csmsp11 lecture02 emwaves(asgiven) · 1/18/11 2 s e⋅da= q incl closedε 0 urface ∫∫...

7
1/18/11 1 1 PH300 Modern Physics SP11 1/18 Day 2: Ques)ons? Review E&M Waves and Wave Equa)ons “From the long view of the history of mankind – seen from, say, ten thousand years from now – there can be liGle doubt that the most significant event of the 19 th century will be judged as Maxwell’s discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignificance in comparison with this important scien)fic event of the same decade.” – Richard Feynman Next Time: Interference Polariza)on DoubleSlit Experiment 2 Today & Thursday: “Classical” waveview of light & its interac)on with maGer •Prequantum •S)ll useful in many situa)ons. Next week: Special Rela)vity Universal speed of light Length contrac)on, )me dila)on Thursday: HW01 due, beginning of class; HW02 assigned 3 Maxwell’s Equa)ons: Describe EM radia)on E d A = Q incl ε 0 B d A = 0 E d l = dΦ B dt B dl = μ 0 I through + ε 0 μ 0 dΦ E dt B E Aim is to cover Maxwell’s Equa)ons in sufficient depth to understand EM waves Understand the mathema)cs we’ll use to describe WAVES in general E d A Some surface, A B d l Some path, l ‘Flux’ of a vector field through a surface: The average outwarddirected component of a vector field mul)plied by a surface area. ‘Circula)on’ of a vector field around a path: The average tangen)al component of a vector field mul)plied by the path length. E dA = Q incl ε 0 Closed surface ∫∫ An example: Gauss’ Law Electric flux through a closed surface tells you the total charge inside the surface. A) B) C) D) Something else If the electric field at the surface of a sphere (radius, r) is radial and of constant magnitude, what is the flux out of the sphere? E dA E π r 2 E 4π r 2 E 4 3 π r 3

Upload: others

Post on 17-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

1  

1  

PH300 Modern Physics SP11

1/18  Day  2:    Ques)ons?  Review  E&M  Waves  and  Wave  Equa)ons  

“From  the  long  view  of  the  history  of  mankind  –  seen  from,  say,  ten  thousand  years  from  now  –  there  can  be  liGle  doubt  that  the  most  significant  event  of  the  19th  century  will  be  judged  as  Maxwell’s  discovery  of  the  laws  of  electrodynamics.  The  American  Civil  War  will  pale  into  provincial  insignificance  in  comparison  with  this  important  scien)fic  event  of  the  same  decade.”  –  Richard  Feynman  

Next  Time:    Interference  Polariza)on  

Double-­‐Slit  Experiment  2  

Today  &  Thursday:    “Classical”  wave-­‐view  of  light  &  its  interac)on  with  maGer  • Pre-­‐quantum  • S)ll  useful  in  many  situa)ons.    

Next  week:                Special  Rela)vity      è    Universal  speed  of  light  

       Length  contrac)on,  )me  dila)on  

Thursday:              HW01  due,  beginning  of  class;  HW02  assigned  

3  

Maxwell’s  Equa)ons:  Describe  EM  radia)on  

E ⋅dA∫ =

Qincl

ε0

B ⋅dA∫ = 0

E ⋅dl∫ = −

dΦB

dt

B ⋅dl

∫ = µ0Ithrough + ε0µ0dΦE

dt

B

E

•   Aim  is  to  cover  Maxwell’s  Equa)ons  in  sufficient  depth  to  understand  EM  waves  

•   Understand  the  mathema)cs  we’ll  use  to  describe  WAVES  in  general  

E ⋅dA

Some surface, A∫

B ⋅dl

Some path, l∫

‘Flux’  of  a  vector  field  through  a  surface:    

The  average  outward-­‐directed  component  of  a  vector  field  mul)plied  by  a  surface  area.    

‘Circula)on’  of  a  vector  field  around  a  path:  

The  average  tangen)al  component  of  a  vector  field  mul)plied  by  the  path  length.    

E ⋅dA =Qincl

ε0Closedsurface

∫∫

An  example:  

Gauss’  Law  Electric  flux  through  a  closed  surface  tells  you  the  total  charge  inside  the  surface.    

A)  

B)  

C)  

D)  Something  else  

If  the  electric  field  at  the  surface  of  a  sphere  (radius,  r)  is  radial  and  of  constant  magnitude,  

what  is  the  flux                                        out  of  the  sphere?    E ⋅dA∫

E ⋅πr2

E ⋅ 4πr2

E ⋅43πr3

Page 2: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

2  

E ⋅dA =Qincl

ε0Closedsurface

∫∫

An  example:  

Gauss’  Law  Electric  flux  through  a  closed  surface  tells  you  the  total  charge  inside  the  surface.    

E =14πε0

Qr2

E ⋅ 4πr2 = Qε0

So:  

Coulomb’s  Law  is  contained  in  Gauss’  Law  

An  example:  

Faraday’s  Law  Electric  circula)on  around  a  closed  path  tells  you  the  (nega)ve  of)  the  )me  change  of  flux  of  B  through  any  open  surface  bounded  by  the  path.    

E ⋅dl∫ = −

dΦB

dt

ΦB (t) =

B ⋅dA∫

B ⋅dA∫ = 0

E ⋅dA∫ =

Qincl

ε0

E ⋅dl∫ = −

dΦB

dt

B ⋅dl

∫ = µ0Ithrough + ε0µ0dΦE

dt

Consider  the  following  configura)on  of  field  lines.  This  could  be…  

A)   …an  E-­‐field  B)   …a  B-­‐field  C)   Either  E  or  B  D)   Neither  E)   No  idea  

B ⋅dA∫ = 0

E ⋅dA∫ =

Qincl

ε0

Consider  the  following  configura)on  of  field  lines.  This  could  be…  

A)   …an  E-­‐field  B)   …a  B-­‐field  C)   Either  E  or  B  D)   Neither  

Page 3: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

3  

E ⋅dl∫ = −

dΦB

dt

B ⋅dl

∫ = µ0Ithrough + ε0µ0dΦE

dt

Maxwell’s  Equa)ons  in  Vacuum  

The  words  “in  vacuum”  are  code  for    “no  charges  or  currents  present”  

The  equa)ons  then  become:  

ε0 = 8.85 ×10−12 farad/meterµ0 = 4π ×10−7 henry/meter

E ⋅dA∫ = 0

B ⋅dA∫ = 0

E ⋅dl∫ = −

dΦB

dt

B ⋅dl

∫ = ε0µ0dΦE

dt

E ⋅dA∫ = 0 →

∇ ⋅E = 0

B ⋅dA∫ = 0 →

∇ ⋅B = 0

E ⋅dl∫ = −

dΦB

dt →

∇ ×E = −

∂B∂t

B ⋅dl

∫ = ε0µ0dΦE

dt →

∇ ×B = ε0µ0

dEdt

Maxwell’s  Equa)ons:  Differen)al  forms   Maxwell’s  Equa)ons:  Differen)al  forms  

Each  of  these  is  a  single  par)al  differen)al  equa)on.  

Each  of  these  is  a  set  of  three  coupled  par)al  differen)al  equa)ons.  

∇ ⋅E = 0

∇ ⋅B = 0

∇ ×E = −

∂B∂t

∇ ×B = ε0µ0

dEdt

Maxwell’s  Equa)ons:  1-­‐Dimensional  Differen)al  Equa)ons  

∂Ey (x,t)∂x

= −∂Bz (x,t)

∂t

−∂Bz (x,t)

∂x= µ0ε0

∂Ey (x,t)∂t

∂2Ey

∂x2=1c2

∂2Ey

∂t 2∂2Bz∂x2

=1c2

∂2Bz∂t 2

OR  

∂2Ey

∂x2=1c2

∂2Ey

∂t 2

1-­‐Dimensional  Wave  Equa)on  

Solu)ons  are  sines  and  cosines:  

Ey = Asin(kx −ωt) + Bcos(kx −ωt)

k2 = ω 2

c2c = λ

T

2πλ

2πT

…with  the  requirement  that:  

or  

Page 4: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

4  

19  

Sinusoidal  waves:  Wave  in  )me:  cos(2πt/T)  =  cos(ωt)  =  cos(2πr)  

Wave  in  space:  cos(2πx/λ)  =  cos(kx)  

k  is  spa)al  analogue  of  angular  frequency  ω.  One  reason  we  use  k  is  because  it’s  easier  to  write  sin(kx)  than  sin(2πx/λ).  

λ  =  Wavelength  =  length  of  one  cycle  

k  =  2π/λ  =  wave  number  =  number  of  radians  per  meter  

x

T  =  Period  =  )me  of  one  cycle  

ω  =  2π/T  =  angular  frequency  =  number  of  radians  per  second  

t

20  

Waves  in  space  &  )me:      cos(kx  +  ωt)  represents  a  sinusoidal        wave  traveling…  

 A)  …to  the  right  (+x-­‐direc)on).    B)  …to  the  ler  (-­‐x-­‐direc)on).  

21  

At  t=0  

Light  is  an  oscilla)ng  E-­‐field  

E  

E(x,t)  =  Emaxsin(ax-­‐bt)  

Func)on  of  posi)on  (x)  and  )me  (t):  

•     Oscilla)ng  ELECTRIC  and  magne)c  field    •     Traveling  to  the  right  at  speed  of  light  (c)  

X  

c  

Snap  shot  of  E-­‐field  in  )me:    

Electromagne)c    radia)on  

A  liGle  later  in  )me  

Emaxsin(ax+bt)  

∂2Ey

∂x2=1c2

∂2Ey

∂t 2

1-­‐Dimensional  Wave  Equa)on  

Ey = A1 sin(k1x −ω1t) + A2 cos(k2x −ω2t)

A  specific  solu)on  is  found  by  applying  boundary  condi)ons  

The  most  general  solu)on  is:  

1-­‐Dimensional  Wave  Equa)on  

hGp://www.walter-­‐fendt.de/ph14e/stwaverefl.htm  

Complex  Exponen)al  Solu)ons  

24  

E = Acos(kx −ωt)Recall  solu7on  for  the  Electric  field  (E)  from  the  wave  equa7on:  

exp[i(kx −ωt)] = cos(kx −ωt) + isin(kx −ωt)Euler’s  Formula  says:  

E = Aexp[i(kx −ωt)]For  convenience,  write:  

Page 5: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

5  

Complex  Exponen)al  Solu)ons  

25  

E(x, y, z,t) =

E0 exp i

k ⋅ r −ωt( )⎡⎣ ⎤⎦

Constant  vector  prefactor  tells  the  direc)on  and  maximum  strength  of  E.  

Complex  exponen)als  for  the  sinusoidal  space  and  )me  oscilla)on  of  the  wave.  

E(x, y, z,t) =

E0 exp i kxx + kyy + kzz −ωt( )⎡⎣ ⎤⎦

E(x, y, z,t) =

E0 exp(ikxx)exp(ikyy)exp(ikzz)exp(iωt)

E(x, y, z,t) =

E0 exp i

k ⋅ r −ωt( )⎡⎣ ⎤⎦

The  electric  field  for  a  plane  wave  is  given  by:  

The  vector          tells  you…   k

A)  The  direc)on  of  the  electric  field  vector  B)  The  direc)on  of  the  magne)c  field  vector  C)  The  direc)on  in  which  the  wave  is  not  varying  D)  The  direc)on  the  plane  wave  moves  E)  None  of  these  

A)  0    B)      C)  

 D)      E)  None  of  these.  

Complex  Exponen)al  Solu)ons  

27  

E(x, y, z,t) =

E0 exp i

k ⋅ r −ωt( )⎡⎣ ⎤⎦

Constant  vector  prefactor  tells  the  direc)on  and  maximum  strength  of  E.  

Complex  exponen)als  for  the  sinusoidal  space  and  )me  oscilla)on  of  the  wave.  

∇ ⋅E(x, y, z,t) = ∂Ex

∂x+∂Ey

∂y+∂Ez

∂z= ?

ik ⋅E i

k ×E

kE

ik ⋅E0 = 0

ik ⋅B0 = 0

ik ×E0 = iω

B0

ik ×B0 = −iωµ0ε0

E0

Complex  Exponen)al  Solu)ons  The  complex  equa)ons  reduce  Maxwell’s  Equa)ons  (in  vacuum)  to  a  set  of  vector  algebraic  rela)ons  between  the  three  vectors        ,            and            ,  and  the  angular  frequency          :  

k E0

B0 ω

•   Transverse  waves.            and            are  perpendicular  to        .   E0

B0

k

•             and          are  perpendicular  to  each  other.     E0

B0

ik ⋅E0 = 0

ik ⋅B0 = 0

ik ×E0 = iω

B0

ik ×B0 = −iωµ0ε0

E0

Complex  Exponen)al  Solu)ons  The  complex  equa)ons  reduce  Maxwell’s  Equa)ons  (in  vacuum)  to  a  set  of  vector  algebraic  rela)ons  between  the  three  vectors        ,            and            ,  and  the  angular  frequency          :  

k E0

B0 ω

ω 2

k2 =

1µ0ε0

= c2

E0B0

= c E

B

k

         ,          ,  and            form  a  ‘right-­‐handed  system’,  with  the          wave  traveling  in  the  direc)on        ,  at  speed  c.   E B

k

k

Page 6: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

6  

31  

How  do  you  generate  light  (electromagne)c  radia)on)?  

A)  Sta)onary  charges  B)  Charges  moving  at  a  constant  velocity  C)  Accelera)ng  charges  D)  B  and  C  E)  A,  B,  and  C  

Accelera)ng  charges  à  changing  E-­‐field  and  changing  B-­‐field    (EM  radia)on  à  both  E  and  B  are  oscilla)ng)  

Sta)onary  charges  à    constant  E-­‐field,  no  magne)c  (B)-­‐field  

+  

E  

Charges  moving  at  a  constant  velocity  à    Constant  current  through  wire  creates  a  B-­‐field  But  B-­‐field  is  constant   I

B  

32  

How  do  you  generate  light  (electromagne)c  radia)on)?  

A)  Sta)onary  charges  B)  Charges  moving  at  a  constant  velocity  C)  Accelera)ng  charges  D)  B  and  C  E)  A,  B,  and  C  

Answer  is  (C)    Accelera'ng  charges  create  EM  radia7on.      

Surface of sun- very hot! Whole bunch of free electrons whizzing around like crazy. Equal number of protons, but heavier so moving slower, less EM waves generated.

+ +

+

+

The  Sun  

33  

What  does  the  curve  tell  you?    A)  The  spa)al  extent  of  the  E-­‐field.  At  the  peaks  and  troughs  the  E-­‐

field  is  covering  a  larger  extent  in  space  B)  The  E-­‐field’s  direc)on  and  strength  along  the  center  line  of  the  

curve  C)  The  actual  path  of  the  light  travels  D)  More  than  one  of  these  E)  None  of  these.    

OR  

EM radiation often represented by a sinusoidal curve.

radio wave sim

34  

What  does  the  curve  tell  you?    

Making sense of the Sine Wave

-­‐ For  Water  Waves?  -­‐ For  Sound  Wave?  -­‐ For  E/M  Waves?  

wave interference sim

35  

EM  radia)on  oren  represented  by  a  sinusoidal  curve.      What  does  the  curve  tell  you?    Correct  answer  is  (B)  –  the  E-­‐field’s  direc)on  and  strength  along  the  center  line  of  the  curve.  

X  

Only  know  E-­‐field,    along  this  line.    

At  this  )me,  E-­‐field  at  point  X  is  strong  and  in  the  points  upward.  

Path  of  EM  Radia)on  is  a  straight  line.  

36  

What  stuff    is  moving  up  and  down  in  space  as  a  radio  wave  passes?    A)  Electric  field  B)  Electrons  C)  Air  molecules  D)  Light  ray  E)  Nothing  

Snapshot  of  radio  wave  in  air.  

Answer  is  (E):  Nothing    Electric  field  strength  increases  and  decreases    –  E-­‐field  does  not  move  up  and  down.  

Length  of  vector  represents  strength  of  E-­‐field  Orienta)on  represents  direc)on  of  E-­‐field  

Page 7: CSMSP11 Lecture02 EMWaves(asgiven) · 1/18/11 2 s E⋅dA= Q incl Closedε 0 urface ∫∫ An$example:$ Gauss’$Law$ Electric$flux$through$aclosed$surface$tells$you$ the$total$charge$inside$the$surface.$$

1/18/11  

7  

37  

What  is  moving  to  the  right  in  space  as  radio  wave  propagates?    

A)  Disturbance  in  the  electric  field  B)  Electrons  C)  Air  molecules  D)  Nothing                          

Snapshot  of  radio  wave  in  air.  

Answer  is  (A).  Disturbance  in  the  electric  field.    

At  speed  c  

38  

Review  :  

•   Light  interacts  with  maGer  when  its  electric  field  exerts  forces  on  electrons.    

•   In  order  to  create  light,  we  need  both  changing  E  and  B  fields.  Can  do  this  only  with  accelera)ng  charges.  

•   Light  has  a  sinusoidally  changing  electric  field  Sinusoidal  paGern  of  vectors  represents  increase  and  decrease  in  strength  of  field,  nothing  is  physically  moving  up  and  down  in  space  

End  here  -­‐  10/18  

40  

Spectrum: All EM waves. Complete range of wavelengths. Electromagne7c  Spectrum      

 Wavelength  (λ)  =  distance  (x)  un)l  wave  repeats  

λ

λ

λ Blue  light  

Red  light  

Cosmic  rays  

SHORT LONG

 Frequency  (f)  =  #  of  )mes  per  second  E-­‐field  at  point  changes  through  complete  cycle  as  wave  passes  

41  

How  much  )me  will  pass  before  this  peak  reaches  the  antenna?    c  =  speed  of  light  

Distance  =  speed  *  )me    Time  =  distance/speed  =  d/c  

Frequency  =  (1  )/Period    (Hertz)                    =  #  of  cycles  per  second    

A)  cd    B)    c/d    C)    d/c      D)  sin(cd)  E)  None  of  these  

d  

Period  (seconds/cycle)  =  λ/c  

How  much  )me  does  it  take  for  E-­‐field  at  point  (X)  to  go  through  1  complete  oscilla)on?      

f  λ=c  42  

How  far  away  will  this  peak  in  the  E-­‐field  be  before  the  next  peak  is  generated  at  this  spot?    

Electron  oscillates  with  period  of  T=1/f

A)    cλ      B)    c/λ      C)    λ/c      D)    sin(cλ)  E)    None  of  these  

Answer  is  (A):  Distance  =  velocity  *  )me    Distance  =  cλ  =  c/f  =  1  wavelength                                                so  c/f  =  λ