequent  contamination  and  excessive  levels  of  this  compound  on  Cannabis  indicate  widespread  and  excessive  usage  of  pesticides  that  this  screen  is  not  detecting.  Many  of  these  are  likely  to  be  natural  pyrethrins,  which  are  given  a  broad  exemption  by  the  EPA  and  are  difficult  to  detect  and  quantify  in  Cannabis  extracts.  Nevertheless,  even  natural  pyrethrins  are  considered  low-­‐toxicity  only  in  the  absence  of  PBO,  and  many  other  pesticides  are  also  frequently  combined  with  PBO.  The  nearly  ubiquitous  contamination  of  Cannabis  products  with  PBO  is  consistent  with  excessive  usage  of  pesticides  on  Cannabis,  suggesting  the  need  for  education  of  growers  to  help  reduce  their  reliance  upon  pesticides.    During  the  course  of  this  study  we  identified  several  practices  that  do  not  involve  direct  application  of  pesticides  to  Cannabis  crops  but  nonetheless  result  in  pesticide  contamination.  The  most  frequently  detected  compound  that  falls  within  the  current  OMMP  rules  and  causes  the  most  failures  due  to  excessive  levels  is  bifenthrin.  Bifenthrin  is  a  synthetic  pyrethroid  that  is  commonly  used  in  the  Cannabis  industry  in  the  form  of  a  total  release  aerosol  that  is  used  to  ‘bomb’  grow-­‐rooms  in  between  crops  to  control  spider  mites.  We  discovered  that  this  is  not  only  a  common  practice  but  it  is  widely  believed  that,  because  the  plants  were  not  present  during  the  application,  there  would  not  be  consequential  contamination  of  the  next  Cannabis  crop.  However,  in  working  with  growers  we  have  discovered  that  bifenthrin  applications  lead  to  long  term  contamination  of  work  spaces,  tools,  lights,  and  ventilation  systems  that  results  in  chronic  cross-­‐contamination  of  later  crops.  Another  interesting  source  of  indirect  contamination  involves  dichlorvos,  which  is  an  organophosphate.  Dichlorvos  is  an  active  ingredient  in  certain  pest-­‐strips,  which,  despite  being  labeled  as  inappropriate  for  use  in  food  production  facilities,  is  commonly  used  to  help  control  mites  in  in-­‐door  grows.  However,  we  have  identified  at  least  five  instances  where  Cannabis  flowers  have  tested  positive  for  dichlorvos  and  in  each  case  the  grower  revealed  that  they  were  using  pest-­‐strips  that  contained  dichlorvos.                      

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   13  

5.  Recommendations    

Under  the  current  US  regulatory  system  pesticides  must  be  registered  with  the  EPA.  The  EPA  sets  tolerances  for  pesticide  residues  that  may  remain  on  crops  sold  within  the  US  and  requires  that  all  pesticide  products  be  labeled  to  indicate  approved  usage.  Unfortunately  Cannabis  is  not  considered  a  crop  and  does  not  fall  into  any  category  for  which  the  EPA  (or  the  FDA  or  USDA)  have  oversight.  The  only  guidance  that  states  currently  have  is  in  reference  to  FIFRA  (see  US  code  7  USC  136j-­‐a2g),  which  states  that  it  is  unlawful  to  use  a  pesticide  in  a  manner  that  is  inconsistent  with  its  label.  Therefore,  since  no  pesticides  are  labeled  for  usage  on  Cannabis,  any  application  of  a  registered  pesticide  is  in  violation  of  FIFRA.      This  situation  leaves  little  room  for  states  to  maneuver  as  they  develop  policies  regarding  usage  of  pesticides  on  commercial  Cannabis  and  attempt  to  remain  in  compliance  with  FIFRA.  The  irony  of  the  situation  is  not  lost  on  us – it  seems  odd  to  be  concerned  about  breaking  one  particular  federal  law  in  the  course  of  explicitly  violating  a  different  one.  Nonetheless,  we  don't  believe  that  regulators  in  any  state,  having  thought  carefully  about  this  issue,  will  choose  to  be  in  noncompliance  with  FIFRA.  The  federal  government  has  signaled  some  degree  of  willingness  to  tolerate  state-­‐level  programs  that  violate  the  Controlled  Substances  Act  and  DEA  regulations  regarding  Cannabis.  Extending  this  to  violations  of  other  parts  of  the  federal  code  is  an  invitation  to  federal  intervention  that  would  likely  not  limit  itself  to  the  matter  at  hand.  State  efforts  to  protect  public  health  in  the  course  of  experiments  with  legal  Cannabis  must  be  extremely  vigorous  if  these  programs  are  to  be  allowed  to  continue.      The  only  way  that  states  can  comply  with  FIFRA  in  these  respects  is  to  approve  only  compounds  that  are  exempt  from  tolerance  limits  under  40  CFR  152,  and  that – in  addition   – are  labeled  for  broad  usage  such  that  their  application  to  Cannabis  is  not  in  violation  of  the  product  label.  Several  states  including  Washington,  California,  and  Colorado  have  issued  policies  that  largely  follow  these  guidelines.  Such  restrictions,  when  fully  implemented,  will  lead  to  pesticide  guidelines  for  Cannabis  that  are  arguably  stricter  than  for  most  other  crops.  This  is  as  it  should  be,  both  for  regulatory  purposes,  as  explained  above,  and  for  safety  reasons.  Cannabis  is  used  for  medical  purposes,  and  exposure  to  pesticides  on  Cannabis  will  be  via  inhalation.  The  dangers  of  pesticides  on  Cannabis  are  simply  greater  than  they  are  on  food  crops.    Consideration  of  the  language  on  the  product  label  is  not,  on  its  own,  an  adequate  criterion  for  determining  which  pesticides  can  be  tolerated  on  Cannabis.  Currently  Washington  and  Colorado  allow  for  the  application  of  some  pesticides  (including  pyrethrins,  pyriproxyfen,  pyridalyl,  fenoxycarb,  triticonazole  and  thiophanate-­‐methyl)  that  have  permissive  language  on  their  labels,  but  are  not  exempt  from  EPA  tolerances.  Since  the  EPA  has  established  tolerances  for  these  compounds  in  other  food  crops  this  policy  may  be  problematic  since  it  has  the  potential  to  expose  consumers  to  unacceptable  levels  of  these  compounds.      

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   14  

Given  the  concerns  discussed  above  it  is  the  position  of  the  Cannabis  Safety  Institute  that  for  the  time  being  states  should  adopt  policies  restricting  pesticide  use  on  Cannabis  to  those  products  that  are  listed  as  minimal  risk  under  FIFRA  Section  25(b);  have  broad  and  non-­‐exclusive  language  on  their  labels;  and,  in  addition,  are  considered  acceptable  for  use  in  organic  practice.    A  deep  body  of  knowledge  is  available  on  sustainable  and  organic  farming  practices,  including  careful  and  detailed  studies  on  the  pests  associated  with  Cannabis  and  biocontrol  methods  for  addressing  them.  Biocontrols  include  predatory  insects  and  beneficial  microorganisms,  and  have  been  used  successfully  in  large  commercial  Cannabis  production  facilities,  such  as  the  one  operated  by  GW  Pharma  in  the  UK  (David  Potter,  GW  Pharma,  personal  communication).      Despite  the  clear  benefits  of  completely  organic  and  biocontrol-­‐based  methods  of  pest  management,  we  recognize  that  it  will  take  the  Cannabis  industry  some  time  to  transition  to  better  practices.  Pesticide  use  is  ubiquitous  in  US  agriculture,  and  we  do  not  expect  it  to  go  away  entirely.  But  it  must  be  done  safely,  and  it  must  be  done  legally.  At  present,  it  is  not  clear  how  to  apply  either  of  these  standards  to  pesticide  use  on  Cannabis,  and  so  we  recommend  caution  in  both  respects.  Pesticide  use  on  typical  crops  is  allowed  because  it  is  done  in  the  context  of  strict  EPA-­‐determined  tolerances  for  each  compound  on  each  product.  The  process  of  determining  these  tolerance  limits  is  complex,  time-­‐consuming,  and  data-­‐driven.  We  do  not  take  the  position  that  all  pesticide  use  is  necessarily  a  public  health  hazard.  Nonetheless,  until  a  scientifically  valid  process  for  determining  tolerances  on  Cannabis  is  established,  we  cannot  assume  that  any  level  of  inhalation  exposure  is  safe  for  pesticides  that  currently  have  toxicology-­‐based  tolerance  limits  set  for  food  products    Until  the  supply  chain  for  plant  cuttings  is  modernized,  plant  pests  and  diseases  will  be  an  extremely  serious  problem  for  growers.  If  states  are  to  address  this  problem  effectively  they  have  to  take  into  account  the  realities  of  how  the  industry  is  currently  structured.  This  means  taking  steps  to  encourage  a  more  pest-­‐free  supply  chain,  as  well  as  encouraging  interaction  with  state  universities  and  health  and  agriculture  departments.  Above  all,  it  means  assembling  regulations  that  give  growers  clear  rules  and  guidelines,  and  implementing  a  system  for  effective  enforcement.  Putting  such  structures  in  place  will  require  states  to  engage  with  scientific  and  regulatory  issues  that  have  normally  been  handled  at  the  federal  level.  However,  failing  to  do  so  will  jeopardize  public  health,  and  potentially  stall  or  reverse  the  growth  of  this  new  agricultural  industry  altogether.  

At  present,  safety  standards  are  enforced  in  the  Cannabis  industry  through  batch-­‐testing  performed  by  a  network  of  Cannabis  testing  labs.  This  is  not  typical  for  agricultural  products,  but  it  reflects  the  reality  that  exists  without  federal  oversight  and  structure.  If  managed  correctly,  third-­‐party  batch  testing  will  support  safety  levels  in  the  Cannabis  industry  that  are  at  least  as  rigorous  as  those  in  place  for  other  crops.    

Cannabis  testing  laboratories  must  be  supplied  with  clear  instructions  on  which  pesticides  to  test  for.  These  laboratories  must  be  certified  to  nationally  and  internationally  accepted  standards,  such  as  ISO  17025  or  NELAC,  and  they  must  be  subjected  to  regular  inter-­‐lab  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   15  

proficiency  testing  to  ensure  that  their  instrumentation,  staffing,  and  protocols  are  adequate  for  pesticide  testing  on  Cannabis  flowers  and  concentrates.  Cannabis  growers  and  retailers  need  to  be  prepared  for  the  fact  that  pesticide  testing  is  more  expensive  than  other  safety  tests  they  are  currently  required  to  undergo.  Analyte  lists  should  be  developed  with  this  in  mind,  and  be  kept  as  minimal  as  possible  to  reduce  costs,  while  still  ensuring  adequate  coverage  of  potentially  dangerous  compounds.  

Appendix  1  contains  a  list  of  analytes  that  the  Cannabis  Safety  Institute  currently  recommends  be  tested  for  on  Cannabis.  It  was  developed  from  an  initial  list  of  more  than  3000  compounds  registered  as  pesticides,  and  through  a  precise  set  of  criteria  shortened  to  123  compounds.  These  criteria  were  based  on  toxicology,  availability,  and  use-­‐case  potential.  It  is  not  feasible  for  Cannabis  testing  labs  to  test  for  more  compounds  than  this;  even  123  may  be  too  many  targets  for  the  market  to  bear,  and  the  price  of  such  assays  is  an  unavoidable  issue  if  pesticide  testing  is  to  be  required  on  every  single  batch  of  Cannabis.  We  recognize  that  developing  a  manageable  and  appropriate  list  of  target  compounds  is  complicated  and  ultimately  requires  the  additional  input  of  expert  toxicologists,  agricultural  chemists,  and  regulators.  Nonetheless,  this  list  is  a  rational  starting  point.  If  state  regulators  wish  to  expand  or  contract  it,  they  will  have  to  engage  their  agriculture  departments  in  the  work  of  evaluating  each  compound  independently.  

Appropriate  tracking  systems  need  to  be  established  to  prevent  materials  that  are  contaminated  with  pesticides  from  being  sold  to  the  public.  We  suggest  that  the  limit  for  all  of  these  compounds  be  set  to  100  ppb,  as  was  done  by  the  Oregon  Health  Authority.  In  the  absence  of  specific  data  for  each  of  these  compounds  on  Cannabis,  100  ppb  is  a  reasonable  compromise.  It  is  low  enough  to  avoid  toxicity,  and  at  the  same  time  it  is  as  low  a  detection  limit  as  can  reasonably  be  achieved  with  the  instrumentation  that  is  available  to  most  Cannabis  testing  laboratories.  We  also  realize  that,  due  to  difficulties  in  detection,  the  limits  for  certain  compounds  may  have  to  be  increased.  Testing  guidelines  such  as  these  should  not  be  implemented  in  statute; they  should  be  set  by  rule-­‐making  bodies  that  can  adjust  them  flexibly  as  new  data  becomes  available.  

Although  regulations  and  enforcement  may  be  the  initial  priority,  long-­‐term  solutions  will  need  to  include  a  great  deal  of  education  and  research.  Land-­‐grant  universities  must  be  allowed  to  do  extension  work  and  educational  programs  with  Cannabis  growers.  State  agriculture  departments  must  engage  with  the  industry  and  begin  generating  tolerance  data.  If  state  governments  intend  to  nurture  an  entirely  new  agricultural  industry  without  federal  assistance  or  guidance,  they  must  be  prepared  to  do  all  the  critical  public  health  and  safety  work  that  is  typically  done  by  the  federal  government.                  

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   16  

5a.  Resources    

Further  resources  regarding  pesticides  can  be  found  at  these  locations:  

• Organic  Materials  Review  Institute  (OMRI),  www.omri.org    • Washington  State  Department  of  Agriculture  (WSDA).  

www.agr.wa.gov/FoodAnimal/Clean  Green/MaterialsLists.htm  • National  List  of  Allowed  and  Prohibited  Substances  

www.ams.usda.gov/NOP/NOP/standards/ListReg.html    • ATTRA  has  a  new  Ecological  Pest  Management,  on-­‐line  pest  management  tool  for  

farmers.  This  database  highlights  reduced  risk  materials  that  can  be  integrated  with  ecological  pest  management  strategies.  It  can  be  found  at  the  following  link:  http://www.attra.org/attra-­‐pub/biorationals/biorationals_main_srch.php  

• Pesticide  Use  in  Marijuana  Production:  Safety  Issues  and  Sustainable  Options,  Feldman,  Pesticides  and  You,  34(4),  2014-­‐15:  www.beyondpesticides.org/dailynewsblog/?p=15424  

 

5b.  Summary  of  Recommendations  

• State  regulators  should  instruct  agriculture  departments  and  universities  to  develop  data  and  provide  science-­‐based  recommendations  about  pesticide  tolerances,  application,  and  exposure  on  Cannabis.  

• State  regulators  should  encourage  engagement  in  the  Cannabis  industry  by  universities  and  state  agriculture  departments,  in  order  to  educate  Cannabis  growers  on  sustainable  pest  control  methods.  

• Third  party  organic  certification  should  be  encouraged  and  supported.  

• Independent  Cannabis  testing  labs  must  be  accredited  to  ISO  17025  or  NELAC  standards,  and  subject  to  regular  inter-­‐lab  proficiency  testing  to  ensure  they  are  capable  of  accurate  and  reproducible  pesticide  testing.  

• State  regulators  must  provide  independent  Cannabis  testing  labs  with  clear  guidance  on  what  compounds  to  test  for.    At  present,  we  recommend  that  these  labs  test  all  batches  of  Cannabis  for  the  compounds  listed  in  Appendix  1,  and  additional  ones  as  found  necessary.  All  samples  with  residues  of  these  compounds  detectable  at  over  100  ppb  should  be  failed.  

• State  regulators  must  provide  clear  information  about  acceptable  pesticide  usage  to  Cannnabis  growers.  Growers  should  be  informed  that  the  only  acceptable  pesticides  are  those  that  are  listed  as  “minimum  risk”  in  FIFRA  25(b),  exempt  from  EPA  tolerances,  and  acceptable  for  use  in  organic  practice.  

 

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   17  

 References        1.   McPartland,  J.  M.  Cannabis  pests.  Journal  of  the  International  Hemp  Association  (1996).  2.   McPartland,  J.  M.,  Clarke,  R.  C.  &  Watson,  D.  P.  Hemp  Diseases  and  Pests.  (Elsevier,  

2000).  3.   Sullivan,  N.,  Elzinga,  S.  &  Raber,  J.  C.  Determination  of  pesticide  residues  in  cannabis  

smoke.  J  Toxicol  2013,  378168  (2013).  4.   Stone,  D.  Regulatory  Toxicology  and  Pharmacology.  1–6  (2015).                                                                          

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   18  

 Appendix  1:  Target  list  of  pesticides  to  be  screened  for  on  Cannabis.    In  an  attempt  to  formulate  a  list  of  pesticides  that  cannabis  should  be  screened  for  we  must  consider  many  factors  including:  regulatory  status,  toxicity,  likelihood  of  use,  and  cost  of  analysis.  Our  goal  in  this  case  was  to  apply  a  set  of  standards  that  are  transparent  and  rational.  We  took  as  our  starting  point  the  entire  list  of  3190  compounds  listed  in  the  Pesticide  Action  Network  (PAN)  database  (pesticideinfo.org).  We  then  applied  various  criteria  (outlined  below)  to  reduce  this  set  to  a  more  manageable  list  of  compounds.  The  table  below  explains  each  of  these  criteria,  and  indicates  how  they  contributed  to  the  filtering  process.  The  list  on  the  following  page  contains  the  pesticides  remaining  at  the  end  of  the  process.  All  Cannabis  flowers  and  concentrates  should  be  screened  for  these  target  compounds.          Step   Criteria   Justification   Number  

After  filter  

1   Full  PAN  database   The  PAN  DB  is  a  generally  comprehensive  and  well-­‐curated  database  of  pesticides.   3190  

2   Exclude  compounds  that  are  not  registered  for  use  in  the  US  

Although  legacy  and  foreign  compounds  may  be  in  use  the  likelihood  of  use  is  much  lower  than  for  products  that  are  commercially  available.  

786  

3   Exclude  Section  25(b)  listed  Although  registered  as  pesticides  these  

compounds  are  subject  to  a  general  exemption  from  tolerances  

772  

4  

Filter  on  “Use”  term:  Include  compounds  containing  term:  

insecticide,  fungicide,  PGR,  IGR,  or  synergist  

Exclude  compounds  that  are  less  likely  to  be  of  concern  or  are  less  likely  to  be  used  on  Cannabis  

including:  herbicides,  adjuvents,  avicides,  nematacides,  molluscicides,  rodenticides,  fumigants,  and  wood  preservatives.  

517  

5  

Filter  on  chemical  class:  exclude  solvents,  soaps,  biologicals,  

metals,  inorganic,  dithiocarbamates,  and  other  compounds  not  amenable  to  

standard  MRM.  

These  are  compounds  that  are  generally  considered  low  toxicity  and/or  are  not  amenable  to  standard  multiresidue  methods  (MRMs).  

252  

6  

Include  compounds  that  have  been  detected1,  compounds  that  are  likely  to  be  used  based  upon  discussions  with  growers  or  in  cannabis  blogs,  compounds  that  have  a  toxicological  concerns,  or  are  listed  as  PAN  bad  actors2.  

These  represent  compounds  for  which  there  is  evidence  of  use  and/or  have  toxicological  or  

environmental  concerns.  123  

 1  Detected  by  OGA,  Ric  Cuchetto,  Pacific  Agricultural  Laboratory,  or  in  literature  2  Definition  of  “PAN  Bad  Actor”  from  PAN  web  site:  “chemicals  that  are  one  or  more  of  the  following:  highly  acutely  toxic,  cholinesterase  inhibitor,  known/probable  carcinogen,  known  groundwater  pollutant  or  known  reproductive  or  developmental  toxicant.”            

Pesticide  Use  on  Cannabis                                                                                                                                                            

All  rights  reserved.  Cannabis  Safety  Institute,  2014   19  

     

TARGET  LIST      

   2-­‐EEEBC   D-­‐Allethrin   Indoxacarb,S-­‐isomer   Propoxur  Acephate   Daminozide   Iprodione   Pymetrozine  Acetamiprid   DDVP  (Dichlorvos)   Kresoxim-­‐methyl   Pyrethrins  Aldicarb   Deltamethrin   Malathion   Pyridaben  Amitraz   Diazinon   Mefenoxam   Resmethrin  Ancymidol   Dicofol   Mepiquat_chloride   S-­‐Bioallethrin  Avermectin   Dicrotophos   Metalaxyl   Spirodiclofen  Azinphos-­‐methyl   Dimethoate   Methidathion   Spiroxamine  Azoxystrobin   Diphenylamine   Methiocarb   Tau-­‐fluvalinate  Bifenazate   Dodine   Methomyl   Tebuconazole  Bifenthrin   Emamectin_benzoate   Methyl_parathion   Tefluthrin  Bromuconazole   Endosulfan   Metofluthrin   Temephos  Captan   Esfenvalerate   Myclobutanil   Terbufos  Carbaryl   Ethephon   Naled   Terrazole  Carbofuran   Ethofenprox   Nithiazine   Tetrachlorvinphos  Carboxin   Ethoprop   Octhilinone   Tetraconazole  Chlorethoxyphos   Etoxazole   Oxamyl   Thiabendazole  Chlorfenapyr   Fenazaquin   Oxydemeton-­‐methyl   Thiacloprid  Chlormequat_chloride   Fenitrothion   Paclobutrazol   Thiamethoxam  Chlorothalonil   Fenoxycarb   Para-­‐dichlorobenzene   Thiodicarb  Chlorpyrifos   Fenpropathrin   Permethrin   Thiophanate  Chlorpyrifos-­‐methyl   Fenpyroximate   Phorate   Tolylfluanid  Coumaphos   Fipronil   Phosmet   Tralomethrin  Cyclanilide   Folpet   Phostebupirim   Triadimefon  Cyfluthrin   Formetanate_hydrochloride   Piperonyl_butoxide   Triadimenol  Cyhalothrin,lambda   Fosetyl-­‐Al   Pirimiphos-­‐methyl   Tribufos  Cypermethrin,beta   Hexythiazox   Prallethrin   Trichlorfon  Cypermethrin,zeta   Hydramethylnon   Profenofos   Trifloxystrobin  Cyphenothrin   Hymexazol   Propargite   Triforine  Cyproconazole   Imazalil   Propetamphos   Vinclozolin  Cyromazine   Imidacloprid   Propiconazole