current dental surface disinfection protocols and a review ... · current dental surface...

22
Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 and CaviWipes1 800.841.1428 totalcareprotects.com Sponsored by:

Upload: others

Post on 21-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Current Dental Surface Disinfection Protocols and a Review of the

New 1-Minute Surface Disinfectants CaviCide1™ and CaviWipes1™

800.841.1428totalcareprotects.com

Sponsored by:

Page 2: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

 

Current  Dental  Surface  Disinfection  Protocols  

and  a  Review  of  the  New  1  Minute  Surface  

Disinfectants  CaviCide1  and  CaviWipes1  

 Authors:  Nancy  Andrews,  RDHBS:    Ms.  Andrews  graduated  from,  and  was  a  clinical  instructor  in  Dental  Hygiene  at  University  of  Southern  California  and  teaches  Oral  Pathology,  Preventive  Dentistry  and  Infection  Control  at  West  Coast  University  Dept.  of  Dental  Hygiene.  She  is  a  nationally  recognized  speaker,  author  and  consultant,  focusing  on  infectious  diseases,  clinical  safety,  instrument  sharpening,  ergonomics  and  preventive  dentistry.  Ms.  Andrews  is  a  “top  100  U.S.  Speaker”,  and  is  on  the  California  Dental  Assoc.,  ADA  and  OSAP  speaker’s  /  Consultants  bureaus.  Ms.  Andrews  has  had  over  80  articles  published  in  peer  reviewed  professional  journals,  has  contributed  to  dental  textbooks  and  national  guidance  documents.  She  also  writes  regular  infection  control  columns  in  dental  industry  publications  and  trains  sales  reps  in  infection  control.  She  has  presented  over  350  seminars  nationally  and  internationally  on  Diseases  and  Infection  Prevention,  Disaster  Preparedness,  Biofilms,  building  contamination  and  Dental  Waterlines,  Instrument  Sharpening,  Ultrasonic  Scaling,  and  Ergonomics.      Noel  Brandon-­‐Kelsch,  RDHAP:    Noel  Brandon-­‐Kelsch  RDHAP  is  an  international  speaker,  writer  and  Registered  Dental  Hygienist  in  Alternative  Practice.    She  is  passionate  about  oral  health  and  has  the  uncanny  ability  to  motivate  and  enlighten  audiences  through  her  unique  humor  and  cutting  edge  information.    She  takes  tough  subject  matter  and  presents  it  in  such  an  interesting  way  that  it  becomes  thought  provoking  even  to  those  not  involved  in  her  industry.  Her  research  and  dedication  has  brought  many  changes  about  in  the  field  of  infection  control.    She  is  the  infection  control  columnist  for  RDH  magazine,  a  syndicated  newspaper  columnist,  has  been  published  in  many  books.  She  has  brought  the  message  of  oral  health  to  media  networks  from  Disney  Radio  to  ESPN.  Noel  has  received  many  national  awards  including  Colgate  Bright  Smiles  Bright  Futures,  RDH  Magazine  Sun  Star  Butler  Award  of  Distinction,  USA  magazine  Make  a  Difference  Day  Award,  President’s  Service  Award,  Foster  Parent  of  the  Year  and  Hu-­‐Friedy  Master  Clinician  Award.  Noel  is  a  Past  President  of  the  California  Dental  Hygienist’s  Association,  Board  Member  of  the  Santa  Barbara  Ventura  Dental  Foundation,  facilitator  for  Simi  Valley  Free  Dental  Clinic,  Sunstar  America,  GC  America,  Philip  Life  Style  and  Total  Care,  Hu  Friedy,  Orascoptic,  Dux  Dental,  American  Eagle,  Key  Organization  Leader,  member  and  Newsletter  Editor  for  the  Organization  for  Safety  and  Asepsis  Procedures.                       ©TotalCare  2012.  All  Rights  Reserved.  CaviCide,  CaviWipes  and  TotalCare  are  trademarks  of  Metrex  Research  LLC.      

Page 3: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

 

Introduction    The   risk   of   contracting   a   serious   infection   while   providing   or   receiving   medical   or   dental   care   is   a  compelling  concern  for  millions  of  patients  and  dental  workers  –  a  concern  generated  by  media  reports  of  healthcare-­‐associated  infections  and  deaths.       It   is  not  unreasonable  for  dental  workers  to  question  the  effectiveness  of   established   infection   control   products   and  practices   against   increasingly   resistant  pathogens,   and   to   seek   reliable   guidance.   Infection   control   training   is   based   on   preventing   disease  transmission,  rather  than  treating  infected  people.        Environmental  asepsis,  including  the  removal  and  destruction  of  pathogens  before  they  infect  workers  or  patients  is  a  vital  component  of  clinical  safety.    Knowing   the   properties   of   products   and   optimal   techniques   for   effective   surface   cleaning   and  disinfection  empowers  the  dental  workers,  builds  trust  and  promotes  safety.    Risk  of  Infection  in  Dental  Settings  Disinfection  of  contaminated  environmental  surfaces  and  objects  in  all  healthcare  settings  is  an  ongoing  challenge   and   important   aspect   of   infection   prevention   and   patient   safety.   Healthcare-­‐associated  infections  (HAI)  are  primarily  caused  by  viruses,   fungi,  bacteria  acquired  while  receiving  treatment   for  other  conditions.    Most   investigations  of  HAIs  are  conducted   in  medical  environments,  but   serve  as  a  model   for  understanding  and  controlling   infections   in  dental  settings.    Some  of  organisms  studied  are  less   likely  to  be  found  in  dental  settings  due  to  the  general  health  of  dental  patients  and  the  reduced  exposure  to  some  pathogens  during  dental  procedures  compared  to  those  encountered  during  medical  procedures.       Safety   practices   in   dentistry   are  modeled   after   those   in   medicine   due   to   scientifically  validated   risk   assessments;   while   the   exact   pathogens   and   conditions   may   differ,   the   principles   of  infection  control  are  reliable.  [1  ,  1-­‐A].    

What  Information  is  Trustworthy?    Reliable  Dental  Safety  Guidelines  Dental   workers   often   find   themselves   using   disinfectants   and   techniques   without   completely  understanding  how  effective  or  safe  their  efforts  are.  Sometimes  safety  and  reliability  is  assumed,  trust  is   given   to   a   brand   name,   sales   representative,   or   past   experience   with   the   product   or   practice.      Infection  control  product  selection  and  techniques  tend  to  develop  over  time  and  incorporate  the  ideas  of  many   people   rather   than   clear   evidence-­‐based   science   or   official   guidance.   Opportunities   such   as  product   promotional   “deals”   and   prices,   trends,   habits,   preferences,   may   also   influence   purchasing  decisions.     However,   the   risk   of   exposure   to   pathogens   in   dental   settings   is   proven:   reliable   surface  disinfectants   and   practices   are   more   important   than   ever.     Dental   professionals   should   never   be  confused  about  the  products  they  use  and  are  personally  responsible  for  successful  surface  asepsis.    The   most   reliable   sources   for   guidance   are   the   Centers   for   Disease   Control   (CDC),   members   of   the  research,  education  and  science  community  such  as  accredited  Universities,  approved  testing  facilities,  and  official  agencies  including  the  Federal  Drug  Administration  (FDA),  Environmental  Protection  Agency  (EPA),  or  professional  organizations  utilizing  peer-­‐review  and  scientific  processes  such  as  Organization  for   Safety   and   Asepsis   &   Prevention.   Centers   for   Disease   Control   Dental   Infection   Control  Recommendations  are  based  on  information  learned  in  medical  settings,  adapted  for  dental  care.            

Page 4: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

The  Role  of  Surface  Contamination  in  Disease  transmission  Infectious   pathogens   are   transmitted   by   direct   contact,   indirect   contact,   ingestion,   percutaneous  exposure   and   mucosal   absorption.     Diseases   are   categorized   as   contact   diseases,   droplet   diseases,  airborne   diseases   and   bloodborne   diseases.     It   is   important   to   consider   the   type   of   organisms  encountered   in   dental   settings   and   their   possible   routes   of   transmission.   Pathogens   that   can   be  transmitted   by   contaminated   surfaces   must   be   able   to   survive   on   those   surfaces,   be   transferred   to  workers  or  patients  directly  or  indirectly,  and  may  enter  new  hosts  through  non-­‐intact  skin,  mucosal  or  ocular  exposure,  or  ingestion,  and  in  some  circumstances,  inhalation.  [1]    It   is   estimated   that   20-­‐40%   of   Hospital   Associated   Infections   (HAIs)   result   from   transmission   by   a  healthcare  worker  after  touching  either  another  patient  or  a  contaminated  environmental  surface  [2].  The  role  of  environmental  surfaces  in  the  transmission  of  disease  has  increased  as  studies  have  shown  environmental   surfaces   to   be   a   key   factor   in   cross-­‐contamination.     Some   of   the   most   important  healthcare-­‐associated  pathogens  can  survive  on  environmental  surfaces  for  days,  weeks  or  months  [3]  including   enteric   pathogens,   bloodborne   pathogens,   dermal   pathogens,   and   respiratory   pathogens.    Dentally   relevant   pathogens   are   any   that   can   be   expected   to   be   present   in   dental   settings,   such   as  Hepatitis   B   virus,   Hepatitis   A   virus,       Pseudomonas   aeruginosa,  Methicillin   Resistant   Staphylococcus  aureus   (MRSA),   Vancomycin-­‐Resistant   Enterococci   (VRE)   and   other   multidrug-­‐resistant   organisms  (MDROs).    [1,  6]    Dental   workers   receive   training   and   have   written   policies   for   controlling   infection   transmission,   but  many  workers   lack  a  true  understanding  of  the  chemical  disinfectants  they  rely  on.    To   insure  reliable  infection   control,   it   is   helpful   to   have   knowledge   of   the   levels   of   disinfection   needed   for   the   various  types   of   microorganisms,   surface   disinfectant   ingredients   and   mechanisms   of   action,   and   practical  guidance   for   commonly   encountered   clinical   challenges   such   as   the   role   of   a   cleaning   step   prior   to  disinfection,  contact  time,  and  product  reliability  and  compatibility  with  other  materials  and  products.    To  insure  effective  infection  control,  well-­‐trained  workers  must  be  must  have  access  to  effective  surface  disinfectants   and  must   comply  with   product   use   recommendations   using   aseptic   technique   including  personal  protective  equipment.    [1,  1-­‐A,  4]        

Mechanism  of  Surface  Disinfection  Action    Levels  of  chemical  disinfection:  Microorganisms  vary  greatly  in  their  resistance  to  chemical  germicides.    Spaulding  proposed  three  levels  of  disinfection  for  the  treatment  of  devices  and  surfaces  that  do  not  require  sterility  for  safe  use.    The  disinfection   levels   are   “high-­‐level,”   “intermediate-­‐level,”   and   “low-­‐level.”       These   levels   relate   to   the  spectrum   of   organisms   targeted   by   each   category   of   chemical   germicidal   agents       High-­‐level  disinfectants  are  used  for  instruments  and  devices,  require  extended  contact  time,  and  are  not  safe  or  effective   for   environmental   disinfection.     An   example   of   a   high-­‐level   disinfectant   is   glutaraldehyde,  known   as   “cold   sterile”   solution,   which   can   also   sterilize   items   if   they   are   immersed   for   specified  (extended)  time  periods.  [5]    In  order  to  destroy  the  most  resistant  types  of  microorganisms,  (i.e.,  bacterial  spores),  the  user  needs  to  employ  exposure  times  and  a  concentration  of  the  appropriate  germicide  needed  to  achieve  complete  destruction  before  the  pathogens  infect  people.    Except  for  prions,  bacterial  spores  possess  the  highest  innate   resistance   to   chemical   germicides.     Chemicals   that   destroy   spores   are   called   sterilants.     Just  

Page 5: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

below  spores  on  the  hierarchy  is  Mycobacterium  tuberculosis  var.  bovis,  (commonly  referred  to  as  TB).  Germicides   that   kill   T.B.   are   “intermediate–level   disinfectants”,   and   are   widely   trusted   to   also   be  effective   against   other   less   resistant   species   (found   below   T.B   on   the   hierarchy).     Some   pathogens,  however,   show   greater   resistance   to   some   disinfectants,   and   therefore   each   EPA   disinfectant   is  commonly  specifically  tested  for  effectiveness  against  these  organisms.  Pseudomonas  aeruginosa   is  an  example  of  such  a  pathogen.[6]      Manufacturers  of  approved  medical  and  dental  surface  disinfectants  specifically  list  the  organisms  on  product  labels  that  the  product  has  been  tested  against,  and  the  use-­‐directions  (including  contact  time)  needed  to  kill  or  deactivate  the  pathogen.      

         The   chart   on   the   left   illustrates   the  hierarchy   of   organisms   relative   to   their  resistance   to   destruction   outside   the  body   by   disinfection   /   sterilization.   As  shown,   prions   are   the   most   difficult   to  destroy   followed   by   spores   which   can  only   be   destroyed   by   sterilization.    Intermediate-­‐level  disinfection  inactivates  Mycobacterium   tuberculosis   var.   bovis,  which   is   substantially   more   resistant   to  chemical   germicides   than   ordinary  vegetative  bacteria,  fungi,  and  medium  to  small   viruses   (with   or   without   lipid  envelopes).     TB   is   a   “benchmark  organism”,   used   to   demonstrate   the  effectiveness  of  a  disinfectant  against  TB.    Products   that   are   able   to   destroy   or  

inactivate   TB   are   generally   considered  effective   against   microorganisms   that   are  

more  easily  destroyed  by  chemicals  outside  of  the  body  than  TB.    These  “weaker”  organisms  are  shown  below  M.   tuberculosis   on   the   chart.     “TB   kill   time”   is   the   contact   time   needed   for   a   disinfectant   to  destroy  TB.    Products  must  remain  wet  on  surfaces  for  the  time  stated  on  their  label  to  achieve  reliable  disinfection.  [1,7]      Impact  of  surface  disinfection:  There  is  not  always  a  direct  correlation  between  the  order  of  pathogen  resistance  illustrated  in  Figure  1  and  the  effects  of  infection  with  the  listed  organisms.    .    It  is  fortunate  that  some  of  the  pathogens  that  are  considered  high-­‐risk  after   they   infect  a  host  are  rapidly  destroyed  by  surface  disinfectants  outside  the   body.     Examples   of   such   organisms   are   Human   Immunodeficiency   Virus   (HIV),   Hepatitis   B   virus  (HBV),   Hepatitis   C   virus   (HCV),   Herpes   virus   and   influenza   viruses:   these   organisms   are   often   rapidly  killed  with   surface   disinfectants,   but  may   be   difficult   or   impossible   cure  once   contracted.       Low-­‐level  disinfectants,  or  hospital  disinfectants  may  destroy  these   important  pathogens,  but   intermediate-­‐level  disinfectants  offer  a  wider  margin  of   safety  because   they  are  effective  against  a  broader   spectrum  of  pathogens.     For   this   reason  official   recommendations   and  mandates   specify  use  of   intermediate-­‐level  disinfectants  on  contaminated  clinical  contact  surfaces.  [1,8]          

Figure 1: Microbial Resistance to Chemical Germicides

Page 6: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Representative   Pathogens   &   the   Emergence   of   Drug   Resistant  Organisms  in  the  Clinical  Environment  Antibiotics  have  been  used  for  70+  years  to  treat  patients  with  infectious  diseases.    However,  due  to  the  broad   use/over   use   of   these   antimicrobial   agents,   the   organisms   which   cause   these   diseases   are  evolving  and  new  resistant  strains  are  becoming  more  prevalent  in  the  clinical  environment.      Although  symptomatic   dental   patients   are   usually   screened   and   dismissed,   dental   management   of   resistant  organisms   is   now   a   requirement,   since   these   species   are   not   limited   to   hospital   settings   and   may  contaminate  dental  surfaces.    [9]    The  Role  of  Mycobacterium  tuberculosis  The  purpose  of  selecting  an  intermediate-­‐level  disinfectant  (effective  against  TB)  is  to  insure  a  level  of  chemical  activity  that  can  be  expected  to  kill  most  types  of  vegetative  organisms  (not  spores)  on  hard  non-­‐porous   surfaces   in   the   time  needed   to   kill   TB.    Mycobacterium   tuberculosis   is   harder   to   kill   than  most   other   organisms,   and   is   thus   considered   a   “benchmark   organism”,   able   to   withstand   weak  disinfectants  and  survive  in  a  dry  state  for  weeks.  [1,7,10]    Currently,   it   is   estimated   that   one   third   of   the   global   population   is   infected   with   Mycobacterium  

tuberculosis  with  new  infections  occurring  at  the  rate  of  about  one  per  second.  [11]  Additionally,  drug  resistant   forms  of  TB  have  become  a  public  health   issue   in  some  developing  countries,  as  duration  of  treatment  is  longer  and  requires  more  expensive  drugs.  [12]    

 Despite   the  seriousness  of  TB  worldwide,   there   is   little  concern  of  contracting  M.  tuberculosis   from  a  hard   surface   such  as  a  counter   tops  or  other   fomites   located   in  a  dental  clinical  environment   for   two  reasons:    M.   tuberculosis   is   spread  through  the   inhalation  of   infectious  aerosol  droplet  rather  than  by  surface   contamination.     Second,   TB   is   not   likely   to   be   present   in   dental   environments   because  symptomatic   patients   are   routinely   screened   before   treatment,   (however   the   possibility   of  accommodating  an   infected   individual  must  be  anticipated).    Surface  disinfectants  used  on  potentially  contaminated   clinical   contact   surfaces   are   recommended   to   be   effective   against   the   benchmark  organism  TB  to  provide  a  margin  of   safety,   thus   insuring  destruction  of  other  commonly  documented  pathogens   that   are   spread   by   contaminated   surfaces.   The   tuberculocidal   claim   allows   a   chemical  disinfectant   to   be   designated   as   a   "tuberculocide"   by   the   Environmental   Protection   Agency   (EPA   ).    According  to  the  U.S.  EPA,  the  designation  of  a  disinfectant  that  can  be  used  in  a  hospital  environment    is   one   that   has   demonstrated   effectiveness   against   Staphylococcus   aureus,   Pseudomonas   aeruginosa,  

and  Salmonella  enterica,  but  not  M.  tuberculosis.    [1]      

Representative   Pathogens   Destroyed   by   Intermediate-­‐level   Surface  Disinfectants  and  Significance  in  Dental  Settings    Surface  disinfectants  are  developed  for  use   in  various  medical  settings.    Dental  environments  are   less  likely  to  be  contaminated  with  some  organisms  that  may  be  seen   in  hospitals  because  dental  patients  should   be   screened   for   symptoms   of   infective   diseases   such   as   febrile   respiratory   illnesses   or   acute  gastrointestinal   infections.     Since   subclinical   cases  may   be   undetected,   dental  workers   should   always  select  surface  disinfectants  that  are  effective  against  a  broad  spectrum  of  pathogens.    Products  should  be  tested  against  specific  organisms,  particularly  resistant  species,  to  validate  product  claims  and  insure  reliability.          

Page 7: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Bactericidal  /  Fungicidal  activity  against  the  following  organisms:  

Table 1

Pathogen  Destroyed  by  Disinfectant   Significance:  Pathology  Associated  with  Pathogen  Bacteria    

Mycobacterium  tuberculosis  var:  bovis  (BCG)  (TB)  

Benchmark  organism:  most  difficult  vegetative  organism  to  destroy  (defines  “intermediate-­‐level  disinfectant”).    Tuberculosis  

Staphylococcus  aureus   S.  aureus  is  frequently  found  as  part  of  the  bacterial  flora  in  the  nose  and  on  the  skin:  Causes  infections  such  as  boils,  impetigo,  meningitis,  pneumonia,  endocarditis,  and  Toxic  Shock  Syndrome.    S.  aureus  has  become  rapidly  resistant  to  antibiotics.    

Methicillin  Resistant  Staphylococcus  

aureus  (MRSA)  MRSA  (“flesh-­‐eating  staph”)  causes  serious  rapidly  progressive  and  persistent  skin  infections  –  may  spread  through  body  and  be  fatal.    MRSA  is  resistant  to  beta-­‐lactam  antibiotics  such  as  methicillin,  oxacillin,  penicillin,  and  amoxicillin.    Community-­‐associated  MRSA  is  very  likely  to  be  found  in  dental  settings.  

Methicillin  Resistant  Staphylococcus  

epidermidis(MRSE)  MRSE  is  a  skin  pathogen  carried  and  shed  by  many  healthcare  workers,  and  can  cause  internal  infections  when  surgical  sites  are  contaminated.  

Vancomycin  Resistant  Enterococcus  

faecalis  (VRE)  VRE  inhabits  the  gut,  and  is  a  serious  problem  in  hospitals  (less  common  in  dentistry).    Physically  debilitated  patients  can  develop  endocarditis,  surgical  wound,  urinary  tract,  or  bloodstream  infections.      

Vancomycin  Intermediate  

Staphylococcus  aureus  (VISA)  VISA  colonizes  skin  and  noses  of  carriers  and  can  enter  through  wounds,  surgical  sites,  tubes  into  the  body,  and  drug  use.      Bacteremia  or  sepsis,  pneumonia,  endocarditis,  osteomyelitis  

Salmonella  enteric   Food  poisoning,  gastroenteritis.    May  be  transmitted  by  oral  secretions.  Acinetobacter  baumannii   Blood  stream,  urinary  tract  infections,  pneumonia  Klebsiella  pneumoniae   Wound  and  urinary  tract  infections  Bordetella  pertussis   Pertussis  (whooping  cough).    Transmitted  by  respiratory/oral  fluids.  

Potentially  transmitted  by  asymptomatic  individuals.        Extended  spectrum  beta-­‐lactamase  (ESBL)  Escherichia  coli  

Multi-­‐drug  resistant  enteric  pathogen  causing  food  poisoning,  urinary  and  wound  infections.    Spread  by  oral  fluids,  fecal  contamination,  hand,  surface,  fomite  transmission  from  infected  individuals.  [13]    

   Viruses    

Hepatitis  B  Virus  (HBV)   Bloodborne  pathogen  capable  of  survival  on  environmental  surfaces  for  at  least  7  days  and  shown  to  transmit  Hepatitis  in  dental  settings  via  surfaces  contaminated  with  bodily  fluids,  wet  or  dry.  

Hepatitis  C  Virus  (HCV)   Bloodborne  pathogen  causing  acute  and  chronic  hepatitis,  transmitted  by  bodily  fluids,  wet  or  dry.    Due  to  subclinical  cases  and  large  number  of  undetected  infective  individuals  HCV  (+)  oral  fluids  are  likely  in  dental  settings.    

Herpes  Simplex  Virus  (HSV)  Type  1   Primary  herpes  simplex  infection  (HSV)  is  a  florid  herpetic  gingivostomatitis  with  extensive  oropharyngeal  vesicular  lesions.    Secondary  (recurrent)  HSV  is  very  common  and  causes  labial,  gingival  and  palatal  vesicles  and  ulcers.    Lesions  are  highly  infective,  virus  may  be  shed  without  visible  lesions.    HSV  contamination  is  likely  in  dental  settings.        

Herpes  Simplex  Virus  (HSV)  Type  2   Genital  herpes,  similar  to  HSV  Type  1.    May  be  found  in  dental  settings,  and  shed  by  oral/pharyngeal  secretions  of  infected  individuals.  

Page 8: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Human  Immunodeficiency  Virus  (HIV)   Bloodborne  pathogen,  causes  destruction  of  human  immune  system,  susceptibility  to  opportunistic  infections,  and  Acquired  Immune  Deficiency  syndrome  (AIDS).  Percutaneous  or  trans-­‐mucosal  exposure  required  for  transmission  in  dental  settings.    HIV  expected  to  be  present  in  blood  and  body  fluids  found  in  dental  settings.  

Human  Coronavirus  not  associated  with  Severe  Acute  Respiratory  Syndrome  (SARS)  

Upper  respiratory  and  gastrointestinal  tract  pathogen,  contracted  by  inhalation  of  aerosols  and  mucosal  contact  with  respiratory/GI  secretions,  directly  or  indirectly.  Contaminated  surfaces  may  transfer  pathogens.    Should  not  be  common  in  dental  settings,  but  may  be  found  when  asymptomatic  or  sub-­‐clinical  cases  are  not  identified.      

Norwalk  virus   Norwalk  virus  is  the  most  common  cause  of  acute  gastroenteritis,  causing  community  and  healthcare  outbreaks.    Unlikely  in  dental  settings  unless  infected  asymptomatic  patients  or  workers  are  present,  but  CDC  recommends  careful  selection  and  use  of  disinfectants  effective  against  Norwalk  virus.  

Rotavirus   Rotavirus  causes  gastroenteritis  (inflammation  of  the  stomach  and  intestines,  causing  illness  with  diarrhea);  leading  cause  of  severe  diarrhea  in  infants  and  young  children  worldwide.  Spread  by  fecal-­‐oral  route,  via  contaminated  hands,  surfaces,  objects  and  food.    Pre-­‐  and  post  symptomatic  people  may  spread  the  virus.  

Influenza  A,  H3N2  Virus   Seasonal  influenza,  transmitted  by  contact,  droplets  and  aerosols.    Symptomatic  individuals  should  not  be  present  in  dental  settings  (should  be  screened  and  dismissed),  but  asymptomatic  people  may  be  present.    Surface  contamination  is  a  route  of  transmission.  

Adenovirus  Type  II   Very  common  pathogen,  causing  upper  respiratory  tract  infections,  tonsillitis,  conjunctivitis.    Contaminated  ocular,  nasal,  oral-­‐pharyngeal  and  respiratory  secretions  are  likely  to  be  present  in  dental  settings,  and  can  be  spread  easily  by  contact  with  contaminated  surfaces.  

   Fungus/Yeast    

Trichophyton  mentagrophytes   Human  and  zoonotic  dermal  pathogen,  causing  cutaneous  infections  such  as  ring-­‐worm,  “athlete’s  foot”  (may  infect  hands  between  fingers,  under  jewelry  or  around  finger-­‐nails).    Due  to  moisture,  use  of  closed  gloves  and  compromised  skin,  dental  workers  are  at  risk  for  exposure  to  this  keratinophylic  fungus  belonging  to  a  homogeneous  group  of  fungi  called  the  dermatophytes.    Contaminated  surfaces  are  a  route  of  transmission.  

Candida  albicans   Candida  albicans  is  a  yeast,  commonly  present  in  the  environment.    C.  albicans  causes  candidiasis  or  moniliasis,  called  “thrush”  in  susceptible  individuals:  babies,  immunocompromised  people,  and  those  taking  certain  drugs  that  interfere  with  the  balance  of  the  oral  flora.    C.  albicans  is  generally  not  spread  easily  by  contaminated  surfaces.        

[3,10,11,13,14,15]    

Regulation  of  Chemical  Disinfectants  Chemical  disinfectants  are  a  vital  component  of  standard  precautions.    Even  when  surface  barriers  are  used,  cleaning  and  disinfecting  practices  must  be  performed  correctly  to  achieve  clinical  safety.    Surfaces   in   the   dental   operatory   have   been   divided   into   2   categories:   noncritical   surfaces   such   as  housekeeping  surfaces,  and  clinical  contact  surfaces.      Clinical  contact  surfaces  are  those  that  might  be  

Page 9: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

touched   frequently   with   gloved   hands   during   patient   care   or   that  might   become   contaminated  with  blood  or  other  potentially  infectious  material  and  subsequently  contact   instruments,  hands,  gloves,  or  devices   (e.g.,   light  handles,   switches,   dental   X-­‐   ray  equipment,   chair-­‐side   computers).  One  method  of  working  with   these   surfaces   is   barrier   protective   coverings   (e.g.,   clear   plastic  wraps).   This   can   be   an  advantage  for  surfaces  that  are  difficult  to  clean  such  the  chair,  light  handles,  and  complex  surfaces.  This  also  limits  exposure  to  chemicals  for  the  staff  and  patients  and  saves  time  and  energy.  The  barriers  are  simply   changed   between   patients.   The   covered   surfaces   (under   barriers)   should   be   cleaned   and  disinfected  at   the  end  of   the  day  or  when  barriers   are   changed   if   the  barrier   is   compromised  and/or  contamination   is   evident.   If   and  where   barrier   protection   is   not   utilized,   it   is   necessary   to   clean   and  disinfect  clinical  contact  surfaces  between  patients.  This  should  be  done  utilizing  an  intermediate-­‐level  disinfectant   (i.e.,   Environmental   Protection   Agency   (EPA)-­‐registered   disinfectant   for   use   in   a   hospital  environment  with   tuberculocidal   claim)   or   low-­‐level   disinfectant   (i.e.,   EPA-­‐   registered   disinfectant   for  use  in  a  hospital  environment  with  an  HBV  and  HIV  label  claim).    [1,8]    What  is  an  EPA  disinfectant?  The  purpose  of  the  Environmental  Protection  Agency  (EPA)  is  making  sure  that  pesticides  are  safe  and  effective  when  used  as  directed.  Antimicrobial  pesticides  are  substances  or  mixtures  of  substances  used  to  destroy  or  suppress  the  growth  of  harmful  microorganisms  (including  bacteria,  viruses,  or  fungi)  on  inanimate   objects   and   surfaces.     Every   pesticide   (including   disinfectants   and   sanitizers)   sold   in   the  United  States  must  be  registered  with  the  Environmental  Protection  Agency  (EPA).  The  EPA  registration  number  can  be  found  on  the  label.  It  is  a  violation  of  Federal  Law  to  use  an  EPA  registered  product  in  a  manner  inconsistent  with  its  printed  directions.  Off  label  use  can  render  a  product  inert  or  ineffective,  or  pose  personal  or  environmental  risks.    Note:  product  labels  are  continually  updated  as  new  research  is  done  and  should  be  read  prior  to  use.    [16]          

Overview   of   Chemical   Agents   Used   for   Hard,   Non-­‐porous   Surface  Disinfection  There  are  several  different  types  of  antimicrobial  agents  that  can  be  used  to  achieve  hard  non-­‐porous  surface   disinfection.     The   chemical   agents   can   affect  microorganisms   through   different  mechanisms,  such  as  disruption  of   the  bacterial   cell  wall   and  outer  membranes.  Other  chemical  agents   function  as  chelators  which  prevent  the  organism  from  replicating.    Selection   of   surface   disinfectant   chemicals   is   a   complex   subject   as   one  must   take   into   consideration  where   the   product   will   be   used,   what   organisms   are   being   targeted   (e.g.   Staph   aureus   versus  Mycobacterium  species),  the  desired  contact  time  (e.g.  1  minute  versus  5  minutes),  what  surfaces  the  product  will  be  used  on  (materials  compatibility)  and  target  temperature  range  for  use.      It  is  important  to  note  that  surface  disinfectants  are  approved  for  use  on  hard,  non-­‐porous  surfaces.    Surfaces  such  as  upholstery  are  not   included   in   this  definition,  but  dental  workers  generally  use  disinfectants  on  chairs  and  other  materials  that  may,  over  time,  be  damaged  by  the  chemical  contact  and  possibly  build-­‐up.  All   surface   disinfectants   indicate   a   contact   temperature   and   time   on   the   product   label.   These  parameters   are   essential   to   abide   by   in   order   to   achieve   proper   disinfection   of   a   hard   non-­‐porous  surface.   For   surface   disinfectants   (spray   solutions   or   wipes)   the   maximum   allowable   time   is   10  minutes  as  established  by  the  EPA.  In  many  instances,  a  surface  will  not  remain  wet  for  a  period  of  10  minutes  due  to  other  environmental  conditions  such  as  ambient  temperature,  humidity,  or  air   flow.  Additionally,   the   practicality   and   ability   to   leave   a   surface  wet   for   10  minutes   is   challenging   if   not  impossible  in  a  busy  clinical  environment,  especially  if  the  disinfectant  contains  a  high  percentage  of  

Page 10: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

alcohol,  which  evaporates  quickly.    As  a  consequence,  users  of  surface  disinfectants  seek  out  products  with  shorter  contact  times  for  disinfection.      The   ideal  surface  disinfectant  would  be  broad  spectrum,   fast  acting,  active   in   the  presence  of  organic  matter  (effective  in  a  “one-­‐step”  protocol),  non-­‐toxic,  non-­‐allergenic,  non-­‐damaging  to  surfaces  such  as  metal,   cloth,   rubber   or   plastics,   leave   no   residual   effect   on   treated   surfaces,   be   easy   to   use   and  economic.      Unfortunately,  there  is  no  ideal  surface  disinfectant.    Each  product  has  some  limitations,  but  if  users  know  the  active  ingredients  and  features  of  their  product  they  can  maximize  the  features  that  are  important  for  their  use  and  setting.    Table 2: Key active ingredients of chemical disinfectants

Chemistry  Category   Example(s)   Activity  Phenols   Phenol  

 Product  Examples:  Birex,  ProSpray  

Phenols  also  have  antifungal  and  antiviral  properties:  historically  used  for  antiseptic,  disinfectant,  or  preservative  properties.    

Excellent  cleaning  capabilities  –  may  require  rinsing.      Typically  10  minute  TB  Kill  

Surface-­‐active  agents  (surfactants)  

Quaternary  Ammonium  Compounds  

 Product  Example:  Sani-­‐Cloth®  HB  

Quaternary  ammonium  compounds  are  widely  used  as  disinfectants.  Membrane  active  agents:  inactivate  energy-­‐

producing  enzymes,  denature  essential  cell  proteins,  and  disrupt  cell  membranes.  Simple  quaternary  ammoniums  are  considered  

low  level  disinfectants    

Alcohols   ethyl  alcohol,  isopropyl  alcohol,  n-­‐

propanol    

Product  Example:  Rubbing  Alcohol  

 

Alcohols  exhibit  rapid  broad-­‐spectrum  antimicrobial  activity  against  vegetative  bacteria  (including  Mycobacterium),  viruses,  and  fungi  but  are  not  sporicidal.    Alcohols  demonstrate  poor  cleaning  capabilities  for  organic  contaminants.    Variable  TB  kill  times:  1  –  10  minutes.  Pure  alcohols  are  not  approved  for  

environmental  surface  disinfection.    Alcohols  are  added  to  other  compounds.  

Surface-­‐active  agents  (surfactants)  &  

Alcohols  

Quaternary  Ammonium  -­‐  alcohol  

compounds    

Product  Examples:  CaviWipes  /  CaviCide,  SaniCloth  Plus,  PDCare  

Wipes  

Quaternary  ammonium-­‐alcohol  compounds  are  synergistic  broad  spectrum  disinfectants.    Quaternary  ammoniums  provide  

excellent  cleaning  capabilities,  denature  essential  cell  proteins,  and  disrupt  cell  membranes.    Alcohols  rapidly  enter  and  destroy  pathogens.    %  of  alcohol  impacts  TB  kill  times.    Lower  alcohol  (water-­‐based)  formulations  usually  demonstrate  superior  cleaning  capabilities.  Variable  (1-­‐10  minute)  TB  kill  times.  

Halogen-­‐Releasing  Agents  

Bleach  sodium  hypochlorite  Chlorine  dioxide  

 Product  Example:  

Bleach  

Chlorine-­‐  and  iodine-­‐based  compounds  are  the  most  significant  antimicrobial  halogens  used  in  the  clinical  environment  and  have  

been  traditionally  used  for  both  antiseptic  and  disinfectant  purposes.  Halogen-­‐releasing  agents  possess  bactericidal  and  

virucidal  activities  and  at  higher  concentrations  can  be  Sporicidal.      

Oxidizers   Hydrogen  Peroxide    

Hydrogen  peroxide  works  by  producing  destructive  hydroxyl  free  radicals  &  can  attack  vital  microorganism  cell  components.  

Page 11: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Product  Examples:  Optim  33  

Hydrogen  peroxide  is  active  against  a  wide  range  of  microorganisms,  including  bacteria,  yeasts,  fungi,  viruses,  and  

spores.    5  minute  TB  kill  time.   Many  workers  are  confused  about  the  disinfectant  products  they  use.    It  is  important  to  understand  the  limitations  of  a  product,  such  as  which  surfaces   it   is  compatible  with,  toxicity  on  skin,  use-­‐life,  contact  time,   and   compatibility  with  other   chemicals  or  materials.    Manufacturers   sometimes   issue  confusing  messages,  and  workers  may  confuse  traditional  home  use  of  similar  janitorial  products  with  professional  disinfection   protocol.     For   example,   a   popular   domestic   aerosol   disinfectant   is   often   used   as   both   a  surface  disinfectant  and  an  air   freshener  or  air  “disinfectant”.     In  dental  settings  workers  may  rely  on  this   product   for   asepsis   without   understanding   the   limitations   of   a   10   minute   contact   time   for   TB  efficacy,  poor  cleaning  capabilities  due  to  high  alcohol  content,  and  the  lack  of  scientific  evidence  that  the   product   is   effective   in   reducing   airborne   pathogens  when   sprayed   in   the   air.     Additionally,   some  dental  workers  purchase  domestic  cleaning  or  disinfection  products  that  are  not  EPA  or  FDA  cleared  for  use  in  medical  settings.    This  practice  reduces  reliability  of  successful  infection  control.          Some   opinion   leaders   have   indicated   that   adequate   surface   disinfection   can   be   achieved   from   one  application,   allowing   the   surface   to   dry  within   one  minute.   However,   not   all   products   are  made   the  same,  and  thus,  this  theory  does  not  apply  to  all  disinfectants.  Eliminating  the  cleaning  step  and  allowing  only   one  minute   contact   time   can   be   a   deviation   from   the   product   label   and   can   introduce   a   risk   of  inadequate  disinfection  unless  the  surface  is  truly  clean  and  the  product  has  an  approved  1-­‐minute  TB  kill  time.  [1,7]     Table 3

Five  Concepts  to  Consider  When  Choosing  a  Surface  Disinfectant  

 1.  Time:  How  quickly  does  it  kill  TB?  Does  the  contact  time  match  the  amount  of  time  available  between  patients?  2.  Scope  and  Testing:    What  are  the  scope  and  efficacy  claims?  ·∙       Bactericidal  ·∙       Fungicidal  ·∙       Virucidal  ·∙       Tuberculocidal  Is  the  product  EPA  registered?  3.  Clean  and  Disinfect:  Does  the  product  have  good/excellent  cleaning  capabilities?    (product  will  both  clean  and  disinfect)        If    not:    is  there  a  compatible  pre-­‐cleaner?  4.  Shelf  Life  and  Ease  of  Handling:  Does  this  product  have  a  limited  use-­‐life  and  require  frequent  replacement?  How  is  the  product  disposed  once  it  is  expired?  

Page 12: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Is  this  product  premixed  or  does  it  require  mixing  and  dispensing?  Is  the  product  irritating,  toxic,  or  strongly  scented?  Does  the  product  require  specific  ventilation?  Is  it  compatible  with  the  surface  it  will  be  used  on?  5.  Cost:    How  much  does  it  cost  per  patient  to  utilize  this  product,  considering  time,  product  cost  and  supplemental  products  such  as  paper  towels?  Ref:  [1,7]      Efficacy  and  Practical  considerations  of  Quaternary  Ammonium-­‐  Alcohol  Products  Quaternary  Ammonium  compounds  (Quats)  with  moderate  to  high-­‐levels  of  alcohol  are  frequently  used  disinfectants   in   dentistry.     Quaternary   ammonium   compounds   are   cationic   detergents   that   kill  pathogens  by  inactivating  energy-­‐producing  enzymes,  denaturing  essential  cell  proteins,  and  disrupting  cell   membranes,   thus   changing   the   cells   permeability   resulting   in   a   loss   of   essential   cytoplasmic  constituents   such   as   potassium.   [16,17]  Quats   are   highly   effective   against   gram-­‐positive   bacteria   and  less   active  against   gram-­‐negative  bacteria.    When  mixed  with   alcohol,   the   synergistic   affect   results   in  accelerated   and   more   effective   disinfection.     The   combination   of   quaternary   ammonium-­‐   alcohol   is  lethal  to  even  some  of  the  most  resistant  organisms,  including  Mycobacterium  tuberculosis.    The  percentage  of  quaternary  ammonium  and  alcohol  may  vary  by  manufacturer,  and  the  percentage  is  specified  in  parts  per  million  (ppm)  and  listed  in  the  product’s  MSDS.  Because  alcohol  has  rapid  action  against   microorganisms,   the   higher   percentage   of   alcohol   in   the   chemical   formulation   generally  contributes   to   the   faster  kill   times.   [18]     For  example,  a  55%   isopropyl  alcohol    and  0.5%    quaternary  ammonium   chloride   formulation   is   fungicidal,   bactericidal,   virucidal,   and   tuberculocidal,   killing   26  microorganisms  in  two  minutes  or  less.    Conversely,  some  quaternary  ammonium-­‐alcohols  with  higher  alcohol  concentration  (above  55%)  list  a  10  minute  TB  kill  time.        

Cleaning  Evaluation  -­‐  A  Comparative  Overview  of  Surface  Disinfectant  Products  In   order   to   disinfect   a   surface,   the   cleaning   solution   must   be   in   contact   with   the   surface   without  interferences   from  soils.  The  soils  encountered   in  dental  and  medical  applications,   such  as  blood  and  mucus,   tend   to   have   high   concentrations   of   proteins   and   fats   which   can   interfere   with   the   surface  disinfectant  liquids  by  preventing  contact  with  the  surfaces  which  require  disinfection.  The  disinfecting  liquid   may   be   blocked   by   the   soil   from   wetting   the   surface,   protecting   the   microorganisms   from  inactivation,  and  the  soil  itself  may  harbor  pathogens.    Pre-­‐saturated   wipes   are   a   popular   alternative   to   spray   liquids   because   they   are   a   superior   way   of  decreasing  microbial  bioburden  on  surfaces  when  used  properly,  and  reduce  aerosolization  of  chemicals  and  excess  pooling  of  liquids  [20]    Introduction  to  Surface  Disinfection  Ready-­‐to-­‐Use  Solution  Evaluation  The   primary   task   of   surface   disinfectants   is   to   disinfect   hard,   non-­‐porous   surfaces.     A   well   designed  surface   disinfectant   product   should   solubilize   (clean)   the   soil   prior   to   wiping,   and   not   promote   soil  

Page 13: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

binding   to   the   surface.   The   capacity   of   the   disinfectant   to   solubilize   the   soil   can   be   measured  quantitatively   using  %  weight   of   the   soil   removed   after   immersion   of   pre-­‐soiled   test   coupons   (1”x2”  stainless  steel  strips)  into  the  solution.        

Clinical  Evaluation  of  Cleaning  Capability  of  a  New  Product  In   response   to   the  expressed  need   for   a   reliable  disinfectant  with   the  combined  qualities  of   rapid  TB  effectiveness,  and  excellent  cleaning  ability,  recent  studies  and  product  reformulation  of  CaviCide  and  CaviWipes   were   completed.   The   active   ingredients   in   CaviCide   and   CaviWipes   are   quaternary  ammonium  and   low   levels  of  alcohol.    CaviCide1  and  CaviWipes1  have  slightly  higher  alcohol   content  and  a  1  minute  TB  contact  time.    Products  with  a  moderate  to  high  alcohol  content  have  previously  been  shown  to  demonstrate  poor  cleaning  capabilities  compared  to  low  alcohol  disinfectants  due  to  alcohol’s  tendency   to   precipitate   proteins   on   surfaces.[19]     CaviCide1   and   CaviWipes1   were   evaluated   for  cleaning  effectiveness.    CaviCide   is   an   example   of   a   surface   disinfectant   with   a   well-­‐established   history   in   medical   settings  against  significant  pathogens.      This  product  has  been  updated  and  re-­‐tested  against  an  expanded  list  of  pathogens,  making  it  more  reliable  in  both  medical  and  dental  settings.    The  new  CaviCide1  product  is  active  against  clinically  significant  pathogens  with  only  a  1  minute  exposure  (TB  kill)  time.          CaviCide1/CaviWipes1  are  EPA  approved  intermediate-­‐level  disinfectants.    Since  CaviCide1/CaviWipes1  have   indications   for  disinfection  of  non-­‐critical  medical  devices,   they  are  also  regulated  by  the  United  States  Food  and  Drug  Administration   (US  FDA)  as  medical  devices.  CaviCide1/  CaviWIpes1  can  also  be  used  to  clean  semi-­‐critical  or  critical  medical  devices  (followed  by  appropriate  high-­‐level  disinfection  or  sterilization).        Methods  Used  A  comparative  cleaning  evaluation  was  conducted  using  Metrex’s  CaviCide1  and  CaviCide  versus  a  high  alcohol  (63.25%)  competitive  spray  surface  disinfectant  product.  In  this  trial,  a  blood-­‐based  fatty  soil  was  affixed  to  stainless  steel  test  coupons,  allowed  to  dry  and  weighed.  Next,  these  coupons  were  subjected  to   a   standardized   soil   removal   protocol   and   then   were   weighed   again   at   the   conclusion   of   the   trial  (Figure  2).    

Figure 2: Images of the Quantitative Cleaning Test: Fatty Blood Soil  

   

Page 14: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Discussion  of  Fatty  Blood  Soil  Test  Results   CaviCide1  demonstrated  slightly  better  performance  than  tap  water  with  respect  to  removal  of  

fatty   blood   soil   from   the   test   coupons.   CaviCide1  was   formulated   to   proactively   remove   (not  bind)  fat  and  proteins  from  hard,  non-­‐porous  surfaces.  

The  high  alcohol  product  (63.25%  isopropyl  alcohol)  appeared  to  bind  soil  to  the  coupon.    It  has  been  previously  reported  that  high  alcohol  concentrations  bind  proteins  to  surfaces.[19]      

   Surface  Disinfection  Wipes  Cleaning  Evaluation  Products  were  tested  with  repeatable  very  consistent  side-­‐by-­‐side,  or  “paired  mechanical  system,  which  used   a   compressed   air   linear   actuator   cylinder   mounted   perpendicularly   to   the   sleds,   removed   the  human  variability  in  the  testing.      Methods  Used  A  comparative  cleaning  evaluation  was  conducted  using  Metrex’s  CaviWipes1  and  CaviWipes  versus  four  competitive  brands  of  surface  disinfectant  wipes.  Side-­‐by-­‐side  comparative  trials  (using  CaviWipes  as  the  reference)  were  conducted  using  weighted  test  “sleds”  to  control  variables  such  as  pressure,  texture  and  wipe  area  on  glazed  tiles  (Figure  3).  These  tiles  were  coated  with  pre-­‐dosed  amounts  of  clotting  whole  blood.  Two  sleds  were  pushed  in  parallel  across  the  soiled  tile  surface  using  a  pneumatic  linear  actuator  cylinder  to  remove  the  human  variability  from  the  process.      

         

Figure 3: Surface Disinfection Wipes Evaluation Test Platform  

                   

Sled  pads  (10  cm  x  17  cm)  shown  inverted  with  towelette  in  place  and  a  hand   for  scale.

10  cmTowelette  

clamped  betweenweighted  platen  and  pad,  then  

WEIGHTS

Pusher  arm  transits sleds  simultaneously   at  the  same  speed  for  matched  comparisons.

16  in.  x  16  in.  tile

  Sled  construction:  each  towelette  contacts  the  tile  with  identical  surface  area  with  matching  force  from  the  weights  transmitted  through  a  metal  plate  and  a  flexible  elastomer  pad  which  presses  it  onto  the  tile  surface.  Sleds  are  not  attached  to  each  other  or  the  pusher  arm.  

Page 15: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Discussion  of  Wipes  and  Solution  Cleaning  Test  Results    CaviWipes1  was  judged  to  offer  superior  cleaning  performance  in  this  evaluation  over  those  of  both  the  high  alcohol  wipe  products  and  the  intermediate  level  alcohol  wipe  products  tested  (Figure  4).    

When  higher  alcohol  (>50%)  surface  disinfectant  products  come  into  contact  with  blood  soil,  they  do  not  remove  the  blood  soil  from  the  test  surfaces.  These  observations  suggest  that  this  binding  may  occur  across  a  variety  of  materials,  even  when  manufactured  with  smooth  surfaces,  consistent  with  previously  published  literature.  

CaviWipes1  consistently  cleaned  and  removed  the  clotting  blood  soil  in  each  experiment  and  demonstrated  equivalent  cleaning  performance  to  both:  (a)  the  reference  product,  CaviWipes,  and  (b)  the  hydrogen  peroxide  wipes  product  tested.    

Figure 4: Results of Paired Surface Disinfection Wipe Cleaning Evaluation

Page 16: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Conclusion  of  CaviCide  /  CaviWipes1  studies:  CaviCide1  and  CaviWipes1  have  solved  some  of  the  most  important  clinical  challenges.    The  products  are  effective  cleaners  in  the  presence  of  organic  matter  such  as  blood  and  sputum.    These  products  may  be  used  for  cleaning  as  well  as  disinfection  without  the  need  to  select  a  separate  pre-­‐cleaning  product.    The  contact   time   for   disinfection   is   1   minute,   which  matches   the   clinical   needs   of   dental   workers.     The  demonstration   test   indicates   that   on   essentially   clean   surfaces   that   are   not   contaminated  with   gross  debris  or  materials,  CaviCide1  and  CaviWipes1  can  be  expected  to  achieve  reliable  disinfection   in  one  step.    However,  following  recommended  best  practices,  and  providing  the  highest  margin  of  safety  and  reliability,   CaviCide1   and   CaviWipes1   should   be   used   in   the   recommended   protocol   of   two   steps:  cleaning  step  followed  by  a  disinfecting  step.      

Overview  of  Compatibility  Testing      CaviCide1  solution  was  tested  and  found  to  be  compatible  with  the  materials  shown  below.  Materials  were   exposed   to   14   days   (336   hours)   of   continuous   contact   with   CaviCide1   with   no   effect   unless  otherwise  noted.  This  contact   time  equates  to  20,160  applications  of  CaviCide1  based  on  the  product  contact  time.    CaviCide1  and  CaviWipes1  are  classified  as  low  alcohol  (22.5%)  surface  disinfectants  and  offer  materials  compatibility  with  the  following  materials:      

Figure 5: Compatibility Summary of CaviCide1 and CaviWipes1 Notes: 1  -­‐  slight  darkening  when  campared  to  control  2  -­‐  slight  lightening  when  compared  to  control  3  -­‐  areas  of  spotting  observed  4  -­‐    areas  of  discoloration

Acrylic NaugahydePolystyrene Formica (white)

PVC Formica (black)Neoprene1 Brass2

Polypropylene Glass3

High density polyethylene (HDPE) Copper4

Epoxy counter tops Stainless SteelSilicone Stainless Steel

EPO TEK 353 Chrome Plated BrassNaugahyde

CaviCide1 and CaviWipes1 Compatibility

CaviCide1 and CaviWipes1 are compatible with the following materials:

Page 17: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Test Surface

Compatibility Summary

CaviCide CaviCide1

Low pH Peroxide Product Spray

0.65% Bleach Product Spray

Acrylic

Polystyrene

PVC

Neoprene

Kraton G

Silicone

EPO TEK 353

Naugahyde

Formica (white)

Formica (black)

Aluminum

Brass

Carbon Steel

Chrome Plated Brass

Copper

Nickel Plated Brass

Stainless Steel

Glass

             

CaviWipes1  Evaluation  Results  Discussion  Tests  demonstrated  that  the  both  CaviCide1  and  CaviWipes1  clean  efficiently  and  effectively  in  the  presence  of  organic  soil.  This  finding  allows  the  products  to  be  utilized  effectively  as  both  a  cleaner  and  a  quick  acting  disinfectant.  Pre-­‐cleaning  with  a  separate  product  is  not  necessary.    The  one-­‐minute  contact  time  eliminates  the  need  to  spend  time  extra  time  between  patients  waiting  for  the  disinfection  process  to  occur.  These  products  were  found  to  be  compatible  with  most  materials  that  make  up  the  surfaces  that  must  be  disinfected  in  dentistry.            

Page 18: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Frequently  Asked  Questions  About  Disinfectants  

1.      IF  I  do  not  see  contamination  on  a  surface  do  I  have  to  do  2  steps?  Not  all  contamination  is  visible  to  the  naked  eye.  Clinical  contact  surfaces  can  inadvertently  become  contaminated  during  patient  care  and  can  be  a  reservoir  for  microbial  contamination.  It  is  important  to  evaluate  the  exposure  level  of  all  surfaces  and  treat  them  accordingly.  Cleaning  is  a  form  of  decontamination.  Without  cleaning  you  cannot  inactivate  microbes.  The  cleaning  step  removes  salts,  visible  soils  and  organic  matter  that  you  may  or  may  not  see.  The  action  of  scrubbing  with  detergents  and  surfactants  removes  a  large  numbers  of  microbes  on  its  own.  If  you  skip  the  step  of  cleaning  the  disinfection  step  can  be  compromised  because  debris  protects  underlying  microorganisms  from  the  disinfectant  [22].    2.      Can  I  just  use  one  towelette  to  both  clean  and  disinfect?  No.  The  first  step  of  the  process  is  for  cleaning  and  the  next  step  is  for  disinfection.  Each  of  those  steps  must  have  a  fresh  towelette  to  insure  predictable  results  consistent  with  EPA  product  testing.    Testing  has  shown  that  this  is  a  2-­‐step  process  utilizing  one  towelette  for  cleaning,  discarding  that  and  using  one  towelette  for  disinfection.      3.     If  I  wipe  with  the  first  step  and  then  immediately  wipe  again  when  can  I  start  counting  the  1-­‐minute  contact  time?  For  a  single  surface,  calculate  contact  time  starting  with  the  disinfecting  step.  The  area  must  be  cleaned  before  the  disinfection  action  can  start.  If  debris  is  present  and  the  area  has  not  been  cleaned  then  it  may  not  be  able  to  access  the  microbes.    4.     How  long  does  it  have  to  stay  wet  for  the  first  (cleaning)  step?  The  first  step  is  a  cleaning  step  and  does  not  require  the  area  to  be  wet  for  a  specified  period  of  time.  It  was  designed  to  clean  and  remove  the  debris  that  could  be  affecting  impact  of  the  disinfectant.  The  second  step  is  the  step  that  requires  the  area  to  be  wet  for  a  length  of  time.  It  is  important  to  read  the  label  to  understand  what  is  required  of  the  product.      5.     Do  I  need  to  use  the  same  product  to  clean  as  I  use  to  disinfect  a  surface?  Using  separate  cleaning  and  disinfectant  products  is  an  acceptable  practice,  but  some  chemicals  are  incompatible.  Chemical  incompatibility  may  result  in  damage  to  surfaces,  personal  risk.    It  is  important  to  know  the  active  ingredients  of  the  disinfectant  and  select  the  same  or  neutral  chemical  cleaner.    Some  manufacturers,  particularly  manufacturers  of  high  alcohol  products  known  to  be  poor  cleaners,  make  or  recommend  a  separate  cleaning  product.    Contact  the  manufacture  or  use  the  product  listed  on  the  label  that  is  compatible.  To  be  more  efficient  in  your  approach  choose  a  product  that  accomplishes  both  functions,  for  example  CaviCide  /  CaviWipes.    6.     What  personal  protective  equipment  do  I  need  to  wear  to  work  with  surface  disinfectants?  Because  of  the  risk  associated  with  chemical  disinfectants  each  label  should  contain  the  personal  protective  equipment  required  as  well  as  the  allowable  time  of  exposure  (if  applicable).  Patient  exam  gloves  have  not  been  proven  to  protect  against  chemicals  and  punctures.    Chemical  and  puncture  resistant  gloves  should  be  worn.    The  Center  for  Disease  Control  states,  “Ensure  that  workers  wear  appropriate  PPE  to  preclude  exposure  to  infectious  agents  or  chemicals  through  the  respiratory  system,  skin,  or  mucous  membranes  of  the  eyes,  nose,  or  mouth.  Personal  protective  equipment  can  include  gloves,  gowns,  masks,  and  eye  protection.  The  exact  type  of  PPE  depends  on  the  infectious  or  chemical  agent  and  the  anticipated  duration  of  exposure.  The  employer  is  responsible  for  making  such  equipment  and  training  available.”  “Use  appropriate  gloves  (e.g.,  puncture-­‐  and  chemical-­‐resistant  utility  gloves)  

Page 19: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

when  cleaning  instruments  and  performing  housekeeping  tasks  involving  contact  with  blood  or  other  potentially  infectious  materials.”[23]  The  Occupational  Safety  and  Health  Administration’s  stand  on  the  subject  is,  “The  person  handling  the  instruments  through  removal,  cleaning,  packaging  and  sterilization  needs  to  use  heavy-­‐duty  gloves  to  help  prevent  injury  with  sharp  contaminated  instruments.”  Puncture-­‐resistant  utility  gloves  are  designed  to  provide  more  protection  for  hands  during  operatory  cleanup  and  processing  of  instruments  that  the  thin  patient  care  gloves  can  provide  [1].  Many  chemicals  have  adverse  affects  to  human  organs.  Because  there  is  a  risk  of  splash  and  splatter  face  protection  and  a  gown  should  be  worn.  It  is  the  responsibility  of  the  employer  to  establish  a  program  for  monitoring  occupational  exposure  to  regulated  chemicals  (e.g.,  formaldehyde,  EtO)  that  adheres  to  state  and  federal  regulations,  to  provide  personal  protective  equipment  and  to  train  employees  of  the  use  of  the  chemicals  [4].    7.                      Why  can't  I  make  my  own  wipes  by  putting  cotton  2x2's  in  a  container  and  covering  them  with  a  disinfectant  approved  by  the  EPA  for  use  in  a  medical,  dental  or  clinical  environment?    OSAP's  Infection  Control  In  Practice:  Managing  Environmental  Surfaces  manual  states:  In  general,  cotton  fibers  contained  in  gauze  may  shorten  the  effectiveness  of  some  disinfecting  agents  when  stored  in  containers  together.  Germicides,  especially  iodophors  or  chlorines,  may  be  inactivated  or  absorbed  by  the  gauze.  If  you  use  gauze  to  apply  disinfectant  to  surfaces,  saturate  the  gauze  with  the  disinfecting  agent  at  the  time  of  use.    I  then  confirmed  this  by  looking  it  up  in  the  book  "Practical  Infection  Control  in  Dentistry."  It  states  that  disinfectants  should  not  be  stored  in  containers  with  gauze  because  this  may  shorten  the  effective  life  of  the  disinfectant.2  There  is  currently  no  study  that  tells  how  long  one  can  soak  disinfecting  agents  in  cotton  and  render  it  ineffective.  It  is  known  that  the  products  used  in  manufacturing  cotton,  such  as  bleach,  can  inhibit  the  disinfectant.  The  material  used  to  make  disinfectant  wipes  approved  for  use  in  a  dental,  medical  or  clinical  environment  was  developed  specifically  for  those  uses,  and  is  completely  different  than  cotton.    Making  your  own  wipes  is  an  off-­‐label  use,  and  the  manufacturer  is  only  able  to  state  that  it  is  a  disinfectant  approved  for  the  aforementioned  environments  if  you  follow  the  label  use.  Keep  in  mind  as  you  use  a  product  that  you  are  replicating,  how  it  was  used  in  science-­‐based  testing  and  approved  as  a  disinfectant  for  use  in  the  dental,  medical  or  clinical  environment,  those  instructions  are  on  the  label.  The  disinfectant  is  tested  to  be  used  in  these  clinical  environments  under  very  specific  conditions.  You  must  follow  the  directions  to  create  those  conditions.  Off-­‐label  uses  do  not  guarantee  that  a  product  will  be  effective;  in  fact,  it  probably  won't  be.  If  you  are  not  following  the  directions,  you  may  be  putting  people  at  risk.  [4,5]  

 

Conclusion  Disinfection  of  contaminated  environmental  surfaces  and  objects  in  all  healthcare  settings  is  an  ongoing  challenge   and   important   aspect   of   infection   prevention   and   patient   safety.   Environmental   asepsis,  including   the   cleaning  and  disinfection   is   a  vital   component  of   clinical   safety   against   a   growing   list  of  infectious  diseases.  The  risk  of  exposure  to  pathogens,   including  resistant  organisms  such  as  MRSA,   in  dental  settings  is  proven.    Dental  workers  must  understand  and  follow  product  use-­‐directions  to  prevent  clinical  infections.    Optimal  features  of  a  surface  disinfectant  include  rapid  effectiveness  against  TB  along  with  excellent  cleaning  capability  while  not  harming  office  materials.  Two  new  products,  CaviCide1  and  CaviWipes1   have   a   rapid   (1  minute)   TB   contact   time.     They   were   evaluated   for   cleaning   ability   and  

Page 20: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

compatibility   with   environmental   surfaces   and   found   to   demonstrate   excellent   cleaning   ability   and  material  compatibility.      References:      [1]  Centers  for  Disease  Contgrol  and  Prevention.    Guidelines  for  Infection  Control  in  Dental  Health-­‐Care  Settings  –  2003.    MMWR  2003;52(No.RR-­‐17)    [1-­‐A]  CDC  National  Center  for  Emerging  and  Zoonotic  Infectious  Diseases,  Guide  to  Infection  Prevention  in  Outpatient  Settings:  Minimum  Expectations  for  Safe  Care.  (pg.11)    http://www.cdc.gov/HAI/prevent/prevent_pubs.html    [2]  Jasmer  R,  Nahid  P,  Hopewell  P.  Clinical  practice.  Latent  tuberculosis  infection.  N  Engl  J  Med.  347(23):  1860-­‐6    [3]  Forbes  B,  Sahm  D,  Weissfeld  A.  Bailey  and  Scott’s  Diagnostic  Microbiology,  11th  ed.  537-­‐45,  2002  

[4]    U.S.  Dept  of  Labor,  Occupational  Safety  and  Health  Administration  (1992,  rev:  4/3/2006).  29-­‐CFR,  Bloodborne  Pathogens,  1910.1030    [5]    Table  22,  Levels  of  disinfection  by  type  of  microorganism,  CDC  Guidelines  for  Environmental  Infection  Control  in  Health-­‐Care  Facilities,  p.  72.  (2003).    [6]    CDC  Guideline  for  Disinfection  and  Sterilization  in  Healthcare  Facilities,  p.  33  (2008)    [7]    Molinari,  J.  A.,  &  Harte,  J.  A.  (Ed.).  (2010).  Cottone’s  Practical  Infection  Control  in  Dentistry,  (3rd  ed.).  Baltimore,  MD:  Lippincott  Williams  &  Wilkins.      [8]    CDC  Guideline  for  Disinfection  and  Sterilization  in  Healthcare  Facilities,  p.  -­‐-­‐-­‐  (2008)    [9]    Chambers  H.    The  changing  epidemiology  of  Staphylococcus  aureus?  Emerg  Infect  Dis  7(2)  178-­‐82  (2001)    [10]  Parish  T,  Stoker  N.  Mycobacteria:  bugs  and  bugbears  (two  steps  forward  and  one  step  back).  Mol  Biotechnol  13(3):  191-­‐200  (1999)    [11]  Ryan  K,  Ray  C  (Editors)  Sherris  Medical  Microbiology  (4th  ed.).  McGraw  Hill.  ISBN  0838585299    [12]  World  Health  Organization  Fact  Sheet.104.  Tuberculosis.  http://www.who.int/mediacentre/factsheets/fs104/en/      accessed  March,  2012    [13]  Shuttleworth,  A.  The  rising  incidence  of  antibiotic-­‐resistant  ESBL-­‐producing  E.  Coli.  NursingTimes.net.  100  (31)  page  30.  (2004)    [14]  John  T.  Redd,  MD,  MPH  et.al,    J  Infect  Dis.  (2007)  195  (9):  1311-­‐1314.  doi:  10.1086/513435  

Page 21: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

Ref:    norovirus.  (Category  IC)  (Key  Question  3.C.12.e.1)    [15]  CDC  Guideline  for  Disinfection  and  Sterilization  in  Healthcare  Facilities,  p.  31  (2008)    [16]    Rutala  W.  Disinfection,  Sterilization  and  Antisepsis  Principles,  Practices,  Current  Issues  and  New  Research.  APIC  Conference  Proceedings,  2006,  APIC.  Page  13.    [17]  Microbiology:  an  Introduction,  Gerard  J.  Tortura,  Funke,  Berdell  R.,  Christine  L.  Case,  8th  Ed.    [18]    Infection  Control  Today  June  2009:  The  Benefits  of  Alcohol-­‐Quaternary  Ammonium  Germicidal  Wipes,  Jean  Fleming,  RN,  MPM,  CIC.    [19]  Prior,  A.,  et  al.  Alcoholic  fixation  of  blood  to  surgical  instruments-­‐a  possible  factor  in  the  surgical  transmission  of  CJD?  J  Hosp  Infection  58  78-­‐80  (2004)    [20]  www.cardiff.ac.uk,  accessed  12/09/11    [21]  OSAP's  Infection  Control  in  Practice:  Managing  Environmental  Surfaces.  Vol.  3,  No.  3  April  2004.    [22]  Weber  DJ,  Rutala  WA,  Miller  MB,  et  al.  Role  of  hospital  surfaces  in  the  transmission  of  emerging  health  care-­‐associated  pathogens:  Norovirus,  Clostridium  difficileand  Acinetobacterspecies.  Am  J  Infect  Control.  2010;38  (5  Suppl  1):S25-­‐S33.    [23]  Kramer  A,  et.  al.  How  long  do  nosocomial  pathogens  persist  on  inanimate  surfaces?  A  systematic  review.  BMC  Infect  Dis.  2006;6:130.      

Page 22: Current Dental Surface Disinfection Protocols and a Review ... · Current Dental Surface Disinfection Protocols and a Review of the New 1-Minute Surface Disinfectants CaviCide1 ª

                                           Sponsored  by:      

   

           

About  TotalCare  

TotalCare  is  a  division  of  Metrex  Research  LLC.  Our  corporate  headquarters  is  located  in  Orange,  

California,  and  our  state-­‐of-­‐the-­‐art  manufacturing  facility  is  in  Romulus,  Michigan.  At  TotalCare,  we're  all  

about  protecting  people  by  providing  high-­‐quality  infection-­‐prevention  products,  including  a  complete  

line  of  pre-­‐cleaners  and  enzymatic  detergents,  high-­‐level  disinfectants,  surface  disinfectants,  liquid  

medical  waste  disposal  products,  eye  protection  and  hand  hygiene  products.  TotalCare  products  are  

sold  through  leading  dental  and  medical  product  suppliers  around  the  globe.  To  contact  a  TotalCare  

representative,  call  800.841.1428  or  visit  totalcareprotects.com