csr2011 june17 11_30_vyalyi

30
Orbits of Linear Maps and Regular Languages S. Tarasov, M. Vyalyi Dorodnitsyn Computing Center of RAS CSR 2011 S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 1 / 17

Post on 21-Oct-2014

271 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Csr2011 june17 11_30_vyalyi

Orbits of Linear Maps and Regular Languages

S. Tarasov, M. Vyalyi

Dorodnitsyn Computing Center of RAS

CSR 2011

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 1 / 17

Page 2: Csr2011 june17 11_30_vyalyi

Contents

1 Orbits of linear maps

2 Regular realizability (RR)

3 Examples of relation between RR and linear algebra

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 2 / 17

Page 3: Csr2011 june17 11_30_vyalyi

Chamber hitting problem

Definition

An orbit OrbΦ x is {Φkx : k ∈ Z+}, where Φ: Qd → Qd is a linear mapand x ∈ Qd .

Definition

A chamber HS = {x ∈ Qd : sign(hi (x)) = si for 1 6 i 6 m}, where hi areaffine functions and s ∈ {±1, 0}m is a sign pattern.

Chamber hitting problem (CHP)

INPUT: Φ, x0, h1, . . . , hm, s.OUTPUT: ‘yes’ if OrbΦ x0 ∩ Hs 6= ∅ and

‘no’ otherwise.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 3 / 17

Page 4: Csr2011 june17 11_30_vyalyi

Chamber hitting problem

Definition

An orbit OrbΦ x is {Φkx : k ∈ Z+}, where Φ: Qd → Qd is a linear mapand x ∈ Qd .

Definition

A chamber HS = {x ∈ Qd : sign(hi (x)) = si for 1 6 i 6 m}, where hi areaffine functions and s ∈ {±1, 0}m is a sign pattern.

Chamber hitting problem (CHP)

INPUT: Φ, x0, h1, . . . , hm, s.OUTPUT: ‘yes’ if OrbΦ x0 ∩ Hs 6= ∅ and

‘no’ otherwise.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 3 / 17

Page 5: Csr2011 june17 11_30_vyalyi

Chamber hitting problem

Definition

An orbit OrbΦ x is {Φkx : k ∈ Z+}, where Φ: Qd → Qd is a linear mapand x ∈ Qd .

Definition

A chamber HS = {x ∈ Qd : sign(hi (x)) = si for 1 6 i 6 m}, where hi areaffine functions and s ∈ {±1, 0}m is a sign pattern.

Chamber hitting problem (CHP)

INPUT: Φ, x0, h1, . . . , hm, s.OUTPUT: ‘yes’ if OrbΦ x0 ∩ Hs 6= ∅ and

‘no’ otherwise.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 3 / 17

Page 6: Csr2011 june17 11_30_vyalyi

Special cases: the orbit problem

Orbit problem

INPUT: Φ, x , y .OUTPUT: ‘yes’ if y ∈ OrbΦ x and

‘no’ otherwise.

In this case the chamber is {y}.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 4 / 17

Page 7: Csr2011 june17 11_30_vyalyi

Special cases: the orbit problem

Orbit problem

INPUT: Φ, x , y .OUTPUT: ‘yes’ if y ∈ OrbΦ x and

‘no’ otherwise.

In this case the chamber is {y}.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 4 / 17

Page 8: Csr2011 june17 11_30_vyalyi

Problems reducible to CHP

Skolem problem

INPUT: a1, . . . , ad ; b1, . . . , bd .xn — a linear recurrent sequence

xn =d∑

i=1

aixn−i , (n > d), xn = bn (1 6 n 6 d)

OUTPUT: ‘yes’ if xn = 0 for some n and‘no’ otherwise.

Positivity problem

INPUT: a1, . . . , ad ; b1, . . . , bd ; xn is LRS.OUTPUT: ‘yes’ if xn > 0 for all n and

‘no’ otherwise.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 5 / 17

Page 9: Csr2011 june17 11_30_vyalyi

Problems reducible to CHP

Skolem problem

INPUT: a1, . . . , ad ; b1, . . . , bd .xn — a linear recurrent sequence

xn =d∑

i=1

aixn−i , (n > d), xn = bn (1 6 n 6 d)

OUTPUT: ‘yes’ if xn = 0 for some n and‘no’ otherwise.

Positivity problem

INPUT: a1, . . . , ad ; b1, . . . , bd ; xn is LRS.OUTPUT: ‘yes’ if xn > 0 for all n and

‘no’ otherwise.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 5 / 17

Page 10: Csr2011 june17 11_30_vyalyi

State of the art

Open questions

Is CHP decidable? Is Skolem problem decidable? Is positivity problemdecidable?

Known decidability results for small d

d = 2 d = 3 d = 4 d = 5

Skolem folklore Vereshchagin, 1985 Halava et al.,2005

Pos. pr. Halava et al.,2006

Laohakosol,Tangsupphathawat,2009

CHP Sechin, 2011

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 6 / 17

Page 11: Csr2011 june17 11_30_vyalyi

Regular realizability problems (RR)

A set L ⊂ Σ∗ is called a filter. Each filter determines a specific regularrealizability problem:

L-realizability problem

INPUT: a description of a regular language R.OUTPUT: ‘yes’ if R ∩ L 6= ∅ and

‘no’ otherwise.

Filter LR w ∈ R ∩ Lw

w /∈ L

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 7 / 17

Page 12: Csr2011 june17 11_30_vyalyi

Permutation filter

Definition

PB ⊂ {#, 0, 1}∗ consists of permutation words, i.e., words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N (n is the block rank),

N = 2n, n > 1,

each binary word of length n is a block.

Examples

#00#11#10#01# ∈ PB

#10#11#00#01# ∈ PB

#10#01#00#11# ∈ PB

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 8 / 17

Page 13: Csr2011 june17 11_30_vyalyi

Orbits vs Regular realizability

Theorem (Tarasov, Vyalyi, 2010)

CHP and PB-realizability problem are Turing equivalent.

From PB-realizability to CHP

Reduction starts from a Q-linear extension of the transition monoid.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 9 / 17

Page 14: Csr2011 june17 11_30_vyalyi

Orbits vs Regular realizability

Theorem (Tarasov, Vyalyi, 2010)

CHP and PB-realizability problem are Turing equivalent.

From PB-realizability to CHP

Reduction starts from a Q-linear extension of the transition monoid.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 9 / 17

Page 15: Csr2011 june17 11_30_vyalyi

From CHP to PB-realizability

The idea is to represent an arithmetic computation in a ‘natural’ form.

The main construction

R1, R2 — regular languages.

How to check that there exists an integer n such that

Card({w : |w | = n ∧ w ∈ R1}) = Card({w : |w | = n ∧ w ∈ R2})?(♣)

Regular expression

E = #((R1 ∩ R2)#)∗((R1 \ R2)#(R2 \ R1)#)∗((R1 ∩ R2)#)∗

(♣) is equivalent to E ∩ PB 6= ∅.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 10 / 17

Page 16: Csr2011 june17 11_30_vyalyi

From CHP to PB-realizability

The idea is to represent an arithmetic computation in a ‘natural’ form.

The main construction

R1, R2 — regular languages.

How to check that there exists an integer n such that

Card({w : |w | = n ∧ w ∈ R1}) = Card({w : |w | = n ∧ w ∈ R2})?(♣)

Regular expression

E = #((R1 ∩ R2)#)∗((R1 \ R2)#(R2 \ R1)#)∗((R1 ∩ R2)#)∗

(♣) is equivalent to E ∩ PB 6= ∅.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 10 / 17

Page 17: Csr2011 june17 11_30_vyalyi

From CHP to PB-realizability

The idea is to represent an arithmetic computation in a ‘natural’ form.

The main construction

R1, R2 — regular languages.

How to check that there exists an integer n such that

Card({w : |w | = n ∧ w ∈ R1}) = Card({w : |w | = n ∧ w ∈ R2})?(♣)

Regular expression

E = #((R1 ∩ R2)#)∗((R1 \ R2)#(R2 \ R1)#)∗((R1 ∩ R2)#)∗

(♣) is equivalent to E ∩ PB 6= ∅.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 10 / 17

Page 18: Csr2011 june17 11_30_vyalyi

From CHP to PB-realizability

The idea is to represent an arithmetic computation in a ‘natural’ form.

The main construction

R1, R2 — regular languages.

How to check that there exists an integer n such that

Card({w : |w | = n ∧ w ∈ R1}) = Card({w : |w | = n ∧ w ∈ R2})?(♣)

Regular expression

E = #((R1 ∩ R2)#)∗((R1 \ R2)#(R2 \ R1)#)∗((R1 ∩ R2)#)∗

(♣) is equivalent to E ∩ PB 6= ∅.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 10 / 17

Page 19: Csr2011 june17 11_30_vyalyi

More examples of relation between RR and linear algebra

undecidable track product of the periodic and permutation filter

unknown permutation filter

decidable surjective filter injective filter

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 11 / 17

Page 20: Csr2011 june17 11_30_vyalyi

Surjective filter

Definition

SB consists of words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N, n is the block rank,

each binary word of length n is a block.

Examples

#00#00#11#10#01# ∈ SB

#10#11#10#00#01# ∈ SB

#10#01#00#01#11# ∈ SB

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 12 / 17

Page 21: Csr2011 june17 11_30_vyalyi

Injective filter

Definition

IB consists of words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N, n is the block rank,

wi 6= wj for i 6= j .

Examples

#00#10#01# ∈ IB

#101#111#001#010# ∈ IB

#1000#0110#0000#1111# ∈ IB

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 13 / 17

Page 22: Csr2011 june17 11_30_vyalyi

Decidability results

Theorem

IB-realizability problem is decidable.SB-realizability problem is decidable.

Proofs are based on converting IB-realizability problem (resp.,SB-realizability problem) to a problem about orbits.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 14 / 17

Page 23: Csr2011 june17 11_30_vyalyi

Decidability results

Theorem

IB-realizability problem is decidable.SB-realizability problem is decidable.

Proofs are based on converting IB-realizability problem (resp.,SB-realizability problem) to a problem about orbits.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 14 / 17

Page 24: Csr2011 june17 11_30_vyalyi

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A1, . . . ,AN are D × D integer matrices.OUTPUT: ‘yes’ if there exists a sequence j1, . . . , j` such that

(Aj1Aj2 . . .Aj`)1D = 0 and

‘no’ otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for thetrack product of periodic and permutation filters.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 15 / 17

Page 25: Csr2011 june17 11_30_vyalyi

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A1, . . . ,AN are D × D integer matrices.OUTPUT: ‘yes’ if there exists a sequence j1, . . . , j` such that

(Aj1Aj2 . . .Aj`)1D = 0 and

‘no’ otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for thetrack product of periodic and permutation filters.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 15 / 17

Page 26: Csr2011 june17 11_30_vyalyi

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A1, . . . ,AN are D × D integer matrices.OUTPUT: ‘yes’ if there exists a sequence j1, . . . , j` such that

(Aj1Aj2 . . .Aj`)1D = 0 and

‘no’ otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for thetrack product of periodic and permutation filters.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 15 / 17

Page 27: Csr2011 june17 11_30_vyalyi

Track product

For languages L1 ⊂ ({#} ∪ Σ1)∗, L2 ⊂ ({#} ∪ Σ2)

∗ the track productL1‖L2 ⊂ ({#} ∪ Σ1 × Σ2)

∗.

Projections

a1

b1

a2

b2

a3

b3

# #. . . . . .

b1 b2 b3# #. . . . . .a1 a2 a3# #. . . . . .

π1 π2

Definition of L1‖L2

L1‖L2 = {w ∈ ({#} ∪ Σ1 × Σ2)∗ | π1w ∈ L1; π2w ∈ L2}

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 16 / 17

Page 28: Csr2011 june17 11_30_vyalyi

Track product

For languages L1 ⊂ ({#} ∪ Σ1)∗, L2 ⊂ ({#} ∪ Σ2)

∗ the track productL1‖L2 ⊂ ({#} ∪ Σ1 × Σ2)

∗.

Projections

a1

b1

a2

b2

a3

b3

# #. . . . . .

b1 b2 b3# #. . . . . .a1 a2 a3# #. . . . . .

π1 π2

Definition of L1‖L2

L1‖L2 = {w ∈ ({#} ∪ Σ1 × Σ2)∗ | π1w ∈ L1; π2w ∈ L2}

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 16 / 17

Page 29: Csr2011 june17 11_30_vyalyi

Track product of periodic and permutation filters

Definitions

Periodic filter PerΣ ⊂ ({#} ∪ Σ)∗ consists of words of the form

#w#w# . . .w#,

where w ∈ {0, 1}∗.Definition of the permutation filter PΣ over the alphabet {#} ∪ Σ issimilar to the binary case.

Theorem

ZURC ≤m (PerΣ1‖PΣ2)-regular realizability for |Σ1| = 2, |Σ2| = 648.

Informally, the periodic part is to represent a sequence of matrices and thepermutation part is to encode the condition that the URC entry is 0.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 17 / 17

Page 30: Csr2011 june17 11_30_vyalyi

Track product of periodic and permutation filters

Definitions

Periodic filter PerΣ ⊂ ({#} ∪ Σ)∗ consists of words of the form

#w#w# . . .w#,

where w ∈ {0, 1}∗.Definition of the permutation filter PΣ over the alphabet {#} ∪ Σ issimilar to the binary case.

Theorem

ZURC ≤m (PerΣ1‖PΣ2)-regular realizability for |Σ1| = 2, |Σ2| = 648.

Informally, the periodic part is to represent a sequence of matrices and thepermutation part is to encode the condition that the URC entry is 0.

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages CSR 2011 17 / 17