cu-options for achieving a carbon neutral campus...solutions for carbon-neutral energy should strive...

30
Options for Achieving a Carbon Neutral Campus by 2035 Analysis of Solutions Cornell University Senior Leaders Climate Action Working Group September 2016

Upload: others

Post on 13-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Options for Achieving a Carbon Neutral Campus by 2035

Analysis of Solutions

CornellUniversitySeniorLeadersClimateActionWorkingGroupSeptember2016

Page 2: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 2

Cornell University Senior Leaders Climate Action Group

CommitteeMembership

(Co-Chair)LanceCollins,theJosephSilbertDeanofEngineering(Co-Chair)KyuJungWhang,VicePresidentforInfrastructure,PropertiesandPlanning(IPP)BethAhner,ProfessorofBiologicalandEnvironmentalEngineeringandSeniorAssociateDean,Collegeof

AgricultureandLifeSciencesJeffreyBergfalk,DoctoralCandidate,MathematicsRobertBland,AssociateVicePresidentforEnergyandSustainabilityEdwinA.Cowen,ProfessorofCivilandEnvironmentalEngineeringandtheKathyDwyerMarbleandCurt

MarbleFacultyDirectorforEnergy,DavidR.AtkinsonCenterforaSustainableFutureRobertHowarth,theDavidR.AtkinsonProfessorofEcologyandEvolutionaryBiologyBarbaraKnuth,SeniorViceProvostandDeanoftheGraduateSchoolDavidLodge,theFrancisJ.DiSalvoDirectoroftheDavidR.AtkinsonCenterforaSustainableFutureRyanLombardi,VicePresidentforStudentandCampusLifeJoelMalina,VicePresidentforUniversityRelationsAlanMathios,theRebeccaQ.andJamesC.MorganDeanoftheCollegeofHumanEcologyMarkMilstein,ClinicalProfessorofManagementandDirectoroftheCenterforSustainableGlobal

EnterpriseattheSamuelCurtisJohnsonGraduateSchoolofManagementMaryOpperman,VicePresidentandChiefHumanResourceOfficerTishyaRavichanderRao’18,UrbanandRegionalStudiesintheCollegeofArchitecture,ArtandPlanningBillSitzabee,AssociateVicePresidentforEngineeringandProjectAdministrationPaulStreeter,VicePresidentforBudgetandPlanningSarahZemanick,DirectoroftheCampusSustainabilityOffice

AdditionalContributors

SteveBeyers,ServiceTeamLeader,FacilitiesServicesEngineering,IPPSarahBrylinsky,SustainabilityCommunications&IntegrationManager,CampusSustainabilityOfficeWilliamSchulze,RobinsonProfessorinAppliedEconomicsandManagement

Page 3: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 3

ContentsExecutiveSummary...................................................................................................................................................4

OurChallenge:Cornell’sCarbonFootprintToday..........................................................................................7

Solutions

SolutionsforEvaluatingProjects(AccountingfortheTrueCostofCarbon).........................................8TheSocialCostofCarbon.....................................................................................................................................8UsingaQuadrupleBottomLine..........................................................................................................................8AssessingtheClimateImpactofUsingNaturalGas.........................................................................................9

SolutionsforToday(CampusEnergyDemandandCommunityEngagement)...................................10BuildingSolutions.................................................................................................................................................................10TransportationSolution.....................................................................................................................................................11CampusEngagementSolutions......................................................................................................................................11

SolutionsforTomorrow(MeetingCampusEnergySupply)......................................................................13SolutionsforHeatingandPoweringtheCampus....................................................................................................13

SummaryTable:FinancialDetails......................................................................................................................15BudgetaryContext……………………………………………………………………………………………………..…………………………………….16

SolutionforPoweringtheCampus(Wind,Water,andSolar).............................................................................17SolutionsforHeatingtheCampus,Only......................................................................................................................18Non-FeasibleSolutions.......................................................................................................................................................18CarbonOffsettingSolutions.............................................................................................................................................18

ConclusionsandRecommendations.................................................................................................................20

AppendicesASuggestedEconomicParametersfortheCarbonNeutralCampusAlternativesReport.......................22BAssumptionsforAllCampusEnergySupplySolutions........................................................................................27CAssumptionsWind,Water,andSolar.......................................................................................................................28DBiomassPeakingwithEarthSourceHeatSolutions............................................................................................29

References..................................................................................................................................................................30

Page 4: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 4

Executive SummaryInMarch2016,ProvostMichaelKotlikoffchargedtheSeniorLeadersClimateActionGroup(SLCAG)toanalyzeviableenergyalternativesfortheIthacacampustoachievecarbonneutralityby2035.Reducingenergydemandwhileadaptingtorenewableenergysourceswillrequireinnovativetechnologicalsolutions,asignificantincreaseincapitalinvestmentinrenewableenergysources,andbroadsupportandengagementfromallmembersofthecampuscommunity.

SustainabilityisasignatureareaofexcellenceatCornellUniversity.Itsfaculty,students,staffandalumnihaveawealthofknowledge,andtappingintotheirexpertisewillbecriticaltomeetingtheseambitiouscampusgoals.ThechoicesCornellmakestodaytopoweracarbon-neutralcampustomorrowwillinvolverealcosts.TheseinvestmentswouldinsulateCornellfromunknownfuturevolatilityinfossilfuelmarketsandassociatedcarbonfees.Nevertheless,theymustbecarefullyconsideredinthecontextoftheUniversity’sneedtoadvanceitsfullacademicmission,includingtheabilitytoofferthebestandmostcost-effectiveeducationforitsstudents,andthecreationofnewknowledgethatadvancessocietyandservesthecitizensofNewYorkstate.Itisadelicatebalance.

Inadditiontoassessingthesinglebottomlineofproposedsolutions,thisreportusessocialcostsasameasureofthetrueimpactofUniversitycarbonuseinIthacaandbeyond.ItalsointroducesanewgreenhousegasassessmenttoaccountfortheimpactofmethaneleakagefromnaturalgaspurchasedbyCornell.Onthetimescaleforachievingourcarbonneutralitygoal,reducingtheimpactofleakedmethanehasthehighestimpactonreducingclimatechange.Itisimportanttonotethatthisreportisnotadefinitiveplanofaction;rather,itisasetofrecommendationsfordiscussion,andwillrequireinputfromthecampusandthesurroundingcommunity.Proposedsolutionsinclude:

• Investimmediatelyinreducingenergydemandthroughsupportforandadvancementofourenergyconservationprograms;

• Makepreliminaryinvestmentsintransitioningtoalow-carbonfootprintcampusenergysupply;• Setgoalsandexploreoptionstosecureexternalfunding;• Pursueenergysolutionsinpartnershipwithlocalandregionalentities;• Adoptrigorousbuildingenergystandardsandprojectapprovalprocessesduringretrofits,deferred

maintenanceprojects,andnewconstructiontocreateonly“high-performancebuildings”oncampus;• Prioritizedevelopmentofinfrastructuretosupportacampusfleetofclean-fuelvehiclesandreplacethe

existingfleetaccordingly;• EvaluateEarthSourceHeatandgroundsourceheatpumpsasheatingsolutions;• Strivefor100percentofthecampuselectricsupplytocomefromrenewablesources;• Seekcampus-widebehavioralchangethroughprogramssuchasThinkBig,LiveGreenandothercampus

engagementprograms;and• Ensureallstudentsgraduatewithbasicclimateliteracy.

Potentialtimelineforimplementingoptionsdiscussedinthisreport:

Today 2022 2027 2035- Energyconservation- Buildingstandards- Campusengagement- Climateliteracy- Fleetsolutions

-EarthSourceHeat(ESH)testwell-Heatpumpevaluations-Renewablepowerprojects

-BeginfullESH,ifviableoralternateGSHPoption-ReviseClimateActionPlan,includingnewenergypathforward

-Fullyimplementcampusheatingsolution-Advanceothercarbonreductionefforts

-Reachcarbonneutralitywithfullparticipationfromthecampuscommunity

Webelievethecampus,localcommunityandregionarepartnersinhelpingtoreduceourcarbonfootprint,andwemustconsiderandpursuesolutionsthatensureathriving,resilientandsustainablefutureforIthaca,NewYorkstate,and,wherepossible,theworld.

Page 5: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 5

ThisreportanalyzesopportunitiesforCornell’sIthacacampustoachievecarbonneutralityincampusenergyby2035.ItbuildsontheongoingClimateActionPlanandtheAccelerationWorkingGroupReport(2014)amongotherplanningdocuments,andcanbeconsideredanewtoolfordecision-making.Todate,Cornellhasalreadyachieveda30percentreductionincampusemissions.ThefuturepathtocarbonneutralitywillrequireCornelltopursue:

1) buildingandinfrastructureefficiencythroughenergyconservation(campusenergydemand)2) solutionsthatreduceourcarbonfootprintforheating,coolingandelectricity(campusenergysupply)3) reducingemissionsfromcommutingandbusinesstravel(transportation)4) creatingacultureofsustainablebehaviorandadvancingclimateliteracy(campusengagement)

Becausecampusbuildingenergyneedscompriseatleasttwo-thirdsoftheUniversity’scarbonfootprint,thisreportfocusesonsolutionsforcampusenergydemandreductionandrenewablesupply,numbersoneandtwoabove,complementedbycampusengagementandclimateliteracyprograms,numberfour.Someproposedsolutionsmustbemaintainedorinitiatedtoday,whileotherscanbeexploredinthecomingdecade.

Today,everymemberofthecampuscommunitymustbeempoweredtomakechangesinthewaywedobusinessinordertoreduceourenergydemand,whilegainingtheclimateliteracynecessarytounderstandandvaluethecostsandopportunitiesofmakingsustainablechanges.Cornellmustcontinuouslyreducethecampusenergydemandbystrengtheningenergyconservationandgreenbuildingstandardsacrosscampus,andbyintroducingdecision-makingprocessesthatvaluethetruecostofcarbonduringpurchasing,planning,building,retrofittingandotheroperationalareas.

Overthenextfiveyears,theUniversitymustmakedecisionsabouthowtoinvestinreducingthecarbonfootprintofthecampusenergysupply.TheUniversityshouldcontinuetopursuepreliminarytestsforapromisingsolutiontocampusheatingneeds–EarthSourceHeat–whilealsoensuringthecampuswillbepositionedtopursueanalternative,provenheatingsolution,suchasgroundsourceheatpumps,shouldEarthSourceHeatproveinfeasible.Investmentsinreducingemissionsfromtransportationalsoshouldbeundertakenimmediately.

Toassistinmovingforwardonbothshort-andlong-termsolutions,thisreportprovidesthefollowingtools:

1. SolutionsforEvaluatingProjects:ThissectionintroducesaframeworkforunderstandingthetruecostofcarbonemissionsaspartofthefinancialevaluationforprojectsatCornell.Thethreecomponentsare:

a. Applyinga“socialcostofcarbon”toeachtonofgreenhousegas(GHG)emissions;b. Introducinga“quadruplebottomlineanalysis”toevaluatethecostsandbenefitsofprojects;andc. EvaluatingtheclimateimpactofCornell’spurchasednaturalgas,byassessingmethaneleakage

fromnaturalgasproductionanddistribution.

2. SolutionsforToday:Aproposedsetofsolutionsthatreduceandmaintainreductionstocampusenergyneedsthroughgreenbuilding,energyconservation,transportationandengagementsolutions.

3. SolutionsforTomorrow:Amenuofoptionsforsupplyingtheheating,coolingandelectricityneedsofthecampuswithlow-carbontechnologies.

Eachsteponthepathtoneutralitymustconsidertheuniquepotential–andcommitment–forCornelltoserveasamodelfortransitioningtoasustainablecampus.Campusenergyneutrality,likeotherclimateefforts,willrequireengagementfromeverymemberofthecommunity.Thepassionsofstudents,facultyandstaffinresearchopportunities,multidisciplinaryteaching,andlivinglaboratoryprojectsshouldbeconsideredactivelyinthenextphaseofdecision-making.

Page 6: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 6

TechnologiesExploredintheReport

Theoptionsforthecampusenergysupplydescribedinthisreportinclude:

AirSourceHeatPumps Electricallypoweredequipmentthattransfersheatfromoutdoorairusingarefrigerantsystemwithcompressionandcondensing;

BiomassCombustion Burningrenewablebiomassresources(woodornon-foodagriculturalproducts)directlyinsolid-fuelboilerstogenerateheat;

BiomassGasification Convertingrenewablebiomassresources(woodornon-foodagriculturalproducts)intogastoburninordertogenerateheatandelectricity;

EarthSourceHeat AccessingtherenewableheatstoredinthebasementrockbelowtheEarth’ssurfacebycirculatingwaterthroughwellsetsandheatexchangerequipmentlocatedatthesurface–commonlyknownasanenhancedgeothermalsystem;

GroundSourceHeatPumps Electricallypoweredequipmentthattransfersheatfromthegroundusingarefrigerantsystemwithcompressionandcondensing.UnlikeEarthSourceHeat,groundsourceheatpumpsusehorizontalorverticalwellsnomorethan400-500feetdeep;

Nuclear Utilizingtheenergyreleasedfromsplittingatoms(nuclearfission)inasmallmodularreactortogenerateheatandelectricity;and

Wind,Water,andSolar Developingfacilitiestoconverttheenergyinwind,solarirradianceandmovingwaterintoelectricityusingturbinesorsolarphotovoltaicpanels.

BaselineforFinancialComparison:BusinessasUsual

Businessasusualisnota“solution,”asitdoesnotadvanceCornelltowardcarbonneutrality.Thatsaid,itistheobviousbaselinefromwhichtocomparethecostsandbenefitsofcampusenergysolutionspresentedinthisdocument.CornellUniversityhasanannualequivalentcostforheatingandpoweringthecampusof$42million,notaccountingforanycostsofcarbon,asexplainedinSolutionsforEvaluatingProjectsonpage8.

Page 7: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 7

Our ChallengeCornell’s Carbon Footprint Today

Cornellisresponsibleforacarbonfootprintofapproximately214,000metrictonsofCO2equivalent(MTCO2e)annually,beforeaccountingforupstreammethaneleakage(estimatedtobeanadditional580,000MTCO2e,seepage9).Carbonneutralitymeansreducingtheseemissionstonetzero1.

Campusenergyneedsaccountfornearlytwo-thirdsofCornell’scarbondioxidefootprint,andevenmoreofCornell’stotalcarbonfootprintwhenupstreammethaneleakageisincluded.Solutionsforcarbon-neutralenergyshouldstrivetomeetthecurrentequivalent,whichisacombined179,000MTCO2e(Figure1) frompowerproducedandpurchased.

Broadly,Cornell’schallengestofindingenergysolutionsinclude:

• Designingaheatingsystemthatcanhandlethehighenergydemandsofthestate-of-the-artresearchlabsandfacilitiesatCornell,andtheextremeweatherdemandsinIthacathatwilllikelygrowwithclimatechange;

• Thecurrentlowcostoffossilfuels,whichmakesitdifficulttojustifyrenewableenergyprojectsbasedsimplyonareturn-on-investmentanalysis.Forexample,Cornell’snaturalgasrateiscurrentlyhalfthenationalpriceaverage;

• ModifyingcapitalplanningandfinancingprocessesacrosstheUniversitytoconsiderthetruecostofcarbonemissions;and

• Reducingtheenergydemandofcampusbuildingsandincreasingthenumberofhigh-performancebuildings.

Therearealsomanybenefitstopursuingthesolutionsproposedinthisreport,beyondmitigationoftheCornellcampusimpactonclimatechange.Theseinclude:

• AdvancementofCornell'sacademicmissionthroughresearch,teachingandpublicengagementfocusedonthesocial,environmental,technological,healthandeconomicaspectsofachievingcarbonneutrality;

• FulfillmentofCornell’sland-grantmissiontoNewYorkstatebyincreasingregionalenergyindependence;• EnhancementoftheCornellbrandasacampusdemonstratingpracticalwaystoreducecarbonfrom

energyuseinspiteofthechallengeslisted;• PrideandsatisfactionamongallmembersoftheCornellcommunityin“walkingthetalk”onsustainability;• Newrevenuestreamsfromexternalfundraisingandenergyconservationsavings;and• Reducedfinancialexposuretoincreasinglyunstableenergymarketsandcomplianceregulations.

Finally,itisimportanttonotethatineveryareaofCornell’scarbonimpact,faculty,staff,andstudentsacrosscampus,inalldisciplines,aremakingcontributionsanddecisionsthatdirectlyimpactenergyandresourceuseand,therefore,Cornell’soverallcarbonfootprint.Thesolutionsdescribedinthisreportarebothtechnicalandrequireengagementfromthepeopleacrosscampuswhouseenergyfortheircampusresearch,teaching,workandresidentialneeds.AchievingclimatechangeliteracyforallcampuscommunitymemberswillbeessentialinorderforCornelltomeetitsneutralitygoalwithunderstandingandsupportfromthecommunity,inamanneralignedwithitseducationalandresearchmission.

1Notethattotalemissionsfortheuniversityarelowerthanthesumofcategorieslistedhere.Cornellclaimsabout27,795ofemissionsdeductionseachyearfromforestmanagementandexportedelectricity.

Figure1:

213,650TotalNetEmissions1

(MTCO2e)

CampusEnergy 179,303●ProducedPower161,806●PurchasedElectricity17,497

● Transportation62,142

Page 8: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 8

Solutions for Evaluating Projects Accounting for the True Cost of Carbon

ThethreetopicsinthissectionprovideaframeworkforensuringtheUniversitycan“value”thetrueimpactofclimatechangecostsandmitigationstrategies.AdjustmentstothewayCornellevaluatescostswhenconsideringprojectswillensureclimateimpactsareproperlyaccountedforagainstthecost,andrisk,ofbusinessasusual.

TheSocialCostofCarbonClimatechangehasandwillleadtodetrimentstohumanhealthandwell-beinginmanyways,includingthespreadofdiseaseanddecreasedfoodproduction,coastaldestruction,socialandeconomicdisruptionfromextremeandunpredictableweather,andfromnaturaleventssuchasfires,droughtsandfloods.ThesocialcostofcarboncalculatestheeconomictolloftheseimpactsandallowstheUniversitytocomparethecostsofimplementingneutralitysolutionsagainstthecostsofusingfossilfuelsthatcontributetoclimatechange.ItalsoallowsCornelltoevaluatethefuturecostorriskofcarboncharges.Thereportappliesanaveragechargeof$58permetrictonofCO2eemissionstooffsetsforalldirectemissionsinallfinancialscenarios,andtothemethaneleakagemodelsdescribedbelow.ThisnumberwasderivedfromrecommendationsbytheU.S.EnvironmentalProtectionAgencyandinconsultationwithCornellresearcherWilliamD.Schulze.SeeAppendixA:SuggestedEconomicParametersfortheCarbonNeutralCampusAlternativesReportforfurtherdetails.

UsingaQuadrupleBottomLineThetraditionalmeasureofprojectviabilityforthecampusisbasedonasingle,financialbottomline.Amethodmoreinlinewithsustainabledecision-makingusesaquadruplebottomlinethatconsidersfourimpactareas:

1. DoesthesolutionhelpCornellfulfillitsacademicmissionandpurpose?2. Doesitmeettheneedsofpeopleoncampus,inthecommunityandintheworld?3. Willitenhanceoverallprosperityforthecampusandourregion?4. Doesitsupportasustainableplanet?

Table1:QuadrupleBottomLineFramework

Purpose SupportsCornell’sMissionHowdoesthesolutionalignwithCornell’seducationalandland-grantmissions?Doesitcreateresearchandteachingopportunities?Isitalignedwithexistingprograms?Willthesolutionattractresearchfunding?DoesitincreaseCornell’sreputationasaglobalinstitutionaddressingclimatechangeandfindingsolutionstochallengingresearchquestionsacrossdisciplines?

People SupportsCommunityGoalsandPotentialIsthesolutionauseful,scalableoptiontosharewithothers?Doesithelpregionalcarbonreductionefforts?Doesitcreatejobs?Doesitincreaseordecreasequalityoflifethroughvisual,infrastructure,transitorcommunityresourcedevelopment?

Prosperity SupportsFinancialStabilityWhataretheshort-term,long-term,andsocializedcoststotheproject?Doesasolutionmitigatefuturecostsoruncertainties?WillthissolutionallowCornelltoplanfortodayanditsfutureinaneconomicallyfeasibleway?

Planet SupportsEnvironmentalNeedsHowdoesthissolutionensurethatCornellfulfillsitscommitmentstoenvironmentalsustainabilityandmitigatingclimateimpact?Whatisthecarbon-reductionimpactofthissolution?Arethereadditionalenvironmentalandecologicalbenefitsorrisksrelatedtolanduse,water,biodiversity,airqualityorwaste?

Page 9: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 9

213,650*

TotalNetEmissions(MTCO2e)

CampusEnergy 179,303●ProducedPower161,806●PurchasedElectricity17,497

● Transportation62,142

BaselineInventory

793,650TotalNetEmissions

(MTCO2e)

CampusEnergy 179,303●ProducedPower 161,806●PurchasedElectricity17,497●MethaneLeakage 580,000

● Transportation62,142

AccountingforMethaneLeakage

67% 26%

7%

67% 26%

7%

QuadrupleBottomLine,cont.

Forthepurposeofthisreport,membersofthecommitteeusedaquadruplebottomlineanalysisinadditiontoassessingtheoverallfinancialcostandtechnicalfeasibilityofproposedsolutionsthatcanbeseeninTable7:FinancialDetailsforAllSolutions,page15.Quadruplebottomlineratingsineachsectionuseacolor-codedsystem.(● =HighBenefit,●=Neutral,●=Negative/Low/NoBenefit).Cornellmustfurtherdevelop,andadopt,quadruplebottomlinethinkingacrossdepartmentsanddecision-makingatalllevels.

AssessingtheClimateImpactofNaturalGasInordertoaccountforthefullimpactoffossilfuelusetomeetcampusenergyneeds,itisimportanttoconsidertheimpactofmethaneleakageduringproductionofthenaturalgaspurchasedbyCornell.Naturalgasproductionanddeliverysystems,particularlyintheNortheastUnitedStates,haveahighpercentageofmethaneleakage.Theimpactofmethaneonclimatechangeiscalculatedtobe86timeshigherthanthatofcarbondioxideovera20-yearperiod,makingitanimportantareaofimpacttoconsider.Accountingfortheimpactofmethaneleakageadds580,000metrictonsofcarbondioxideequivalent(MTCO2e)toCornell’sexistingenergyfootprint.AcomparisonofthisadditioncanbeviewedinFigure2,below.Accountingfortheupstreamcostoffossilfuelsisnecessarytoaccuratelycomparethebenefitsofmovingtorenewableenergyresourcesforthecampusenergysupply.Applyingthesocialcostofcarbontothisincreaseinthefinancialbottomlinefordoingbusinessasusual–thatis,simplymaintainingandoperatingthecampusasitexiststoday–increasesfrom$42millionto$85millionperyear.MorefinancialdetailsontheinclusionofmethaneleakagearepresentedinTable7:FinancialDetailsforAllSolutions,page15.

Figure2:Cornell’s2014IthacaCampusGreenhouseGasInventory,ImpactofUsingNaturalGas

*Note that total emissions for the university are lower than the sum of categories listed here. Cornell claims about deductions each year from forest management and exported electricity.

Page 10: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 10

Solutions for Today Campus Energy Demand and Community EngagementAlthoughthecampussquarefootagehasgrownby20percentsince2000,energydemandhasremainedflat.Maintainingandevenimprovingonthistrendofincreasedenergyefficiencyoverthenext20yearswillbecriticalformeetingthecarbonneutralitygoal.

BuildingSolutionsAllcampusbuildingscanbebuilt,maintained,andoperatedtominimizeenergyuseandgreenhousegasemissions.Smart,energy-efficientbuildingswillminimizedisruptionsinservice,reduceenergycostsandtheneedfornewsourcesofenergysupply,andreducewearandtear(andthereforemaintenanceexpenditures)onthecampusenergyinfrastructure.

1) BuildHigh-PerformanceBuildingsHigh-performancebuildingsreducecostsandemissionsbyusinglessenergyandbyusingenergymoreefficiently.Althoughinsomecasestheup-frontcostsforsuchbuildingsmaybehigher,theplanning,projectapproval,anddesignprocessfornewconstructionandrenovationscanandshouldanalyzelong-termbenefitsandsavings,andusethequadruplebottomline(Table1,page8).Thissolutionproposesprinciples,analysisandstandardsthattheprovost,deans,andunitleaderscanusetounderstandandjustifythebenefitsofhigh-performancebuildingsinthecontextoftheirownneedsandtheinstitution’senergyfootprint.TheU.S.GreenBuildingCouncilnotesapoorcorrelationbetweenenergy-efficientdesignandpersquarefootbuildingcosts–forexample,energy-efficientfacadesarefrequentlycosteffective,whilesomeefficientwindowsareexpensive.Nonetheless,aconservativeassumptioncanbemadethat$20persquarefootadditionalup-frontinvestmentwouldachieve20percentlowerenergyuseforcampusrenovations.

2) ConserveEnergyinExistingBuildingsCornell’senergyconservationeffortstodatehavebeensuccessfulinreducingenergyuseinexistingbuildingsbymodernizingbuildingenvelopes,buildingautomationandcontrolsystems,heatrecoverysystemsandlightingsystems.Conservation-focusedpreventivemaintenanceonthesesystemsfurtherreducesusageandmaintainsperformance.

TheongoingEnergyConservationInitiativehasnegatedtheenergyimpactsofnewbuildingsconstructedoverthepast15yearsthroughcapitalimprovementprojectsinexistingbuildingsthatretrofittheirsystemswiththelatestfeatures.Theseprojectsincludelightingretrofits,heatrecoveryfromexhaustedair,andinstallingoccupancysensorsandprogrammableautomatedbuildingcontrols.Allprojectstodatehavehadareturnoninvestmentoffivetosevenyears.Campusstudiesshowthatsignificantcost-effectiveopportunitiesstillabound.Table2illustratesahypotheticalscenario(basedonactualresultstodate)where$50millionisinvestedtoreducethecampusheatingloadby10percent,andelectricityneedsby5percent,generatingasignificantfinancialsavings.Alongerpaybackperiodthaniscurrentlysupportedbytheuniversity,upto15years,wouldbeneededtocapitalizeonthesignificantremainingopportunities.

TheEnergyConservationInitiativeprojectsarecomplementedbycontinuous“re-commissioning”byateamofbuilding-controltechnicianswhoroutinelycheckandoptimizebuildingsystemstomaintainpeakperformanceandfurtherreduceenergyuse.Withoutthismaintenance,buildingperformancecandegradesignificantlyoveraperiodofjustafewyears.Thecurrentprogramhasa$1.5millionannualcostbutsavesmorethan$3millionayearinenergyuse.Table2illustratesahypotheticalscenarioofincreasingthestaffandbudgetequivalentto$1millionperyear,nettingover$0.3millioninannualsavingsandasustained5percentreductioninheatandcooling.

Page 11: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 11

Table2:CampusEnergyDemandReductionIllustrativeScenarios

Solution Up-frontCapitalCost AnnualOperatingCost AnnualEquivalentCost*EnergyConservation $50M(over10years) $(3.4M)(Savings) $(0.4M)(Savings)ConservationMaintenance - $(0.3M)(Savings)** $(0.3M)(Savings)

*AnnualEquivalentCost=AnnualOperatingCost+CapitalCostspreadover30years**Investinganadditional$1M/yrinconservationmaintenancegeneratesenoughenergysavingsforanet$0.3M/yrinsavings

TransportationSolutionInadditiontotheenergyneedsforcampusbuildingsandinfrastructure,Cornellisalsoresponsiblefortheenergyneedsofcampusvehiclesandtheemissionsassociatedwithcommuting.Manyofthesolutionsforreducingcarbonintheenergysupplyoutlinedlaterinthisreportpresentopportunitiestointroducemoreclean-fuelvehiclestotheCornellfleetandmakesuchvehiclesaviableoptionforcommutingtocampus.

1) IncreaseElectricVehicleCapacityThisanalysislookedatexpandingelectricvehiclechargingstationsoncampustosupportaclean-fuelfleet,andincentivizinguseofsuchinfrastructurebytheCornellcommunity.AscenariosuchasthatpresentedinTable3belowhasthepotentialtoreduceemissionsfromtransportationbyabout2percentforevery500fleet/commutervehiclesconvertedtocleanfuel.Cornellownsabout700vehiclesandaccountsforemissionsfromabout9,000commutervehicles.Therearemultidisciplinaryopportunitiesforcollaborationwithfacultyonclean-fuelprojects,andthepotentialtofurtherexistingpartnershipswithlocalandregionalgovernmentsandNGOsforgrantsforinfrastructureandcommunityengagement.ApendingComprehensiveTransportationPlanwillprovidefurtheranalysisofsolutionsforreducingtransportationemissionsandincreasingsupportforalternativemodesoftransportation.

Table3:ElectricVehicleChargingStationIllustrativeScenarioChargingstationstosupport500vehiclesSolution Up-FrontCapitalCost AnnualOperatingCost AnnualEquivalentCostElectricVehicleChargingStations $1.5M $0.1M $0.2million

CampusEngagementSolutionsCornellwillneedtoengageandeducatestudents,facultyandstaffontheircollectiverole,andopportunitiesforinnovation,researchandimprovementtoreduceenergyuseandgreenhousegasemissions.High-performancebuildingsrelyonoccupantswhounderstandtheimpactoftheirpersonalbehaviorsandwhousetheirbuildingstomaximumefficiency.Occupantinteractionwithbuildingsystemsalsoprovidesuniquelearningandresearchopportunities.

1) CampusResourceUserandBuildingOccupantEngagement(ThinkBigLiveGreen)TheThinkBigLiveGreen(TBLG)campaignengagesmembersoftheCornellcommunityascollaboratorsincreatingasustainablecampusthroughtheCollegeEngagementProgram,studentEcoReps,facultyandstaffGreenAmbassadors,GreenOfficeCertifications,GreenLabCertifications,andtheCampusBuildingDashboard.TBLGhasproducedsignificant,sustainedenergysavings.Theproposedsolution,illustratedinTable4,includesanadditional$50,000intheTBLGbudgetperyear,toachieveanenergyreductionof1percentandasavingsof$500,000annually,basedonactualresultstodate.ThinkBigLiveGreensupportsresearchontheinitiationandmaintenanceofbehaviorchange.

2) CampusClimateLiteracyEngagementCornellshouldensurethatallstudents,andideallyallmembersofthecampuscommunity,haveabasicliteracyinclimatechange,includinganunderstandingoftheirinfluenceonclimateandclimate’sinfluenceonthemandsociety.Aneducatedcommunitywillimplementcampusconservationprogramsandinnovatenewsolutions.Thissolutiondrawsona2014proposalbytheClimateActionPlanAccelerationWorking

Page 12: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 12

Groupthatwouldrequireaninvestmentof$100,000peryearandanadditionalstaffpersontomanageavarietyofclimatecurricularandliteracyinitiatives.Fundingwouldbeusedformini-grantsandsoftware/programmingtoexpandtheintegrationofclimatelearninggoalsintothestudentandcampusexperience.

Table4:ImpactofEngagementInvestmentsSolution AnnualImplementationCost BenefitsThinkBig,LiveGreen Currentresources+$50,000

additionalbudget$500,000(Saving),1%energyreductionperyear

CampusClimateLiteracy $100,000+1newFTEstaff Engagedcampus,maintainbaseline

Page 13: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 13

Solutions for Tomorrow Meeting Campus Energy Supply

TheUniversityhasalreadygreatlyreduceditscarbondioxidefootprintbytransitioningawayfromcoal,bycombiningheatandpowergenerationattheCentralEnergyPlant,andbyprovidingforthecoolingneedsofthecampususingtheLakeSourceCoolingplant.However,thenaturalgasusedtofueltheCentralEnergyPlantisstillafossilfuel–andcontributestoclimatechange,particularlybecauseofhighmethaneemissions.Cornellwillneedtoconsiderlow-carbonalternativestomeettheheatingandpowerneedsofthecampus.ItisassumedthatcoolingneedswillcontinuetobemetthroughLakeSourceCoolinginallscenarios.

Thissectionpresentsfivefullandpartialsolutions:A. SolutionsforheatingandpoweringB. SolutionsforheatingonlyC. Solutiontopower,throughwind,water,andsolarD. OptionsforoffsettingemissionsE. Non-feasibleoptions

SeeAppendixB:AssumptionsforallCampusEnergySolutionsforfullpricing,technology,operationalandfutureforecastassumptions.Adetailedreviewoftheassumptionscanbefoundinthe2016ClimateNeutralCampusEnergyAlternativesReport(CNCEAR).CNCEARanalyzedthetechnicalconceptandcostforeachsolution.Table7onpage15providesasummaryofthefinancialneedsprojectedforeachsolutionformeetingcampusenergysupply.Thetablebreaksdownthecapitalcost,annualcost,andcostofoffsetsneededforeachofthefollowingsolutionsinthissectionofthereport.

SolutionsforHeatingandPoweringtheCampus

Thefollowingsolutions–numbersonethroughsix–presentopportunitiesforCornelltoreducethecarbonintensity,and/orincreasetheefficiencyofcampusenergysystemsbymeetingboththeheatingandpowerneeds.

1) EarthSourceHeatCombinedwithWind,Water,andSolarandBiomassEarthSourceHeat(ESH)isanemergingtechnologythatproposestoutilizetheheatenergydeepbeneaththeEarth'ssurfacetogeneratedistrictheatingandpossiblysomeelectricity.Acombinedsolutionisproposedherethatwouldusebiomasstomeetpeakheatingneeds;andwind,water,andsolartomeetcampuselectricalneeds.SeeAppendixD:BiomassPeakingwithEarthSourceHeatSolutionsformoredetailonbiomasspeaking.Biomassgasificationwasfoundtobethemostfinanciallyfeasiblesolutionforthisanalysis,thoughbiomasscombustioncouldbeexploredwithfurtherresearchandfinancialmodeling.Thistotalsolutionisoverallrankedwithhighfeasibilityandquadruplebottomlineratingsduetohighcarbonreduction,academicandresearchpotential,andoverallsuitabilitytoregionalclimateandgeographicconstraints.

EarthSourceHeatisanunproven,yetpromising,technologyforCornelltoreduceemissionsinthelargestsourceofitscarboninventory.Theexperimentalnatureofthistechnologycreatestheopportunitytoattractresearchanddevelopmentfundingthroughaconsortiumofpublicandprivatepartners.ShouldCornellsuccessfullydemonstrateEarthSourceHeat,itcouldalsoplayaroleindevelopinganewindustry.Furthermore,researchquestionsremainabouttheimpactsandsustainabilityofusingbiomassforpeakingandwillrequirefurtherevaluationbeforefullimplementation.ShouldEarthSourceHeatproveunfeasible,othersolutionscouldbepursuedintimetomeetthecarbonneutralitygoal.Thoseoptionswouldneedtocommenceby2025iftheUniversityistoachieveneutralityby2035.

Page 14: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 14

2) EarthSourceHeatCombinedwithWind,Water,andSolarThissolutionassumesEarthSourceHeatwouldbesizedtomeetthecampuspeakload,withelectricityneedsmetthroughwind,water,andsolarprojects.Thissolutionoffersthesimilarbenefitsassolutionone(EarthSourceHeatcombinedwithwind,water,solarandbiomass),andisequallyfeasible.Therearetradeoffstoconsiderbetweenthetwosolutionsinup-frontcapitalcostsandannualoperatingcosts,inadditiontoresolvingresearchquestionsabouttheimpactsandsustainabilityofusingbiomassforpeakingthatwillrequirefurtherevaluationbeforefullimplementationofeithersolution.

3) GroundSourceHeatPumpsCombinedwithWind,Water,andSolarGroundsourceheatpumpsusearefrigerationcycleandelectricpowertoexchangeheatwiththeEarth,relativelyclosetothesurface,extractingheatfromrelativelycoolgroundforheatingduringthewinter.Groundsourceheatpumpsprovideaheatingsolutionthatwillincreaseelectricityneedsforthecampus.ThistechnologywillbeusedontheCornellTechcampus.Groundsourceheatpumps,combinedwithwind,waterandsolar,isthenext-bestsolutionafterEarthSourceHeat,shouldEarthSourceHeatproveinfeasible.Ifgroundsourceheatpumpsweredevelopedasadistrictsystem,itwouldrequirealargegeothermalwell-fieldconstructedonadjacentcampusland.Alocationforthiswellfielddoesnotrequireopenspace;wellfieldsarecommonlyplacedunderparkingareas.Groundsourceheatpumpscanalsobedeployedduringbuildingrenovationsonabuilding-by-buildingbasis,orassmallerdistrictheatingsystemslinkingasubsetofbuildings.Beforefullimplementationofthissolution,furtheranalysisofthecostsandfundingimplicationsfortheotherapproachesisneeded.

4) AirSourceHeatPumpsCombinedwithWind,Water,andSolarAirsourceheatpumpsrequirerefrigerationandelectricpowertoexchangeheatwiththeambientair.Thisreportanalyzesascenariowhereheatpumpswouldbecentrallylocatedatuptofourfacilities.Building-by-buildingdeploymentandfundingduringrenovationandnewconstructionmayalsobeconsideredforthistechnology.

Overall,itisnotasstronglyrecommendedasgroundsourceheatpumpsduetooverallfeasibilityofthetechnologyinverycoldweatherresultingincostlyincreasesinelectricitydemandatcampus-scale.TheuseofeitherheatpumptechnologywouldeliminatetheneedfortheCentralEnergyPlant.Electricityusewouldincrease,makingacombinedsolutionwithwind,waterandsolarnecessary.

5) NuclearThisreportanalyzedthefeasibilityofasmallmodularreactor.Itistheonlystand-alonetechnologythatcangeneratealloftheheatandelectricityneededforthecampus.Concernsincludetimingofthetechnologyavailability(suitableforinstitutionalapplication),permittingchallenges,disposalofnuclearwaste,localacceptanceandapprovals,andenvironmentalassessmentchallenges.Ifnuclearenergyweretobepursued,furtheranalysisofthepotentialforalternatemicro-reactortechnologyandcontinueduseoftheexistingsteamdistributionisrecommended.

6) BusinessasUsual,withPurchasedOffsetsInthisscenario,Cornellcontinuesonapathofpurchasingelectricityfromthegrid,whichincludesahighpercentageofnaturalgastopowertheCentralEnergyPlantforbothheatingandenergyneeds,andpurchasesofoffsetstobalancecarbonemissions.Thoughthissolutionprovidestheleastdisruptiontoexistingcampussystems,ithaspotentiallyhighriskfromunknownfuturecarbonoffsetmarketcosts,andhasasubstantiallyhigheroverallpricetagwithlittleornobenefittoPeopleandPurposebottomlines.

Page 15: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page 15

Table7:FinancialDetailsforAllSolutions(inmillions)

Asasimplificationforcomparison,theup-frontcapitalcostinTable7assumesallfinancingwouldbeprovidedbyCornellinasingleyearofimplementation(2027).Inreality,anysolutionwouldbephasedinoveranumberofyears–atleastadecade–givingtheUniversitytimetosecurefundinginstages.IfCornellcancapitalizesolutionswithexternalfunds,annualoperatingcostsdropbelowbusinessasusual.

AnnualEquivalentCostisacombinationoftheannualcostsandcapitalcost(up-frontcost)spreadover30years.TheAECcostsareinsteadof(notinadditionto)Cornell’scurrentbusinessasusualcostprovidedforcomparison.AECisaneasynumbertouseforcomparingsolutions,sinceeachsolutionvarieswidelyinproportionofcapitalandoperatingcosts,butdoesnotaccountforrealitieslikeprojectphasing(buildingsegmentsslowlyovertime,withpotentiallybetterpricingasitbecomesmoreavailable),ortheprospectofexternalfundingsources.Itincludesresidualvalueandcapitalexpendituresduringthelifeoftheanalysisperiod.Existingdebtisnotincludedinbusinessasusual.

Up-FrontCapitalCostisthepricetoinstalleachsolution,includinganyupdatestocampussystemswhileAnnualOperatingCostisthepricetooperateandmaintainthesystemeachyear.TheAnnualOffsetsCostisthepricetopurchaseoffsetsforremainingemissionsfrompurchasedgridelectricity.Itassumesasocialcostofcarbonforpurchasedoffsets(notmission-linkedoffsets)asdiscussedinSolutionsforEvaluatingProjects.

TheaccountingformethaneleakageAnnualEquivalentCostandAnnualOffsetCostcolumnsshowtheincreaseincostifCornellaccountsforupstreammethaneleakage,andasamplequadruplebottomlineanalysisprovidesarankingof●=HighBenefit,●=Neutral,●=Negative/Low/NoBenefitaspreparedbytheSeniorLeadershipClimateActionWorkingGroup

(AEC=AnnualCost+CapitalCostspreadover30years)AccountingforMethane

Leakage QBLAnalysis

SolutionsforCampusEnergySupply,FinancialDetails

Up-FrontCapitalCost

AnnualizedCapitalCost

AnnualOperatingCost

AnnualOffsetsCost

AnnualEquivalentCost

AnnualOffsetsCost

AnnualEquivalentCost Pu

rpose

Prospe

rity

Peop

le

Planet

BusinessasUsual(forcomparison,notasolution) $42

Heating&PoweringSolutionsNooffsetsneeded

1. EarthSourceHeat,WWS,Biomass $700 $47 $24 - $71 - $71 ● ● ● ●2. EarthSourceHeat,WWS $730 $50 $22 - $72 - $72 ● ● ● ●3. AirHeatPumps,WWS $930 $62 $28 - $90 - $90 ● ● ● ●4. GroundSourceHeatPumps,WWS $920 $55 $26 - $81 - $81 ● ● ● ●5. Nuclear $700 $42 $34 - $76 - $76 ● ● ● ●

Alloffsetsneeded 6. BusinessasUsual+CarbonOffsets - - $42 $10 $52 $43 $85 ● ● ● ●

HeatingSolutionsOffsetsforElectricity

7. EarthSourceHeat,Biomass $430 $31 $36 $2 $69 $10 $78 ● ● ● ●8. (Only)EarthSourceHeat $470 $36 $34 $2 $72 $10 $80 ● ● ● ●9. (Only)AirSourceHeatPumps $490 $28 $47 $4 $79 $17 $92 ● ● ● ●10. (Only)GroundSourceHeatPumps $600 $34 $40 $3 $77 $13 $87 ● ● ● ●

Page 16: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page16

BudgetaryContextSolutionsforheatingandpoweringthecampusthateliminatecarbonsources(seeTable7,items1-5)involvecapitalinvestmentsthatcouldexceed$700million.Aninvestmentofthismagnitudewouldnotbepossiblewithintheoperatingbudget,andnewdebtonthisscalewouldsignificantlyconstrainandreducetheamountofdebtcapacityavailableforinvestmentinotherhigh-priorityacademicandinfrastructuresupportcapitalneeds,includingexistingspacerenovationsontheIthaca,WeillCornellMedicineandCornellTechcampuses.Moreover,theestimateddebtserviceonaloanof$700million,whichismorethan$40millionperyear,isequivalentto2-3percentofthetotalannualoperatingcostorapproximately17percentofthecurrentamountspentonfacultysalaries.Aninternalinvestmentofthismagnitudewouldcausesignificantpressureandtrade-offswithintheoperatingbudget,andwouldnotbepossibletobuildintotheutilitycostsoftheacademicunitswithoutlargeoffsettingcuts.Consequently,solutionsthathavethepotentialforsignificantexternalfundingshouldbeconsideredmorefeasibleandgivenpriority.

Table8imaginesascenarioinwhichexternalfundingissecuredforaportionofcapitalcosts.Forinstance,iftheUniversitycouldsecure$480millioninexternalfunding,thesolutionisonparwiththecostofrunningthecampustoday–withalloftheadditionalbenefitsofachievingthecampuscarbonneutralitygoal.

Table8:FinancialComparisonScenarioforEarthSourceHeat,WWSandBAU

Figure3furtherdemonstratesthisprinciplebyillustratingthattheannualoperatingcostsoffullsolutionsthatreplacethebusinessasusual,naturalgasfueledenergygenerationwithrenewablesourcesare,infact,theleastexpensive.Solutionsthathavethepotentialtoattractsignificantexternalfundingforcapitalcosts,therefore,havethepotentialtobecosteffectivefortheuniversity.

FinancingScenarioforSolution#2

CapitalCost–External

CapitalCost–Cornell

AnnualOperatingCost

AnnualEquivalentCost

BusinessasUsualToday $42 $422.EarthSourceHeat,WWS $480 $250 $22 $42

Page 17: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page17

Figure3:AnnualOperatingCostsofSolutions($Millions/Year)

SolutionforPoweringtheCampus(Wind,Water,andSolar)

Assumingthat50percentofgrid-sourcedpowerwillcomefromrenewableresourcesby2030aspertheNewYorkCleanEnergyStandard,Cornellwillneedtoeitherpurchaseoffsetsfortheremaining50percentorcreaterenewable-energyresources.Theannualelectricneedsofthecampuswillbedependentontheheatingsolution–forinstance,groundsourceheatpumpsmayincreasethecampuselectricityneedby43percent.AllsolutionsexceptnuclearinSectionA:HeatingandPower,assumeuseofthefollowingproposedwind-water-solarsolution.SeeAppendixC:AssumptionsforWind,Water,andSolarforfurtherdetailonfinancialassumptionsmadehere.

TheproposedsolutionforcreatingnewrenewableenergyresourcesassumesCornellwillmaintainexistinghydrofacilitieswithnonewwaterdevelopment,andsupplytheadditionalneedthrough50percentwindand50percentsolarsources.Wind,water,andsolarareproventechnologieswithreadilyavailableimplementation.Sitedproperly,theyhavearelativelybenignenvironmentalandcommunityimpact.Communityconcernsaboutsitingfacilities,particularlywindturbines,andstoragecapacitytomitigatetheintermittencyoftheseresourcesremainachallenge.

• Wind:Tobeeconomical,turbinesmustbesitedformaximumpowergeneration,whichinNewYorkstate

typicallyrequiressitingonhighridgesoralongexpansivewaterbodies.TompkinsCountyhasmarginalwindresources.Projectsshouldexploreoff-shoresitesalongLakeErieorLakeOntario,orwindierridgesinotherpartsofthestate.

• Water(HydroelectricPower):Nosignificantadditionalhydropowerresourcesareproposedforthisscenario.CornellhasanexistinghydroelectricplantinFallCreekthathasbeenrecentlyupgradedtodeliverabout6,000MWhperyear,orabout2.7percentofthecampusannualelectricneeds,andshouldbecontinuallyoperated.

• Solar:Includingprojectscurrentlyunderway,solarphotovoltaics(solarPV)willsupplytheequivalentof7percentofcampuselectricneedsbytheendof2016.Theupcomingexpirationoffederaltaxincentives,reducedstateincentives,andinterconnectionchallengesaremakingitdifficulttodevelopsolarprojectsinthenearfuture,thoughachangingregulatoryenvironmentemerginginNewYorkstatemayimprovefeasibility.

Page 18: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page18

SolutionsforHeatingtheCampus,Only

Thefollowingoptionsmeettheheatingneedsforthecampusandthereforeprovideonlyapercentageofcarbon-footprintreductionforcampusenergy.Theannualequivalentcostsprojectedwouldbetotalcostneededtomeetneutrality–inotherwords,thattheremainingcarbonfootprintfromgrid-purchasedpowerwouldbemetthroughpurchasedoffsets.

7) EarthSourceHeatCombinedwithBiomassThissolutionwouldreplacetheCentralEnergyPlantwithasetofdeepgeothermalwellsandabiomassboilerplanttomanage3-9percentofthepeakload.SimilartoEarthSourceHeat+biomass+wind,waterandsolar,withnorenewableenergydevelopmentforpurchasedelectricity.Instead,gridelectricitywouldbepurchasedwithasmallamountgeneratedonsite.

8) EarthSourceHeat(Only)SimilartoprevioustwoEarthSourceHeatsolutions,withstand-aloneESHsystemdesigntocarryfullheatingload(nosupplementaltechnologiesforpeaking).

9) and10)AirSourceHeatPumps(only)andGroundSourceHeatPumps(only)Sincebothtechnologiesprovidebothheatingandcoolingbenefits,thissolutionislesseffectivefortheCornellcampuswherecoolingneedsarealreadymetbyLakeSourceCooling.Ifelectricityweregeneratedon-sitewithgasturbines,thissolutionwouldincreaseCornell’scarbonfootprint;ifsourcedfromthecurrentgrid,thecarbonreductioneffectissmall;ifsourcedfromafuturecarbon-freegrid(orcampuspowersources),itcouldreducecarbonimpactsbyupto40-50percent.

Non-FeasibleSolutions:BiomassGasificationandCombustion

Biomassgasificationandcombustionwereexploredasstand-aloneheatingandpoweringsolutionsbutdonotappeartobefeasible.Cornellagriculturalexpertsestimatethemaximumsustainableyieldon“local”Cornelllands(thosepotentiallyavailableforbiomasswithin25milesofcentralcampus)couldonlyprovideabout15percentoftheenergyneededtoheatthecampus.Ifproducedregionally,biomassproductioncouldputsignificantstrainontheecologicalcarryingcapacityofourregion,withoutnetbenefitonthesurroundingcommunity.Biomassisconsideredpotentiallyviableaspartofacombinedsolutionasproposedearlierinthisreport.

CarbonOffsettingSolutions

Cornellcanoffsettheimpactofgreenhousegasemissionsthatwecannoteliminatebypurchasingorinvestinginprojectsthatreducecarbonelsewhere.Developingaportfoliooflocaloffsetprojectscanalsohelpaddresseconomicdisparitiesandhaveapositiveimpactonlocalresilience.Theseprojects–referredtointheCornellClimateActionPlanas“mission-linkedoffsets”canprovideCornellwiththeopportunitytoinvestintangibleactionswithuniqueandimportantopportunitiesformultidisciplinaryresearch,entwinedwithbenefitstoourimmediateandglobalcommunity.

1) MissionLinkedMission-linkedoffsetsprovideCornellwiththeopportunitytoinvestinprojectsinourcommunityandregionthatreducecarbonandhaveapositiveimpactonthelocaleconomy.Projectsforconsiderationmightinclude:ContinuedandExpandedActiveForestManagement(anestimated3,000acresofCornelllandsthatcurrentlyareabandonedfieldsormarginalfarmlandcouldbeusedtoplantnativetreespecies),pursuingland-leaseopportunitiesthatsupportcommunitysolar,energyefficiencyrenovationsinlow-

Page 19: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page19

incomeorrentalproperties,heatingfuelswitchfromfossilfuelstolow/nocarbonalternativesforbarnsandhomes,improvingcarbonstorageinagriculturalsoil,orreducingmethaneinagriculturalindustries.

2) PurchasedPotentialsolutionsheremayincludepurchasingRenewableEnergyCredits,orpurchasingthird-partycertifiedcarbonoffsetsatanationalorinternationallocationwithnodirectinvolvementinprojects.A2009surveyofTompkinsCountyresidents,conductedbyCornellProfessorKatherineMcComas,foundthatcommunitysupportwasrelativelylowforpurchasedcarbonoffsetscomparedwithothersolutionsproposedfortheClimateActionPlan.

Page 20: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page20

Conclusions and Recommendations

CornellUniversity,withitsactivelyengagedcommunityofstudents,facultyandstaff,itsdeepandabidingtraditionofcollaborationacrossthecampus,includingtheFacilitiesgroup-Infrastructure,PropertiesandPlanning-thatbringstolifethecampusasa“livinglaboratory,”isuniquelypositionedtoachievethegoalofcarbonneutralityby2035,inthecoldclimateofIthaca,NewYork.Ifinachievingthisgoalweareabletodemonstratenewtechnologyatanindustrialscale,wewillbeprovidingimportantsolutionsthatcommunitieslargeandsmallcanimplementtomakesteadyprogresstowardreducingtheircarbonfootprints.Throughthisprocess,studentswillleaveCornellarmedwiththeknowledgetoleadchangearoundtheworld.

ForCornelltoachievethisloftygoal,itmustbeginmakinginvestmentsandchangesnow.Themostimmediateopportunitiesareonthedemandside.Throughprogramsunderwayandrecommended,werecommendthatoverthenextfiveyearstheuniversity:

• BuildonthesuccessoftheThinkBig,LiveGreencampaignandcontinuetodevelopanddeploytrainingtoolstoeducatethecampusonwayseachandeverymembercancontributetoreducingtheenergyconsumptionandthecarbonfootprint;

• Ensureallstudentsgraduatewithabasicliteracyofclimatechange–anunderstandingoftheirinfluenceonclimateanditsinfluenceonthemandsociety.Aneducatedstudentbodywillgenerateandhelpimplementcampussolutions,andcarrytheknowledgeofclimate-smartbehaviorsandsolutionswiththemaftergraduation;

• Modifycapitalprojectsapprovalprocessestoexplicitlyaccountforlong-termenergysavingsandthequadruplebottomlinesoastoincentivizehigherenergyperformanceindeferredmaintenanceprojects,renovationsandnewconstruction;

• ExpandthesuccessfulEnergyConservationInitiativeandcontinuousrecommissioningprogramtofurtherdrivedowntheenergyuseofexistingbuildingsthroughincreasedinvestmentinboth,andextendingthepaybackperiodrequiredforenergyconservationprojects;and

• Prioritizedevelopmentofinfrastructuretosupportacampusfleetofclean-fuelvehiclesandreplacetheexistingfleetaccordingly.

Toaddresstheneedforrenewable,non-carbon-basedenergysources,agatedprocessisrecommended,wherebytechnologiesaretestedand,dependingontheoutcome,decisionsaremadetocontinueormovetoanotheroption.

• Cost-effectivewind,water,andsolarprojectsshouldbepursuedtostrivetomeetoroffset100percentoftheexpectedannualcampuselectricitydemand.NewYorkstate’snewCleanEnergyStandardmandatesthat50percentofgridpowerwillbesuppliedfromrenewablesourcesby2030;theUniversityshouldcontinuetobeaninvestedpartnerinthisgridtransformationaswell.Wind,water,andsolarprojectsshouldengageCornell’sacademicexpertiseonquestionsofappropriatesiting,communityacceptance,andenvironmentalandwildlifeimpacts.

• EarthSourceHeatisthemostpromisingtechnologyforheatingthecampusinourclimate.Ifsuccessful,itwouldprovideanewsourceofheatthatcouldbemorewidelydeployedandpotentiallygivebirthtoanewindustryrighthereinupstateNewYork.EarthSourceHeathasthehighestlikelihoodofattractingpartnersthatwoulddefraythecostofitsimplementation.Thepossibilityofcreatinganentirelynewenergysourcehasalreadyattractedtheattentionofprivatecorporationsandthestate.However,thisisunproventechnology,andassuchtheremustbewell-definedteststodetermineitsfeasibility.Overthenextfiveyears,Cornellshouldpursueproposalsforfundingleadingtoatestwell,andthenreassesstheviabilityofEarthSourceHeat.Ifthetestwellisviable,asecondwellshouldbedrilledtocreateawellpairtoheataportionofthecampusthathasbeenretrofittedwithahotwaterdistrictheatingsystem.Weestimatethetimerequiredtocompletethefirstwellpairis10years.IfatthattimeEarthSourceHeatcontinuestolookviable,Cornellshouldimplementitasacampus-wideutility.

Page 21: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page21

• Ifinthefirst5-10yearsoftestingEarthSourceHeatisfoundnottobeviable,thenextmostcost-effectivetechnologyisgroundsourceheatpumps.Groundsourceheatpumpsareaproventechnology,andsoitsdeploymentwouldrequirelesstesting,andcouldbecompletedby2035,howeverthisapproachusesstandardtechnology,isunlikelytoattractoffsettingexternalfunding,andwouldinvolvecoststhatcannotpresentlybeundertakenwithoutmajornegativeimpactsonotheruniversitymissions.Thepreciseapproach(forexample,building-by-buildingorusingahotwaterdistrictheatingsystem)shouldbeevaluatedifthissolutionispursued.Groundsourceheatpumpscreateasignificantlygreaterdemandforelectricpower,andthedeploymentofwindandsolarfarmswouldhavetobeadjustedaccordingly.Althoughairsourceheatpumpsalonearealowercostalternative,thehigherdemandforelectricityrelativetogroundsourceheatpumpsmakesitprohibitiveforaresearchcampus.Cornellshouldevaluatetheuseofgroundsourceheatpumps,andtheoptimizationstothecampusheatdistributionsystemrequiredtosupportbothgroundsourceheatpumpsandEarthSourceHeatduringtheEarthSourceHeatevaluationperiod.

• Consideringonlytechnologicalfeasibility,thetechnicalchallengesassociatedwithsmallmodularnuclearreactorsmaybeovercomeinadecade,andnuclearcouldberevisitedifEarthSourceHeatisnotsuccessful.Thismustbebalancedwithcommunityconcerns.

• Theuseofbiomasstoaccommodatepeakloadsshouldbeevaluated.However,thescaleofbiomassrequiredforacompletesolutionistoolargetobepractical.

Thecapitalcostsforallofthesolutionsareveryhigh.Externalsourcesoffundingfortheseeffortsoffertheonlyapparentwaytopayforthemwithoutmajordisruptionstotheteachingmission.Consequently,Cornellshouldseekpartnershipswithlocal,stateandfederalgovernment,privatecorporationsandnon-profitfoundationsthatsupporttheenergysector.Thebuildingofaconsortiumofengagedpartnersshouldbeginimmediatelyandbesustainedoverthelifetimeoftheproject.Indeed,thecommitteebelievesthistobeagreatbenefitoftheCornellcommitmenttocarbonneutrality,asitcouldenhancethelocaleconomyandmagnifytheimpactthroughthisdemonstrationofasmallcommunityachievingcarbonneutrality.

Thereareeconomicrisksassociatedwith“businessasusual”includingavulnerabilitytovolatilityinfossil-fuelbasedenergypricesandpotentialfederalcarbonchargesorcap-and-traderegulations.Cornellshouldadoptadecision-makingframeworkthatconsidersthesocializedcostsassociatedwithgreenhousegasesemittedbytheUniversityandtheavoidedriskofpursuingmitigationsolutionsinadditiontoprojectcosts.

WhereCornellcannotreduceallnetemissionstozero,thereexistopportunitiestopursuemission-linkedcarbonoffsetsthathaveapositiveimpactonlocalresilienceandareeconomicallypractical.Ratherthanviewingtheseoffsetsasadditionalburdens,theycaninsteadbeshowntoofferuniqueandimportantopportunitiesformultidisciplinaryresearchandcommunitypartnership.

Page 22: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page22

Appendix A Suggested Economic Parameters for the Carbon Neutral Campus Alternatives Report WilliamSchulze,DysonSchoolThreequestionshavebeenraisedconcerningtheanalysisofalternativesforacarbon-neutralCornellcampusthatareinthedomainofappliedeconomics.Theyare1)whatdiscountrateshouldbeusedforevaluatingalternatives,2)whatsocialcostshouldbeusedforvaluingthebenefitsofreducedCO2emissions,and3)whatisthefuturepriceofnaturalgaslikelytobe.Figure3:DilbertComic

ChoiceofDiscountRateAssuggestedinthecartoon,uncertaintyregardingchoiceofdiscountrate,aswellasotherassumptionsusedinanyanalysisoffuturerevenuesandcostswillbeuncertainandcontroversial.Cornelltheoreticallyshoulduseitsownopportunitycostofcapitalasthediscountrateforanalyzingthealternativecostsandrevenuesassociatedwithattainingcarbonneutrality.Inotherwords,ifCornellweretoissuebondstoinvestinandpayforacarbonneutralcampus,itwouldhavetopayacompetitiveinterestrate.Asanexample,ColumbiaUniversityrecentlysold$50millionintax-exemptbondswithayieldof1.67percent.Ifthemoneywereusedtoconstructadormitory,itwouldbeappropriatetousethesamerateasthediscountratetoseeifthediscountedpresentvalueoffuturerevenuesnetofoperatingcostswouldbeatleastequaltothe$50millionconstructioncost.Anotherwaytodotheanalysiswouldbetoannualizethecapitalcostatthesameratetoseeifannualrevenuesminusoperatingcostsexceedtheannualizedcapitalcost.Formany,thisisamoreintuitivewaytounderstandtheanalysis.However,itshouldbenotedthatusingthislowadiscountratecouldbeveryriskyunlessCornellwouldactuallyborrowthemoneyattoday’sextraordinarilylowrates.CurrentinterestratesareaproductofFederalReservepoliciestostimulatetheeconomyandareunlikelytopersistmuchlonger.Cornell’streasurerhassuggestedthat,innominalterms,anappropriateratewouldbealittleunder6percent.Thisisinlinewiththehistoricaverageoflong-terminterestrates.However,forlong-termanalysis,arealrateofdiscountisgenerallyemployedwheretheinflationrateissubtractedfromthediscountrate,andrevenueandcostestimatesaremadeinconstantdollars.Thiseliminatestheneedtoguessfutureinflationrates.Thecurrent(2016)inflationrateis1percent.Thus,Isuggestthat,unlessCornellispreparedtofullyfundacarbonneutralcampusbyborrowingnow,arealrateofdiscountof5percent(6percent-1percent)beusedfortheanalysis.

Page 23: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page23

AppendixA:SuggestedEconomicParametersfortheCarbonNeutralCampus

TheSocialCostofCarbonIfCornellwishestoperformabenefit-costanalysisfromthepointofviewofglobalsociety,anestimateofthesocialcostofcarbonemissionsisrequired.ThesocialcostsofCO2presentedinthetablebelow(foralternativediscountrates)havebeenestimatedbyaninteragencygroupoftheU.S.governmentthatexaminedawidevarietyofstudies.Thesestudiesestimatedthecostsbasedontheeconomicimpactsovertimeonagriculture,heatingandcooling,landlosttoariseinsealevel,etc.Obviously,asindicatedbythelastcolumn,thereexistsconsiderableuncertaintyinthefutureofboththemagnitudeofclimatechangeandtheeconomicimpactsofclimatechange.Anothermajorsourceofuncertaintyischoiceofdiscountrate.Notethatthefirstcolumnusesa5percentdiscountrateidenticaltotheonesuggestedabovebasedonlong-termcostsofborrowing.Figure4:SocialCostofCarbon

However,thereisamajordifferencebetweencalculatingthecoststoCornellofachievingcarbonneutralityanddiscountingthedamagestofuturegenerationsofclimatechange.Ethicalquestionsmustberaisedontherightsofindividualsandgenerationsinthefuture.Inotherwords,isitethicallyacceptableforthecurrentgenerationtodamagefuturegenerationswithoutactualcompensation?Asanexample,takethelibertarianethicalpointofviewthatwouldarguethatwe,asthecurrentgeneration,arefreetodowhateverwewanttodo,aslongaswedonothurtfuturegenerations.ThisrequiresustocompensatefuturedamagesforanyremainingdamagesevenafterwepartiallycontrolCO2emissions.Onewaytodothatwouldbetocalculateanyremainingdamagesandputmoneyintoaninvestmentfundthatwouldreinvestearningsuntilthedatewheretheywouldbepaidouttoaparticulardamagedgenerationinaparticularfutureyear.Thefigurebelowshowsthatthelongrunreturn(withreinvestment)fromtheS&P500thathasaveragedaremarkablyconsistent6.5percent.But,todeterminehowmuchwewouldneedtoputinthefund,wewouldneedtodiscountfutureremainingdamagesat6.5percentrate,assumingthatthestockmarketwouldcontinuetogrowasithasinthepast,sothecorrectamountwouldbeavailableinthefuture.NotethatefficiencyrequiresthatwetradeoffexistingcontrolcostsforCO2againstthecostofputtingmoneyintothisfundsothediscountedpresentvalueofdamagespertonofCO2emittedshouldbeusedtovaluethebenefitsofcurrentcontrolcostmeasures.

Page 24: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page24

AppendixA:SuggestedEconomicParametersfortheCarbonNeutralCampus

Ofcourse,thepoliticaloddsofsuchafundbeingestablishedcanbepreciselydeterminedwithgreataccuracytobeexactlyzero.Ifthisisthecase,whatshouldbedone?Onesolutionthatmanyeconomistsadvocateistouseadiscountratelowerthan6.5percent.HencearangeofdiscountratesispresentedinthetablegivingalternativemeasuresofthesocialcostofCO2.Themostcommonlyusedvalueforthesocialcostofcarbonisbasedonadiscountrateof3percent.Otherratesareusedforsensitivityanalysis.Figure5:S&P500ReturnRates

PredictingNaturalGasPricesThelongrunhistoryofnaturalgasproductionfortheU.S.isshowninthefigurebelow.Priceswereregulatedbeginningin1938bytheNaturalGasActuntil1978whenCongressbeganaderegulationprocessthatwascompletedin1989,effectivelyreversingadeclineinproduction.Therapidincreaseinproductionbeginningaround2005isassociatedwiththewidespreaduseoffrackingtoobtainshalegas.Figure6:USNaturalGasMarketedProduction

Page 25: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page25

AppendixA:SuggestedEconomicParametersfortheCarbonNeutralCampus

Thenextfiguredemonstratesthepastandlikelyfutureproductionofshalegasincomparisontoothersourcesofgas.Henryhubspotpricesfornaturalgasareshowninthenextfigurethatcoversthemorerecentpastsincethe1990s.Thepricespikesinthetimetrendcanbeexplainedbyincreasesindemandassociatedwithweatherandthedownwardtrendsince2005(ignoringpricespikes)bytheincreasedavailabilityofgasfromfracking.Recently,theverylowpriceshavecausedaswitchtodrillingforwetgasinPennsylvania,whichproducesbyproductssuchaspropaneandethanethatarevaluableandeffectivelysubsidizethecontinuedincreaseinproductionofmethanewhichisthemajorconstituentinnaturalgas.Shellisbuildinga$6billionfacilityinwesternPennsylvaniatocrackethaneintoethyleneusedinthemanufacturingofplastics.Figure7:ShaleGasProduction,U.S.

Figure8:HenryHubNaturalGasSpotPrice

Page 26: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page26

Theconsensusisthatnaturalgaswillremainreadilyavailableandrelativelyinexpensive,butthatthelowestpriceof$1.92/mcfshowninthefigureabovewillnotpersistandeventuallyrisetothe$4to$5rangeasshowninthelatestestimatesfromtheEnergyInformationAgency.Simplyput,demandfornaturalgaswillcatchupwithsupplyasnewpipelines,manyintheplanningstageorunderconstruction,areputinplacetodelivergastohigh-valuemarketsandexportsofliquefiednaturalgasalsoincrease.Figure9:AverageHenryHubPricesforNaturalGas,2016

Finally,CornellUniversityisunlikelytobetaxedforcarbonemissionsfromon-sitepowergenerationundertheRegionalGreenhouseGasInitiative(RGGI)–thelegallymandatedcap-and-trademarketforNortheasternandMid-AtlanticStatesincludingNewYork.AnticipatedRGGIcostsforpurchasedelectricityare,however,embeddedinthosefutureenergyforecasts.

Page 27: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page27

Appendix B Assumptions for All Campus Energy Supply Solutions Forcampusoperations,Cornellwillcontinueto:• OperateLakeSourceCoolingtomeetthemajorityofcampuscoolingneeds• Operateexistingcampushydroplantandsolarfacilities• Continuedevelopmentofthe34MWofwind,water,andsolarprojectscurrentlyunderway• Ensure0percentgrowthincampusenergyusethroughgreenbuildingandconstructionstandards• Investinandsupportaggressiveenergyconservationeffortsinfacilitiesandthroughengagement• Pursuesolutionsthatmeetbothcampusandregionalcarbonreductiongoals,wherepossible• Supportotherongoingandactivecarbon-reductionactivitiesintheClimateActionPlan• ConvertsteamtohotwaterforthecampusenergydistributionsystemForconsideringexternalinfluencesonenergy:• Purchasedenergywillhavefossilfuelsaspartofthegridmix• PurchasedenergywillalsohavemorerenewableenergyasaresultofNewYork’s2016CleanEnergyStandard

whichsetsagoalof50percentrenewablesby2030Forfinances,thisreportassumes:• EnergyforecastingusingstandardU.S.EnergyInformationAdministration(EIA)pricing• Cornell’scurrentnaturalgascostswillrisetomeetnationalenergycoststandardoverthenext10years• Allcostsarein“real”values,i.e.,nogeneralinflationwasincludedintheanalysis• Allfiguresincludearealdiscountrateof5percent,whichrepresentstheopportunitycostofcapitalthrough

borrowingaboveandbeyondthelevelofinflation• Capitalexpenditures(capex)andannualoperatingexpenses(opex)arecombinedtocalculatetheannual

equivalentcostForconsideringexternalinfluencesoncarbon:• Cornellisunlikelytobetaxedforon-campusenergyproductionthroughtheNewYorkStateRegional

GreenhouseGasInitiative,butpurchasedenergywillincludeatax• Cornellmayseeacarbontaxorcap-and-tradesystemimplementedatthefederallevelthatincursapriceon

climatechangeimpacts

Page 28: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page28

Appendix C Assumptions Wind, Water, and Solar Usingrenewableenergy(wind,water,andsolartechnologies)toprovidethepowerneedsofthecampusinvolvesdevelopingsufficientnewfacilitiesonandoffcampustosupplyanamountofelectricityequivalenttothenetelectricneedonanannualbasis2.Wind,water,andsolar(WWS)solutionsmeetonlyelectricityneedsforthecampus,notheat.However,integrationofnewsolarphotovoltaicandwindenergyintothecampusenergyportfolioandcontinuedeffortstooptimizetheexistinghydroelectricplantinFallCreekarekeycomponentsforachievingacarbon-neutralcampus.ItisalsoimportantforCornelltocontinuetosupportandparticipateinNewYorkstate’seffortstoreducethecarbonfootprintofthegridthroughprovidingacademicandpracticalexpertiseanddemonstrationpartnerships.WWSareproventechnologieswithreadilyavailableimplementationand,sitedproperly,relativelybenignenvironmentalandcommunityimpact.Communityconcernsaboutsitingfacilities,particularlywindturbines,andstoragecapacitytomitigatetheintermittencyoftheseresourcesarekeyremainingchallenges.Thefeasibilityofthissolution(thatis,findingacombinationofrenewableenergytechnologiestofittheprojectedelectricityloadforthecampus)wasfinanciallyevaluatedusingahypotheticalcasewherebyalloftheelectricityneededtoservecurrentcampusloadwasdevelopedfromWWSresources(50percentsolarand50percentwind).Again,thisanalysisassumesnoexternalfundsoruseofpowerpurchaseagreements.Itisimportanttonotethatthroughpublic/privatepartnershipsandleveragingexistingfederalandstategovernmentgrantsandrebateprogramsWWSprojectstodatehavenotonlybeencosteffective,buthavegeneratedsavings.Table9:CampusPowerSupplySolutionScenario($Millions/Year)RenewableEnergyType Up-FrontCapitalCost

(excludingexternalfunds)AnnualOperatingCost

AnnualEquivalentCost(over30years)

50%PVand50%Windtomeettotalcurrentcampuselectricload

$270M ($13)(BenefittoCornell,relativetoBAUplusoffsets)

$3

2Theannualelectricneedsofthecampuswillbehighlydependentontheheatingsolution–e.g.,preliminaryestimatesforGSHParethataveragecampuselectricusagewouldincrease~43%,andpeakusageduringthecoldestwinterweatherwouldapproximatelydouble.TheNewYorkStateCleanEnergyStandardmandatesthat50%ofgridpowerwillbesuppliedfromrenewablesourcesby2030.

Page 29: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page29

Appendix D Biomass Peaking with Earth Source Heat Solutions Figure10:DesigningEarthSourceHeatwithBiomassPeaking

ThecapitalcostsfortheESHstand-aloneoptioninclude$210MforthedevelopmentofESHwellsets(7sets),basedonanalysisofindustrycostsdocumentedinarecentlypreparedESHPreparatoryPhaseWorkPlan.Additionalcostsinclude$20Mforapump/heatexchangefacility(basedalsofromWorkPlanestimates,andcomparedtotheLakeSourceCoolingpumpandheatexchangerfacility,whichcostabout$15Mandhasaverysimilarthermalcapacity).Afigureof$236Mwasaddedfordistributionconversionbasedonanindustry-verifiedestimatebyE&S.

ThepairingofbiomasswithESHwouldbesimilar,exceptthatfewerwellsareusedforESH.Instead,abiomassstorageandprocessingfacilityandbiomassboilersystemwouldalsobeneeded,sizedasappropriateforthepeakheatingneedsofcampus(finalsizingwillbecoordinatedwiththeresultsoftheESHtestprogram),asshownintheimageaboveingreenandabovethegrayline.At5wellspairs(sufficienttocaptureabout97percentoftheannualheatload),thefirstcostbecomes$150M.Additionalcostsinclude$20Mforapeakingbiomassplantand$6Mforabiomassstorageandprocessingcenter.Thelatterfigureswerecalculatedwithconsiderationofthepreviouslynotedbiomassplantcosts,withhigherunitcostsincludedtoaccountforthesmallerscaleneededforB/ESH.Inbothcases,itisassumedthatthesystemissizedfortheentireheatloadandCornellfullyfinancesallcosts.

Table10:FinancialResultsofESHOptions

ESHTechnologyCost

TotalCapitalExpense

AnnualEquivalentCost

EarthSourceHeat,WWS,Biomass $150 $700M $71M

EarthSourceHeat,WWS $210 $730M $72M

Page 30: CU-Options for Achieving a Carbon Neutral Campus...Solutions for carbon-neutral energy should strive to meet the current equivalent, which is a combined 179,000 MTCO2e (Figure 1) from

Page30

References

Thisreportbuildsandreferencespriorreports,memos,andongoingupdatesoncarbonneutrality.TheseshouldbeconsideredessentialappendicestothisreportandcanbefoundontheCornellUniversitySustainableCampuswebsite.Financialassumptions,figures,andmodelingaredrawnfromthesupplementalguidancedocumentslistedhere.ClimateActionPlan

• (Report)2009ClimateActionPlan• (Report)2013ClimateActionPlanUpdate&Roadmap• (Report)2014ClimateActionPlanAccelerationWorkingGroupReport-Companiondocumenttothe2013

CAPUpdate&Roadmap • (Website)SustainableCampus,ClimateAction• (Website)SustainableCampus,GreenhouseGasEmissionsInventory

SupplementalGuidance

• (Report)2016CornellUniversityClimateNeutralCampusEnergyAlternativesReport(CNCEAR)• (Memo)2016,AComprehensiveClimateChangeEngagementandEducationCampaignatCornell

University(Draft),Hoffmanetal.• (Memo)2016MethaneLeakageandtheGreenhouseGasInventoryforCornellUniversity,BobHowarth