cushman model ce-3 fm communication monitor manual, 1968

139
.... CUSH MAN MODEL CE-3 FM COMMU ICATIONS ONITOR cu H ELECTRO I C S, INC. manufacturers of electronic instruments 166 San Lazaro Avenue Sunnyvale, Calif. 94086

Upload: bob-laughlin-woccw

Post on 29-Oct-2014

324 views

Category:

Documents


68 download

DESCRIPTION

Cushman Model CE-3 FM Communication Monitor Manual, 1968.

TRANSCRIPT

Page 1: Cushman Model CE-3 FM Communication Monitor Manual, 1968

.... CUSH MAN MODEL CE-3

FM COMMU ICATIONS ONITOR

cu H ELECTRO I C S, INC.

manufacturers of precisi~n electronic instruments

166 San Lazaro Avenue Sunnyvale, Calif. 94086

Page 2: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CUSHMAN MODEL CE-3

FM COMMUNICATIONS MONITOR

CUSHMA. ELECTRO ICS, mc. 166 SAN LAZARO AVE UE, SUNNYVALE, CALIFORNIA

Copyright 1968

Printed in U.S.A.

Page 3: Cushman Model CE-3 FM Communication Monitor Manual, 1968

6-8 6-9 6-10 6-11 6-12 6-13 6-14 6~15

6-16 6-17 -6-18 6~ 19 6-20 6-21 6-22 6-23 6-24 6-25 6-26

Table

1-1

3-1

4-1 4-2 4-3 4-4

5-1 5-2

ILLUSTRATIONS (Continued)

Title

40-MHz, 43-MHz, and 46-MHz Filters (CH-A18) . 6-17 33-MHz and 42-MHz Filters, Audio Amplifier, and Speaker (CH-A16). 6-19 46-50.2 MHz Balanced Mixer (CH-A15) 6-21 46-50.2 MHz Multiplier (CH-A2) 6-23 33-MHz Multiplier (CH-A3) . . . . . 6-25 43-MHz Multiplier (CH-A4) . . . . . 6-27 UHF Matrix (CH-A1) . 6-29 0-4 MHz Mixer and 9.9-MHz Mixer (CH-A8) . 6-31 2nd IF and Discriminator (CH-A20). . . . . 6-33 10-MHz Modulator (CH-A14) . 6-35 Signal Generator Mixer (CH-A7) . 6-37 Power Supply Rectifier and Filter Board (RP-A1) 6-39 Power Supply Regulator (CH-A19) 6-41 Decimal Light Switchboard (CH-A5). 6-43 Front-Panel Wiring (FP) . . . 6-45 Rear-Panel Wiring (RP). . . . 6-47 Functional Block Diagram. . . 6-49 Crystal Oven Assembly (CH-A6) 6-51 Chassis Components . . . . . 5-53

TABLES

Title

Specifications . . . . . . . . 1-1

Operating Controls and Displays 3-3

Synthesizer Frequency Relationships 4-5 Frequencies Involved in LF. Signal Generation. 4-6 -:- N Counting Sequence . . . . . . . . 4-11 Decimal-Light and Unit-Light Switching. 4-27

Power Supply Resistance to Ground. 5-2 Troubleshooting Chart. . . . . . . 5-12

v

Page 4: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 1

GENERAL INFORMATION

1.1 Specifications

This manual covers the operation and maintenance of the Cushman Model CE-3 FM Communications

Monitor. Specifications are given in Table 1-1.

1.2 Function

The Cushman CE-3 FM Communications Monitor is designed to check the frequency and FM deviation of

transmitters operating in the FM communication bands. It can also generate FM and CW signals within those

bands. The output level of the generated signal is adjustable over a calibrated range of 0.1 to 100 microvolts.

This feature is useful in checking the sensitivity of FM communication receivers.

Frequencies in the range of 1 kHz to 40 MHz and beyond can be generated fOT receiver LF. test and other

purposes. With the use of the Cushman Model 308 Decade Frequency Divider plug-in in conjunction with the CE-3

Monitor, frequencies from 0.1 Hz to 4 kHz are available in O.l-Hz increments. Further, starting 'it 4 kHz,

frequency increments of 1 Hz are available up to 40 kHz. From 40 kHz to 400 kHz the increments are in 10-Hz

steps. This allows testing of tone-operated squelch circuits in receivers so equipped.

Table 1-1. Specifications

Frequency Coverage 20 ­ 80 MHz 120 ­ 180 MHz 450 ­ 512 MHz 910 - 1010 MHz (on harmonics)

Accuracy of Frequency Measurements 0.000075% (long-term)

Frequency Meter Resolution 50 Hz'

Sensitivity

With Broadband Mixer Less than 10 mv at all frequencies

With Preselectors Less than 20 /.LV at all frequencies

Input/Output Impedance 50 ohms (nominal)

Accuracy of FM Deviation Measurements **

With Oscilloscope Plug- in ±5%

With Deviation Meter Plug-in ±4%

Signal Generation (20-512 MHz region)

Frequency Accuracy (long-term) 0.000075% at all frequencies

Output Level 0.1 to 100 microvolts within 2 db (into 50-ohm load)

Internal FM I-kHz (normal) modulating frequency. Deviation continuously variable to 25 kHz. Distortion less than 2%.

External Modulating Signal 60 Hz to 20 kHz***

* 20 Hz resolution available on special request.

** Frequency modulation can be monitored on the Model 301 Oscilloscope Plug-in or the Model 302 Deviation Meter Plug-in.

*** For optimum performance and minimum distortion, the product of FM deviation in kHz and the modulation frequency in kHz should not exceed 200.

1-1

Page 5: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 1-1. Specifications (Continued)

LF. and Audio Signal Generation

Frequency Ranges

Frequency Accuracy

Output Level (1 kHz - 4 MHz)

Model 301 Oscilloscope Plug-in

Deviation Measurement Accuracy

External Inputs

External Vertical Sensitivity

External Frequency Response (3 db)

Model 302 Deviation Meter Plug-in

Accuracy of Measurements

Model 303 Broadband Mixer Plug-in

Carrier Frequency Coverage

Sensitivity

Input Impedance

Receiver Bandwidth (3 db)

Broad

Narrow (crystal filter)

RF Preselector Plug-ins

Frequency Coverage

Nominal Input Impedance

Bandwidth (3 db)

Broad

Narrow

Sensitivity: Less than

Model 308 Decade Frequency Divider Plug-in

Dividing Ratios

Input Frequency Range

Input Sensitivity

Input Impedance

Output

Model 309 Remote Meters

Frequency Meter Ranges

Deviation Meter Ranges

Model 310 Frequency Converter Plug-in

Carrier Frequency Coverage

Sensitivity

Input Impedance

Receiver Bandwidth (3 db)

Broad

Narrow

1 kHz - 3.9999 MHz 4 MHz - 39.999 MHz (on harmonics)

0.000075%

Variable from 0 to approximately 1 volt (into 600 ohms).

± 5% full scale in three ranges: ±1.5 kHz, 5.0 kHz, 15.0 kHz

Vertical and Horizontal

300 mv for full scale

30 kHz

± 4% full sca]e in three ranges: 0-2.5, 0-6, 0-25 kHz

20-80 MHz; 120-180 MHz; 450-512 MHz; 910-1010 MHz (using harmonics)

Less than 10 mv below 512 MHz

50 ohms (nominal)

80 kHz

13.5 kHz

Model 304 Model 305 Model 306

25-50 MHz 145-175 MHz 450-512 MHz

50 ohms 50 ohms 50 ohms

80 kHz 80 kHz 80 kHz

20 kHz 20 kHz 20 kHz

20/-Lv 20/-Lv 20/-Lv

10:1, 100:1, and 1000:1

10 Hz to 10 MHz

100 mv

300 ohms (nominal)

10v peak-to-peak square wave into 6000-ohm load. Output level control provided on front panel.

±1.5, 5, and 15 kHz

±2.5, 6, and 25 kHz

20-80 MHz, 120-180 MHz, 400-420 MHz, and 450-512 MHz. Also 910-1010 MHz using harmonics. Less than 10 mv below 512 MHz

50 ohms (nominal)

75 kHz

13.5 kHz

1-2

Page 6: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 1-1. Specifications (Continued)

Power Requirements 117 or 230 vac ± 10%; 50-400 Hz; 75 watts (max)

Dimensions 12-1/4" high x 13" wide x 18" deep

Operating Temperature + 10°F to + 130°F

Oven Warm Up Time Approx. 12-15 minutes

Net Weight

Less Plug-ins 31 lb (approx)

With Plug-ins 38 lb (approx)

1.3 General Description

The CE-3 (Figure 1-1) is basically a highly specialized VHF/UHF superheterodyne receiver. The required

local-oscillator (LO) frequency, derived from a highly stable crystal oscillator, is automatically offset 10 MHz

from the "dialed-in" frequency. When the incoming signal at the dialed-in frequency is of sufficient amplitude,

the squelch circuit activates the frequency error detector and discriminator circuits, and allows the frequency

error meter and the deviation-measuring plug-in (meter or oscilloscope) to operate.

The incoming signal is fed into a broad-band mixer or preselector (depending on choice of plug-ins), from

either the telescoping antenna supplied with the Monitor or from an outdoor antenna, and a 10-M.Hz LF. voltage

is generated. This 10-MHz signal is amplified and mixed with 9.9 MHz to create a second LF. of 100 kHz, which

is further amplified and fed into a special 100-kHz discriminator.

The discriminator output operates the FREQUENCY meter, which indicates any frequency error between the

dialed-in channel and the signal being measured. Simultaneously, a peak-reading circuit drives either the Model

302 FM Deviation Meter or the Model 301 Oscilloscope, whichever is plugged in, to indicate any FM deviation

of the incoming signal. When the Model 302 is being used, the DEVIATION PEAKS lamp on its front panel flashes

instantaneously when the absolute peak excursions of modulation exceed a preset amount. A scope jack on the

Model 302 plug-in provides for visual observation of the incoming modulati.on waveform, and a receptacle on the

back of the CE-3 makes it possible to connect Model 309 Remote Meters so that frequency error and FM devi­

ation can be read at a distance of up to several hundred feet from the Monitor.

Signal generation of the dialed-in frequency is accomplished by mixing the LO signal with a 10-MHz signal,

which may be either CW or FM. The amplitude of the generated signal is controlled by the SIGNAL GEN. ATTEN.

to provide a directly calibrated output of 0.1 to 100 microvolts through a fixed 20-db pad furnished with the

instrument. The output level will be nominally 10 times greater if the pad is not used. It is emphasized, how­

ever, that the pad should be used at all times. A 1/32-ampere fuse in the 20-db pad protects the pad and the in­

put circuit of the CE-3 against accidental keying of a transmitter.

When the 10-MHz signal used to generate the dialed-in frequency is frequency-modulated, with either the

I-kHz internal oscillator or external tones, the SIG. GEN. output is frequency-modulated by the same amount.

The amount of modulation is indicated directly on the FM deviation meter or oscilloscope.

LF. and audio frequencies in two ranges (1 kHz to 4 MHz and 4 to 40 MHz) are generated by the Frequency

Synthesizer and are selected by a range switch and the same frequency control knobs that are used to dial in a

transmitter frequency.

The numbers indicating the dialed-in frequency are lighted for easy reading. If a frequency not covered by

the CE-3 is accidentally dialed in, the lighted numbers flash on and off to indicate that the selected channel can­

not be monitored or generated by the CE-3.

1-3

Page 7: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Figure 1-1. Cushman CE-3 FM Communications Monitor

1-4

Page 8: Cushman Model CE-3 FM Communication Monitor Manual, 1968

All dc voltages are regulated and negative feedback is used in circuitry where stability is essential. The

crystal oscillator accuracy may be checked against WWV at any time and is easily reset if it should be neces­

sary. See Section 5 for specific information.

A detailed circuit description is given in Section 4.

1.4 Accessories

Three types of accessories are available for use with the CE-3: units which plug into the Monitor's front

panel, instruments external to the Monitor itself, and items furnished with the Monitor but not integral parts

of it.

1.4.1 Plug-In Units. A receptacle on the left side of the Monitor front panel accepts either the Model 301

Oscilloscope or the Model 302 FM Deviation Meter. One or the othei' of these must be used to provide FM

deviation measurements. The right-hand front-panel receptacle accepts the Model 303 Broadband Mixer, one

of three RF Preselectors (Models 304, 305, and 306), the Model 308 Decade Frequency Divider, or the Model

310 Frequency Converter. The Broadband Mixer and Frequency Converter are used for measuring frequency

and FM deviation of local transmitters; the preselectors are used to monitor transmitters up to 50 miles distant;

and the Model 308 Decade Frequency Divider provides submultiples of the LF. FREQUENCIES output of the CE-3

for testing tone-operated squelch circuits. Each of these plug-in units is described below.

Model 301 Oscilloscope. This plug-in scope allows a visual examination of the exact modulation delivered

by the transmitter. Unbalanced modulation, pulses from the power supply, unusual clipping, and other problems

are instantaneously detected so that appropriate repairs can be made. The Model 301 has an automatic sync

circuit, similar to that found in the most advanced laboratory instruments, to lock on and precisely display wave­

Iorms. Vertical display is directly calibrated to show deviation on anyone of three ranges: ±1.5, ±5, and ±15 kHz.

Switches on the front of the scope panel allow connection of external signals to the vertical input while using the

internal sweep. External signals may also be connected to the horizontal input. This allows use of the scope

independently of the monitoring function for routine testing, troubleshooting', displaying Lissajous patterns, etc.

The Oscilloscope can also be used for receiver LF. bandwidth and discriminator alignment, as described in the

Model 301 manual.

Model 302 FM Deviation Meter. The Deviation Meter prOVides three directly calibrated ranges: 0-2.5, 0-6,

and 0-25 kHz. An instantaneous peak indicator light flashes when the absolute peak deviation of the incoming

carrier exceeds a preset amount determined by the operator. Operation and accuracy of the flasher are not

affected by modulation frequency, repetition rate, or waveform. The deviation level at which the peak indicator

flashes is adjustable by the front-panel SET control. A switch allows selection and measurement of either + or

- deviation peaks. There is also a scope jack on the meter plug-in for simultaneous meter and scope observa­

tions of deviation.

Model 303 Broad-Band Mixer. The Broad-Band Mixer operates over all three bands covered by the CE-3.

Sensitivity is less than 10 millivolts, for close-in monitoring and in-shop measurements. A crystal filter in the

Braod-Band Mixer provides sharp selectivity in areas where many strong RF signals are present. This filter

is actuated by a front-panel toggle switch.

RF Preselectors. Three different plug-in RF preselectors are available for use in the CE-3, one for each

of the commonly used bands. Model 304 covers the range from 25 to 50 MHz, Model 305 covers 145 to 175 MHz,

and Model 306 covers 450 to 512 MHz. The sensitivity of these preselectors - on the order of 20 microvolts ­

makes it possible to monitor base stations up to 50 miles away or to accurately identify the exact source of any

interference encountered. The preselectors also have the same crystal filter feature as the Broad-Band Mixer,

for sharp selectivity.

1-5

Page 9: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Model 308 Decade Frequency Divider. The Decade Frequency Divider plug-in divides the frequency of the

1. F. signal generated by the CE-3 so that the signal can be used to test tone selective circuits and similar

devices used in receivers. Frequency division ratios of 10, 100, and 1000 can be selected by a switch on the

front panel of the plug-in unit. The input signal for the 308 is normally obtained from the CE-3 through a mating

plug on the back of the Divider plug-in; in addition, frequencies up to 10 MHz from other sources can be divided

by applying them through a BNC COlU1ector on the front panel of the Model 308.

Model 310 Frequency Converter. The Model 310 Frequency Converter provides coverage of an additional

band - 400 to 420 MHz. The complete frequency coverage when using a Model 310 with the CE-3 is:

20 - 80 MHz

120 - 180 MHz

400 - 420 MHz

450 - 512 MHz

910 - 1010 MHz (using harmonics).

The Model 310 converts frequencies in the 400-420 MHz band to the 40-60 MHz portion of the 20-80 MHz

band.

1.4.2 Externa~ Instruments. Two accessory instruments - the Model 107 Deviation Calibrator and the Model

309 Remote Meters - can be connected to the CE -3 by cables.

Model 107 FM Deviation Calibrator. The Model 107 provides a means of checking the deviation calibration

of the Model 301 Oscilloscope and the Model 302 FM Deviation Meter on each of their FM deviation ranges. The

calibrator connects to the CE -3 by means of a cable which plugs into a receptacle on the side of the Monitor.

Model 309 Remote Meters. The Model 309 consists of an FM DEVIATION meter and a FREQUENCY meter

mounted in a box which can be located at a distance of up to several hundred feet from the C E-3. The cable

from the Remote Meters plugs into the accessory receptacle on the back of the CE-3. A switch near the

receptacle selects either internal or remote meters.

1.4.3 Other Accessory Items. Two accessory items are supplied with the instrument - a telescoping antenna

for picking up transmitter signals and a 20-db pad with cable for use with the CE-3 when a generated signal is

being fed into a receiver. Both the pad and cable are stored inside the front cover of the instrument. Installation

of the antenna is covered in Section 3.3, and use of the 20-db pad is described in Section 5.2.5.

1-6

Page 10: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 2

INSTALLATION

2.1 Unpacking and Inspection

No special instructions are required for unpacking the Model CE -3 FM Communications Monitor other than

to inspect the packing box and the instrument for signs of possible shipping damage. Check performance as

outlined in the Operating Instructions (Section 3). If the instrument is damaged or fails to operate properly,

file a claim with the transportation agency or, if insured separately, with the insurance company. It is recom­

mended that the.-shipping box and foam packaging be kept for possible use at a later date.

2.2 Environmental Requirements

2.2.1 Temperature. The CE -3 is designed to operate at ambient temperatures between + 100 F and + 1300 F.

Care must be used to avoid exceeding these temperatures in the field. For instance, the internal temperature

of a closed automobile trunk may exceed 1500 F during summer daylight hours. Also, leaving an instrument

outside in bright sunlight on a hot day may raisl? the internal temperature beyond its ratings. Avoid blocking

the cabinet ventilating louvers. These louvers are provided to prevent excessive internal temperature rise.

Exceeding the upper or lower temperature limits (within reason) should not result in damage to the instrument.

However, it may cause poor performance or actual malfunctioning.

2.2.2 RF Fields. In locations where extremely high radiation fields exist (such as when an antenna is connected

directly to a transmitter which is physically near the CE-3), it is recommended that the telescoping antenna be

pushed down to reduce the pickup. In locations where many high-power transmitters are in use, interference may

be experienced if the transmitters are operating within 90 kHz of each other. In such cases, the SELECTIVITY

switch on the Model 303 Broadband Mixer should be placed in the SHARP position. If the interference still pre­

vents satisfactory measurements, it may be advisable to use an RF attenuator aud cable for direct connection

between the transmitter to be monitored and the CE-3. Contact Cushman Electronics for further information.

2.3 Power Requirements

The CE-3 operates from a 117-volt or 230-volt (± 10%) ac source, 50 to 400 Hz. Power consumption is

75 watts.

2.4 Warm-Up Requirements

The frequency accuracy of the CE-3 depends on maintaining the master-oscillator crystal at a constant

temperature. This temperature is held constanl by a thermostatically controlled oven. Therefore, it is

important that the instrument be plugged into its ac source for at least 15 minutes prior to use. * The oven

operation is independent of the settinl' of any panel control. It is recommended that the instrument be installed

in a location where it can be kept plugged into its power source. This keeps the oven at its constant operating

temperature so that the instrument is ready to make precise measurements within seconds after the combination

SPEAKER VOLUME control-on/off switch is rotated to turn the instrument on.

* If the instrument has been stored al a temperature below +32 0 F, additional warm-up time may be required.

2-1

Page 11: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 3

OPERATING INSTRUCTIONS

3.1 General

The Model CE-3 can be operated in any of the fGlllowing modes:

a. Frequency and Deviation Measurement. The incoming signal is applied through the front-panel ANT.

connector, either through a coaxial cable from an outside antenna or from the telescoping antenna which connects

to the ANT. connector. The signal 'frequency is measured by "dialing in" the assigned frequency of the trans­

mitter by means of the six frequency selector switches; any frequency error will be indicated by the FREQUENCY

meter. Deviation will be indicated simultaneously by the FM DEVIATION meter on the Deviation Meter plug-in

or by the Oscilloscope plug~in, whichever is plugged in. An instantaneous peak indicator light on the Deviation

Meter plug-in flashes when the absolute peak deviation of the incoming carrier exceeds a preset amount.

Operation and accuracy of the flasher are not affected by modulating frequency, repetition rate, or waveform.

A built-in speaker provides continous aural monitoring of modulation on the incoming carrier.

b. RF Signal Generation. A desired channel is generated by dialing in that frequency by means of the six

frequency selector knobs. The generated signal (CW or FM) is available at the SIGNAL GEN. OUT connector.

A precision attenuator provides directly calibrated outputs of 0-1, 1-10, and 10-100 microvolts. The output can

be frequency-modulated with continuously variable deviation from zero to 25 kHz. The amount of deviation is

read directly on the FM DEVIATION meter or on the Oscilloscope. A I-kHz internal modulating frequency is

provided; external modulation can also be used.

c. I.F. and Audio Signal Generation. When the I.F. FREQUENCIES selector switch is in the 0-4 MHz

position, output frequencies from 1 kHz to 3.9999 MHz can be generated in 100-Hz increments. In the 4-40 MHz

position of the switch, frequencies will be generated on a harmonic basis in I-kHz increments. The generated

signal is available at the I.F. FREQUENCIES OUTPUT connector, and the level is continuously adjustable by

means of the adjacent I.F. LEVE L control.

3.2 Front-Panel Controls

The front-panel controls, displays, and connectors are listed in Table 3-1 in a top-to-bottom order, and

are illustrated in Figure 3-1. The black control knob below the FREQUENCY meter, which is used to switch

from the signal-measurement function to the signal-generation function, is called the "function switch" in the

table and throughout the text. The six knobs in a row just below the frequency display window are used to

"dial-in" a frequency; they are referred to as the "frequency selector switches." Table 3-1 also describes the

connectors for auxiliary equipment, located on the side and back panels. Operating controls for the plug-in

units are described in the instruction books for those units.

3.3 Turn-On and Warm-Up

a. Plug the power cord into. an ac power outlet (115 volts, 50 to 400 HZ) and turn on the power by means of

the on/off switch on the SPEAKER VOLUME control.

b. Allow the CE-3 to warm up for approximately 15 minutes.*

* If the instrument has been stored at a temperature below +32 0 F, additional warm-up time may be required.

3-1

Page 12: Cushman Model CE-3 FM Communication Monitor Manual, 1968

AI-MI

SW7

SW8

OSI

RI

JI SWI R2 SW2 SW3 R3 SW3 SWII J2 SW4 R4 R5 SWI2 SW5 R6 SW6 J3 SWIO

Figure 3-1. Front Panel, Front View (FP)

3-2

Page 13: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 3-1. Operating Controls and Displays

Control or Display

FREQUENCY meter and switch

SlGNAL LEVEL light

Fundion switch:

CAL. position

FREQ.-DEV. MEASURE position

CW position

FM position

OVEN O. lig'ht

UNLOCKED light

Frequency selector switches

Function

Indicates received signal frequency error. The amount of frequency error, and whether it is high or low with respect to the frequency set up on the digital indicator display, is directly indicated in kHz. The lever switch below the meter selects the full-scale FREQUENCY meter range.

The meter is also used to monitor the center frequency of the signal generator output when the internal FM modulator is being used. The meter is automatically switched to the ± 5-kHz rang'e when the function switch is in the FM position.

Turns on when a received signal is strong enough for reliable measurements. The light will always be on when the function switch is in the CAL, CW, OR FM position. It will turn on in the FREQ.-DEV. MEASURE position when the received signal is strong enough to cause fuB I.F. limiting.

This position is used for zeroing the FREQUENCY meter by means of the inner red control knob. When the function switch is in the CAL. position, the FREQUENCY meter range is automatically switched to ± 1.5 kHz regardless of the position of the range switch.

In this position the CE-3 is a receiver-monitor, and will measure both carrier frequency and FM deviation of an incoming signal.

In this position, the CE-3 is a signal generator. The output signal is unmodulated, and directly calibrated in microvolts.

In this position, the CE-3 is an FM signal generator. The output signal is directly calibrated in microvolts. The frequency of the generated signal is monitored by the FREQUENCY meter, and the FM deviation is monitored by the Oscilloscope or Deviation Meter plug-in.

Indicates cycling of the crystal oven. The oven will normally cycle on for approximately 5 seconds and off for approximately 30 seconds after it has reached its operating temperature.

When on, this Ught indicates an unlocked condition in the Frequency Synthesizer of the CE-3.

The control knobs directly below the frequency display window are for dialing-in the desired frequency. The frequency display is wired so that the window lights will flash on and off if a frequency not covered by the CE-3 is accidentally dialed in. When this happens, the UNLOCKED light will normally come on. By watching the flashing display, the digit which has been incorrect­ly dialed-in can be determined.

3-3

Page 14: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 3-1. Operating Controls and Displays (Continued)

Control or Display

MHz/kHz/Hz lights

I.F. FREQUENCIES controls and connector

SPEAKER VOLUME control

FM MOD. switch and connector

DEV. ADJ./FM CAL. controls

SIGNAL GEN. ATTEN. controls and connector

Function

These lights indicate the units in which the frequency is being displayed. For all operations described in this book, only the MHz light will be on. However, when a Model 308 Decade Frequency Divider is used with the CE-3 to divide the audio output frequencies from the I.F. generator, the decimal point and frequency indicator lights will shift to indicate the actual output from the Decade Frequency Divider.

I.F. signals can be generated by turning the left fre­quency selector switch to its I.F. position. Then, with the I.F. FREQUENCIES range switch set to 0-4 MHz, frequencies between 1 kHz and 4 MHz can be dialed-in on the frequency selector switches. When the I.F. FREQUENCIES range switch is in the 4-40 MHz posi­tion, frequencies between 4 and 40 MHz can be genera­ted on a harmonic basis. For both ranges, the signal appears at the I.F. FREQUENCIES OUTPUT connector, and its level can be adjusted by the I.F. LEVEL control.

In the OFF position, removes ac power from all units of the instrument except the crystal oven. In other positions, supplies ac power to the instrument and provides a means for adjusting the speaker output level.

When the function switch is in the FM position, the FM MOD. switch selects the input to the modulator. In the EXT. position, the switch connects the modulator input to the ENC connector just below the switch to allow use of external tones. in the INT. position, an internal I-kHz oscillator is turned on to frequency-modulate the frequency generator. The same I-kHz signal is available at the ENC connector for use in modulating a transmitter or repeater.

These two controls are used when the function switch is in the FM position.

The DEV. ADJ. control sets the desired amowlt of de­viation of the FM signal generator output. The deviation is monitored on the Deviation Meter or Oscilloscope plug-in. The DEV. ADJ. control also adjusts the level of the internally generated I-kHz signal at the 1 kHz OUT connector.

The FM CAL. control is used to adjust the center fre­quency of the generated FM signal, as indicated on the FREQUENCY meter. The meter range is automatically ± 5 kHz when the function switch is in the FM position.

A vernier control (0.1 to 1.0 microvolt) and a multiplier (Xl, X10, and X100) provide calibrated RF output levelS from 0.1 to 100 microvolts, available at the SIGNAL GEN. OUT connector. The output level is calibrated when using the fixed 20-db pad at the end of the RF cable supplied with the CE-3.

3-4

Page 15: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 3-1. Operating Controls and Displays (Continued)

Control or Display

Remote Meters connector (rear panel)

Auxiliary equipment connector (left side of cabinet)

Function

This connector allows use of the Cushman Model 309 Remote Meters with the CE-3. The slide switch associated with the rear-panel connector must be in the EXT. position for use of the Remote Meters, and in the INT. position for use of the CE -3 front-panel meters.

NOTE

If the CE-3 panel meters do not indicate under normal measuring conditions, the INT .-EXT. meter switch should be checked to make sure it is in the INT. position.

Model 109 Remote Meters supplied with the Model CE-2B can also be used by changing one connector on the interconnecting cable. The external devia­tion meter in both the Model 309 and Model 109 will function only when the Model 302 FM Deviation Meter Plug-in is being used with the CE-3.

Provides operating voltages and signals for the Cushman Model 107 FM Deviation Calibrator or Model 108 Decade Frequency Divider. These were standard accessories with the earlier Cushman FM Communication Monitors designated Model CE-2 and CE-2B; they will also operate with the Model CE-3.

3.4 Frequency and Deviation Measurement

This procedure will assume that the CE-3 is equipped with a Model 303 Broadband Mixer and either the

Model 301 Oscilloscope or the Model 302 Deviation Meter. Measurement of frequency and deviation using one

of the RF Preselectors will be the same except that the frequency dial on the appropriate Preselector must be

set to indicate approximately the dialed-in frequency.

a. Connect an external antenna or the telescoping antenna supplied with the instrument to the ANT. panel

connector. If the telescoping antenna is used, extend it to its full length for low band measurements, approximately

18 inches for high band measurements and minimum length for UHF measurements.

b. Turn the function switch to CAL.

c. Adjust the inner red knob (part of the function switch) for a zero (mid-scale) reading on the FREQUEN­

CY meter.

d. If the Model 301 Oscilloscope is being used, set the toggle switches for horizontal and vertical inputs to

the INT. position and adjust the VERT. POS. control so that the trace is on the zero reference line while the

deviation rang'e switch is in the ± 1.5 position. Adjust the scope INTENSITY, FOCUS, and ASTIGMATISM

controls for a sharp trace on the CRT.

e. Change the function switch to the FREQ.-DEV. MEASURE position.

f. Dial in the transmitter's assigned frequency with the six frequency selector switches.

3-5

Page 16: Cushman Model CE-3 FM Communication Monitor Manual, 1968

g. Key the transmitter being monitored. The SIGNAL LEVEL light should come on. If it does not, move

the CE-3 and the transmitter closer together until the received signal is strong enough to turn on the light.

Normally, measurements can be made easily when the CE-3 is within 25 to 50 feet of the radiating antenna.*

h. Read the transmitter frequency error directly on the FREQUENCY meter. Select one of the three meter

ranges with the lever switch just below the meter.

i. Modulate the transmitter and read the FM deviation on the FM DEVIATION meter or the Oscilloscope.

Select the desired meter or scope range with the range switch on the plug-in being used. On the oscilloscope,

positive peaks appear near the top of the display, and negative peaks near the bottom. On the Deviation Meter,

the meter will indicate either positive or negative peaks, depending on the setting of the FM DEV. PEAKS switch.

If the DEVIATION PEAKS light on the Deviation Meter plug-in has been calibrated (see Section 3.8), any instan­

taneous modulation peaks which exceed the preset level can be detected. The accuracy of the FM DEVIATION

meter or Oscilloscope readings can be verified by means of the Cushman Model 107 FM Deviation Calibrator.

3.5 Using the CE-3 on "Out-of-Band" Frequencies

The CE-3 can be used to make frequency and deviation measurements as well as generate signals utilizing

second harmonics of the 450-512 MHz band. In this way measurements can be made at transmitter frequencies

between 910 and 1010 MHz. The procedure for determining the correct dialed-in frequency is as follows.

a. SUbtract 10 MHz from the required 910-1010 MHz frequency.

b. Divide the remainder by 2.

c. Dial-in the resulting quotient plus 10 MHz.

For example, assume we wish to measure a 960-MHz transmitter with the CE-3. The first step would be to sub­

tract 10 MHz from the desired chalmel, which would give us 950 MHz. This difference would then be divided by

2 and the resulting quotient would be 475 MHz. Then, adding 10 MHz, we dial-in 485 MHz on the CE-3 frequency

selector. With 485 MHz dialed in, the CE-3 will respond to a signal from a 960-MHz transmitter and the fre­

quency error and deviation indicated by the CE-3 will be the actual error and FM deviation of the transmitter

signal. Also, a 960-MHz sig'nal will be present at the SIGNAL GEN. OUT connector. Since the CE-3 is being

operated on a second harmonic, the calibration of the output signal in microvolts will not be as indicated on the

SIGNAL GEN. ATTEN. controls. The same procedure can be used utiliZing the second harmonics of the 10 and

hig'h bands of the CE-3 to make measurements between 80-120 MHz or 270-320 MHz,

3.6 CW Signal Generation

a. Set the six frequency selector switches to the desired channel frequency.

b. Place the function switch in the CW position.

c. A coaxial cable and 20-db pad are stored inside the hinged instrument front cover; connect the cable to

the panel connector marked SIGNAL GEN. OUT.

d. The desired channel frequency is now being generated. The output level can be adjusted by means of the

attenuator multiplier and vernier controls.

..

Whenever a direct coaxial connection is made between the CE-3 and a transceiver, extreme care must be taken to a void keying the transmitter.

* When a plug-in Preselector is being used, measurements can be made at distances up to 50 miles from the transmitter assuming the use of a proper external antenna.

3-6

Page 17: Cushman Model CE-3 FM Communication Monitor Manual, 1968

3.7 FM Signal Generation

a. Set the six frequency selector switches to the desired channel frequency.

b. Place the function switch in the FM position.

c. Set the FM MOD. switch to INT. or EXT. as desired. In the INT. position the modulating frequency will

be 1 kHz; this same I-kHz signal is available at the I-kHz OUT connector for use in modulating a transmitter or

repeater. External modulation frequencies can be applied through the BNC panel connector when the switch is in

the EXT. position.

NOTE

The FREQUENCY meter will now monitor the modulator center frequency, and the FM DEVIATION meter or Os­cilloscope will now indicate the amount of generated deviation.

d. Use the DEV. ADJ. and FM CAL. concentric controls to set the amount of deviation desired and to cali­

brate or zero the center frequency of the modulator, as indicated on the FREQUENCY meter.

NOTE

The FM CAL. control varies the center frequency of the FM signal and allows testing of receivers for absolute "on-channel" alignment and maximum sensitivity. The deviation range of the plug-in Deviation Meter or Oscil­loscope can be selected by means of a switch on the front panel of each plug-in; but the FREQUENCY meter is auto­matically on the ± 5-kHz range when the function switch is in the FM position, and it cannot be changed by the meter range switch.

e. Steps c and d of Section 3.6 and the caution note in that section also apply to FM signal generation.

3.8 DEVIATION PEAKS Light Calibration Adjustment

The DEVIATION PEAKS light on the Deviation Meter plug-in can be made to flash when the absolute peak

deviation exceeds a preset limit. To establish this limit and adjust the SET control, tile internal FM signal

generator is used.

a. Follow the procedure outlined in Steps a through e of Section 3.7, and adjust the DEV. ADJ. control for

the desired FM deviation trigger limit. The FM MOD. switch must be in the INT. position.

b. Turn the SET control to its maximum counterclockwise position. The DEVIATION PEAKS light should

turn on.

c. Slowly rotate the SET control clockwise until the light just goes out. The trigger level for the light is

now set at the deviation level being internally generated by the CE-3.

d. Rotate the function switch to the FREQ.-DEV. MEASURE position, and use the CE-3 in the normal way

for measuring frequency and deviation. The calibration of the DEVIATION PEAKS light is not affected by chang­

ing the frequency selector to a different channel. The + or - peaks being monitored are indicated by the position

of the FM DEV. PEAKS switch.

3-7

Page 18: Cushman Model CE-3 FM Communication Monitor Manual, 1968

3.9 Audio/LF. Signal Generation

a. Rotate the left frequency selector control knob to the extreme clockwise position so that LF. is indicated

in the display window. If the frequency display window light flashes on and off, this indicates a dialed-in frequen­

cy out of the normal LF. ranges.

b. Set the LF. FREQUENCIES range switch to either 0-4 or 4-40 MHz, as desired.

c. Dial-in the desired LF. or audio frequency. (Audio frequencies below 1 kHz can be generated; however,

the indicated output frequency will have a slight amount of residual FM.)

d. The generated signal is available at the front-panel LF. FREQUENCIES OUTPUT connector. Its level

can be varied with the LF. LEVEL control.

e. The basic output frequency range is always 0-4 MHz, variable in 100-Hz steps. When the switch is

placed in the 4-40 MHz position, harmonics of the basic frequency are available at the LF. FREQUENCIES OUT­

PUT connector. However, the predominant signal frequency will be one-tenth the indicated frequency.

3.10 Generation of Frequencies Below 100 Hz

Frequencies below 100 Hz for reed-relay selectors and other uses can be generated by using a Cushman

Model 308 Decade Frequency Divider in conjunction with the CE-3, as described in Section 1.4.

3-8

Page 19: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 4

CIRCUIT DESCRIPTION

4.1 General (Refer to Figure 4-1)

The Model CE-3 Communications Monitor is essentially a highly specialized VHF/UHF superheterodyne

receiver. The RF signal whose frequency is to be measured is applied through the front-panel ANT ./RF IN

connector to the broadband mixer or one of the three preselectors whichever is plugged into the CE-3, and is

then mixed with a local-oscillator signal from the frequency synthesizer. The LO frequency is selected by the

six frequency selector knobs on the front panel, and is automatically displaced exactly 10 MHz from the frequency

indicated by the illuminated numbers associated with the knobs. Thus, if the frequency of the monitored signal is

exactly equal to the frequency indicated on the frequency selector knobs, the output of the mixer will be exactly

10 MHz.

After amplification, the la-MHz signal is heterodyned in a second mixer with a fixed-frequency 9.9-MHz

signal derived from the Synthesizer to produce a lOa-kHz signal, which is amplified and applied to a disc.rimi­

nator (frequency-error detector) circuit. The squelch detector in the Broadband Mixer or Preselector rectifies

the I.F. signal, and feeds the resulting dc voltage to the signal level detector on the 2nd I.F. and Discriminator

board. When the I.F. signal exceeds a preset level, the signal level detector lights the front-panel SIGNAL

LEVE L lamp and turns on the frequency-error detector. The frequency-error detector is adjusted to give a

zero indication on the FREQUENCY meter when the input to the detector is exactly 100 kHz. If the frequency of

the monitored signal is above or below the frequency set on the frequency selector knobs, the input to the

frequency-error detector will be above or below 100 kHz; and the detector output will cause the FREQUENCY

meter to deflect toward the + or - side, indicating the direction and amount of frequency error.

If the monitored signal is frequency modulated, the modulation will be present in the output of the frequency­

error detector. This modulation is amplified and fed to either the Model 302 Deviation Meter circuit or to the

Model 301 Oscilloscope eircuit, whichever is plugged in. If the Model 302 is plugged in, its FM DEVIATION

meter will indicate the peak deviation of the FM signal. The output of the deviation meter circuit is also fed to

a front-panel SCOPE connector; an oscilloscope connected to this output enables the operator to observe the

modulation on the monitored signal. In addition, a built-in speaker fed from the discriminator permits aural

monitoring of the signal.

If the Model 301 Oscilloscope, rather than the Model 302 Deviation Meter, is plugged in, the amount of peak­

to-peak frequency deviation can be read directly on the oscilloscope.

The Model CE-3 Monitor can also be used to generate a CWOI' FM signal. The frequency of the generated

signal is setup by means of the frequency selector knobs, and is indicated by the illuminated readout immediately

above the knobs. For CW signal generation, a la-MHz signal from the frequency synthesizer is heterodyned in

the signal generator mixer with a frequency offset 10 MHz from that selected by the frequency selector knobs to

produce an output signal whose frequency is that indicated by the illuminated readout. For FM signal generation,

a la-MHz FM signal is generated internally and applied to the signal generator mixer to produce an FM output

signal whose frequency is that indicated by the readouts; this signal can be modulated by a I-kHz signal from the

frequency synthesizer, or by an external audio signal fed in through the front-panel EXT MOD IN/I KHZ OUT

connector. In either case, the amount of FM deviation is adjustable by the front-panel DEV. ADJ. control, and

is read on the FM DEVIATION meter or Model 301 oscilloscope in the same way as when monitorong an incoming

RF signal. When the front-panel FM MOD. switch is in the !NT position, the I-kHz signal from the Synthesizer

is delivered to the EXT MOD IN/I KHZ OUT connector for external use and the DEV. ADJ. control will vary the

output level.

4-1

Page 20: Cushman Model CE-3 FM Communication Monitor Manual, 1968

fAN

Tl ~

"%J

Qq'

.,:

'""l

<l>

~

I .­ 0 <:

<l>

~

'""l

"" I

t': to

0'

('>

:>

;"

t:l r;;' crq ,., Il' 8

--

FR

EO

UE

NC

Y

SE

LE

CT

OR

'" IF

RE

OU

EN

CY

1

o~

I 1 I 1

9.9

MH

z

I I I I L_

L.O

i I _

__

__

_1

[@

33

0 M

Hz

43

0 M

Hz

46

0-5

02

MH

z

9.9

MH

z

IOM

Hz

r-------

I M

OD

EL

3

03

P

LU

G-I

N

I B

RO

AD

BA

ND

MIX

ER

1MO

DE

L 30~

~05.

306

IP

LU

G-I

N P

RE

SE

LE

CT

OR

I

FR

EQ

UE

NC

Y

SY

NT

HE

SIZ

ER

(SE

E

FIG

UR

E

4-2

)

II.F. L

EV

EL

I

o~

IoEV

l ~

ISIGN~L

GE

N.

OU

TI NO

TE

S

L T

HE

H

EA

VY

LIN

ES

IN

DIC

AT

E

SIG

NA

L

PA

TH

S

IN

TH

E

FR

EQ

UE

NC

Y

AN

D

DE

VIA

TIO

N M

EA

SU

RE

ME

NT

MO

O.

2 S

WIT

CH

ING

1$

S

HO

WN

fU

NC

TIO

NA

LL

Y

RA

TH

ER

T

HA

N

SC

HE

MA

TIC

AL

LY

.

IFill

C,lL

l

Page 21: Cushman Model CE-3 FM Communication Monitor Manual, 1968

The 10-MHz signal, regardless of whether it is CW or FM, is fed to the Signal Generator Mixer through a

precision attenuator, which is calibrated so that the output level can be read directly from the front-panel

SIGNAL GEN. ATTEN. controls when the 20-db pad supplied with the CE-3 is used at the SIGNAL GEN. OUT

connector.

In addition to its RF outputs, the Synthesizer generates audio and LF. outputs which are available at the

front-panel LF. FREQUENCIES OUTPUT connector. The amplitude of this output signal is adjustable by the

front-panel LF. LEVEL control. The output frequency is adjustable by means of the frequency selector knobs,

and a selector switch permits a choice between a fundamental frequency range of 1 kHz to 4 MHz or a harmonic

range of 4 to 40 MHz.

All Synthesizer frequencies are derived from a precision 3-MHz crystal maintained at a constant tempera­

ture. The process by which the Synthesizer output frequencies are produced is described in Section 4.2.

4.2 Frequency Synthesizer

The principal functions of the Frequency Synthesizer are to produce a variable La signal for the receiver's

1st mixer and the Signal Generator Mixer, and a fixed 9.9-MHz La signal for the receiver's 2nd mixer (see

Figure 4-1). These La frequencies are very precisely generated in order to achieve the Monitor's rated accu­

racy. The variable La frequencies are chosen by the front-panel frequency selector knobs, as described in

Section 4.1.

The Frequency Synthesizer also supplies a 10-MHz input to the Signal Generator Mixer, a I-kHz input to the

Modulator, and a variable frequency in the range of 0 to 4 MHz to the front-panel LF. FREQUENCIES OUTPUT

connector.

All of the Synthesizer frequencies are derived from a 3-MHz Master Oscillator whose frequency is deter­

mined by a precision crystal maintained at a constant temperature in a thermostatically controlled oven. As

shown in the Synthesizer block diagram, Figure 4-2, the master-oscillator frequency is divided by 3 to obtain a

basic I-MHz frequency.

Although the Master Oscillator is the circuit which establishes the frequency accuracy of the Synthesizer,

the variable-frequency output signals are actually generated by a Voltage-Controlled Oscillator (VCO), which is

phase-locked with the Master Oscillator. The required VCO frequenCies corresponding to the frequency selector

knob settings are given in Table 4-1. For example, if the dialed-in frequency were 123.456 MHz, the required

VCO frequency would be 6.3456 MHz. The VCO is set up to within 100 kHz of its required frequency by the first

three frequency selector switches; in the example above, the first three frequency selector switches would adjust

the VCO to a frequency within the range of 6.3000 to 6.4000 MHz. The VCO is set exactly on the required fre­

quency by sampling the VCO output 100 Hz and comparing its frequency with a 100 Hz signal derived from the

precision Master Oscillator; any difference in these frequencies produces a correction voltage which is applied

to the Varicap in the VCO, causing the Varicap to tune the VCO over a 100-kHz range until the frequency differ­

ence is zero. The way in which this is done is described in the following paragraphs, and in more detail in the

sections dealing with the VCO (Section 4.2.3), the ~ N Counter (Section 4.2.4), the Sample and Hold Circuits

(Section 4.2.5), and the Phase Detector (Section 4.2.2).

The VCO output is fed into a ~ N Counter, which is programed by the frequency selector knobs (2nd digit

through the 6th digit) to produce a reset pulse every time the Counter reaches the total count represented by the

digits of the required VCO frequency. For example, using the frequencies of the preceding paragraph, the -;- N

Counter would produce a reset pulse every time it counted 63,456 input pulses. Since the input to the Counter

in this example is 6.3456 MHz (assuming the VCO is exactly on frequency), there would be 6,345,600 pulses per

4-3

• ---------­

Page 22: Cushman Model CE-3 FM Communication Monitor Manual, 1968

'0 M

HZ

TO

MO

D.

~---------------------------------------------------------;0

..

.. B

OA

RD

TO

CO

AX

IAL

R

EL

AY

o 0

0

I ...

~~ ~~z

MIX

ER

P/O

CH

-A8

HA

R

GE

N

+

9.9

-MH

z

FIL

TE

R

---------;..~

I K

Hz

TO

MO

D

__

_ ,J.:fY~~~~·2~E.0~2~C~

_

CH

-AII

C

H-A

I2

CH

-AI3

o

CO

UN

TE

R

-£­

43

-MH

zI I I I

_ --

-l

~

I L _

IcH

-=A

g:­

-

I

I I I I [C

H-A

I8

-----­

1 20

MH

l H

AR

. G

EN.

+

20

-MH

z F

ILT

ER

HA

R.

GEN

. +

lO

-MH

z F

ILT

ER

3-M

Hz

SIN

E

WA

VE

[CH

:';;;

6­-­-i

~

I H

A\G

EN

I\)

'

3-M

Hl

PU

LSE

I

I ~~~

T~~'

I1~-T-----

-JlJ

I I

I I

I -

I H

AR

G

EN

I

I I

33~M

HZ

33

M

Hz

I F

ILT

ER

I

L J

3-M

Hz

MA

ST

ER

os

c

,-;::-------­

I C

H-A

I7

I I I I I I I I I I I

I --

l

>l>­

I >I>­

46

M

Hz

0-4

M

Hz

I ..

TO

IF

LE

VE

L

CO

NT

RO

L

I I I I I I I I I I L

Fig

ure

4-2

. F

req

uen

cy S

yn

thes

izer

, B

lock

Dia

gra

m

Page 23: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 4-1. Synthesizer Frequency Relationships

Freq. Selector VCO Output Fixed-Freq.

Input To Balanced Mixer Output of UHF Matrix

Setting Bal. Mixer Output

Variable Freq. Fixed Freq.

20.000­ 29.999 6.0000-6.9999 40 46.0000-46.9999 460.000-469.000 430 30.000­ 39.999 7.0000-7.9999 40 47.0000-47.9999 470.000-479.999 430 40.000­ 49.999 6.0000-6.9999 40 46.0000-46.9999 460.000-469.999 430 50.000- 59.999 7.0000-7.9999 40 47.0000-47.9999 470.000-479.999 430 60.000­ 69.999 8.0000-8.9999 40 48.0000-48.9999 480.000-489.999 430 70.000­ 79.999 9.0000-9.9999 40 49.0000-49.9999 490.000-499.999 430

120.000-129.999 6.0000-6.9999 40 46.0000- 46.9999 460.000-469.999 330 130.000-139.999 7.0000-7.9999 40 47.0000-47.9999 470.000-479.999 330 140.000-149.999 6.0000-6.9999 40 46.0000- 46.9999 460.000-469.999 330 150.000-159.999 7.0000-7.9999 40 47.0000- 47 .9999 470.000-479.999 330 160.000-169.999 8.0000-8.9999 40 48.0000- 48.9999 480.000-489.999 330 170.000-179.999 9.0000-9.9999 40 49.0000-49.9999 490.000-499.999 330

450.000-459.999 6.0000-6.9999 40 46.0000-46.9999 460.000-469.999 -460.000- 469.999 7.0000-7.9999 40 47.0000-47.9999 470.000-479.999 -470.000-479.999 6.0000-6.9999 40 46.0000-46.9999 460.000- 469.999 -480.000-489.999 7.0000-7.9999 40 47.0000-47.9999 470.000-479.999 -490.000-499.999 8.0000-8.9999 40 48.0000-48.9999 480.000-489.999 -500.000-509.999 7.0000-7.9999 42 49.0000-49.9999 490.000-499.999 -510.000-511.999 8.0000-8.1999 42 50.0000-50.1999 500.000-501.999 -

Notes: 1. All frequencies are in MHz.

2. The last 4 digits of the VCO, the Balanced Mixer, and the variable UHF Matrix frequencies are the same·as the last 4 digits of the "dialed-in" frequency.

second applied to the Counter, causing it to reset after 63,456 input pulses are counted for a 100 Hz output. The

relationship between VCO frequency and knob settings of the -:- N Counter is as following:

Actual VCO Frequency (in Hz) = Counter Setting x 100

The Counter reset pulses are applied through a delay network to one input of a Phase Detector; the other

input is a precise 100-Hz signal produced from the basic I-MHz signal by the Reference Divider. The Phase

Detector consists of a R. S. Flip-Flop which is switched high by a pulse from the Reference Divider and switched

low again by the next pulse from the -:- N Counter. Thus, the width of the waveform out of the Phase Detector is

determined by the phase differential between the two input pulses. The Phase Detector drives a ramp generator

which produces an output whose amplitude is proportional to the width of the Phase Detector output waveform.

This amplitude is sampled once every 10 m sec. If the VCO frequency is exactly in phase with the reference

frequency, the sampled voltage will be constant and of the correct value to hold the VCO on frequency; if the

VCO is out of phase with the reference frequency, the sampled voltage will cause a correction voltage to be

applied to the VCO to bring it back into phase lock.

The VCO output is fed to the Balanced Mixer, where it is added to either 40 MHz or 42 MHz, depending on

the setting of the 1st-digit frequency selector knob (see Table 4-1). The resulting signal, in the range of 46.0 to

50.2 MHz, is multiplied by 10, filtered, and applied to the UHF Matrix. A 330-MHz signal and a 430-MHz signal

are also applied to the Matrix in certain positions of the 1st-digit switch (see Figure 4-2 and Table 4-1). The

UHF Matrix is simply a diode switching network; the 460-502 MHz signal is always fed through it, but the 330­

MHz and 430-MHz signals are fed through only when the 1st-digit switch applies a forward bias to the appropriate

diode. (For simplicity, Figure 4-2 shows the 1st-digit switch in the RF signal line.) The output of the Frequency

4-5

Page 24: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Synthesizer, then, is a signal in the range of 460-502 MHz in all positions of the 1st-digit switch, plus a 430­

MHz signal when the 1st-digit switch is in position 0 or a 330-MHz signal when the 1st-digit switch is in position

1. In the Broadband Mixer or Preselector, these frequencies are combined with the received signal to produce

a 10-MHz LF., as described in the Model 303, 304, 305, and 306 manuals. In the CAL., CW, and FM modes of

operation, the Frequency Synthesizer outputs are combined with a fixed 10-MHz signal in the Signal Generator

Mixer to generate the dialed-in frequency.

When the 1st-digit frequency selector switch is in the LF. position, the 46-50 MHz output of the Balanced

Mixer is combined in a difference mixer with a fixed 46-MHz signal to produce the 0-4 MHz I.F. output. Table

4-2 gives the frequency relationships involved.

Table 4-2. Frequencies Involved in LF. Signal Generation

Frequency Selector Setting II VCO Freq. (MHz) Balanced Mixer

Output (MHz) 0-4 MHz Mixer Output (MHz)

0.0000 - 0.9999 I 6.0000 - 6.9999 46.0000 - 46.9999 0.0000 - 0.9999 1.0000 - 1.9999 7.0000 - 7.9999 47.0000 - 47.9999 1.0000 - 1.9999 2.0000 - 2.9999 8.0000 - 8.9999 48.0000 - 48.9999 2.0000 - 2.9999 3.0000 - 3.9999 I 9.0000 - 9.9999 49.0000 - 49.9999 3.0000 - 3.9999

Notes: 1. 1st-digit frequency selector knob is on "I.F."

2. Fixed-frequency input to Balanced Mixer is always 40 MHz for I.F. signal generation.

Most of the mixing frequencies used in the Synthesizer are produced by applying either the 3-MHz output of

the Master Oscillator or the I-MHz basic frequency to harmonic generators, and filtering the output of these

generators to obtain the desired frequency. The 10-MHz output for the CW and CAL. functions and the 9.9-MHz

output for the receiver's 2nd mixer are obtained in the same way. To derive the 43-MHz and 46-MHz mixing

signals, the 3-MHz output of the Master Oscillator is applied to a mixer, the other input of which is 40 MHz.

The fundamental of the 3-MHz input adds to the 40-MHz signal to produce the 43-MHz output, and the second

harmonic of the 3-MHz input adds to the 40-MHz signal to produce the 46-MHz output.

4.2.1 Master Oscillator, Divider, and Filters (CH-A17). The master oscillator generates the signal from which

all the Synthesizer frequencies are derived. This board, CH-A17, provides the following outputs:

a. A I-MHz signal for the Reference Divider.

b. A 3-MHz sine-wave signal for the 43-MHz/46-MHz mixer.

c. A 3-MHz pulse signal for the 33-MHz and 42-MHz Harmonic Generators.

d. A 10-MHz signal for calibrating the discriminator and CW signal generation.

e. A 20-MHz signal for the 40-MHz doubler.

As shown in the schematic diagram, Figure 6-1, Ql is the crystal oscillator. The 3-MHz crystal, which is

mounted in an oven separate from Board CH-A17, is in the base circuit of Ql, which is a modified Pierce oscil­

lator. The output is fed through untuned isolation amplifier Q2 to IC2, and also to pin 4 of the board connector

as the 3-MHz sine-wave output of the board. IC2 is a pulse-shaping circuit, which changes the 3-MHz sine wave

to a square wave.

The 3-MHz pulse output of IC2 is fed to pin 7 of the board connector as the 3-MHz pulse output of the board;

it is also applied to the input of IC 1, which is a pair of JK flip-flops connected as a counter. The interconnections

are such that the second flip-Hop produces one output pulse for every three input pulses to the first flip-flop, thus

dividing the 3-MHz input to 1 MHz. The I-MHz signal is fed through wave-shaping circuit IC3 to the 10-MHz and

4-6

Page 25: Cushman Model CE-3 FM Communication Monitor Manual, 1968

20-MHz filters; the l-MHz signal is also fed through pin 13 of the board connector to the Reference Divider on

Board CH-A9.

Transistor stages Q3, Q5, Q7, Q8 and Q9 constitute an active filter tuned to 20 MHz. Stages Q8 and Q9 make

up a similar filter tuned to 10 MHz.

4.2.2 Reference Divider and Phase Detector (CH-A9). This board contains a Reference Divider to divide the

I-MHz basic frequency down to 100 kHz, 1 kHz, and 100 HZ; and a Phase Detector to compare the IOO-Hz signal

from the -:- N Counter with the precise 100-Hz signal. from the Reference Divider, and to produce an output pulse

whose width depends on the phase difference between the two input signals.

The Reference Divider circuit is shown at the top of the board schematic diagram, Figure 6-2. The I-MHz

signal from the -:- 3 circuit on the Master Oscillator board is applied to an integrated-circuit decade counter,

ICI. The 100-kHz output of ICI is fed through buffer IC9 to pin 4 of the output connector; this signal is also

applied through buffer amplifier IC3 to the second decade counter, IC5. The resulting IO-kHz output of IC5 is

applied to decade counter IC7 to produce a I-kHz signal. This I-kHz signal is fed through one NAND gate of

IC 10, which acts as a buffer amplifier, to pin 9 of the output connector; it also drives the fourth decade counter,

IC8. The IOO-Hz output of IC8, after being shaped in ICIO, appears as the "set" input to the Phase Detector flip­

flop, IC2.

The Phase Detector circuit is shown on the bottom half of Figure 6-2. Pulses with a PRF of 100 Hz from

the Reference Divider are applied to "set" terminal 6 of flip-flop IC2; pulses with a PRF of 100 Hz from the

-:- N Counter are applied to "reset" terminal 5 of the flip-flop. A Reference Divider pulse turns the flip-flop on,

and the next -:- N Counter pulse turns it off. The width of the flip-flop output waveform at terminal 11 is con­

stant and of the right magnitude to hold the VCO on frequency only when the two input pulses are in phase. This

output of the flip-flop (the Q output) is fed through one of the NAND gates of IC4, acting as a buffer stage, to the

Sample and Hold circuit through pin 11 of the output connector.

4.2.3 Voltage-Controlled Oscillator (CH-A2I). The VCO produces a signal in the range of 6 to 10 MHz; its exact

frequency is related to the settings of the frequency selector switches in accordance with Table 4-1. The VCO

is phase-locked with the Master Oscillator so that its output frequency is as accurate as that of the Master

Oscillator.

As shown in the block diagram, Figure 4-3, four separate tank circuits are used with oscillator Q, which is

tuned by Varicap CR2 in parallel with a capacitance selected by the 3rd-digit frequency selector switch. The tank

circuit to be used is turned on by the 1st-digit and 2nd-digit frequency selector switches in combination, as

shown by the table of Figure 4-3. The 3rd-digit switch selects a capacitance to tune the oscillator to within 100

kHz of the required frequency; thus, if the required VCO frequency is 6.3456 MHz (6345.6 kHZ), the capacitance

selected by the 3rd-digit switch would tune tank circuit 6-7 MHz to a frequency between 6300 and 6400 kHz. Fur­

ther tuning within this IOO-kHz range is done by a dc error signal applied to the Varicap from the Sample and

Hold circuit.

The oscillator output is fed through emitter follower Q3 to the Balanced Mixer. The phase-inverted signal

at the collector of Q3 is fed through emitter follower Q2 to the 7- N Counter.

Figure 6-3 is the schematic diagram of the VCO. The oscillator, QI is a Colpitts-type. The tuned circuits

consist of a variable inductor in parallel with fixed capacitors. In addition, the operating oscillator has a pair of

capacitors (one fixed and one trimmer) selected by the 3rd-digit switch plus the Varicap with its trimmer added

in parallel with the tank circuit. A tuned circuit is turned on by a ground from the combined 1st-digit and 2nd­

digit switches; the ground closes the diode switches in the tank circuits.

4-7

Page 26: Cushman Model CE-3 FM Communication Monitor Manual, 1968

--

6-7 MHz TANK

CIRCUIT

t-----'

ENABLI NG VOL TAGE FROM lsi - DIGIT AND 2nd­ f----4 DIGIT FREOUENCY SELECTOR SWITCHES

I- ­

,-~

7-8MHz TANK

CIRCUIT

t 8-9 MHz TANK

CIRCUIT ...

~

9-IOMHz TANK

CIRCUIT

J DC ERROR SIGNAL FROM SAMPL E

a HOLD

CIRCUIT

OSCILLATOR

01

_0

I

f------o

3rd-~ FREOUENCY _ SELECTOR ­SWITCHES

-.j VARICAP I on -!­ 02i t ~ ':" -=

on'=' -:

~ -= ":'

06i t ~ 08i

-: t ~

~~-:

I EMITTER FOLLOWER

AND PHASE

INVERTER 03

EMITTER FOLLOWER r---.- TO-'cN

02 COUNTER

~ TO BALANCED MIXER

~ lsi DIGIT

DIGI

0+1

0 I 2

6-7

3

7 - B

4

6-7

5

7-B

6

B-9

7

9-10

4 6-7 7 -B 6-7

5 7-B B-9

I

LF. 6-7 7-B B-9 9 -10

B 9

7-B B-9

TANK CIRCUIT ENABLED BY lSI-DIGIT AND 2nd-DIGIT

FREOUENCY SELECTOR SWITCHES

Figure 4-3. Voltage-Controlled Oscillator, Block Diagram

4-8

Page 27: Cushman Model CE-3 FM Communication Monitor Manual, 1968

4.2.4 -:- N Counter (CH-A12, CH-A13, and CH-All)

4.2.4.1 Overall Operation. The -:- N Counter must produce an output pulse every time it reaches the total count

preset by the digits of the required VCO frequency. Figures 6-4, 6-5, and 6-6 are the schematic diagrams

and Figure 4-4 is the block diagram of the -:- N Counter. Each decade counter is originally set by the frequency

selector switches to a count equal to 9 minus the corresponding number for that decade in the required VCO

frequency.* Thus, for a required VCO frequency of 6.8765 MHz, the decades would be originally set as follows:

Decade 1 9 5 4

Decade 2 9 - 6 - 3

Decade 3 9 - 7 2

Decade 4 9 - 8

Decade 5 9 6 3

The way in which this is done is explained in Section 4.2.4.4.

The sine-wave output of the VCO is applied to the clock pulse-forming circuit, which produces a square wave

synchronized with the VCO frequency. This square wave is applied to the 1st decade; since this decade (in our

example) has been set to an initial count of 4, the first clock pulse would advance it to a count of 5. After the

5th input pulse, the first decade would be in binary state 9 (see Table 4-3). The next clock pulse, the 6th from

the start, would cause Decade 1 to reset to 0 and at the same time would trigger Decade 2. Decade 2 had pre­

viously been reset to binary state 3; when the first trigger arrives, Decade 2 advances to binary state 4. This

procedure is repeated until all decades except Decade 1 reach binary state 9, and until Decade 1 reaches binary

state 8. At this point, a total of N-1 clock pulses have been counted (where N is the number of counts for which

the -:- N Counter has been set).

In binary state 9, a decade's A and D outputs are high; and this is the only binary state in which these two

are high. Also, just before reaching binary state 8, AI' B1' and C1 of Decade 1 are high. Thus, at this instant,

all inputs to the multi-AND gate are high. This sets up a flip-flop in the reset pulse-forming circuit. When the

8th clock pulse falls, the reset flip-flop is triggered and produces a reset pulse, resetting all decades to their

original condition. When the next clock pulse arrives (total count =N), all decades are being reset; so no count

occurs. On the following clock pulse, the first count of the new counting cycle starts.

The reset pulse has two functions: to reset all decades to their original conditions, and to appear as the

output of the -:- N Counter. Table 4-3 shows the binary state resulting from each clock pulse for an example in

which the required VCO frequency is 6.8765 MHz.

4.2.4.2 Decade Operation. As shown in Figure 4-4, the -:- N Counter comprises five decade counters. Each

decade counts up to binary state 9, then is reset to binary state 0 and triggers the next decade, then starts

counting again at binary state 1. Each decade is preset to a particular binary state, as mentioned in Section

4.2.4.1; the process by which they are preset is described in Section 4.2.4.4. Since the operation of the first

four decades is essentially the same, only one will be discussed here.

* The decades are actually preset by the first reset pulse produced by the -:- N Counter, and are reset to the preset number by each succeeding reset pulse.

4-9

Page 28: Cushman Model CE-3 FM Communication Monitor Manual, 1968

"'J

~"

,.., (1

)

H>­

I H>­

"I" Z

(")

H>­

0I

r= 0>

-'

;;. (1) -,..,

tJj ......

0 ()

;.;­ tl

PO"

aq ,.., IlJ 3

JL

JP

UL

SE

-----1

OU

TP

UT

TO

..

. 3

50

~ s

ec

ST

RE

TC

HE

RIO

O-H

20

ET

EC

TO

RP

HA

SE

..

....

3V

RE

SE

T

MU

LT

I-A

ND

G

AT

E

PU

LS

FO

RM

ING

C

IRC

UIT

CL

OC

K

PU

LS

E ­

FO

RM

ING

C

IRC

UIT

RE

SE

T

f\}s

v

LiW

.IO

O.,

70

nS

EC

PA

F:

10

0 H

z

AM

PL

'32

v

AI

GA

T I

N G

G

AT

ING

GA

TIN

G

FR

EQ

UE

NC

Y

SE

LE

CT

OR

S

WIT

CH

ES

GA

TIN

G

FRO

M

veo

~060

'::H

Z INP

UT

GA

TIN

G

Page 29: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 4-3. -:- N Counting Sequence

TOTAL COUNT} REQUIRED BY 6 8 7 6 5 -VCO FREQ. (N)

PRESET BINARY 3 2 3 4}STATE

DECADE CLOCK IN COUNTERS f = 6.8765 MHz

PRESETTING GATES

FREQ. {SEL. SWITCHES

1st 2nd 3rd 4th 5th Digit Digit Digit Digit Digit

SEQUENCE OF OPERATION

After reset: Decade 1 counts 5 clock pulses, triggers Decade 2, counts 10, triggers, etc. Decade 2 counts 6 Decade 1 pulses, triggers Decade 3, counts 100, triggers, etc. Decade 3 counts 7 Decade 2 pulses, triggers Decade 4, counts 1000, triggers, etc. Decade 4 counts 8 Decade 3 pulses, triggers Decade 5, counts 10,000, triggers, etc. Decade 5 counts 6 Decade 4 pulses to binary state 9. Decade 4 counts to binary state 9. Decade 3 counts to binary state 9. Decade 2 counts to binary state 9. Decade 1 counts to binary state 8. (Total count is N-1) Reset pulse-forming cycle is started. Nth clock pulse occurs during reset time. All flip-flops are reset and Al flip-flop is settled before next 1 count.

EXAMPLES OF BINARY STATES

6th Digit

Binary State

Clock Pulse Decade 5 Decade 4 Decade 3 Decade 2

(Initial setting) 3 1 2 3 After 1st 3 1 2 3 After 4th 3 1 2 3 After 5th 3 1 2 3 After 6th 3 1 2 4 After 15th 3 1 2 4 After 16th 3 1 2 5 After 65th 3 1 2 9 After 66th 3 1 3 O&T After 765th 3 1 9 9 After 766th 3 2 O&T O&T After 8765th 3 9 9 9 After 8766th 4 O&T O&T O&T After 68764th 9 9 9 9

After 68765th 3 2 3

NOTE: Examples shown in this table are for a VCO frequency of 6.8765 MHz.

Decade 1

4 5 8 9 O&T* 9 O&T 9 O&T 9 O&T 9 O&T 8

4

(Reset pulse generated)

* T means that the next decade is triggered.

4-11

Page 30: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Figure 4-5 is a block diagram and timing diagram of a typical decade. The decade consists of four J-K

flip-flops and a pair of NAND gates, as shown. The J -K flip-flops operate as follows:

a. Q is one of two outputs.

b. Q is the other output; it is 1 when Q is 0, and is 0 when Q is 1.

c. T is the toggle input; the falling edge of the input pulse at T, under control of J and K, causes the flip-flop to change states.

d. J is the control input for Q; when J is 1 or floating, Q can switch to 1.

e. K is the control input for Q; when K is 1 or floating, Q can switch to 1.

f. S (set) is a direct input, independent of the toggle; when low, it sets Q to 1.

g. R (reset) is a direct input, independent of the toggle; when low, it sets Q to 1 directly and resets Q to O.

The NAND gates operate as follows:

a. When both inputs are 1, output is O.

b. When either or both inputs are 0, output is 1.

For this discussion of decade operation, assume that the decade has been reset to binary state 0, so that

all flip-flops are at binary low (0). J of A will be 1; so when the input to T of flip-flop A falls, Q of A switches-to 1. K of A is also 1; so when the second pulse at T of A falls, Q of A rises to 1, forcing Q of A to O. When

Q of A drops to 0, it provides a toggle to flip-flop B. J of B is 1 because flip-flop D was reset to 0 as an initial

condition, making Q of D (and hence J of B) 1; therefore Q of B will change state to 1 when B is toggled.

On the third input, flip-flop A is again toggled high. On the fourth input, Q of A drops, causing flip-flop B to

change states. The falling pulse from Q of B causes Q of C to become 1. The flip-flops operate as shown in the

timing diagram through the 6th input.

Before the 6th input, Q of Band Q of C have not been high at the same time. Thus, the output of the first

NAND gate has been 1, and the output of the 2nd NAND gate (a simple inverter) has been O. Therefore, J of D

has been 0, and flip-flop D has not been able to switch states. After the 6th input, however, Q of Band Q of C

are both 1, making J of D high; so the next time Q of A falls, which is after the 8th input, Q of D goes to 1. Then,

on the 10th input, when Q of A falls, D is toggled back to O. Flip-flop B would normally be toggled by flip-flop A

to 1 on the 10th input; however, when flip-flop D goes to 1 on the 8th input, Q of D goes to 0, and this places a 0

on J of B, preventing B from toggling.

All flip-flops are now reset to 0 and ready to begin a new count to 10. Note that the reset within the decade

itself always resets the decade to binary state O. The reset pulse from the output of the 7 N Counter resets

each decade to a preset count, as explained in Section 4.2.4.1.

When flip-flop D goes to 1 in binary state 8, it drives J and K of the first flip-flop in the next decade to 1.

Then, when Q of A falls to 0, it triggers the first flip-flop in the next decade. Thus, when a decade goes from

binary state 9 to binary state 0, it triggers the next decade.

4.2.4.3 Reset Pulse-Forming Operation. The reset pulse-forming circuit must generate a pulse when Decades

2 through 5 are in binary state 9 and Decade 1 reaches binary state 8. In Figure 4-5 it is seen that the A and D

outputs of Decades 2 through 5 are 1 in binary state 9; these outputs are fed to a multi-AND circuit. As seen in

Figure 4-6, this multi-AND consists of four NAND gates plus the AND gate at the J input of the reset flip-flop.

Outputs A, B, and C of Decade 1 are high in binary state 7; so when Decades 2 through 5 are in binary state 9

and Decade 1 is in binary state 7, all inputs to J of the reset flip-flop are high. K of the reset flip-flop is held

4-12

Page 31: Cushman Model CE-3 FM Communication Monitor Manual, 1968

FROM CLOCK OR A OF PRECEDING

DECADE S

J Q

T A

K 6 R

FROM +5V OR D OF

S S S Q J Q J Q

T C T D

Q TO J a K OF

K Q K Q K FLIP -FLOPR R R A IN NEXT DECADE

PRECEDING DECADE

TO T OF FLIP-FLOP A IN NEXT DECADE

BINARY STATE 2 3 4 5 6 7 8 9 0 , 11 , 1 1 I , , I J, 2, 3 4, 5, 6, 71 81 9, 10, I ICLOCK OR

INPUT FROM A OF PRECEDING DECADE

Q OF A

Q

Q

a

OF

OF

OF

B

C

D

I \ , , I

I: I , I , I

I \

\

I I

OF D 1 \

Fig-ure 4-5. Decade Operation

4-13

Page 32: Cushman Model CE-3 FM Communication Monitor Manual, 1968

+5V

OUTPUT

RESET

FLIP­

FLOP

Q

+5V

RESET 2 INPUTS

OUTPUT CLOCK ---------------1

AI

05 A2

°2 A3 03 A4 04 A5

5V

81 RESET'

C,

+5V

N-I N 8 9 I (OF NEW COUNT)

CLOCK } I

\,----"t-----~­I

I NOTE' 05 IS ALWAYS I RESET TO 0

\ __---..I... ­ ....l...-_

OUTPUT OF NAND NG _

GATE _ \'---+--------­

Q OF RESET --;..--,\ / F LIP - FLO P \.... -,---J.

OUTPUT OF / \ POWE R GATE"-S__.--_--' '- ~..--_

(RESET)

Figure 4-6. Reset Pulse-Forming Circuit

4-14

Page 33: Cushman Model CE-3 FM Communication Monitor Manual, 1968

high by the applied positive voltage. Q of the reset flip-flop is high, having been set to that level by the preced­

ing reset operation; therefore, Q is low. Under these conditions, the next (8th) clock pulse toggles Q to 1, forcing

Q to O.

As shown in Figure 4-6, Q of the reset flip-,flop feeds a pair of power gates; when Q goes to 0, the power­

gate outputs go to 1. This is the reset pulse.

4.2.4.4 Decade Preset Operation. As stated in Section 4.2.4.1, each decade must be reset by the -:- N Counter

reset pulse to a binary state which is 9 minus the corresponding number for that decade in the required VCO

frequency.

Figure 4-7 illustrates the resetting operation for Decades 1 through 4. Consider the operation of flip-flop

A in Decade 1. The Sand R inputs to the flip-flop come from a pair of NAND gates. One input of each NAND

gate is driven by the reset circuit; these two inputs will be 1 during the reset pulse. The other input to the

NAND gates comes from one deck of the 6th-digit switch; this input will be either 0 (ground) or 1, depending on

the switch position. The pair of NAND gates are interconnected so that when the switch input is 0, the S input of

the flip-flop will be 0 and the R input will be 1; and also when the switch input is 1, S will be 1 and R will be O.

Thus the output (terminal Q) of the flip-flop is positively determined during reset by the switch position. The

table in Figure 4-7 gives the Q output of flip-flop A for each position of the 6th-digit switch.

The other three flip-flops of Decade 1 are reset in a similar way, the only difference being in the switch

inputs. The table of Figure 4-7 shows the output of each flip-flop in Decade 1 for each position of the 6th-digit

switch, and the resulting binary state of the decade. For the example of Table 4-3, in which the 6th-digit switch

is set on 5 and a preset binary state of 4 is required, it can be seen from the table of Figure 4-7 that flip-flops

A through D will have outputs of 0, 0, 1, and 0, respectively, corresponding to a binary state of 4.

The discussion so far has been on Decade 1, but Decades 2, 3, and 4 are reset in the same way according to

the positions of the 5th-digit, 4th-digit, and 3rd-digit switches, respectively. The tabulation of Figure 4-7 is

valid {or all of these decades.

Decade 5 requires a slightly different reset circuit because the first number in the VCO frequency is not

determined by a single frequency selector switch; rather, it depends on the setting of both the 1st-digit and

2nd-digit frequency selector switches.

As shown by Table 4-1, the first number of the VCO frequency must be 6, 7, 8, or 9. Thus, the 5th decade

must be preset to binary state 3, 2, 1, or O. The binary representations of these preset states are 0011, 0010,

0001,0000, respectively. From this, it can be seen that flip-flops D and C will always be preset to 0, and that

flip-flops A and B must be preset as follows:

First Number Required 5th Decade of VCO Freq. Preset State Flip-Flop A Flip-Flop B

6 3 1 1 7 2 0 1 8 1 1 0 9 0 0 0

Figure 4-8 is a block diagram of the Decade 5 reset circuit. The switching voltages coming in through

terminals U, V, and Ware 0 (ground) when the first number of the VCO frequency is 6, 7, and 8, respectively;

the table in Figure 4-8 shows the combination of 1st-digit and 2nd-digit switch positions that produce these

grounds.

4-15

Page 34: Cushman Model CE-3 FM Communication Monitor Manual, 1968

~~;~T ~OWER GATES IL ..... ~;~~~ ~~CADES DECADE I

--NAND---- 1

:1--

H! "::!GAlE

b~ b I I 03 700­ I I 0' 1 90 I +5V I ~: I I

! i n:};~RG~,ES0 :

.----'---...--.:..-1--+-- I

I 30:~ rJ I It;>'---<*-<I~·l~ I I0

0' ~ 90

1 I I0

Ie}TOi ~ : GATES :

,-----.::..-----~I---f_-... IFOR C,

h b:~o I3 I 70

II

L.--04~lt-Ol 0 I 0' ~ 90 I

01 I I I -i ~ I } TO GATES II 1 I FOR 0,

r----'-I-----...:...---_ I o:~ 0 L -l

03 I 70

>--o~

SWITCH FLIP-FLOP A FLIP-FLOP B FLIP-FLOP C FLIP-FLOP 0 DECADE

POSITION SWITCH 5 0 SWITCH S Q SWITCH S Q SWITCH S Q

BINARY STATE

Q 0 0 , , , 0 , , 0 Q 0 , 9

, , , 0 , , 0 , , 0 0 0 , B

2 0 0 , 0 0 , 0 0 , , , 0 7

3 , , 0 0 0 , 0 0 , , , 0 6

4 0 0 , , , 0 0 0 , , , 0 5

5 I , 0 , , 0 0 0 , , , 0 4

6 0 0 I 0 Q I I I 0 I , 0 3

7 I I 0 0 0 , I I 0 I I 0 2

8 0 0 , , , 0 , , 0 I I 0 , 9 I , 0 , , 0 , , 0 , , 0 0

Figure 4-7. Reset Circuit, Decades 1 through 4

4-16

Page 35: Cushman Model CE-3 FM Communication Monitor Manual, 1968

"6" U

"7" V

"8" W

x :>---~--1_~

INPUT LINE GROUNDED FOR EACH COMBINATION OF 1ST-DIGIT AND 2ND-DIGIT FREOUENCY SELECTOR SWITCHES

2 ND 1ST DIGIT DIGIT

08 I

0 2

"6"

3

"7"

4

"6"

5

"7"

6

"8"

7

NONE

8 9

4 "6" "7" "6" "7" " 8"

5 "7" "8"

1. F. "6" "7" "8" NONE

Figure 4-8. Reset Circuit, Decade 5

The reset pulse is brought in through terminal X, SO that one input of NAND gates NG1 through NG4 is 1

during reset. If a ground is present on the "6" or "8" switch lines, the output of OR gate OG1'" will be 1, pro­

ducing a 0 output from NG2 and therefore a 1 output from A5,*'" as required. Similarly, a ground on lines "6"

or "7" produces a 1 from B5, as is also required. All other switch settings result in outputs of 0 from A5 and

B5' Flip-flops C5 and D5 are held to a 0 output during reset by a fixed voltage at their S terminals and a 0

input to their R terminals from NAND gates NG5 and NG6.

4.2.5 Sample and Hold Circuits (CH - A 10). The Sample and Hold Circuits develop a dc error voltage for the

VCO which is proportional to the phase difference between the output of the -:- N Counter and a precise 100-Hz

signal from the Reference Divider.

*The output of an OR gate is 1 if either of its inputs is 0; the output is 0 if both of its inputs are 1.

** The notation "A 5" means flip-flop A in Decade 5.

4-17

Page 36: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Figure 4-9 is a simplified block diagram of the Sample and Hold Circuits. As described in Section 4.2.4,

a pulse from the Reference Divider turns on the Phase Detector flip-flop; this is shown on lines 1 and 2 of the

timing diagram at the bottom of Figure 4-9. The output of the Phase Detector is applied to a ramp generator on

the Sample and Hold board. The output of the ramp generator is a waveform with a constant slope (line 3 of the

timing diagram). When a pulse is received from the '-:- N Counter (line 4) it switches on the first Sample and

Hold Circuit for the duration of the -:- N Counter pulse. Capacitor C12 charges to the ramp voltage, which is

continuing to decrease; so the voltage on C12 has the shape shown on line 5 of the timing diagram. Although the

voltage on C12 varies as shown, between sampling periods the capacitor stays charged to the voltage present at

the end of the preceding sampling period. Thus, the dc level on C12 depends on the phase difference between the

Reference Divider pulses and the -:- N Counter pulses.

The pulse from the -:- N Counter is delayed 500 microseconds by a circuit on the Sample and Hold board,

and is then fed to the Phase Detector flip-flop to turn it off.

The voltage on C 12 is not suitable for controlling the VCO because of the ripple produced on it during' the

sampling process. Therefore, a second Sample and Hold Circuit, turned on by the delayed -:- N Counter pulse,

samples the voltage on C12 immediately after the first sampling period, and places this voltage on capacitor C13.

Since the voltage sampled is constant (in case there is no phase error) or slowly changing (in case of a phase

error), the voltage on C13 will not contain a ripple. This voltage is applied to a high-impedance level detector,

Q9, which feeds an input to dc amplifier IC4 that is proportional to the voltage on C13. IC4 is an operational

amplifier whose output is directly proportional to its input. The output of IC4 is the dc error voltage for the

VCO.

The ramp generator consists of stages Ql through Q4 (see the schematic diagram, Figure 6-7). The rec­

tangular waveform from the Phase Detector flip-flop is inverted and amplified by Ql and applied to the bootstrap

timing' circuit consisting of Q2, Q3, and Q4. The resulting linear sawtooth at the emitter of Q4 is fed to the drain

of field-effect transistor Q5. When the positive pulse from the -:-N Counter is applied through amplifiers Q7 and

Q6 to the gate of Q5, Q5 is turned on and feeds the sawtooth to capacitor C12. A similar circuit, consisting of

Q8, QI0, and Qll, performs the second sampling operation. Q9 is a metal-oxide-semiconductor (MOS) field­

effect transistor, which presents a very high shunt resistance across capacitor C13 so that the charge on C13

will not leak off appreciably between sampling periods. The output of Q9 is fed through integrated-circuit

operational amplifier IC4, which has a fixed gain of 2.1, to pin Y of the output connector.

The lower half of Figure 6-7 is the 500-microsecond delay circuit. ICI is a one-shot multivibrator. When

it is triggered J;ly the leading edge of the -:- N Counter pulse, it produces an output voltage at terminal 6 for a

period of 500 microseconds. This rectangular waveform is inverted by Q8, and the trailing' edge used to trigger -a second one-shot multivibrator, IC2. The output of IC2, a pulse approximately 350 microseconds wide, is fed

through buffer stage IC3 to the second Sample and Hold Circuit, and also to the Phase Detector through pin 19

of the output connector.

4.2.6 40-MHz, 43-MHz, and 46-MHz Filters (CH-AI8). As shown in the Frequency Synthesizer block diagram,

Figure 4-2, this board converts 20-MHz and 3-MHz frequencies from the Master Oscillator board into 40, 43,

and 46 MHz. The frequency of the 20-MHz signal from the Master Oscillator board is doubled to 40-MHz by Ql,

and fed through isolation amplifier Q2 to pin 15 of the output connector (see schematic diagram, Figure 6-8).

The dc power to Q2 is turned on by the Ist- digit frequency selector switch in the 0, 1, 4, and LF. positions,

since 40 MHz is required by the Balanced Mixer for those ranges.

The 40-MHz output of Q1 is also fed through amplifier Q3 to mixer CR2/CR3, where it is combined with a

3-MHz signal from the Master Oscillator. The output of the mixer contains both 43 MHz and 46 MHz. The

4-18

Page 37: Cushman Model CE-3 FM Communication Monitor Manual, 1968

DC

OU

TP

UT

TO

V

CO

50

0-

p's

ee

DE

LA

Y

ICI,

QI2

, IC

2,I

C3

INP

UT

FR

OM

P

HA

SE

D

ET

EC

TO

R

10

0-

Hz

INP

UT

F

RO

M

-;. N

CO

UN

TE

R

1st

SA

MP

LE

a H

OLD

05

-07

4

2n

d S

AM

PLE

a

HO

LD

08

-01

1

T -= C

I2

6

T -= C

I3

DC

A

MP

L

IC4

DE

LAY

ED

1

00

­H

z O

UT

PU

T

TO

PH

AS

E D

ETE

CTO

R

(0

ol=>

I ......

CD<

0

CD o

o

o

LE

VE

L

DE

T

09

Jl ~L..---_

I

I I

I

J I

I-L

I '

' I I I I I

"I

,I

11I

I II

I

nlI

III

I I

III

I II

I I

III

til.!. 1

I

I'

I II

I

II

i ~

I I I I I I I I I 1 :

L

"---

--­

L

Fig

ure

4-9

. S

amp

le a

nd

Ho

ld C

ircu

its,

Blo

ck a

nd

Tim

ing

Dia

gra

ms

Page 38: Cushman Model CE-3 FM Communication Monitor Manual, 1968

43-MHz signal is fed through an active filter (Q4, Q6, Q8 and Q10) to pin 22 of the output connector. Power is

applied to this filter only when the 1st-digit frequency selector switch is in position O.

The 46-MHz output of the mixer is fed through a similar active filter to pin 2 of the output connector; this

filter is turned on in the LF. position of the 1st-digit switch.

4.2.7 33-MHz and 42-MHz Filters (CH-A16). This board develops 33-MHz and 42-MHz outputs from a 3-MHz

input. As shown in the schematic diagram, Figure 6-9, the 3-MHz pulse signal from the Master Oscillator is

passed through pulse shaper IC2 to obtain narrow pulses, which are then applied to the inputs of two similar

tuned filters. The 42-MHz filter, Q1 through Q4, is turned on by the 1st - digit frequency selector switch in

position 5 only. The 33-MHz filter, Q5 through Q8, is activated in position 1 only.

4.2.8 Balanced Mixer (CH-A15). The Balanced Mixer adds either 40 or 42 MHz to the VCO frequency to produce

the required output (see Table 4-1). Both the 40-MHz and 42-MHz inputs are brought in through pin 2 of the

board connector; only one source will be activated at a time, as described in Sections 4.2.6 and 4.2.7. The 40­

l\1Hz or 42-MHz signal is fed through tuned amplifier Q2 to the primary of mixer transformer T1.

The VCO signal is brought in through pin 11 of the board connector (Figure 6-10) and amplified by integrated­

circuit amplifier IC 1. The gain of this amplifier is automatically controlled by a dc signal from a level detector

on the input of the 46.0-50.2 X10 Multiplier. This dc signal is amplified by integrated amplifier IC2 and applied

to pin 1 of IC 1. The output of IC 1 is fed through emitter follower Q1 and a low-pass filter to transformer T2 in

the balanced mixer. The output of the balanced mixer passes through the broadband filter, Q3 and Q4, to pin 21

of the board connector, and an attenuated output is delivered to pin 18 of the connector. The filter is tuned so

that it passes only the mixer products in the range of 46.0 to 50.2 MHz.

4.2.9 X10 Multipliers (CH-A2,CH-A3, CH-A4). Figure 6-11 is the schematic diagram of the X10 Multiplier for

the 46.0-50.2 MHz input. The signal from the Balanced Mixer is applied to the primary of transformer T1. A

pair of diodes (CR2 and CR3) connected as a full-wave rectifier in the transformer secondary circuit produce an

output with a strong second-harmonic content. After three stages of tuned amplification, the signal is applied to

snap diode CR4, a nonlinear device whose very fast turnoff characteristic makes it an efficient harmonic gener­

ator. The input signal is also rectified by CR1 to produce a dc voltage proportional to the amplitude of the in­

coming signal. This dc voltage is fed back to the Balanced Mixer board to control the gain of the VCO amplifier,

as described in Section 4.2.8.

The X10 Multipliers for the 330-MHz and 430-MHz signals are almost the same, the oniy difference being in

the value of a few components (see Figures 6-12 and 6-13). Both of these Multipliers are also very similar to

the 46.0-50.2 MHz X10 Multiplier, the chief differences being that the full-wave frequency-doubling circuit and

the signal level detector are not used in the 330-MHz and 430-MHz Multipliers.

4.2.10 UHF Matrix (CH-A1). As shown in the Frequency Synthesizer block diagram, Figure 4-2, and in Table

4-1, the Frequency Synthesizer is required to have the following 0utputS:

Frequency Synthesizer Output

Dialed-in Range From VCO Fixed Frequency

20 - 80 MHz 460-500 MHz 430 MHz 120 ­ 180 MHz 460-500 MHz 330 MHz 450 - 512 MHz 460-502 MHz None

The UHF Matrix provides the RF switching to accomplish this. Figure 6-14 is the schematic diagram. For the

20-80 MHz range, the 1st-digit frequency selector switch in the 0 position applies -12 volts to the cathode of CR1,

4-20

Page 39: Cushman Model CE-3 FM Communication Monitor Manual, 1968

forward-biasing it and thus switching in the 430-MHz signal. Similarly, when the 1st-digit frequency selector

switch is in position 1, it forward-biases CR2, thus switching in the 330-MHz signal. Actual mixing of the signals

takes place in the Signal Generator Mixer and in the Broadband Mixer or Preselector, whichever is plugged into

the CE-3.

4.2.11 0-4 MHz Mixer and 9.9-MHz Mixer (CH-A8). The 46.0-50.2 MHz signal from the Balanced Mixer is

mixed on this board with a 46-MHz signal from the 46-MHz filter to produce a difference-frequency output in the

I.F. range. As shown at the top of the schematic diagram, Figure 6-15, the 46-MHz signal is fed through tuned

common-base amplifier Q1 and transformer T1 to mixer CR1/CR2. The variable frequency from the Balanced

Mixer is brought in to the center tap of the T 1 secondary. The resultant difference frequency, in the range of

0-4 MHz, is amplified by Q2 and Q3 and delivered through emitter follower Q4 to pin 10 of the board connector.

When the front-panel I.F. FREQUENCIES switch is turned to the 4-40 MHz position, a diode half-wave rectifier

is inserted in series with the I.F. output to provide harmonic operation.

The circuit at the bottom of Figure 6-15 is the 9.9-MHz harmonic generator and filter. The 100-kHz signal

from the Reference Divider is brought in at pin 21 of the board connector. Common-base amplifiers Q5 through

Q8 are tuned to the 33rd harmonic of the input frequency, and the 3.3-MHz output of Q8 is tripled in Q9 to give

the required 9.9-MHz output at connector pin S.

4.3 Second I.F. and Discriminator Circuits (CH-A20)

These circuits can be conveniently divided functionally as follows:

a. Second-mixer circuits, which amplify the 10-MHz I.F. signal from the Broadband Mixer or Preselector,

amplify the 9.9-MHz signal from the Synthesizer, and then mix them to produce a second I.F. which is nominally

100 kHz.

b. A discriminator or frequency-error detector, which delivers a voltage to the FREQUENCY meter when

the second I.F. is not exactly 100 kHz.

c. Audio circuits, which extract the modulation from the 100-kHz signal and deliver it to the speaker

circuits and to either the Model 302 Deviation Meter or the Model 301 Oscilloscope.

d. A signal-level detector, which disables the frequency-error detector until a sufficiently strong signal is

received by the CE-3, and then turns on both the frequency-error detector and the SIGNAL LEVEL lamp when

the signal level is high enough for satisfactory measurement.

Figure 4-10 is a block diagram of the Second I.F. and Discriminator Circuits.

4.3.1 Second Mixer. As shown in Figure 4-10 and in the schematic diagram, Figure 6-16, the 10-MHz signal

from the Broadband Mixer or Preselector is amplified by tuned integrated-circuit amplifier IC 1 and applied to

pin 1 of IC2. The 9.9-MHz LO signal from the Frequency Synthesizer is amplified by tuned common-base

amplifier Q1 and applied to pin 2 of IC2. Integrated circuit IC2 is connected as a mixer; its 100-kHz output is

fed through a low-pass filter to the base of Q2 in the frequency error detector.

4.3.2 Frequency-Error Detector. The 100-kHz signal from mixer IC2 is amplified by Q2 and applied to squaring

circuit Q3. The resulting 100-kHz square wave is differentiated by R20/C22 and the positive pulses from the

differentiating circuit are passed by CR1 to trigger the one-shot multivibrator, Q6/Q9. The one-shot will oper­

ate if the received signal is strong enough for the signal-level detector to furnish an enabling ground to the

emitters ofQ6 andQ9 (see Section 4.3.4). Circuit constants of the one-shot multivibrator are such that each

trigger produces an output pulse whose width is one-half the period of a 100-kHz square wave (5 microseconds).

4-21

Page 40: Cushman Model CE-3 FM Communication Monitor Manual, 1968

DC

//

,----­

0 *D

C

}1~

L

--

IFR

EQ

UE

NC

yl

FP

-AI

FP

-AI AF

C

TO

MO

DU

LA

TO

R

1-

-.J

FR

EQ

UE

NC

Y-E

RR

OR

D

ET

EC

TO

R

~

-J

-Yr-

il-1J

lJ

r1 A

MP

LIF

IER

N

v S

QU

AR

IN G

I J

Ul

!DIF

FE

RE

NT

IAT

O'.

. J

ON

E-S

HO

T, r

-I

BR

IDG

EC

IRC

UIT

l

I _,,: I

IC :I

MU

LT

IVIB

RA

TO

R

Q9

CO

L.!;.

Q

2

Q 3

R

20

C

22

C

RI

Q6,

Q9

rl

I '

CR

2 JU

l

SE

CO

ND

M

IXE

RI·

~I

10

-MH

Z

INP

UT

I

F.

AM

PL

. M

IXE

RF

RO

M

BR

OA

DB

AN

D

19

I-­

f-----

oM

IXE

R

OR

IC

I IC

2P

RE

SE

LE

CT

OR

l.J

..J

<t '" z

99

-M

Hz

INP

UT

l.

JB

UF

FE

R

AM

PL

.F

RO

M

FR

EQ

UE

NC

Y

1 f-

­S

YN

TH

ES

IZE

R

I ... Q

I TO

M

OD

EL

30<

N

N

DE

VIA

TIO

N

LIM

ITE

R

EM

ITT

ER

~I

6 ~

~

20

-KH

z~

F

OL

LO

WE

R

L.P

. F

ILT

ER

r--r

----<

CR

5

Q8

2

DC

F

RO

M

SQ

UE

LC

H

TO

M

DD

EL

30

O

ET

EC

TO

R

IN

SW

ITC

HS

CH

MIT

T

OS

CIL

LOS

CO

PE

TR

IGG

ER

15

r f-

-­I

BR

OA

DB

AN

D

Q4

,Q5

Q

7

~~~~

~, ~r;

.TA~

I

IJ

C21

?T

O

VD

LU

ME

E

MIT

TE

R

rON

TR

OL

F

OL

LO

WE

R I

(4

Q 1

0

+ 2

0V

SIG

NA

L

LE

VE

L

DE

TE

CT

OR

~I

I.

A

UD

IO

CIR

CU

ITS

~

~

Fig

ure

4-1

0.

Sec

on

d L

F.

and

Dis

cri

min

ato

r C

ircu

its,

Blo

ck D

iag

ram

Page 41: Cushman Model CE-3 FM Communication Monitor Manual, 1968

This pulse width remains 5 microseconds throughout a frequency error range of more than 25 kHz on either side

of 100 kHz. The outputs from the collectors of the one-shot transistors are fed to a bridge circuit.

Figure 4-11 is a simplified diagram of the bridge circuit, in which the one-shot transistors are represented

as switches. The switches are shown in the untriggered condition, with Q6 off and Q9 on. The voltage* at point

X is approximately +20 volts, and at point Y is about 6 volts.

Refer now to the waveforms at the bottom of Figure 4-11, and consider the case in which the frequency of

the signal from the second mixer (fin) is exactly 100 kHz. When the one-shot is triggered, Q6 is turned on,

causing X to drop to minimum voltage; and Q9 is turned off, causing Y to rise to maximum voltage. The one-shot

remains in this state for 5 microseconds and then returns to its quiescent state for 5 microseconds before it is

triggered again, as shown in the X and Y waveforms of Figure 4-11. The square-wave voltages at X and Yare

passed through averaging networks L7/C23 and LS/C26 to the FREQUENCY meter. Since the waveform at X

has a 50-percent duty factor (when fin = 100 kHz), its average value is half-way between minimum and maximum

voltages; and this is the approximate voltage developed across C 23. The average value at Y is the same as at

X, since the waveform at Y also has a 50-percent duty factor; so the voltage across C23 is the same as that

across C26. Thus there is no potential difference across the FREQUENCY meter, and therefore no meter

deflection.

Next assume that fin has decreased, as would be the case if the frequency of the monitored signal were low.

The one-shot will now be trig'gered less frequently, as shown in Figure 4-11. As a result, the voltag'e at X will

now be high more than 50 percent of the time, and the average voltage across C23 will increase according'ly. On

the other hand, the voltage at Y is low more than 50 percent of the time, so its average voltag'e drops by the

same amount that the voltage at X rises. Thus a potential difference is produced across the meter, with the

more positive voltage being at C 23; and this causes the meter to deflect toward the - side of its scale.

In the third case, where fin is high, the average voltages produced are such that the voltage at C26 is more

positive than that at C 23, causing the meter to deflect toward the + side of its scale.

Two controls are provided to adjust the zero reading of the FREQUENCY meter. One (R44) is an internal

coarse control; the other (FP-R1) is the front-panel CAL. control. Adjustment of these controls is covered in

the Maintenance and Operating Instructions sections, respectively.

The schematic diagram of the FREQUENCY meter board is given in Figure 6-22. For most settings of the

frequency selector switches, the La frequency is 10 MHz lower than the dialed-in frequency. When this is true,

a relay is deenergized and its contacts are as shown in the schematic diagram. Under these conditions, the

input from the Q9 side of the frequency-error detector is applied to the positive terminal of the meter through

range switch FP-SW7 and the selected resistors; and the input from the Q6 side is applied to the negative

terminal of the meter.

However, when the 1st-digit frequency selector switch is in position 0 or 1 while the 2nd-digit switch is in

position 2 or 3, and also when the 1st-digit switch is in position <I while the 2nd-digit switch is in position 5 or

6, the La frequency is 10 MHz higher than the dialed-in frequency. For these combinations of 1st-digit and 2nd­

digit switch settings, the relay is energized and its contacts reverse the connections to the meter so that a high

input frequency will still produce a positive meter reading.

In the FM, CW, and CAL. positions of the function switch, the input to the meter is through specific range

resistors to provide fixed ranges of ±5 kHz, ±1.5 kHz, and ±1.5 kHz, respectively. Two diodes provide meter

protection in the event of overdrive.

* AU voltages in this discussion are with respect to ground.

4-23

Page 42: Cushman Model CE-3 FM Communication Monitor Manual, 1968

+20V

FP-RI

100 ~

R30 IK

R31 357

CONSTANT VA RI ABLE PERIOD PERIOD

COLL ) f 0/ ° 06 i ~ ~ - ----------- ----- --------­

IFREQUENCY I

L8 Y

'I' C26

= =

R43 IK

R44 200

R45 274

COLL Q9

EM.

fin 100kHz fin < 100 kHz fin> 100 kHz

x LJ1fLfl y nnru

I I I I I

UUlJUU

nnmrr TOP OF C23

TOP OF C26

Figure 4-11. FREQUENCY Meter Bridge Circuit, Simplified Schematic Diagram and Waveforms

4-24

Page 43: Cushman Model CE-3 FM Communication Monitor Manual, 1968

The voltage at pin 9 of the FREQUENCY meter board connector, which is proportional to LF. signal fre­

quency error, is also fed to the Modulator to control the frequency of the 10-MHz FM oscillator.

4.3.3 Audio Circuits. The waveforms in Figure 4-11 show how the voltage on the two capacitors changes when

the frequency being measured is not exactly 100 kHz. 1£ the incoming signal is frequency-modulated, the duty

cycle of the pulse trains at X and Y will vary at the modulation rate, causing a variation of average voltage at

X and Y at the modulation rate. This does not affect the meter reading because of the filtering effect of L7, L8,

C23, and C26.

As shown in Figures 4-10 and 6-16, the varying voltage (modulation) at the output of the low-pass filter is

fed to the Deviation Meter or Oscilloscope, whichever is plugged in. The audio signal is also fed through an

emitter follower, QlO, to the speaker volume control.

4.3.4 Signal-Level Detector. The plug-in Broadband Mixer and Preselectors contain a squelch detector which

produces a dc output proportional to the strength of the received signal at the output of the 1st LF. amplifier.

This dc signal is applied to a Schmitt Trigg'er (see Figures 4-10 and 6-16), which fires when the signal level at

the output of the 1st LF. amplifier is approximately 60 millivolts. When the Schmitt Trigger fires, it turns on

switching transistor Q8, which enables the frequency-error detector. When Q8 is turned on, it also lights SIG­

NAL LEVEL lamp FP-DSI to indicate that the signal level is high enough for reliable measurement. The Schmitt

Trigger remains fired and Q8 remains on as long as the signal amplitude remains above the critical level.

4.4 Signal Generating Circuits

Signals in the ranges of 20 to 80 MHz, 120 to 180 MHz, and 450 to 512 MHz are generated by miXing a CW or

FM 10-MHz signal with a signal from the Frequency Synthesizer. The Frequency Synthesizer output is deter­

mined by the settings of the frequency selector switches, as described in Section 4.1 and illustrated in the over­

all block diagram, Figure 4-1. The circuits involved in signal generation - the 10-MHz Modulator and the

Signal Generator Mixer - are described in the following sections.

4.4.1 Modulator (CH-A14). The purpose of the modulator is to frequency-modulate the 10-MHz input to the

Signal Generator Mixer when the CE-3 is operating in the FM signal generation mode. The modulating signal

can be either a I-kHz input from the Frequency Synthesizer or an external signal in the range of 60 Hz to 20 kHz.

Figure 6-17 is the Modulator schematic diagram.

The 10-MHz FM signal is generated by a voltage-controlled oscillator, Q3. Its frequency is set to 10 MHz,

as indicated by zero error on the FREQUENCY meter, by the FM CAL. control, R4, located on the front panel

concentrically with the DEV. ADJ. control. The FM CAL. control adjusts the voltage applied to the Varicap in

the frequency-determining portion of the oscillator circuit. Once set to exactly 10 MHz, the oscillator frequency

is controlled by the AFC voltage from the frequency-error detector circuit in CH-A20.

The internal I-kHz modulating signal from the Reference Divider in the Frequency Synthesizer is amplified

by ICl, which is turned on when the FM MOD. switch is in the INT. position; the signal is then fed to the DEV.

ADJ. potentiometer. When the FM MOD. switch is in the EXT. position, the external signal applied through the

front-panel EXT. connector is fed to the DEV. ADJ. potentiometer. This potentiometer adjusts the modulating

signal level to the Varicap in the FM oscillator, and thus adjusts the amount of deviation of the generated 10-MHz

signal. The output of the FM oscillator is amplified by Q4, Q5, and Q6.

When the front-panel function switch is in the CW or CAL. positions, FM oscillator Q3 and amplifier Q4 are

turned off by removing their 20-volt supply, and the 10-MHz harmonic generator in the Frequency Synthesizer is

turned on to supply an unmodulated lO-MHz signal through Q5 and Q6 to the Modulator output.

4-25

Page 44: Cushman Model CE-3 FM Communication Monitor Manual, 1968

In the FM and CW signal generation modes, the Modulator output is fed through the signal generation attenu­

ator to the Signal Generator Mixer. The attenuator is calibrated in terms of voltage level at the output of a 20-db

pad connected to the SIGNAL GEN. OUT connector. For a given 10-MHz input, slightly different output voltages

are produced by the Signal Generator Mixer for the three different FM bands. Therefore, the Modulator output

level must be slightly different for each of these bands so that the attenuator readings will be accurate. This is

accomplished by using a different bias on Q6 for each position of the first-digit frequency selector switch. The

biases are individually set by variable resistors R34, R36, and R38 in conjunction with factory-selected resistors

R35, R37, and R39.

The tuned circuit of the 10-l\1Hz FM oscillator (Q3) consists of C19, C20, L2, C2l, C22, and Varicap CRI in

series with C17. The capacitance of the Varicap varies with the voltage applied across it. This voltage is from

two sources: the AFC voltage from the frequency-error detector, as adjusted by the FM CAL. control; and the

modulating voltage from the Frequency Synthesizer or an external source through the DEV. ADJ. control.

Transistors Ql and Q2 comprise an audio amplifier for feeding the I-kHz signal from the Frequency Synthe­

sizer to the 1 KHz OUT connector when the FM MOD. switch is in the INT. position.

4.4.2 Signal Generator Mixer (CH-A 7). The purpose of the Signal Generator Mixer is to mix the Frequency

Synthesizer output with 10 MHz to produce an output whose frequency is indicated by the frequency selector.

This is necessary because the Frequency Synthesizer output is displaced 10 MHz from the frequency selector

reading in order to produce a 10-MHz LF. for the frequency measurement mode of operation.

As shown in the schematic diagram, Figure 6-18, the Signal Generator Mixer is an untuned crystal type. In

the CW signal generation mode, the 10-MHz input is from the Frequency Synthesizer via the calibrated attenuator.

In the FM signal generation mode, the 10-MHz input is from the Modulator via the attenuator.

4.5 Power Supplies (CH-A19, RP-Al)

The CE-3 contains three power supplies, providing regulated outputs of +5 volts, +20 volts, and -12 volts.

Figures 6-19 and 6-20 are the schematic diagrams. Three separate windings on the power transformer supply

ac power to the three bridge rectifiers (Figure 6-19). The output of each rectifier is fused at 1 ampere, filtered

by a single capacitor, and fed to a regulator. In addition, the unregulated l2-volt output is used to operate the

coaxial relay.

The power transformer is located at the right rear of the cabinet, and the rectifiers and filter capacitors

are on board RP-A1 at the left rear of the cabinet. All three regulators are on plug-in board CH-A19.

4.5.1 +5V Regulator. This is a conventional series regulator (see Figure 6-20). The sampling element consists

of R14, R16, and voltage adjust potentiometer R15. Q9 is the comparison element and Zener diode CR4 is the

reference element; voltage for the reference element is supplied by the +20V regulator. Q7, compound-connected

with CH-Q2, is a current amplifier to provide enough base current to CH-Q2 to maintain the required load

current.

The circuit consisting of Q8, CR3, and R 11 provides overload protection. If the load current increases above

about 1.5 amperes, the voltage drop across R11 will cause Q8 to saturate, reducing the current at the base of Q7

to a value which will limit the current through CH-Q2 to a safe value. The Zener diode across the regulator out­

put provides overvoltage protection.

4.5.2 +20V and -12V Regulators. The circuits of these two regulators (Figure 6-20) are identical except for

component values; therefore, only the +20V circuit will be described. This is a conventional series regulator.

The sampling circuit consists of R8, R 10, and voltage adjust potentiometer R9. The comparison element consists

4-26

Page 45: Cushman Model CE-3 FM Communication Monitor Manual, 1968

of the differential amplifier, Q5 and Q6, plus dc amplifier Q4; and the reference element is CR2. The dc ampli­

fier, Ql, and the series regulator transistor, CH-Ql, are compound-connected as described for the +5V regula­

tor. Field-effect transistor Q2 serves as a constant-current source. The overload protection circuit consisting

of Q3, R3, and CR 1 operates in the same way as the overload protection circuit in the +5V regulator.

4.6 Miscellaneous Circuits

4.6.1 Decimal and MHz/kHz/Hz Light-Switching Circuits (CH-A5). This board turns on the proper decimal

light in the frequency display, and also turns on either the MHz, kHz, or Hz light to indicate the units in which

the frequency is being displayed.

Figure 6-21 is the schematic diagram of CH-A5, and Figure 4-12 is a functional diagram showing inter­

connections with switches and lights. An 8.5-vac input from transformer T 1 across TP6 and TP9 is rectified

by CRI to produce 12 volts dc across Cl. Assume first that the Model 308 Decade Frequency Divider is not

plugged into the CE-3. The base-emitter junction of Ql will be forward biased, since the base does not have a

connection to the negative terminal of the 12-volt power supply; therefore, Ql saturates, switching on Q2, which

turns on the MHz light in its collector circuit. Since Q2 is on, it provides a connection to the negative terminal

of the power supply for the wiper of switch SWl. If 1st-digit switch SWI is in the 0, 1, or 4 position, the 3rd

decimal light will have a negative return and so will come on. If the 1st-digit switch is in the I.F. position, the

wiper of the LF. FREQUENCIES range switch will have a negative return. If the range switch is in the 0-4 MHz

position, the 2nd decimal light will come on; if the switch is in the 4-40 MHz position, the 3rd decimal light will

come on.

When the Model 308 Decade Frequency Divider is plugged in, the base of Ql is returned to the negative

terminal of the 12-volt power supply; thus, Ql and therefore Q2 will be turned off, and there will be no connec­

tion to power-supply negative at TP4. Thus, the MHz light will be off, and the 1st-digit and I.F. FREQUENCIES

range switches will be ineffective. Selection of both the decimal and unit lights will be made by the switch on

the Model 308.

Operation of these circuits are summarized in the following tabulation:

Table 4-4. Decimal-Light and Unit-Light Switching

Condition Lights Turned On

Status of Model 308 Decade Freq. Divider

1st-Digit Switch

Position

LF. Range Switch

Position

Model 308 Switch

Position

Decimal Point* Units

Not plugged 0, 1, or 4 -­ -­ 3rd MHz in.

I.F. 0-4 MHz - - 2nd MHz

LF

4-40 MHz -­ 3rd MHz

Plugged in. - - -:- 10 4th kHz

-­ - - -:- 100 3rd kHz

- - -­ -:- 1000 5th Hz

* The decimal-point number refers to the digit just to the left of the decimal point in the display; e.g., the 3rd decimal point light is between the 3rd and 4th digits.

4-27

Page 46: Cushman Model CE-3 FM Communication Monitor Manual, 1968

.~

• •

• •

:I:

~ i '" ....

N

"' , 0'" Q. c " ... N

:I:

::c ~ ....

~ "'0 ,'" ~ -

• 0:

•'":I: '"­'" ~'"-'

~

... :::

> N

.... ,

I1J1 Figure 4-12. Decimal Light Switching, Functional Diagram

4-28

Page 47: Cushman Model CE-3 FM Communication Monitor Manual, 1968

4.6.2 Display-Light Flasher. If a frequency not covered by the CE-3 is accidentally dialed-in, the frequency

display lights flash on and off to warn the operator. The following tabulation gives the combinations of 1st and

2nd digits which will result in a flashing display.

1st Digit 2nd Digit

° 0, 1, 8, 9

1 0, 1, 8, 9

4 0, 1, 2, 3, 4

5 2,3,4,5,6, 7, 8, 9

LF. 4, 5, 6, 7, 8, 9

The circuit to produce the flashing is shown in the schematic diagram, Figure 6-22, and in simplified form

below. The 1st-digit and 2nd-digit frequency selector switches are wired around the light flasher in such a way

that the flasher is shorted out for all correct combinations of 1st and 2nd digits. Incorrect combinations, how­

ever, unshort the flasher and caUSe the display lights to flash.

4-29

Page 48: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 5

MAINTENANCE

5.1 General

The Maintenance section is divided into two major subsections - calibration adjustments and trouble­

shooting. If alignment or adjustments other than those described in Section 5.2 are required, it is recommended

that the instrument or subassembly be returned to the factory in accordance with the instructions printed on the

last page of this manual.

Detailed instructions for placing the CE-3 in a particular mode of operation are not included in Section 5.2

and 5.3 because they are given in Section 3. The instrument should be warmed up for at least 30 minutes before

any calibration is attempted. Covers must be removed to make most of the tests and adjustments described.

5.1.1 Access. Components in the top part of the instrument can be reached by removing the two L-shaped side

covers. Each cover is secured to the cabinet by six screws. The speaker must be disconnected before the

right-hand cover can be completely removed.

The VCO and all of the plug-in circuit boards become accessible by removing the bottom cover. To do this,

stand the instrument on its rear panel, and remove the eight screws holding the bottom cover to the cabinet.

5.1.2 Subassembly Removal. A board extractor and an extender board are shipped with the instrument in a

plastic bag. TO REMOVE A BOARD AFTER THE BOTTOM COVER HAS BEEN TAKEN OFF, FIRST MAKE SURE

POWER HAS BEEN DISCONNECTED FROM THE BOARDS BY CHECKING TO SEE THAT THE SPEAKER VOL­

UME SWITCH IS IN THE OFF POSITION. Then hook the extractor into the holes in the board, and pull out the

board. If the board is to be operated outside the cabinet so that measurements or adjustments can be made on it

while it is energized, plug the extender board into the socket from which the board has been removed, and then

plug the board into the extender.

If the VCO box must be removed, first unplug the four coaxial cables, then loosen the two screws in the

U-joint so that the U-joint will remain on the VCO rather than on the main shaft. Remove the three screws

holding the VCO box to the chassis, and slide the VCO box off the shaft. When reinstalling the VCO box, be sure

that the index mark on the U-joint points to the same number on the VCO box that the 3rd-digit knob indicates on

the front panel.

The model 302 Deviation Meter and the Model 301 Oscilloscope, which plug into the left-hand side of the

CE-3, are released for removal by turning a small knob behind the plug-ins on the rear panel of the CE-3. The

Model 303 Broadband Mixer and the Models 304, 305, and 306 Preselectors, which plug into the right-hand side

of the CE-3, are released for removal by turning a small knob on the front panel of the plug-ins.

5.1.3 Fuses. There are three regulated power supplies within the basic CE-3: +5 volts, +20 volts, and -12

volts. Each of the supplies has a fuse located inside the CE-3 cabinet on a printed-circuit board. The board is

mounted on the rear panel behind the Deviation Meter or Oscilloscope plug-in.

The +20-volt fuse is near the outside of the board, the -12-volt fuse is in the center of the board, and the

+5-volt fuse is toward the center of the instrument. If one of these fuses blows, the resistance between the

regulator output terminal and ground should be measured to make sure that there is not a short circuit. Table

5-1 gives the approximate resistance to chassis ground for each supply (or, in the case of the plug-ins, for the

load across each supply).

A separate ac fuse, located on the rear panel, can be replaced without removing the CE-3 side covers. Also,

a .2 amp slo-blo fuse for 115 vac input to the scope plug-in is mounted near the back connector in the scope

plug-in compartment of the CE-3.

5-1

Page 49: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 5-1. Power Supply Resistance to Ground

+5V (green wire) -12V (orange wire) +20V (red wire)

Measured at

Res. (ohms)

Measured at

Res. (ohms)

Measured at

Res. (ohms)

CE-3 Monitor t (less plug-ins)

Pin 15 of RF plug-in recep­tacle

130Q-200Q* Pin 14 of RF plug-in recep­tacle

1400 Pin 17 of RF plug-in recep­tacle

44oo-480Q

Model 301 I Oscilloscope

Not used - - Pin 14 of connector

4.5K-7 .5K tt Pin 13 of connector

1.5K-1.8K*

Model 302 Deviation Meter

Not used - - Pin 14 of connector

8.2K-8.5K* Pin 13 of connector

1.7K

Model 303 Pin 15 of connector

3.5K* Pin 14 of connector

5000 Pin 16 of connector Pin 17 of connector

1.8K­2.4K* ttt

10K*

, Model 304 I

Pin 15 of connector

1.25K-50K* Pin 14 of connector

265Q Pin 16 of connector Pin 17 of connector

800Q

22K-30K*

Model 305 I

I

I

Pin 15 of connector

1.25K-50K* Pin 14 of connector

265Q Pin 16 of connector Pin 17 of connector

3.8K

25K-30K*

Model 308 Pin 15 of connector

460K-2K* Pin 14 of connector

2.9K-3.8K* Pin170f connector

3.9K-7.5K*

NOTE: All resistance readings taken with a Simpson 270 using RX 100 scale. All res. readings of modules taken with module removed from set.

* Depends on ohmmeter test-lead polarity.

tDial 120.000 MHz on frequency selector using RX-100 scale. Measure resistance to chassis of supply lines.

tt Resistance readings taken with "vernier" pot in mid position.

Itt Resistance readings taken with selectivity switch in "normal."

5.1.4 Test Equipment Required. The test equipment required for each calibration or adjustment is given at the

beginning of the description of the calibration or adjustment, and a list of test equipment required for trouble­

shooting the CE-3 is given in Section 5.3.

5.2 Calibration Adjustments

The internal controls mentioned in the following paragraphs are identified in the photographs of the interior

of the instrument, Figures 5-1 through 5-4.

5.2.1 Power Supply Voltages.

Test Equipment Required: DC voltmeter, 20,000 ohms-per-volt or higher sensitivity, 1% accuracy, +50v and -50v ranges (Simpson Model 270 or equivalent)

AC voltmeter (H.P. 400D or equivalent)

Adjustments for the supplies are located on the POWER SUPPLY REG. 's plug-in board in the lower chassis

of the instrument. Location of the board is shown on the bottom cover plate. Remove the board and plug' it into

the extender board, as described in Section 5.1.2.

5-2

Page 50: Cushman Model CE-3 FM Communication Monitor Manual, 1968

A3 A4 J5 J4 A5 KI

A7 A6

Figure 5 -1. Right Front View of Monitor with Cover and Plug -Ins Removed

5-3

Page 51: Cushman Model CE-3 FM Communication Monitor Manual, 1968

A2J3 AI

J2

JI

Figure 5-2. Left Front View of Monitor with Cover and Plug-Ins Removed

5-4

Page 52: Cushman Model CE-3 FM Communication Monitor Manual, 1968

TB4

0512

0515

SW2

057

TBS 0511

0516

052

058 R7

059 053

0510 TBI

TB6

SWI

SW6

SW5 SWI3

J3 JI

R6

Figure 5-3. Back of ront Panel

5-5

Page 53: Cushman Model CE-3 FM Communication Monitor Manual, 1968

All, JII

AI2, JI2

AI3, JI3

AI4, JI4

A20, J20

AI9, JI9

A21,

AI8, JI8

!!ie=i~~J---A17, JI7

AI6, JI6

AIS, JI5

AIO, JIO

A9, J9

A8, J8

Figure 5-4. Bottom Interior View of Monitor

5-6

Page 54: Cushman Model CE-3 FM Communication Monitor Manual, 1968

NOTE

The regulated power supplies are set to within 0.5% of rated

output voltage at the factory and should not be adjusted un­

less a voltmeter having an accuracy of at least 1% is used.

a. Measure the -12-volt supply voltage (to chassis ground) at pin 14 on the female connector for the Broad­

band Mixer and Preselector plug-ins (orange wire). Adjust potentiometer R25 to give a reading of exactly 12.0

volts.

b. Measure the +20-volt supply voltage (to chassis ground) at pin 17 of the female connector for the Broad­

band Mixer and Preselector plug-ins (red wire). Adjust potentiometer R9 for exactly 20.0 volts.

c. Measure the +5-volt supply voltage (to chassis ground) at pin 15 of the female connector for the Broad­

band Mixer and Preselector plug-ins (green wire). Adjust potentiometer R15 for exactly 5.0 volts.

5.2.2 Master Oscillator Calibration.

Test Equipment Required:

Method 1: Sensitive receiver capable of receiving WWV on 10 MHz. Receiver should be equipped with

a signal strength meter.

Method 2: A frequency counter with a crystal time base accuracy known to be at least 1 part in 107.

Method 1: Although this relatively simple technique is familiar to most technical people, a few of the basic

requirements for successful use of the WWV Izero-beat technique are covered here.

It should be understood that the crystal oven of each CE-3 has been aged for over a month before shipment,

during which time its stability has been carefully watched and recorded. Based upon this fact, we rate the in­

strument to have and keep 0.000075% frequency accuracy or better for at least six months. It is suggested,

however, that a check for frequency accuracy be made at least annually.

Technically speaking, the 0.000075% specification is not difficult with tOday's state of the art; however, any

adjustment of the glass piston capacitor trimmer, which allows shifting of the oscillator frequency, should be

carefully done. Keep in mind that the best time of the day for tests is during the hours which would be midday

between the WWV transmitter (currently located in Colorado) and the user's location. This timing avoids some

of the slight Doppler effect which might appear if sunrise or sunset occurred at either the user's location or at

the transmitter location.

When tuning the receiver, be certain to identify the station by its voice announcements. It is assumed that

you will pick a time when reception will be clear and relatively noise-free. Your receiver and the location and

orientation of the antenna will also play an important part.

As mentioned in this manual previously, it is advisable to keep the CE-3 plugged into a 115-volt ac source

at all times to ensure that the crystal and oven are at their correct temperature. If the unit has not been plugged

into ac power, do so and let the instrument operate for 30 minutes or more before starting the test.

For the test itself, while monitoring the WWV station, switch the CE-3 to the CW signal generating position.

In this position, 10 MHz will be present at the SIGNAL GEN. OUT connector. Using a BNC connector at this

point, bring the "hot" lead near the receiver antenna terminals. Connect a grounding lead between the CE-3 and

the receiver. It is recommended that the insulated "hot" lead be wrapped around the receiver antenna terminals

5-7

Page 55: Cushman Model CE-3 FM Communication Monitor Manual, 1968

at least once to give a few pFof coupling, which is normally adequate to get enough sig:1al from the CE-3 to the

receiver for making the test.

Advance the CE-3 SIGNAL GEN. ATTEN. controls while watching the signal strength meter. The meter

will rise as the control is advanced and the WWV signal will be "wiped out" if the control is advanced too far.

Set the control where it appears that neither signal is stronger than the other. By watching the signal strength

meter, you may observe a definite periodic beat which will indicate any error in the Master Oscillator frequency.

At this point, recognize that 0.000075% maximum allowable frequency error would amount to 7.5 Hz at 10 MHz.

If correction of the CE-3 oscillator is required, select a period of the WWV transmission when no tones or voice

announcements are heard. Use the following procedure.

On the right side near the rear of the instrument (as viewed from the front panel), you will see the crystal

oven. Just below the oven and projecting forward is the threaded screw of the crystal trimmer capacitor. Using

a slotted screwdriver (while observing the signal strength meter), adjust this s crew until the periodic swing of

the signal strength meter comes to a stop. By swinging through zero beat several times, the proper position for

the trimmer becomes apparent.

Method 2: Remove the cable marked D from the input to the 330-MHz harmonic generation container, and

connect the cable to the input of a frequency counter. It is imperative that the time base oscillator in the counter

be accurate to 1 part in 107 . The counter should indicate a frequency of 33.0 MHz. If the error indicated

by the counter exceeds 3 parts in 106, an oven or crystal malfunction should be suspected. The frequency of the

M8.ster Oscillator can be adjusted as described in the last paragraph of Method 1 above.

5.2.3 FREQUENCY Meter Range Calibration. This method uses the instrument's I.F. output to calibrate the

meter. It will provide sufficient accuracy if the CE-3 Master Oscillator has been calibrated. Before starting

the procedure, and with power off, adjust the mechanical zero of the FREQUENCY meter, if necessary.

a. Set the first-digit switch to I.F. and the function switch to CAL.

b. Zero the FREQUENCY meter with the CAL. red knob.

c. Turn the function switch to FREQ.-DEV. MEASURE.

d. Adjust the CE-3 for an I.F. output of 9.999 MHz.

e. Connect a cable from the I.F. FREQUENCIES OUTPUT connector to the ANT. connector.

f. Turn the I.F. LEVEL control fully clockwise.

g. Set the FREQUENCY meter range switch to ± 1.5 kHz.

h. The meter should read minus (.. ) 1.0 kHz on the lower scale. If it does not, adjust potentiometer R6 on

the FREQUENCY meter printed-circuit board (FP-A 1) located on the rear of the FREQUENCY meter.

i. Set the meter range switch to ± 5 kHz.

j. Dial-in 9.995 MHz. The meter should indicate an error of minus (-) 5.0 kHz on the upper scale. If it

does not, adjust potentiometer R4 on the printed-circuit board.

k. Set the meter range switch to ±15 kHz, and dial-in 9.985 MHz. If the indicated reading is not minus (-)

15 kHz, adjust potentiometer R2 on the printed-circuit board.

1. Meter tracking and discriminator linearity can be checked on the ±1.5, ±5, and ±15 kHz ranges by

dialing-in 10.001, 10.005, and 10.015 MHz, respectively.

5-8

Page 56: Cushman Model CE-3 FM Communication Monitor Manual, 1968

5.2.4 Signal Generation Output Levels.

Test Equipment Required: RF Generator (HP 608 or equivalent)

Receiver capable of operating at the frequencies to be checked and having a 50-ohm input impedance.

The output levels are calibrated by the signal substitution method, in which a signal from a calibrated

source is fed into a metered receiver and the meter reading noted. The CE-3 is then substituted for the cali­

brated source and the output of the CE-3 is adjusted until the meter reads the same as before. The receiver

should be metered at a point where saturation is least likely to occur (e.g., the first or second LF. stage) and

the RF input signal should be low level (preferably 0.5 to 1.0 microvolt).

a. Select a frequency at which the adjustment is to be made. This frequency must be within the capabili­

ties of the external receiver, the external signal generator, and the CE -3.

b. Set the signal generator to this frequency by monitoring it on the CE-3. (When using frequencies higher

than 100 MHz the signal generator must be tuned very slowly because the bandwidth of the CE-3 is quite narrow

and there is some delay in receiver "turn-on;" the higher the signal generator output level, the less the delay).

c. Set the sig'nal generator output to 0.5 microvolt.

d. Feed the signal generator output into the receiver and note the receiver meter reading. (Be cautious

of signal generator frequency drift.)

e. Adjust the CE-3 to generate a CW signal on the receiver frequency at a 0.5-microvolt level.

f. Disconnect the signal generator from the receiver, and connect the output of the CE-3 to the receivel'

through the 20-db pad furnished with the CE-3.

g. If the receiver meter does not read the same as in step d, adjust the appropriate control on the Modu­

lator board in the CE-3. The control to adjust depends on the frequency band. The cnntrols are marked on the

right side of the chassis near the front panel (see Figure 5-1). Typical calibration frequencies are as follows:

Nominal Frequency Frequency Band for Calibration

20 - 80 MHz 35 MHz 120 - 180 MHz 155 MHz 450 - 512 MHz 460 MHz

5.2.5 20-db Fixed AttenuatoI'. A 20-db pad is shipped in the front door of the CE-3. The CE-3 attenuators are

calibrated in terms of signal voltage at the output of the 20-db pad. Therefore, the pad must always be used

when it is desired to read signal output levels directly from the attenuators. The purpose of the pad is to pro­

tect the instrument against accidental keying of a transmitter directly into the CE-3. If a transmitter is keyed,

it will normally burn out the RF fuse in the pad; depending on power, it could also burn out one or more of the

resistors in the pad.

It is essential that the pad attenuate the signal precisely 20 db. If there is any doubt about the condition of

the pad, check it as follows: Feed a I-microvolt signal directly from the signal generator into the receiver, and

note the receiver meter reading; then feed a 10-microvolt signal through the pad into the receiver. The two

receiver meter reading's should be within 0.5 db.

Repair of the pad is quite simple. Remove the single screw and slide the cover off the pad. A schematic

diagram inside the pad shows values of the components. The resistors are standard 5% values available from

most electronic parts stores. The fuse is a special RF fuse (Bussman ~ nd may be purchased from

a parts house or is available from Cushman Electronics. The Cushman part number for a package of 10 fuses is

7040-0018. The price is $8.00 for a package.

5-9

Page 57: Cushman Model CE-3 FM Communication Monitor Manual, 1968

5.2.6 Modulator Center Frequency Adjustment.

a. Adjust the CE-3 for operation in the FM mode.

b. Mechanically center the FM CAL. control with the DEV. ADJ. control fully CCW.

c. Adjust the FM oscillator coil on the 10 MHz Modulator board (see Fig'ure 5-4) for a zero reading on

the FREQUENCY meter.

5.3 Troubleshooting

Table 5-2 is a troubleshooting chart which should, in most cases, enable the service man to isolate the

cause of a malfunction to a particular subassembly or (in the case of the VCO phase-lock loop) to a few sub­

assemblies. If the symptoms point to a malfunction on a particular printed-circuit board, the most practical

procedure is to replace the board with one known to be good. If the trouble can be isolated only to a group of

boards, the suspected boards should be tried, one at a time, in an operating CE-3, if such is available. Field

repair of printed-circuit boards, particularly those containing integrated circuits, is not recommended. Boards

suspected of malfunctioning should be returned to the factory for inspection and repair in accordance with the

instructions printed on the last page of this manual.

When a malfunction develops, there is usually some external evidence, such as the failure of a panel meter

or lamp to indicate, or a lack of signal output. Such troubles are listed in the left-hand column of Table 5-2.

If one of the checks recommended for the trouble results in an abnormal indication, check the subassembly

listed in the "Refer to" column.

As an example of the use of Table 5-2, assume that the CE-3 has been working OK in the frequency­

measurement mode, but when the function switch is changed to one of the SIG. GEN. positions, no signal is

obtained at the output of the 20-db pad on the end of the test cable. Table 5-2 gives three checks for this mal­

function. Assume that the fuse in the pad is checked with an ohmmeter and found to be OK. Then the output of

the coaxial cable from the coaxial relay to the Signal Generator Mixer is checked and found to be zero. Since

the CE-3 operates satisfactorily in the frequency-measurement mode, the Frequency Synthesizer output is

apparently OK; so the trouble is probably in the coaxial relay or in the cable from the relay to the Signal Gen­

erator MiJ<:er. The signal voltage at the bottom connector of the coaxial relay is checked and found to be 63 mv.

Therefore, the trouble must be in the connecting cable.

If the observed symptoms do not fit a "trouble" described in the first column of Table 5-2, note what hap­

pens when the function switch and frequency selector switches are rotated to different positions. It should then

be possible to match the symptoms thus obtained with one of the troubles listed.

Since the signal levels at the input to the Signal Generator Mixer and at the output of the Frequency Synthe­

sizer may give important clues to the source of a trouble, procedures for measuring these levels are given in

Sections 5.3.1 and 5.3.2.

The following test equipment is required for troubleshooting the CE-3:

DC voltohmmeter, 20,000 ohms-per-volt or higher sensitivity, 1% accuracy (Simpson Model 270 or equivalent)

RF voltmeter, 1GHz (Boonton Model 91DA or equivalent)

5.3.1 Signal Generator Mixer Input Levels. As shown in the overall block diagram, Figure 4-1, two inputs are

supplied to the Signal Generator Mixer - a 10 MHz signal from the Frequency Synthesizer through the attenua­

tor, and a signal in the range of 460 to 502 MHz from the Synthesizer through the coaxial relay. The input from

5-10

I

Page 58: Cushman Model CE-3 FM Communication Monitor Manual, 1968

the coaxial relay may also contain either a 330-MHz or a 430-MHz signal, depending on the setting of the 1st­

digit frequency selector switch (see Figure 4-2).

To check the level of the 10-MHz input, proceed as follows:

a. Set the SIGNAL GEN. ATTEN. controls for maximum output (range switch to X100 and MICROVOLTS

control fully clockwise).

b. Turn the function switch to CW.

c. Disconnect the coaxial cable from the top connector of the Signal Generator Mixer (see Figure 5-1).

d. With an RF voltmeter terminated in 50 ohms, measure the voltage at the cable output. It should be

approximately 50 millivolts.

The level of the input from the coaxial relay is checked as follows:

a. Turn the function switch to CW.

b. Disconnect the coaxial cable from the rear connector of the Signal Generator Mixer (see Figure 5-1).

c. With an RF voltmeter terminated in 50 ohms, measure the voltage at the cable output. It should be

between 50 and 75 millivolts.

5.3.2 Frequency Synthesizer Output Level. The Frequency Synthesizer output to the RF plug-in (Broadband

Mixer or one of the Preselectors) is a signal in the range of 460 to 502 MHz. It may also contain a signal having

a fixed frequency of 330 MHz or 430 MHZ, depending on the setting of the 1st-digit frequency selector switch.

To measure the level at the coaxial relay, proceed as follows:

a. Disconnect the coaxial cable between the coaxial relay and the RF plug-in at the BNC connector on the

top of the coaxial relay (see Figure 5-1).

b. Turn the function switch to the FREQ.-DEV. MEASURE position.

c. Turn the 1st-digit switch to "4".

d. With an RF voltmeter terminated in 50 ohms, measure the voltage at the BNC connector on top of the

coaxial relay. It should be between 50 and 75 millivolts.

e. Disconnect the "E" cable from the 460-502 MHz Filter (see Figure 5-2).

f. Set the 1st-digit switch to "0" or "1".

g. With an RF voltmeter terminated in 50 ohms, check the voltage at the top connector of the coaxial

relay. It should be between 30 and 75 millivolts.

5.3.3 VCO Phase Lock. In normal operation, the VCO is phase-locked with the Reference Divider by means of

the closed loop consisting of the VCO, the -:- N Counter, the Sample and Hold circuits, and the Phase Detector

(see Figure 4-2). If the VCO loses lock, as evidenced by the UNLOCKED light coming on, the most probable

cause is a malfunctioning of one of these boards within the loop, or a malfunctioning Master Oscillator board.

The only practical method of troubleshooting a loss of phase lock is to substitute these boards, one at a time,

into a working CE-3.

An out-of-lock condition could also be caused by mechanical misalignment of the VCO switch with the 3rd­

digit front-panel switch. Alignment can be checked by turning the 3rd-digit switch to "0" and observing whether

the mark on the VCO shaft is in line with the mark on the retaining nut.

5-11

Page 59: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 5-2. Troubleshooting Chart

Trouble Check Normal

Indication Refer to

Entire CE-3 in- Output of +20V -12V and (See Sec. 5.2.1) Fuses on rear-panel perative except for +5V regulators. printed-circuit board dial lights. (see Sec. 5.1.3).

Meters inoperative. See that Remote Meter switch on rear panel is in the INT. position.

CE-3 inoperative in the Frequency Synthesizer (LO) 50-75 millivolts Coaxial relay. FREQ.-DEV. MEASURE input to Signal Generator (see Sec. 5.3.1) mode, but OK in the CAL. Mixer (see Fig. 5-1). and SIG. GEN. modes.

Mixer diode in RF plug-in. (See Broadband (See Broadband Mixer Mixer or Pre- or Preselector manual). selector man­ual)

CE-3 inoperative in the Frequency Synthesizer (LO) (See Sec. 5.3.2) Frequency Synthesizer. FREQ.-DEV. MEASURE output. mode and SIG. GEN. mode, but OK in the CAL. mode.

CE-3 inoperative in all Test points TP-1, TP -2, and 4.2V, 3 MHz, 255 Master Oscillator board positions of function TP-3 on Master Oscillator nsec pulse, TP-1. CH-A17. switch. board CH-A17. 2.8V, 1 MHz, 25

nsec pulse, TP-2. 3.8V, 1 MHz, 330 nsec pulse, TP -3.

CE-3 inoperative in SIG. Fuse in 20-dB pad. See Sec. 5.2.5 GEN. mode, but OK in FREQ.-DEV. MEASURE mode.

Frequency Synthesizer (LO) input to Signal Generator Mixer (see Fig. 5 -1) .

50-75 millivolts (see Sec. 5.3.1)

Coaxial relay.

Mixer diode in Signal 50 ohms for- Signal Generator Mixer Generator Mixer. ward resistance; (CH-A7)

200K ohms re­verse resistance.

CE-3 inoperative in CW 10-MHz input to Modulator 400 mv. Master Oscillator board signal generation mode, board CH-A14 from Mas­ CH-A17. but OK in FM signal gen­ tel' Osc. board CH-A17. eration mode.

CE-3 inoperative in FM CH-A14 board. signal generation mode, but OK in CW signal generation mode.

UNLOCKED light on, Output of -12V regulator. -12 volts (see Fuses on rear-panel SIGNAL LEVEL light on, Sec. 5.2.1). printed-circuit board FREQUENCY meter de­ (see Sec. 5.1.3). fleeted full scale.

UNLOCKED light on in Try substituting the Clock some positions of 6th­ & Decade No.1 board digit switch. (CH-A12) in a working CE-3.

UNLOCKED light on in Try substituting the Decade some positions of 4th­ No.2 & 3 board (CH-A13) digit & 5th-digit switches. in a working CE-3.

5-12

Page 60: Cushman Model CE-3 FM Communication Monitor Manual, 1968

Table 5-2. Troubleshooting Chart (Continued)

Trouble

UNLOCKED light on in some positions of 3rd­digit switch.

UNLOCKED light on in some positions of 2nd­dig'it switch.

UNLOCKED lig'ht blinks slowly (about once per second).

UNLOCKED light on, but CE-3 functions OK.

UNLOCKED light on at all frequencies.

SIGNAL LEVEL light on and FREQUENCY meter reading full scale -­ func­tion switch in FREQ.­DEV. MEASURE, no signal applied.

SIG AL LEVEL light on and FREQUENCY meter reading full scale - func­tion switch in CAL. or CW position.

Check

Try substituting the Decade No.4 & 5 board (CH-All) in a working CE-3.

Try substituting the Decade No.4 & 5 board (CH-All) in a working CE-3.

Try substituting the Sample & Hold board (CH-A10) in a working CE-3.

Try substituting' the Refer­ence Divider & Phase Detector board (CH-A9) in a working CE-3.

(See Sec. 5.3.3)

Squelch adjustment. (See the manual for the RF plug-in being used.)

Remove the 2nd IF & Dis­criminator board (CH-A20) and measure RF voltage at pin Y of its connector.

Normal Indication Refer to

100 mv at 9.9 9.9 MHz Filter and MHz. 0-4 MHz Signal Gen.

board (CH-A8).

5-13

Page 61: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 6

SCHEMATICS AND PARTS LIST

REFERENCE DESIGNATORS

A assembly RP rear panel B board P plug C capacitor Q transistor CR diode R resistor DS device signaling (lamp) Hz hertz E misc. electronic part RT thermistor F fuse SW switch FIL filter T transformer J jack TB terminal board K relay TP test point L inductor, RF. choke V vacuum & display tubes M meter X crystal CH chassis SCR silicon controlled rectifier FP front panel LS speaker

ABBREVIATrONS

Amp amperes N nano (10 -9) AFC Ampl BP

automatic frequency control amplifier bandpass

NC N/cNlo

not connected normally closed normally open

CCW counter-clockwise NPO negative positive zero Cer ceramic NRFR not recommended for field Coef coefficient replacement Com common P peak Comp Conn

composition connector

PC pF

printed circuit picofarads - 10- 12 farads

CRT CW

cathode-ray tube clockwise

PIV plo

peak inverse voltage part of

DepC deposited carbon Poly polystyrene or polyester Electro electrolytic Porc porcelain Encap encapsulated Pos position(s) EXT F

external farads

Pot pip

potentiometer peak-to-peak

Ge germanium Rect rectifier GRD ground(ed) RF radio frequency H henries S-B slow-blow IF intermediate frequency Semi semiconductor Incd incandescent Si silicon lliT internal Ta tantalum k kilo - 1000 Tog toggle Lin linear Tol tolerance Log logarithmic Trim trimmer LPF m M

low pass filter milli - 10- 3 meg - 106

TYP Il V

typical micro - 10- 6 volts

MFLM metal film Var variable MFR Minat

manufacturer miniature

VDCW wi

dc working volts with

Mom momentary W watts My "mylar" ww

w/o wirewound without

6-1

Page 62: Cushman Model CE-3 FM Communication Monitor Manual, 1968

SECTION 6

SCHEMATICS AND PARTS LIST

REFERENCE DESIGNATORS

A B C CR DS E F FIL ,I K L M ell I:P

Amp APe Ampl Ill?

CW er

Coef III

Cnmp lin

I1T W

DopC leetr

~lIcap

EXT I~

(,)

RD 1-1 IF In<.:d

r k

in g

LPF III

M MFLM MFR Minat Mom My

asscmbly boan1 capacitor diocle device siltilalilll~ (lamp) 11I18C. olcclrlJnic part fllsr rill!.: l'

jack J'('lily i1Ic111dor, 11 f', choke IIIl'lor dlUl:ll:i11:l frllill palll'l

a 1111'1'1'1''; :Julnmalil: trcquency control ;11 lip lifi('r Ilill1dlXI "/lulIll'r-I'luckwisc ,', ramie I'C)[ rr Idl'1I1

quclley

RP P Q R Hz RT SW T TB TP V X SCR LS

ABBREVIA TIONS

N NC N/C N!O NPO

{F'R

I' P pi' pry pili I'oly l"ll'C

PfI!l

Put PIP Reel HF S-B Semi Si Ta Tog Tal Trim TYP Il V Val' VDCW wi W ww w/O

I'Nlr panol plub transJl>lur rcsisLIJ!' hurt? thcrnlltltor switch tralisfol'lllCL' termillal board test poi lit vacuum & displl.lY (ubet! crystal silicon cOlltrolled rCl;llril-l' speaker

nano (10 -9) not connected normally closed normally open negative positive zero not recommended for field replacement pcak prillted drcllil pit'llfarud!> - 10- 12 farad:; IJI';'k Illv,'r".,' v(l[la" pall "I JllJlyMlyrftlH ur )lolycstf'r IJIIJ'~'IJ:1I11

JlIlS It "Ill( 1'"11'lIllulIl' I,·,' lwnk-lfl-Ih{lk rct:lilll'r radio l'requcllcy slow-blow semiconductol' silicon tantalum toggle tolerance trimmer typical micro - ]0- 6 volts variable de working volts with watts wirewound without

6-1

Page 63: Cushman Model CE-3 FM Communication Monitor Manual, 1968

- -- -

C/E STOCK NO. MFR.

1066-1015 Alien - Bradley 1066-1015 Allen - Bradley 1066-1035 Allen - Bradley 1066-5615 Allen-Bradley 1066-3925 Allen - Bradley

1066-5615 Allen - Bradley 1066-1035 Allen - Bradley 1066-1035 Allen - Bradley 1066-3325 Allen - Bradley 1066-3925 Allen - Bradley

1066-3925 Allen - Bradley 1066-3325 Allen-Bradley 1066-1035 Allen - Bradley 1066-1035 Allen-Bradley 1066-3925 Allen-Bradley

1066-1035 Allen - Bradley 1066-1035 Allen - Bradley 1066-3925 Allen-Bradley 1066-5625 Allen- Bradley 1066--5625 Allen-Bradley

1066-3925 Allen - Bradley

CKT. REF.

CRI CR2 CR3

LI L2 L3 L4 L5

L6 L7 L8 L9 LlO

Ll1 L12 L13

Ql Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9

IC 1 .IC2 IC3

Rl R2 R3 R4 R5

R6 R7 R8 R9 RIO

I I DESCRIPTION

IDIODES

Si, Zener 6.8V, IN957 Si, SD-l Si, IN3064 I

COILS I RF Choke, 680 IJH ±5% RF Choke, 220 J-LH ±5% RF Choke, 220 J-LH ±5% Val' Inductor, .19-.21 J-LH Val' Inductor, .50-.75 J-LH I Val' Inductor, .19-.21 J-LH Val' Inductor, .50-.75 J-LH Val' Inductor, .19-.21 J-LH I RF Choke, 220 IlH ±5% Val' Inductor•. 19-.21 tlH

Val' Inductor, .i~I-.21 lIB RF Choke, 220 /III iS1l RF Choke, 220 I' II nr:"

TRANSISTOnS

Si, NPN, 2N35G:l Si, PNP, 2N4121 Si, NPN. 2N~15G:~ ISi, NPN, 2N:l5G:J Si, PNP, Tli:i37

Si, NPN, 2N3563 Si, PNP, TIS37 Si, PNP, TlS37 Si, PNP, TIS37

I INTEGRATED CIRCUITS

TTL Dual Flip-Flop, SN7476N RTL Buffer, U8A-9900-28X ITTL NAND Gates, SN7400

RESISTORS ,I Comp, 10k ohm ±5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 1.5k ohm ±5%, 1/4W Comp, 2.2k ohm ±5%, 1/4W Comp, 10k ohm ±5%, 1/4W

Comp, 27k ohm ±5%, 1/4W Comp, 680 ohm ±5%, 1/4W Comp, 1.5k ohm ± 5%, 1/4W Comp, 1.2k ohm ±5%, l!4W Comp, 220 ohm ±4%, l/4W

C/E STOCK NO. 1\iIFI1. CKT. FREF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

1281-0007 Motorola Cl Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 Erie 1281-0023 Diodes Inc. Poly, 0.0012 J-LF ± 10%, 100V C2 1008-00IG Sprague1281-0013 Transitron C3 Cer, 0.05 J-LF +80% -20%, 25V 1005 -0014 Erie

C4 Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 \ Erie Poly, 0.0027 J-LF ±1o%, 100V 1006-000!1C5 Sprague

C6 Cer, 0.05 J-LF +80% -20'l>, 25V 1005-0014 Erie 1585-0023 Delevan C7 Cer, 0.05 J-LF +80% -2~, 25V 1005-001 Erie 1585-0018 Delevan C8 Mica, 180 pF ±5%, lQOV 1002-000!i Elmenco 1585-0018 Delevan Cer, 0.05 liF -1-8011 -2<Y{" 2WC9 1005-0014 El'ie 1596-0010 TRW CI0 Elect., 15 IIF, GV 1013-000 Sp;rague1596-0011 TRW

Cl1 1002-002 ElrnencoMica, 91 pf .!i '" IOOV 1596-0010 TRW C12 Elc:d., 15 IJ ro, CV 1013-0UO Spl'aguc1596 -0011 TRW C13 Mit-a. !I( pF IOOV 1002-(10 Ell1llweo 1596-0010 TRW C14 l'r. O.Of, II I ;II -'l.rf' , 25V 1005-0111 Edt: 1585-0018 Delevan C15 C"I'. I)'O~1 jd' IRQ' ·')0'.2fiV 1005-0014 Ed"1596-0010 TRW

CIG 1005-0014 I~ri 1596-0010 TRW CI7 1002 -OOS:l ~ Itl1enco 1585-0018 Delevan CII! 1005 -004:1 Erie 1585 -0018 Delevan e19 100!i-()OI4v Erie

C20 1002 -()03:~ Elmenco

C21 Mit-a. 10 pF 15%, 100V 1002-001 Elmenco C22 'cr, 0.05 {IF +80% -20~.1 .. 25V 1005~OOI Erie

1272-0022 Fairchild C23 cr, 0.05 IlF +80% -20'41. 2riV 1001l-(}1I1 rie 1272-0023 Fairchild C24 Cer, 0.05 J-LF +80% -20'';" 25V IOO!;·UI11·1 Erie 1272-0022 Fairchild C25 Cer, 0.05 J-LF +80% -2o'r,. 2!iV lolb 1101 Erie 1272-0022 Fairchild

T.!.1271-000:3 C26 Cer, 0.05 J-LF +80% -20";,. 25V Erie C27 Mica. 390 pF ± 5%, 100V Elmenco

1272-0022 Fairchild C28 Cer, 8.2 pF ±.25 pF, 250V Eric1271-0003 T.!. C29 Mica, 390 pF ±5%, 100V Elmenco 1271-0003 T.l. C30 Mica, 33pF ±5%, 100V Elmenco 1271-0003 T.!.

C31 Cer, 0.05 J-LF +80% -20%, 25V 10011 0111-1 Erie C32 Cer, 0.05 J-LF +80% -20%, 25V 111115 00 I Erie C33 Cer, 0.05 J-L F +80% -20%, 25V 100f, onll Eric C34 Mica, 390 pF ±5%, 100V 1002-11U:I:l Elmenco

2025-0005 T.!. C35 Cer, 8.2 pF ±.25 pF, 250V 1005-0043 Erie2025-0011 Fairchild

T.!.2025-0003 C36 Cer, 0.05 J-LF +80% -20%, 25V 100S·01l).} Erie C37 Cer, 0.05 IlF +80% -20%, 25V 1005-0014 Erie C3f1 Cer, 0.05 J-LF +80% -20%, 25V 1005 -001" Erie C:1H Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 Er:e C40 Mica. 390 pF ±5%, 100V I 1002-003:1 Elmenco

1066-1035 Allen-Bradley 1066-1035 Allen-Bradley C41 Mica. 10 pF ±5%, 100V 1002-001U Elmenco1066 -1525 Allen-Bradley C42 cr. 0.05 I-iF +80% -20%, 25V 1005-0014 Erie 1066-2225 Allen-Bradley C43 l'l'. 0.05 II F +80% -20%, 25V 1005-0014 Erie1066 -1035 Allen-Bradley C44 Mica. :J90 pF j 511, 100V 1002-0033 Elmenco

C45 Miea, 10 pF .1.5"', 100V 1002-0016 Elmenco1066-2735 Allen - Bradley 1066-6815 Allen - Bradley C46 Cer, 0.05 1/ P +80% -20%. 25V 1005-0014 Erie1066-1525 Allen - Bradley 1066-1225 Allen - Bradley 1066-2215 Alien - Bradley

6-2

I

Page 64: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF.

R11 R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24 R25

R26 H27 R28 R29 R30

R31

DESCRIPTION

RESISTORS (Continued)

Comp, 100 ohm ±5%, 1/4W Comp, 100 ohm ±5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 560 ohm ±5%, 1/4W Comp, 3.9k ohm ±5%, 1/4W

Comp, 560 ohm ±5%, 1/4W Comp, 10k ohm ±5%, l/4W Comp, 10k ohm ±5%, 1/4W Comp, 3.3k ohm ±5%, 1/4W Comp, 3.9k ohm ±5'll, 1/4W

Comp, 3.9k ohm l'o1W Comp, 3.3k phm !1t~. l/~W

Comp,. 10k ohm , I '4W Comp,. IOI{ 'Ihn! 1 4W Comp, ~I.Ok '1ttl'll I I-lW

\,llllp. 101. uhm nmp, 10k Qhm ump, 3.:Jk whm

I1lp, !'i Jjk ohm Compo 5.Gk ohm

Comp, 1kohm ±5%. 1/4W

C/E STOCK NO.

1066-1015 1066~1015

1066-1035 1066-5615 1066-3925

1066-5615 1066-1035 1066-1035 1066-3325 1066-3925

1066-3925 1066-3325 1066-1035 1066-1035 1066-3925

1066-1035 1066-1035 1066-3925 1066-5625 1066-5625

1066-3925

MFR.

Allen- Bradley Allen - Bradley Allen-Bradley Allen - Bradley Allen - Bradley

Allen - Bradley Allen - Bradley Allen - Bradley Allen - Bradley Allen - Bradley

Allen-Bradley Allen-Bradley Allen - Bradley Allen-Bradley Allen - Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley A lien - Bradley

Allen-Bradley

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

DIODES

CR1 Si, Zener 6.8V, 1N957 1281-0007 Motorola CR2 Si, SD-1 1281-0023 Diodes Inc. CR3 Si, 1N3064 1281-0013 Transitron

COILS

L1 L2

RF Choke, 680 IlH ±5% RF Choke, 220 IlH ±5%

1585-0023 1585-0018

DelevaniIDelevan

L3 RF Choke, 220 IlH ±5% 1585-0018 Delevan L4 Val' Inductor, .19-.21 IlH 1596-0010 TRW L5 Val' Inductor, .50-.75 IlH 1596-0011 TRW

L6 Val' Inductor •. 19-.21 I1H 1596-0010 TRW L7 Val' Inductor•.50-.75 liH 1596-0011 TRW L8 Val' Inductor, .19-.21 IJ.H 1596-0010 TRW L9 L10

RF Choke, 220 fJ.H +5% Val' Inductor •. 19-.2 I /lH

1585-0018 1596-0010

Delevan!I TRW

L11 Val' Inductor .. 10-.21 I' H 1596-0010 TRW L12 RF Choke, 220 I'll 5 1585-0018 Delevan L13 RF Choke. 220 ILiI 5 1585-0018 Delevan

TRANSISTOH~

Q1 Si, NPN. 2N35ti3 1272 -0022 Fairchild Q2 St. PNP, 2N4121 1272 -0023 Fairchild Q3 Si, NPN,. 2N3liQ:J 1272-0022 Fairchild Q4 Si, NPN, 2N:l50:J 1272-0022 Fairchild Q5 Si, PNP. '1'IR37 1271-0003 T.r.

Q6 Si, NPN, 2!'l35G3 1272-0022 Fairchild Q7 Si, PNP. TIS37 1271-0003 T.r. Q8 Q9

St, PN'P, TIS37 Si, PNP. T1S:17

1271-0003 1271-0003 I

T.r. IT. r.

INTEGRATED CIRCUITS

IC 1 TTL Dual Flip-Flop, SN7476N 2025-0005 T.r. IC2 RTL Buffer, U8A-9900-28X 2025 -0011 Fairchild IC3 TTL NAND Gates, SN7400 2025-0003 T.r.

RESISTORS

R1 Comp, 10k ohm ±5%, 1/4W 1066 -1035 Allen - Bradley R2 Comp, 10k ohm ±5%, 1/4W 1066-1035 Allen - Bra dley R3 Comp, 1.5k ohm ±5%, 1/4W 1066-1525 Allen~Bradley

R4 Comp, 2.2k ohm ±5%, 1/4W 1066-2225 Allen - Bra dley R5 Comp, 10k ohm ±5%, 1!4W 1066-1035 Allen-Bradley

R6 Comp, 27k ohm ±5%, 1/4W 1066 -27 35

IAllen-Bradley

R7 Comp, 680 ohm ±5%, l/4W 1066-6815 Allen - Bradley R8 Comp, 1.5k ohm ±5%, 1/4W 1066 -1525 Allen-Bradley R9 Comp, 1.2k ohm ±5%, 1/4W 1066-1225 Allen - Bradley RIO Comp, 220 ohm ±4%, 1I4W 1066-2215 Allen - Bradley

i

CKT. REF.

C1 C2 C3 C4 C5

C6 C7 C8 C9 CIO

C11 C12 C13 C14 C15

C16 C17 C18 C19 C20

C21 C22 C23 C24 C25

C26 C27 C28 C29 C30

C31 C32 C33 C34 C35

C36 C37 C38 C39 C40

C41 C42 C43 C44 C45

C46

i

DESCRIPTIC

CAPACITORS

Cer, 0.05 IlF +80% -20%, 2 Poly, 0.0012 liF ±10%, 10C Cer, 0.05 IlF +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Poly, 0.0027 IJ.F ± 10%, 10C

Cer, 0.05 Il F +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Mica, 180 pF ±5%, 100V Cer, 0.05 IlF +80% -20%, 2 Elect., 15 IlF, 6V

Mica, 91 pF ±5%, 100V Elect., 15 IlF, 6V Mica, 91 pF ±5%, 100V Cer, 0.05 fJ.F +80% -20%,2 Cer, 0.05 IJ.F +80% -20%, 2

Cer, 0.05 IlF +80% -20%, 2 Mica, 390 pF ± 5%, 100V Cer, 8.2 pF ± .25 pF, 250V Cer, 0.05 IlF +80% -20%, 2 Mica, 390 pF ±5%, 100V

Mica, 10 pF ±5%, 100V Cer, 0.05 IlF +80% -20%, 2 Cer, 0.05 liF +80% -20%. 2 Cer, 0.05 fJ.F +80% -20%; 2 Cer, 0.05 Il F +80% -20%, 2

Cer, 0.05 IlF +80% -20%, 2 Mica, 390 pF ±5%, 100V Cer, 8.2 pF ±.25 pF, 250V Mica, 390 pF ±5%, 100V Mica, 33 pF ±5%, 100V

Cer, 0.05 IlF +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Cer, 0.05 IJ.F +80% -20%, 2 Mica, 390 pF ±5%, 100V Cer, 8.2 pF ± .25 pF, 250V

Cer, 0.05 Il F +80% -20%, 2 Cer, 0.05 fJ.F +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Mica, 390 pF ±5%, 100V

Mica, 10 pF ±5%, 100V Cer, 0.05 fJ.F +80% -20%, 2 Cer, 0.05 IlF +80% -20%, 2 Mica, 390 pF ±5%, 100V Mica, 10 pF ±5%, 100V

Cer, 0.05 fJ.F +80% -20%, 2

Page 65: Cushman Model CE-3 FM Communication Monitor Manual, 1968

~

C36

I'OS

~2; ~

R2S 3.9K

FILTER

R24 -C32 10K ~.OS

R20 3.9K

RI8 10K

C23

~OS

C22 IDS

RI2

-=­

RI4

++ 100CII~ I (

TP

l T 91pF CI3 \..:7!~_ ~9IPF L I ------.T~~

RI3 lCI610K -::[:'.OS Ii 20 MHz

BUFFER

-=­

I C46

-=­ .05

LI

680

"10 220

R9 12K

-=­

R7 680

csI l80PF

I.. I -1--·;-3 ­ -I' r- PULSE SHAPER -I ~I I

3MHz OSC-----j

R3 1.5K

R2 10K

, I 1 I

I I I'

~f-'-I -------'J­/ Is

§~~,M~C ( 14 • + Cil-JI8-17

+20V FROM 1'2 ~ FP-SW3-B-3 ( , 220

I I I I

I

I I IIf-I I I SRI I >IOK

CI 3MHz X'tol / 12 I CH-J2-8 ~

1

05

I I I I

I I L

FROM

I r---------------------------;------ ­LI ., • 0:'!:' •

II

1 IC2 ICI

R7 L7 I IR,21 R 19 I , ,

I R5

R6

'I L8'li~ R25

R3

I R26

RI R23

1I

I TP-I

R2

I R9 L3 RIO L9 R22 L2 RI5 L5 TP-3 LI3 LI2 LII R31 R30 R29 R28

I I I C3

CIO

I C 31

C9 C27

C6 C34 CR2 05

I 02

C4~C28 07, C35

C32 C7

I CR J "

C25C3 C38 1 IlElfllTp",,", II"·... ft .,.a.UJU r'~ .jUI,(".tlNl[SS

Cl'"JA'tII"'" Nano01 08 , c.Al'A(nolllf, .".-tVl'U.M'Ufrlt..J: 'l.~.IHl.JIWI!i:ENDrEO

J 1~Duf;TOP:'i "ALUllJlr;~ __ U'"-1 IOtHUWI~ENOT[DC5 I C37 " • r·".:TOIllY Sf ••n'l> "'4llJi • 6t.lt.lOI,T",O".IA.QJfifJ,$A", 1M;

I C2 tI1H~ffillllUliloOl'DC44

CI C41 C8 C40

CI6

I C43

CI9 C39 C22 C'23 C 33 C20 C46 CI5 C 36 C45 09

I Figure 6-1. Maste

I I

Page 66: Cushman Model CE-3 FM Communication Monitor Manual, 1968

r--- ­I ------- ­1 -------­--------- ­II -- ­~

_1.......::......~~~~·05_I --- ­ -- ­ -----­----- ­ ~I +5v

II 31'[ +ZOV

I

R23

R26

R25

L8

LII R31 R30 R29 R28

IRI8 RI7 R20 LI;

i1 '""""~ \ 1­

/ 1 I I -= " '"' IN957 T

I" C3IIII I

C FROM 3 MHz X'tal 2

CH-J2-8

R9 12k

~~~,M{tc ( 14

-: R210K

•• CH-JI8-17

C8 RIOT I80 PF 220I I I

~'

I !.

/ 1'8'3.CI7CI8CR3CI4 C24 C42

~I

, I 1 C 31 I ­C27

+20V FROM 112 ~ C34 FP-SW3--B-3 ( T 220

I C4605 T~ .05 C28 I 07

C35 L C32

C25 C38 I H~!;I~TOHS 1:.-'.... 5'.. VALUES IN OH~'~; UNLESS;

oTrllI"'II'15ENOHO

08 ~ c.v....Ct roIlS V/l.LOt..1 ,~- ..IUNLI:a 01HI,,"WIU NOHD 3 I~DUCTOR5 ~''''lU~ll'' I-~ UNll'MQTf1HIWIIi HOf£a

C37 •• fACTORY ~LECTl:D'VALUl

!\ Ali. VOlToloGt Il'tADINGSAHE DCUNl(&:; OTH~HWISENUT[OC44

C41

C40

CI6

C43

5 C 36 C 45 09

3/,111. 'fa CH-JI6-(j

-=1­ I /

I I

CQ5 I 120 MVAC'r .-IUV • II 17 1) 20 MHz TO \ CH-JI8-7

10pF 161).L

221 " R30 CQ3 5.6K ~.o5

R27 C38 10K T·05

R2Q -02 10K ~O

C~ I *O~ "J05

----------------------~ MA~Hn 08Cl10 Mlil 1110 MH, FILTERS

CH-AI7

R22

~j(

r4-7 I I I I

\: • 13">V • I IT'I )4/5 lolVACI 10 11''1 10 . Jlq

Rill 10K

FILTER .j

en -:J"0~

'="

"tq

~60

TP 2

~ 14 1 )+20V

• 220•- -------.:::::::::::::--1•....-.:::....--11 ._­I I

Ii• I

II

" I I MH. TO

L CM-JI"'·

:L~ I~"' 10_ I""~ '''1' '~. :t", t­ - I>.­ ,'*' .II>... UI ,,' ),,,

Figure 6-1. Master OSCjlO MHz and 20 MHz Filters (CH-A17)

6-3

Page 67: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

C1 Elect., 15 /IF, 6V 1013-0009 Sprague C2 Cer, 0.05 JLF +80% -20%. 25V 1005-0014 Erie C3 Mica. 270 pF - 5 , 100V 1002-0031 Elmenco C4 Elect.. 15 JlF, 6V 1013-0009 Sprague C5 Cer, 0.05 fJ.F +80 -20%,25V 1005-0014 Erie

C6 Elect., 100 J.1.F, 6V 1013-0006 Sprague

,

DIODES

CR1 Si, SD-1 1281-0023 Diodes Inc. CR2 Si, SD-1 1281-0023 Diodes Inc.

INTEGRATED CIRCUITS

IC 1 TTL Decade Counter, SN7490~ 2025-0002 T.r. IC2 DTL Flip-Flop, SN15850 . 2025-0009 T.r. IC3 RTL NOR Gates, U8A-9914-28X 2025-0010 Fairchild IC4 TTL NAND Gates, SN7400N 2025-0003 T.r.

IC5 TTL Decade Counter, S1\74901\ 2025-0002 T.!.

IC6 RTL NOR Gates, U8A-9914-28X 2025-0010 Fairchild IC7 TTL Decade Counter, S1\7490N 2025-0002 T.!. IC8 TTL Decade Counter, SN7490~ 2025-0002 T.!. IC9 RTL Buffer, U8A-9900-28X 2025-0011 Fairchild IC10 TTL NAND Gates, SN7400 2025-0003 T.r.

! Q1

TRANSISTORS

Si, NPN, 2N3646 1272-0016 Fairchild

RESISTORS I

R1 Comp, 2.2k ohms ± 5%, 1/4W 1066-2225 Allen-Bradley R2 Comp, 3.9k ohms ± 5%, 1/4W I 1066-3925 Allen- Bradley R3 Comp, 470 ohms ± 5%, 1/4W 1066-4715 Allen-Bradley R4 Comp, 2.2k ohms ± 5%, 1/4W 1066-2225 Allen-Bradley R5 Comp, 100 ohms ± 5%, 1/2W 1067-1015 Allen-Bradley

R6 Comp, 3.3k ohms ± 5%, 1/4W 1066-3325 Allen-Bradley R7 Comp, 2.2k ohms ±5%, 1/4W 1066-2225 Allen- Bradley

6-4

I I I I I I I I I I I I I I I I I

Page 68: Cushman Model CE-3 FM Communication Monitor Manual, 1968

-=-=-=

"1__

R2 3.9K

-=

C2

r·OS

CR2

I_ 50-1 lONE-SHOT

III OISCR O\JTPUT-=

FREO. ERROR OETECTOR

R7 2.2K

I I

I 1--1:-- -- ~Z~IO -- --~ ~ --BU~ -- -:1.-- -- --,;;::Z~ -- -- --+ -- --IOKHZf:--- --:p-- -- -::Z;- -- -- -- :jII I

I IMHz FROM L OH-JI7-13 ~"I

I''-------'1 .,....--~I

I II

-=I I

CS

+=t.:t. CI ~OS

CRI ~'S 50-1

I II

-= R4 2.2K

LAMP ~RIVER ..I

I II

~ R3

RS470 01 1001/2W2N3646

ICI IC5 C2 IC7 Ice C5 ICIO TP-I IC2 TP-2 IC4 I

I I RI I

I R4 I

CR2 I 100Hz FROM1--N REF.

I leg L _

C3

;w.~ lJ""LlWI

I IC3

IC6

I I I I I I

Figure 6-2. Reference Divi

I I

Page 69: Cushman Model CE-3 FM Communication Monitor Manual, 1968

__________

- -

1--1:-- -- ~, ~IO -- --~~ -­IMH'FROM(I J

CH-JI7-13

I r I' I

I

)~J~':,-= -=

4=1 F • I. I • •• • I ••

}2f5

• R I ) +/lV

C6I -= R4 ~'OO ~2.2K

I ILAMP ef!IVER ~

-=

J

I I I I VV'. 1 "

-I"

R2 3.9K

-=

C2

~os

FREQ. ERROR DETECTOR

.:t. C1 T'S

R7 22K

CRI 50-1

I

--BU;;;;- -- --:T..-- -- -- 100KH'~ -- -- --:I: -- --,;;::..~ -- -- :1:1-- -- -::,~ -- -- -- :I:-- --~F~ - -- ---:1-- -- -----,

IC4

I -

~=-

I

I R3 470 QI

2N3646

r

, -=

RI I I

CR2 I • Melt OOTPlIT100Hz FROM-tN REFL _

C3

I "(SISTORS-I'."',!I'- ....LUfS IN 0"''''5 UNLU.'i elMERWISi NOTED

1C6 ] CA'A.ClTOJIS VAlutS IN.-, UNlfSSOTHERWIS( NonD J. INOUCTOAS_VA,\.UES IN,,h UNLESS OTHEIlW1S( NOTED .. ·-~"'CTOJlY SlLECTEQ VALUE

to. All VOL TAGt R""DINGS Ai'll" DC UNl~SS

OTHUrrl!if NOnO

\ R2 C4

)0.. 4 I ) IOO~, TO GIl-oM-ZI

113 -= ~W 71 ) TO UNLOCK L4'11

• FP-TBI-7

rT "T" PROPORTIONAL TO PHASE DIFFERENCE A

~ "~'-CH-JI0-19

) " TO

CH-JI0-2

REFERENCE DIVIDER a PHASE/FREQUENCY DISCRIMINATOR CH-A9

Figure 6-2. Reference Divider and Phase/Frequency Discriminator (CH-A9)

6-5

Page 70: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. I

MIFR.

mODES

CR1 Dual Si MMSD6100 1283-0002 Motorola CR2 Voltage Val', C Diode V47A 1281-0019 TRW' CR3 Dual Si MMSD6100 1283-0002 Motorola CR4 Dual Si MMSD6100 1283-0002 Motorola CR5 Dual Si MMSD6100 1283-0002 Motorola

COILS

L1 RF Choke, 100 IlH 1. 5 % 1585-0017 Deleva L2 RF Choke, 100 IlH ~ 5 % 1585-0017 Delevall L3 Val', 0.83-1.6 IlH 1596-0018 Delevar L4 RF Choke, 100 IlH ±5% 1585-0017 Deleval L5 RF Choke, 120 IlH ~5% 1585-0033 Delevar

L6 Val', 0.83-1.6 IlH 1596-0018 Deleval L7 RF Choke, 180 IlH ±5% 1585-0035 Deleval{ L8 Val', 1.7-3.4 IlH 1596-0019 Delevar'l L9 RF Choke, 220 /l.H ± 5 % 1585-0018 I

Deleva~ L10 Val', 1.7-3.4 IlH 1596-0019 Delevan

Lll RF Choke, 100 IlH ± 5% 1585-0017 I

Delevan

TRANSISTORS

Q1 Q2 Q3

Si. NPN, 2N3563 Si, NPN, 2N3563 Si, NPN, 2N3563

1272-0022 1272-0022 1272-0022

Fairchild Fairchmd Fairchilid

RESISTORS

R1 Comp, 10k ohm ± 5%, 1/4W 1OlJ6-IO:l ~l A llen-Ejradley R2 Comp, 220 ohm ±5%, 1/2W IOG7-2215 Allen-§radley R3 Camp, 220 ohm ± 5%, 1/2W IP1l7-:!21(j Allen ­ ~radleY R4 Comp, 10k ohm ±5%, 1/4W 1O\iG-1IXl~ A llen­ radley R5 Comp, 15k ohm .1-50/", 1!4W 1006-1535 A llen­ radley

R6 Comp, 10k ohm '.5%, 1/4W 1066-1035 A llen-~adleY R7 Comp, 8.2k ohm 5'1[, 1!4W 1066-8225 A llen- .radley R8 Comp, 10k ohm ± 5%, 1!4W 1066-1035 Allen-E, adley R9 Comp, 6.8k ohm :t 5~.. 1/4W 1066-6825 Allen ­ ~radley RIO Comp, 1k ohm ~ 5%. 1I4W 1066-·1025 A llen- 9radley

Rll Comp, 22k ohm ± 5 %. 1!4W 1066-2235 A llen- Eradlev R12 Comp, 33k ohm ~ 5'1;" 1!4W 1066-3335 A llen- Bradley R13 Comp, 8.2k ohm J 5%, 1/4W 1066-8225 A llen- E1radlcyR14 Comp, 1.2k ohm i 5%. 1!4W 1066-1225 Allen-~radlcy R15 Compo 27k ohm ~ 5%, 1!4W 1066-2735 Allen-;adlev

R16 Comp, 2.2k ohm· 5%, 1/4W 1066-2225 Allen ­ radley R17 Comp, 1.2k ohm..!. 5%, 1/4W 1066-1225 Allen­ adley R18 Comp, 12k ohm _ 5%, 1/4W 1066-1235 Allen- Bradley R19 Comp, 120 ohm ~5%, 1/4W 1066-1215 A llen- Ekadley R20 Comp, 22k ohm ±. 5%, 1/4W 1066-2235 Allen ­ ~radley

CKT. REF.

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

C11 C12 C13 C14 C15

ClG 17 1~

1!J 20

21 C22 C23 C24 C25

C26 C27 C28 C29 C30

C31 C32 C33 C34 C35

C36 C37 C38 ~3n

40

41 42

C43 C11 C45

C46 C47 C48 C49 C50

DESCRIPT ION

CAPACITORS

Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Mica, 10 pF ±5%, 100V

Mica, 39 pF ± 2 %, 100V Mica, 96 pF ..I. 1%, 100V Cer, 0.01 pF +80% -20~,. 25V Cer, 0.05 /1F' tsor'!i -20~. 25V Elcet., 100 Ii 1". 25V

Val'. :~l.l.1liS. 1-1.8 Iil" Cal'. 0.05 ILl' -4 HO't -20~" 25

1',0.05 IIF' t1W':: -20l~, 25V lH', O.lJ5 /11" t 110" -20'l·, 25V

M I~'a. HI IJP 5~. lOGY

J\.11c1l. gO JlF' 1','. 100 Mit-II. 68 pF If{" JOUV

lett. 51 pt' 5 "t" I OOV V;JJ". (;la!lll. 1-16 pF MIl,;:l. 43 pF '5%, 100V

V;ll', glass, 1-18 pF Mica, :lG pF -;;5%, 100V Val" "-la.<;s 1-18 pF Mic;,"30 pf' z5%, 100V Val", glass, 1-18 pI"

Mica. 22 pF ± 5 %, 100V Val', glass, 1-18 pF Mica, 15 pF ~5%, 100V Val', glass, 1-18 pF Mica, 10 pF .:05%, 100V

Val', glass, 1-18 pF Cer, 4.7 pF ±0.25 pF, 250\1 Val', glass, 1-18 pF Mica, 10 pF ~ 5 %, 100V Cer, 0.05 IlF +80% -20%, 25V

Cer, 0.05 pF +80% -20%, 25V Mica, 15 pF ±5%, 100V Mica, 68 pF ± 1 %, 100V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V

Mica, 12 pF ±5%, 100V Mica, 39 pF ±2%, 100V Cer, 0.05 /l.F +80% -20%, 25V Cer. 0.05 IlF +80% -20%, 25V Mica, 470 pF .~ 5%, 100V

eer. 100 pF ± 5 %, 1000V Mica, 220 pi" 5%, 100V Cer, 1.5 pF.1 0.25 pF, 250V Cer, 0.05 ILl" +80% -20%, 25V Cer, 0.05 J.LF +80% -20%, 25V

6-6

C/E STOCK NO.

1005-0014 1005-0014 1005-0014 1005-0014 1002-0016

1002-0054 1002-0049 1005-0013 1005-0014 1013-0003

1001-0001 1005-0014 1005-0014 1005-0014 1002-0014

1002-0049 1002-0084 1002-0015 1001-0001 1002-004(;

1001-0001 1002-0041 1001-0001 1002-0043 1001-00()]

1001-0001 1005-0015 1001-0001 1002-0016 1005-0014

1005-0014 1002-0001 1002-0084 1005-0014 1005-0014

1002-0017 1002-0054 1005-0014 1005-0014 1002-0035

1005-0046 1002-0029 1005-0041 1005-0014 1005-0014

MFR.

Erie Erie Erie Erie Elmenco

Elmenco Elmenco Erie Erie Sprague

JFD Erie Erie Erie Elmenco

Elmenco Elmenco Elmenco .JFD Elmenco

H'D Ellllenco ,1FD Elmcnco JFD

Elmcnco JFD Elmenco ,JFD Elmenco

JFD Erie JFD Elmenco Erie

Erie Elmenco Elmenco Erie Erie

Elmenco Elmenco Erie Erie Elmenco

Sprague Elmenco Erie Erie Erie

I I I I

I I I I I I I I I I I I I

Page 71: Cushman Model CE-3 FM Communication Monitor Manual, 1968

-- ---I: I I 1 C22 C24 C26 C28

I I. Ie" I I I I I ::: ' :~~11i1TR~~'/L3 ~:~CI7

" ' I ,~~ , C 18

1 I CR2,,, "., ~, C20-~ C31

LI C21 ---.. C27

C25 C29

C23 C~

1 C7 C6

CR3 RI C II C4

R20 CITP2

L6 I CI5 TPI2~

R 13 TP7 ------~ !.ifa« _. .---.-

C46~--"--CI3

C45~,~I, __

C 16 C/4I C47RI2

CR4 L5

I R7 R4 C37

01 L8 C38

1 RIO TP8 C36

C44 R II L 7 C35

L4 R6 C41

CR5 LIO C9 C42

1 R2 R9 C40

RI4 TP9 C 10

I ...~'......,.;'

:1· ....

, ·-C50C49 ---::: ia; ~ ---

C39

~; C43

R8 ~C2

1 LII C48 03

02 RI7

L2 C3 RI9

C49

TPI

I- OSCILLATOR

I 0I 8

~

MM~

61[

C 36 ,05

~

CR4A

L8 1.7-3.4

17-8MHzJ

0.8 68 ~F±l%

R7 8.2K

L7 180

R6 10K

C35 C37 .05 15pF

Q

, §3

CR38

C22 36pF

C21 1-IBpF

,Q2

-­--

R5 15K

CR3A

L6 ,83-1.6

CI6 96pF 1%

C 14 .05

~~

TP 5

r /

I I

I lCI8

I 5IPI­I CI7 _

II 68 P F±I%I I - ­ I I COUPLED ~ I TO ~' ~P-SW 3

C6 39pF±2%

11 C7

96pF±I%

11 LI I

U

I I L583-1.6 100 ~ 120

..rY'Y

R I (flj'VV ~ R410K CRIA CRI8 10K

J.... I TP 3:c

L'l R2 R3

100 220 221

ell 01

CH-A21-JD

I I

II E

GNDI H

+20vl F

TO CH-JII-II 8

TO CH-J11-I91 C

TO CH-JII-171 A

TO FP-SW2-11 0

L-­ _

CH-A21-JC

(T}\' ~

FROM CH-JIO-21 (0) • '

1 I Ill" ~1C~~ j~., to ... ~".~II:' I:, rjI-W"ll,JI.'_'i.

II"'ll;J'.I~~ ilrtnll D J tA"~I'6+'i w.-\.W611ll1;\lNL,.tsIi(rTHEJlWIM.-NO,TT'O :J I;"UUCll,j"ll ... "'UI•• IN .. I-U+tUSSC' ..I:I'l ..... I:rFNlITrO

·M.'II"~ 'Jl.H.. rnt"4~'l.IE

TPIO TPII

1 TP3 ~ .. ~" "~'I fjlof•• "r·""nrhG,) !UtE oc ........t'n

,,1 "I _MIl ~ f "4flll f.

1 1 1 1 1

Page 72: Cushman Model CE-3 FM Communication Monitor Manual, 1968

TO l-+-~)CH J12.2D

J--+---fo)TO CH-JI5-11

I I I

I I

I I

I I I

__ J

-=

C49 .05

15V

14,3V

02 2N3563

COfI'f"~l I" t'l" cmHIMIrf Li.ICf,.()'or,IU C nt., OIll.iNl~ e ~n'Wt.b .U4t '"'It Ul'l"1,1 ~'fUw.f'i,.l Of C1rIri.\AMl fLtCT'!iMo. tt .".~ ., "'''1 fO. ,,"Q Ol"'''''l'' O~ Itll' :~"''lAI1 .l'llll~" torrur,-r ~AO'"

"~IQ,II'IC

C48 1.5 p F

RI5 27K

RI4 1,2K

VOLTAGE CONTROLLED OSCILLATOR CH-A21

I I

~--~

I' BUFFER -i

RI2 33K

01 2N3563

C46 100pF

C44 ,05

~

RII 22K

-=

IB.6V

RIO IK

CR5B

C40 .05

h

6-7

Fig-ure 6-3. Voltage-Controlled Oscillator (CH-A21)

C41 12pF

Lli 100

CR~A

R9 6.8K

,..­ -.-­~e

LIO 1,7-3.4

C42 39pF2%

19 220

I

§7

C39 .05

fl

RlI 10K

CR4B

~~.~

C 36 .05

~ C37 15pF

RI 8.?K

L8 1,7-3.4

C38 68 pF±I%

L7 180

R6 10K

C35 .05

fl

CR3B

_1_--------­

C 14 .05

~ CI5 IBpF

R5 15K

CR3A

L6 .83-1,6

IB-9MHZI

CI6 96pF 1%

L5 120

CI3 .05

~.

R4 10K

CRIHCRIA

L4

L3 .83-1,6

C7 96pF z l%

CEl 39pF:t:2%

-----­ -­

LI 100

C8 01

C2 .05

~

R I 10K

TP 3

I' OSCILLATOR

1 ~ i 8

I I ! (T;

CH-A21-JD

GNDI H

I I I

I,

+20V

TO CH-JII-II B

TO CH-JI 1-19 I C

TO CH-JI1-171 A

TO FP-SW2-11 D

r /

/ /U L J ~ I / l C'8

-l­ C20 CH-A21-JC -­ -­ --:= -­ ....J / 51P} 43pF

FROM CH-JI0-21 ( / CI7 / 6BPF±'%I I CI9

/ : I-IBpF

L-- -­ -__ --- -_ / i • '. • '. COUPLED I I ~ ~~-SW3 ~I @ 2 ~,~

t "lUlU... :. I 011 "'Y"'I,\Jnl~OO<I"'~""""'" O'"l.to¥f'il :hohn

j ~I'C"~ "AH.'~'''.I,"hLnsI1h«''.I';fIt0110 ~ ,.. ,~, ~t.4'.'I~.~ ,#I\~rnt·t1"""'RNOU:O

u.'a(I"''''UI,r.Tl'Q'IIIIt,11. , '~ll: vOl' "..... lit "'(II....... .4_. DC """~ s

\If,II.J,,,",i ""Ollt l

Page 73: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION ClIo; STOCK NO. MF...

RESISTORS

Rl Camp, I.2k ohm ±5%, I/4W 1066-1225 Allcn-Bra~ley R2 Camp, 2.7k ohm ±5%, I/4W 1066-2725 Allen - BraeleyR3 Camp, 4.7k ohm ±5%, I/4W 1066-4725 Allen-Bra ley R4 Camp, 2.7k ohm ±5%, I/4W 1066-2725 Allcn-Bra~ley R5 Camp, 2.7k ohm ±5%, I/4W 1066-2725 Allen - Bratlley

R6 Camp, 560 ohm ±5%, I/4W 1066-5615 Allcn-Bra~ley R7 Camp, 220 ohm ±5%, 1/4W 1066-2215 A lIon - Bra~lley R8 Camp, 12 ohm ±5%, 1/4W 1066-1205 Allcn-Bratlley R9 Camp, 560 ohm ±5%, 1/4W 1066-5615 Allen - Bra~ley RIO Camp, 2.7k ohm ±5%, I/4W 1066-2725 A lIen -l3ratlley

Rll Camp, 470 ohm ±5%, I/4W 1066-4715 Allen -BratleyR12 Camp, I.2k ohm ±5%, I/4W 1066-1225 Allen-Bra ley R13 Camp, I.2k ohm ±5%, I/4W 1066-1225 Allen-Bra~ley R14 Camp, 120 ohm ±5%, I/4W 1066-1215 Allen - Bratlley

'KT. REF.

Cl C2 C3 C4 C5

C6 C7 C8 C9 CI0

Cll C12

I C13 C14 C15

CI6 C17 ~IA

CHI

CHI

ICI lC2 IC3 IC4 IC5

IC6 lC7 IC8 IC9

Ll L2 L3 104

Ql Q2 Q3 Q4

DESCRIPTION

CAPACITORS

Cer, 0.05 /.iF +80% -20%, 25V Not Used Cer, 0.05 /.i F +80% -20%, 25 V Cer, 0.05 /.iF +80% -20%. 25V Electro, 15 /.iF, 6V

Cer, 0.05 11 F -1-8011 -20'7" 25 V Cer, 0.05 ,11 1" -i 80~ -20'ft, 25 V Cer, 0.05 IIF +IlO~ -20"-.25V Cer, 0.01 Ii F +BO'i. -llo~" 2fiV COl', 0.05 pf AO''D -r!n\~. 25V

Nul USlifl

COJJ', 11.01 ,do tflO''; -20'",25 "I', n.ol /41- l-BOO -20 ". 2:i

P'>!y. 0.1 /I P IO;~, 100V el'. U.05 11',' +80'":', -20'"(" 25V

:lI". 0.05 I' F +80% -20\'0, 25V Eleclt'(J, 15 /.iF, 6V Nllt Ul;cd

cr, 0.05 /.iF +80% -20%, 25V

DIODES

Si, SD-l

INTEGRATED CIRCUITS

SN7400N SN7476N SN7440N SN7472N U8A-9914-28X

SN7400N SN7476N SN7430N SN7400N

COILS

RF Choke, 47 /.iH ±5% RF Choke, 47 /.iH ± 5% RF Choke, 47 /.iH ±5% RF Choke, 47 /.iH ± 5%

TRANSISTORS

Si, NPN, 2N3563 Si, NPN, 2N3563 Si, PNP, 2N4121 Si, NPN, 2N3646

Page 74: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I

:

I I I

I

I I

RI R3 R5 CI2 CRI TP2

I C 14

I IC5 TPI

RIO

I TP3

R4

R2CI7 C3

CI9 I CI

II IC6L4 TP4

TP5C4

I TP6 rC2

IC7

I CI

IC3

TP7ICS C7

C6 rC4

I C5 rC9 L3

LI

,I C 16 RII

C 13 L2

I 01

04 RI4

cia

I

\

1

± 1 vCC2 lCI

fs I

J 14113 112111 11019 Is : J 1611S ,I, 14[13112 III illo 19 L J 14 113 112 III 110 19 I s L

rCI rC2 rC3 7400 7476 7440

VCCI l I I 2 I 3 I 4 I 5 I 6 I 7 r l 1 121 3141s1617 Isr l112131 4 1 s 161 7 (

111 \ ~ I

J-I

'L.-

I~ ~ VCC1

I' lC4 R2 Veci

I

lOS 2.7K

YCC2

VCC1 c--<

-l-II-

RS

R4 J 141131121" 1 10 1 9 Is L 2.7_ JI611S114113JI211111019 L J14~13112111110191s L 2.7K

>-rC6

VCCI lC7 lCS 7400 7476 7430

1112!3141s1617r l112[31 4 1s16171sr I 11121 3 1'4 1s1617 1

-:k il I 11 L1 VCCI I

~ RIO L

I '----<

2.7K

L4 -I. 47

.--CI7 :;- .OS

15 CI9 II

--

"/ ~ "/1 '\V "V "V '\ / "V '\/ '\ / "1/ '\ / '\V '\ / '\

I RESET I

~ -~ !P

.~ J 1411311l[T, N ~3·1V., " nsec .IV/

'p ~ p-2 -4­T N j

7

IESET ~

I II I 21 31

I J

I

i

I

RI

1.2K E-..~ c-

I Ds VCC2 R3

III 4.7K

CRI J 1411311~ 1

SD-I2 I

VCCI

W~

rcs s~ 914 I 7

.01~ 7 6 CI2l

-= 1 1 1 2 1 3 1CI4

0.10

~5V360 1

fLsec .tv. 1

VCCI

/ '\ / I 2 3 4 5 6 7 S 9 10 II 12 13 14 IS 16 17

j , c­

vcc~

TO GROUND +SV RESET 1 TO TO TO FP-SW6-A-S RESET ·2 TO TO TO TO TO TO TO TO CH-AIO-S TO FP-SW6-B-2 FP-SW6-B-6 FP-SW6-C-3 TO CH-AI3-S CH-AI3-9 CH-AII-IS CH-AI3-10 CH-AI3-11 CH-AII-B CH-AII-9 CH-AII-IO

RI3 CI5 03 RS CH-AI3-7 CH-AII-7 CH-AI3-14 CH-AI3-9 CH-AI3-12 CH-AI3-IS CH-AII-14 CH-AI3-20 CH-AII-20I L

\

1 ~(SISTOHS ""''ll'~'" VALUES IN OHaolS UHtESS

I OTHER""-ISE I\lOTED

i CAI'ACITORS "ALUESI,.."tU..lESS01Hf.R.... ;S~ l,fOlj,D

l INOlJ(:rOIllS V.... U;ES IN~" UNLESS OH<El'4WISt ~m1(O

.... ~""Q10MY SHECTED V .... LUE

~ ~lL VOL T.... GE AEADI"IGSAIU OC V!"lUSS OTHERYliiISE~TEO

I I I

Page 75: Cushman Model CE-3 FM Communication Monitor Manual, 1968

- - - - -- - ------ ---

-- --- --- ---- --- --- --- --- --- ---

-

-

I

)

N

-

~

~

, I I

CI '----<

II 121

VCCI

....,.- -­

----. -.- ­

J14113 112111 11019 I 8 L

~ ICI 7400

VCCI l'12!31 4 I s I6!7r

.os

1C3 -=­

VCCI

R4 JI41131121"1'019IaL 2.7K I

~ IC6

7400

1,12!314Is!6!7r

-:1: vCCI

~ RIO I

2.7K

L4

47 .OS CI9

"v

.--­

--_. --- --- --­I

I'

LI

47lC6

l05

L2

l'J CIO 47

os

-=­

01 2N3S63

~ vccl

VCC2

r ,

CI

[65 \1 J 161151 14113 1 12 III 110 I 9 L J 14113 112111 110 19 I 8 L J 14 13112 III 11019 I 8 L

I .1

IC2 IC3 IC4 I

I 7476 7440 7472

, l'12!314Is\6!7Iar 'l,1213!4!s!617r 11 21 31 4 IS 16 17\

~ I I ~ynile .2V.

~ -J,.

I

- 6-10 MHz

c­ - ~ VCCI CLOCK

I lc4 (f}

R2 VCCI lOS

2.7<

VCCZ C7

caljir v ­.----­ ¢cz oSl

-J­ IR5

2.7~ JI611S,I14113JI2111110J9 L J 14113112111 110 I9 I 8 l J 14 13112111 110 I9 I a l

e""VCCI lC7 lca IC9

7476 7430 7400 SO --+5v.~.kv.~ RII +O.SV.

470

l'!21314IsI61 7 \ar l'\21 3 14 1 5 !61 7 r 1 1 21 3 \4\sI61 7 r RI2 -=­

-,1 I l ­12K

~

I

I -=­

L I -

- r ~ "v "v "/ "V "V "/ "V "V "/ "V "V "V "V V "V "v t t ,,/

2 3 4 5 6 7 a 9 10 II 12 13 14 IS 16 17 la 19 22 GROUND +SV RESET I TO TO TO Fl'-SW&-A-S RESET 2 TO TO TO TO TO TO TO 0 TO TO IOOmV MHz-12V GROUND

TO CH-AI3-8 CH-AI3-9 CH-AII-IS CH-AI3-10 CH-AI3-11 CH-AII-a CH-AII-9 CHiAII-IO CH-AII-II CH--AII-IO 6 - 10

CI7 ~ 15

-=­

I TO

CH-AIO-S TO FP-SW6~-2 Fl'-SW6-&-6 Fl'-SW6-C-3 CH-AI3-7 CH-AI3-20

CH-AII-7 CH-AI3-14 CH-AI3-9 CH-AI3-12 CH-AI3-IS CHr"-14 CH-AII-13 FROM CH-AII-20 CH-A21-B

---r­

VCC2

R7 220

R6 ~ 560 JOI

Ra 12

04

' 03Q:52N41:' . V. 2 2

2N3646

c~iIS

R9 S60

+4.av

02 2N3S63 ~ ov CI3

V i RI4 01 -72V 120 RI3 1.2K a -=­

~7 c;rCIS CI6

-l05 .OSJ

CLOCK tl I., DECADE 17aD-0043 REV. CH -A12

~ ~ ..tl;l' 1-".VC~lllo4,"NElECTAONJCS. INC

,)III Qllilt.l'l,I'<U" Ifflf"tbto ~O"l T~E OI'E,J;ATION ..... 0 lIll.tU"'''''·''II""I\lCE fJ~ Cu&HIIlo\'-I EUCf~ICS £QlJll'lolUH .r.-o It NOT TO ~f *0 OJ"Utv.ISE Off AEPRODUCED WITlQ)'f .... 'lI"iN CO~f"'" ~ROl.l CUSI-I"'AN ELEe 1"0"'" INC

Figure 6-4. Clock and 1st Decade 1780-0043 Revolution (CH -A 12)

6-9

Page 76: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

C1 C2 C3 C4 C5

Cer, 0.05 Jl F +80% -20%, 25V Cer, 0.05 Jl F +80% -20%, 25V Cer, 0.05 Jl F +80% -20%, 25V Cer, 0.05 Jl F +80% -20%, 25V Electro, 15 JlF, 6V

1005-0014 1005-0014 1005-0014 1005-0014 1013-0009

Erie Erie Erie Erie Sprague

C6 C7 C8 C9 C10

I , Cer, 0.05 JlF +80% -20%, 25V Cer, 0.05 JlF +80% -20%, 25V Cer, 0.05 JlF +80% -20%, 25V Cer, 0.05 Jl F +80% -20%, 25V Cer, 0.05 Jl F +80% -20%, 25V

1005-0014 1005-0014 1005-0014 1005-0014 1005 -0014

Erie Erie Erie Erie Erie

Cll Electro, 15 JlF, 6V 1013-0009 Sprague

I INTEGRATED CIRCUITS

IC1 IC2 IC3 IC4 IC5

SN7400N SN7476N SN7400N SN7476N SN7400N

I 2025-0003 2025-0005 2025-0003 2025-0005 2025-0003

T .I. T.!. T.!. T .I. T.!.

,I

IC6 IC7 IC8 IC9

SN7400N SN7476N SN7476N SN7400N

2025-0003 2025-0005 2025-0005 2025-0003

T.!. T.I. T.!. T.!.

COILS

L1 L2

RF Choke, 47 JlH ±5% RF Choke, 47 JlH ±5%

1585 -0010 1585 -0010

Delevan Delevan

I RESISTORS

R1 R2 R3 R4 R5

Camp, 2.7k ohm ±5%, 1/4W Camp, 2.7k ohm ±5%, l!4W Camp, 2.7k ohm ±5%, 1/4W Camp, 2.7k ohm ±5%, 1/4W Camp, 2.7k ohm ±5%, 1/4W

I

1066-2725 1066-2725 1066-2725 1066-2725 1066-2725

Allen - Bradley Allen - Bradley Allen - Bradley Allen -Bradley Alien - Bradley

R6 R7 R8

Camp, 2.7k ohm ±5%, 1/4W Camp, 2.7k ohm ±5%, 1/4W Camp, 2.7k ohm ±5%, 1/4W

1066-2725 1066-2725 1066-2725

Allen-Bradley Allen- Bradley Allen - Bradley

I

I I I

I

I

I

6-10

Page 77: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I

"CCI

I 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 119 GRO TO TO TO TO RESET I TO TO TO TO TO TO TO TO TO TO TCTO

FP-SW5 FP-SW5 FP-SW5 FP-SW5 TO CH-AI2-10 CH-AI2-11 CH-AI2-13 CH-AI2-14 CH"1II1-8 Qi-AI2-14 Qi-AI2-13 C~II-9 ,Ff>-SW4 FP-SW4 FP-SW4 FP-S B-2 B-6 C-3 A-5 CH-AI2-4 CH-A13-14 CH-AI3-13 Cl+-AI2-15 O+-A13-11 CH-AI3-1O C~12-16 B-6 C-3 A-5 B-;

CH-AI3-20L I

"CCI

-=

ICI 7400

lC2 7476

IC3 7400

IC4 7476

r · 05 C4

"CC2

"CCI -=

"CCI

R2

2.7K "CCI -=

1

IC8 7476

m: I C~lr-----~05II

rC7 7476

R6 2.7K

"CCIrC6 7400

R8

15

2.7K

R5 2.7K

"CCI

"CCI

2

+5"

t. RESISTOAS_II..\Jl. 5'" VALUES IN OI1MS UNLESS OT)ol[IlWt5£ NonD

2 ~""CITOFl.S-\lAlU£S IN ~t UNLESS OTMERWISE NOTED J, INOVCTOP;5-"AlU!iS IN jOt. UNLESS OTHERWIi£ NOTED, , • F..crOflY SELECTED V"'LU~

• "lL ',lOtTAGf. AE .... 01NUS "'lIE DC UNLESS OTHE ....ISE NOTED

Page 78: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I II

II

IC5

RI

CII

CIO

IC9

R7

R4

VCCI

'-V I

L GRD

I. RfSlSyOM$--II........ ~... V"'LUES IN OH~S UNLESS

Jvccll3112111 1I0 191 e L I

I I I

F

J 16115114P~ 1211111019 L

VCCI

CI

r'et" -= ~r'-r'I~'-;Ir'I~'I...lr'I'I-IOTI..L~TI""~ L

~

J lsi 15 114 jGRq 12111 11019 L

VCC2 RI

2.7K

VC C2-JvccI I3 112 JrlJiOp r L

ICI 7400

IC2 7476

IC3 7400

IC4 7476

ICS 7400

lJ l:I~I~I;I~I~f~

-=

1 I 12 I 3 14 N:cl 6 1 1 1 8 r I 'i I Iii

C3 r . 051

r-+-

R2

2.7K VCCI

IIffif VCCI

~

Vr .z.

1·05 C4

11 r2-[3!4 !Vcd 61 7 18 r I I I i I I I

~

IItIfIf r-j ,.R3,2!tCC2

2.7K VCC2

'-V '-V '-V '-V '-V '-V '-V '-V '-V '-V '-V '-V '-V >V ~ >V >V ~ I., t2 3 4 5 6 7 e 9 10 II 12 14 16 17 Ie 19 20 +5V TO TO TO TO RESET I TO TO TO TO TO TO TO TO 'Ttl TO TO RESET I

FP-SW5 FP-SW5 FP-SW5 FP-SW5 TO CII-AI2-10 Qi-AI2-11 CH-AI2-13 CH-AI2-14 CH-AII-e CH-A1214 CHojIl2-13 C11-9 FP-5W4 FP-SW4 fP-SW4 FP-SW4 TO B-2 B-6 C-3 A-5 CH-AI2-4 CH-A13-14 CH-AI3-13 CH-AI2-15 C"'AI3-11 CH-A~IO C 2-16 8-' C-3 A-S 8-2 CH-AI2-4

CH-AI3-20 CH-AI3--'

i • I I I I I I I I

R5 ,.Jkcl13112111110191eL2.7K

.J..

""

VCC2

t IC9

7400

J·t;l 13 112111 lID 19 Ie L

mr~I;r~J~~ R'

~

VCC2

1 h: '* ~,~f !~"

VCC2

ICe '~76

ce L-..t-+-i~

.05 -=

'--

fil 1~f?I~1 111 10 19L

1:1~1~1;~~I;I~r

--

IC7 7476

.5~fr'l I-...J

LII I~fTn ¥~ J;T~

J 16115114 fRo\I2 II I \10 1 9 L

L

.J,. R6 2.7K

VCCI

1 05IC7

IC6 7400

1 1 12 [31 4 15 16 T I I I I I I _

05

2.7K

LI

+~: .i. .,

c5TC6

-=

VCCI

r

VeCI

~ Re

15 --­

OT~£RWISE NOTED.

1, CoU'ACITOR$-VALUts IN "I UNLESo.o; OTHERwIse HOTEO.

3. INOUCTQIIS-VALUE,S IN "" UNL£~OTHEl'hII'lSEHOTED

4. "_FACTORY SELIi.CTEO V"lUt ~. ALL VOlT.t.GE ReAoINGS ARt DC UNLESS

OTHERWISt, HOTtO.

I

-J/ -= 21 22 +sv GRD 2nd a 3rd DECADES

CH-AI3

~ COfOYI'IIGHT :ll6a 11'1' C\JStiWAN [LCCnlONICS. INC

THIS ORAWING 1$ INUHOEO FOA THE Qf'ER"noN "NO ""tNTEN"NCE Of' CUSH!ol...N eLECTAOf'UCS EOUII'tIIENT "NO IS NOT 1"0 Be USiO OTHERWISE OR ftEf'ftOOUCiIJ WITHOUT .'UntN COHSU.IT FROM CUSH.....N (L(e TRONICS. INC.

Figure 6-5. 2nd and 3rd Decades (CH-A13)

6-11

C9

Page 79: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

Cll

ern CH2 CH~i

IC1 IC2 IC3 IC4 IC5

IC6 IC7 IC8 IC9

L1 L2

CAPACITORS

Cer, 0.05 J.1. F +80% -20%, 25V Cer, 0.05 J.1.F +80% -20%, 25V Cer, 0.05 J.1.F +80% -20%, 25V Cer, 0.05 J.1. F +80% -20%, 25V Electro, 15 J.1.F, 6V

Cer, 0.05 J.1.F +80% -20'';" 25V Cer, 0.05 II F +80% -20%. 25V eel', 0.05 p. F +80% -20%; 2fi v eel'. 0.05 /1 F ,.ROIlf, -20%, 25 V eel'. O.Ofi liF ,.ROry, -2m" 25V

j':lt'!'1 rll. l:j 1'1'. GV

IJIUIJh;S

~i, 1N3064 Si, IN3064 Si, 1N3064

INTEGRA TED CIRCUITS

SN7400N SN7476N SN7400N SN7476N SN7400N

SN7400N SN7476N SN7476N SN7400N

COILS

RF Choke, 47 J.1.H ±5% RF Choke, 47 J.1.H ±5%

1005-0014 1005-0014 1005-0014 1005-0014 1013-0009

1005 -0014 1005-0014 1005-0014 1005-0014 1005 -0014

1013-0009

1281-0013 1281-0013 1281-0013

2025-0003 2025-0005 2025-0003 2025-0005 2025-0003

2025·0003 :!02~·000fi

:.W25-11005 2025-()QO:l

15115 MID 1511fi DOW

Erie Erie Erie Erie Sprague

Erie Erie Erie Erie Erie

Sprague

Sylvania Sylvania Sylvania

T.!. T.r. T.!. T.!. T.!.

T.!. T.!. T.!. T.r.

Delevan Delevan

HI 112 R3 H4 R5

111~

117

I

RESISTORS

Comp, 2.7k ohm ±5%, 1/4W Comp, 2.7k ohm ±5%, 1/4W Comp, 2.7k ohm ±5%, 1/4W Comp, 2.7k ohm ±5%, 1/4W Cllmp. 2.7k ohm ±5%, 1/4W

CIIIl1P, 2.71\ ohm ±5%, 1/4W C'"Tlp. 2.7k ohm ±5%, 1/4W

1066·2725 1066··2725 1066-272:' 1066-2725 1066-2725

1066-2725 1066-2725

Allen-Bradley A lIen-Bradley Allen-Bradley Allen-Bradley AllQn-Bradley

Allen-Bradley Allen- Bradley

I

I I

I

I I

I I

6-12 I I

Page 80: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I VCCI

CI

ro~ -= i .~ I .~ I .~ I. I 1._ I ! I ~ I

-=

lei 7400

IC2 7476

rC3 7400

IC4 7476

R7 VCC2 ~

2.7K

IC8 7476

CR2 IN3064

CRI

VCC2

VCC2

-= VCCI

31 11

.05C21

R2 VCCI

2.7K

.05 C7

VCCI

15

2.7K

VCCI

VCCI

R6

, \lCCI

I I t illWl I~:~K R4 2.7K

I I 1

'1 rCCIIC6 I I I IC7

7400 7476

I I I I I

IC 6 R6 R5 C5 R4 R2

I I IC I

C7

I C6

L1- I l' C3

I C2 IC2

IC? -==-­ CI

I ICS

IC3C8

I CR3 C4

R3 I ::::

I CR I ,

IC4

C9 R7

I L2 ~rrlIN3064 }3C64 1RI

I CR2

I 2 3 4 5 6 7 6 9 10 II 12 13 14 15 GRO +5V to TO TO TO RESET TO TO TO TO TO TO TO TO

2FP-SW3 FP-SW3 FP-sw3 FP-SW3 CH-AI2-15 CH-AI2'16 CH-AII-14 CH-AII-13 CH-AI2-19 eli-All-II eIi-AII-IO CH-AI2-12 B-2 B-6 C-3 A-5 TO CH-AI3-12 CH-AI3-15 CH-AI2-17 CI+-A12-18 CI+-AI2-IB CI+-A12-17

CH-AI2-9 IC9 CIO C II IC5 CH-AII-20

I L 1 l'Iu.uroltS-l,..w ""NoUn II.. OtlMS U"'LE~<t

O"l'lU.-RWiS' NOHO "I (l,oIII'ACiTORS VALUE'S Irl "I UNLESS OTHi:R.....I$i; Hona

:I INDUCTQRa- "''''ll''llNli.U~OTHEAWISENOTl!O

I <I • FACTORV SELECtED VAL~

~ ALL VOlTAGI: A£ADINGS AAE tIC t.--'MLESS OTtll: RWiS£ NOTED

I I I

16 17 18 19 20 TO TO TO RESE

FP-SW2 FP-SW2 FP-SW2 2

E-I F-2 F-5 TO CH-AII' CH-AI,

Figure 6-6. 4th and

Page 81: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I

/ R2

______ ICI

- C6

__ C3

____ IC2

_---CI

------ IC3

------ C4

VCCI~IC4 15

------ R7

~RI I 2 3 4 ~ 6 7 8 9 10 II 12 13 14 ~ 116 IT 19 20 21 22

GRD +5V TO TO TO TO RESET TO TO TO TO TO TO TO TO TO TO RESET +sv GRD 4'" Bo S'" DECADE 2 2FP-SW3 FP-SW3 FP-SW3 FP-SW3 CH-AI2-15 CH-AI2-16 CH....11-I4 Cti'A11-I3 CH-AI2-19 CH-AI 1-1 I CH-ll1 10 CH l12-12 FP-SW? FP-SW2 17BO-006B REV.

B-2 B-6 C-3 A-S TO CH-AI3-12 CH-AI3-IS CH-AI2017 el+ l12'18 Clt-l12-18 CIt-A12-17 E I F-S TO CH-AII CH-AI2-9 CH-AII-7

-= VCCI

-= VCC2 -l ...--"_I

CI

r~ -= 1.~II_I.~I.II_I!i~1

ICI 7400

lC2 7476

IC3 7400

IC4 ~7~

ICII 7~OO

VCC2

RI 2.7K

.05 C4

VCC2

-= VCCI

C3-I

VCCI

R2 VCC1

2.7K I I I I I R3 VCC2

2.7K

VCCI

R4 2.7K

R~

2.7K

VCC 2

VCCI IC6

7400 IC7

7476 JCI

T4' IC9

7400

VCCI

2.7K

1 tIl -= ~t 1{'"~ -=

IN3064

R7 VCC2 ~ 2.71(

.. ro

SW2

r-2

CRI

VCC2

.05

C2J

.05 C7

R6

CH-AII-20 CH-AI2-9lC5 \ L ~

I • .i&t1101l.-1J~" ,,"vAlUlJ I;~ DUMS UNLESS On.lIlMIMH.HOTCD

2 C,.,...cilORJ VALl.If.$lN "I U.... l.ESSDflt£llIWl$f.NOTED 3 Ifli"CXJOOfl.:; ."...un:SI"J"hUNlL5S0nURWISIi'IfIIOTED • "_FA.CTORY SI!!UitTED V"LUt'

to ALL VOl'''G£ ALlOl.-GSAflE DC t.'HLESS OTHERWISE NOTE"D

Figure 6-6.

COf'''RIGHT ISl6llIlY CUSHMAN HECTRONICS. , ...., m;!; QRAWI.Ojc; IS I",Tf}\lDi'D FOR THE OI"E~ATION MO _INf£NA.!'fC( OF Cl!SHM...N lL(CTRONICS ,"OUI""'1M, ,t.ND 1& NOT TO tiE ust.D OTHERWiSE O~ MIi"l'loouetb "iNfTHO'.JT WHITTEI'; CO"'SfNT FROlll CUl;HIl,Vt,,,,, .,,"' TRO"ICS. INC

4th and 5th Decade 1780-0068 Revolution (CH-All)

6-13

Page 82: Cushman Model CE-3 FM Communication Monitor Manual, 1968

!

I CKT. REF. DESCRIPTION C/E STOCK NO. I MFR. CKT.REF. DESCRIPTION C/E STOCK NO. MFR.

RESISTORS

,

CAPACITORS I R1 R2 R3 R4

Camp, 3.3k ohm ± 5%, 1/4W Camp, 10k ohm ±5%, 1/4W Camp, 15k ohm ±5%, 1/4W Camp, 220k ohm ± 5%, 1/4W

1066-3325 1066-1035 1066-1535 1066-2245

~ llen- Bradley llA.llen-Bradley Allen-Bradley ~llen-Bradley

C1 C2 C3 C4

Poly, 0.022 Ill" ± 10%, 100V Mica, 180 pF ± 5%, 100V Cer, 0.05 I.LF +80% -20%. 25V Cer, 0.05 Ill" +BO% -20%. 25V

1008-0034 1002-0005 1005-0014 1005-0014

Sprague Elmenco Erie Erie

I R5 Camp, 150k ohm ± 5%, 1/4W 1066-1545 lA.llen- Bradley C5 Polycarbonate, .6H I.LF 10%, ;jOV 1008-0039 Elpac

R6 R7

Camp, 22k ohm, 5%, 1/4W Camp, 8.2k ohm ~5%, 1/4W

1066-2235 1066-8225

~llen-Bradley ~llen-Bradley

C6 C7

Cer, .1 ILl" j 20% Elect., 100 I"F, 25V

1005-0044 1013-0003

Sprague Sprague I

R8 Camp, 5.6k ohm ± 5%, 1/4W 1066-5625 ~llen-Bradley C8 1'1 ica, 330 pF 5 't. 100V 1002-0032 Elmenco R9 RIO

Camp, 4.7k ollin ± 5%, 1/4W Camp, 1k ohm ± 5%1 1/4W

1066-4725 1066-1025

fl.llen- Bradley tllen-Bradley

C9 C10

P'ily, O.Hi j.,(F LU~. 200V Cel', .1 IlF • 2011

1008-0035 1005-0044

Sprague Sprague I

Rll Camp, 2.2k ohm ±5%, 1/4W 1066-2225 'Allen- Bradley Cll EIL'C:l., JOO ItF. ~5V 1013-0003 Sprague R12 Camp, 2.2k ohm :1:5%. 1!4W 1066-2225 kllen-Bradley C12 Poly. 0.1 /jf JO%.lOOV 1008-0031 Sprague R13 Camp, 1k ohm ± 5%, 1/4W 1066-1025 tllen- Bradley 'D Pf'iIYL':lI·IJOIIl.P-I\!, O.3!J 1;'1" 10%. 200V 1008-0037 Elpac R14 Camp, 1k ohm ±5%, 1!4W 1066-1025 llen- Bradley 14 Mit-a, 330 pI? 5%.10OV 1002-0032 Elmenco R15 Comp, 5.6k ohm ± 5%, 1/4W 1060-5625 I~ llen- Bradley 15 POlly. n.06H ILF k 10%, 100V 1008-0036 Sprague

R16 R17 R18

Camp, 4.7k ohm ± 5%, 1/4W Camp, 2.2 ohm ± 5%, 1/4W Camp, 47k ohm ±5%, 1/4W

106li-4.725 1060-2.225 1066-4735 f""-B"dl"• llen-Bradley

llen-Bradley

Hi '17

113

EJecl., 25 111", 25V Elect., 25 jJ.F, 25V Mica, 200 pF ± 5%, 100V

1013-0010 1 013-0010 1002-0042

Sprague Sprague Elmenco

R19 Camp, 2.2k ohm ±5%, 1/4W 1066-2225 . llen-Bradley Cl Poly, 0.0056 Ill" ± 10%, 100V 1008-0022 Sprague R20 Camp, lk ohm ± 5%, 1/4W 1066-1025 Allen- Bradley

R21 Camp, 15k ohm ±5%, 1/4W 1066-1535 ~llen-Bradley DIODES R22 Camp, 1k ohm ± 5%, 1/4W 1066-1025 {I.llen-Bradley R23 Camp, 560 ohm ±5%, 1/4W 1066-5615 tllen-Bradley CR1 Si, SD-1 1281-0023 Diodes Inc. R24 Camp, 4.7k ohm ± 5%, 1/4W 1066-4725 1 llen-Bradley CR2 Si, 1N3064 1281-0013 Transitron R25 Val', WW, 10 turn, 5k ohm, 1/2W 1215-0003 rourns CR3 Si, 1N3064 1281-0013 Transitron

CR4 Si, Zener, 15V, 1N4744 1281-0028 Motorola R26 Comp, 10k ohm ±5%, 1/4W 10G()-1035 Allen-Bradley R27 Comp, 1.5k ohm ± 5%, 1/4W 1066-1525 r.~Jlen-Bradley

R28 Camp, 33k ohm ±5%, 1/4W 1001;1-3335 Allen-Bradley INTEGRATED CIRCUITS

IC1 RTL, NOH Galcs. UBA-9\1J4-2HX 2025-0010 Fain;l1ild IC2 RTL, NOH Gnl~s, UUA-Q9J4-26X 2025-00],0 Fairchild IC3 R'I'L, NOn G"ll'lt, lJaA-'1914-2ax 2025-0010 Fairchild IC4 )l'-Am". SN727IJ!:lI. 2025-0014 T.r.

CUll':)

Ll II I~ CI1'Jkc, 220 ,"I 15B[;-IJQIH Delevan L2 '"R E' CIi'Jkc, 120 IIII l!i85-0033 Delevan

TRANS1.STORS

Q1 Si, NPN, 2N3646 1272-0016 Fairchild I Q2 Si, PNP, 2N4121 1272-0023 Fairchild

Q3 Si, NPN, 2N3565 1272-0017 Fairchild Q4 Si, NPN, 2N3565 1272-0017 Fairchild Q5 N Channel FET, 2N 4092 1272-0025 Amelco

Q6 Si, PNP, 2N4121 1272-0023 Fairchild Q7 Si, NPN, 2N3646 1272-0016 Fairchild Q8 Si, NPN, 2N3646 1272-0016 Fairchild Q9 N Channel FET, 2N 4092 1272-0025 Amelco Q10 P Channel MOS-FET MEM 5llA 1272-0026 General Inst.

Qll Si, PNP, 2N4121 1272-0023 Fairchild Q12 Si, NPN, 2N3646 1272-0016 Fairchild

6-14

II I

Page 83: Cushman Model CE-3 FM Communication Monitor Manual, 1968

------ -------- ---- ------I.. DELAY ~ I

• If

I I I I I I I I I I I I I I I

I I--~-------------------

1 f.-INVERTER--.j.. RAMP GENERATOR ..I· SAMPLE GATE .. I.. I SAMPLE GATE

LlI ~ + 20V T T T T 1= =t T T T

'I FROM CH-J9-11

I R5 R4 RI3 02 03 04 R6 TPI R7 OS Q9 TP3010 011 TP4 RI8 RI7 R26

R20 IK

RI8 47K

11.14 TO 8"86V

RI7 2"2K

±C16

~25

RI"3 IK

CII"::F 100

R7R6 8"2K22K

R5 150K

R2 10K

[

~ I '"

1

-I-

C7 :

"T 'OO

Figu

R2

R2S

RI9 -12V

R24

R23 195V 18V 19"5V _~UTO A1\.". 1"-37T0 -.fl..-250" SEC0;] L 4"7m SEC 3"5T060J 4"7mSEC -ll.evJ [

R21 f"IOoH, ~

CRI RI4

1 '2+5V ( I~~ SOl , , , , , , .I

R27

r-vY' --t."'~F:1~~r-~1~==~~====;=~_1-, C3

T 0506 R9 08 RIO TP2 RII RI6 R8 RIS R22 012 R20 TP5 R28

5FROM CH-JI2-1 ( 1

I I I

CII C6 C2 CI C5 C4 C8 CI2 CR2 CI4 CR3 CI6 CI7 I I

LI .. f.--SUFFER----.jL _ CR4

1 "[!OI~TORs--I4W.!>'lj, V,\LU[S I!'/ OKJ.I!S U"lE~C7 I IlL OMftWdf) H(fIID )_ ~~J 1011111 \iAlU~.N ~I U"II"'£!~QTItE.O"WlsrMOr~D

.1 l'lDl>'C'rDiIS- 'l'o&Ll.I~ 1/10' Ii"t.N~or,*,~...1sr p,jOH 0IC4 4 • ~"CT()f1"Y 9f.LKTEo .... ,a,\.UL

s.....u V()L'flGEIU:AtIlfrfGSAII:~DCUN.L.1:SS OT~RItISE NQHD

CII

ICI C9 IC2 C3 L2 CRI CI5 IC3 CI8 CI9

01

R3

RI

07

RI2

Page 84: Cushman Model CE-3 FM Communication Monitor Manual, 1968

• • • • •

~-----------------------­

IN4744 FRO'-4 CH-J9-11 ~3.3K

200pF

19.5V

~ r--37T0 3.5T060J 4.7mSEC

R23 560

5K

R22 IK

R21 15K

R20 IK

RI8 47K

11.14 T08.86V

RI7 2.2K

+-C16

T 25

IK RI4

Q7 2N3646

RI3 IK

CII

~IOO

Q5 2N4092

+-C7 IIOO

R7R6

R5

8.2K22K

150K

R2 10K

RI ,0

I II f.-INVERTER---.j .. RAMP GENERATOR .. I.. SA'-4PLE GATE .. I.. , SA'-4PLE GATE .. I.. LOOP A'-4PL .. I

ILI

220 +20V ~ I

R28 I33K

CR4CI8 rr J

TO CH-A21-JC

I R25

i 010 011 TP4 RI8 RI7 R26 ~ ~ I

R25 R26 10KI

IRig -12V

R24

R23 18V 19.5V

,;1.8fi320~SEC _11.8fi-250~SEC R21

~

R27

+5V < 1 12 I~~ ~~II • fVV' ~. I

C3

18 RI5 R22 012 R20 TP5 R28 I·05

FROM CH-JI2-1

9, I • 19 1 ) TO CH-J9-20I I I I I I 1.4V I

~300~SECI .IV] 'L

f~IOOHz IL ~_ I.. DELAY '-----..-/ ! .. I.. 8UFFER------J

-~ SAMPLE 8 HOLD

CR4 CH-AIO

1 RE_TOPlit-l".W." 'tI"~UE51'l o;:.I\ASIlJNLlOSS lXP'Y,u(iHl ,_ • ., CU!Jt4MAA (LECHIONIC$ INC OTlIf!t'f'o)KlrrIOTEO J!4IIlItA'wI'HQ 13I1Jrt'rv.ol;O "DR THE OI'EI'\Ar'ON AND

;0 CA'A.QltlR:$-\j1'LUI.I'.~'\MUli1:01f1t;fl'M!lf NOTeo ....llljr~ Of C~tOl(,&N il!UCTflONI~ EaUI~,l,lfNT

:I INlY~crOU-V"ll,,'£$IN .-\Jtflus.Olllffiw;!if NQTto ......0 Ib H'01 10 l:ll \&I.e, 'OTHER .... lse OR fiEPfiOOUC~O

IC4 , • F,..elO'l:"'I&lL~ClEO "'ALUl W,TH(iUT .... II,TT[N roSSENT FAQhII ClsSHMA~ fLFC HIONICO.1NC5 .'\lI.ItO~ 'Mil IiiIADINGS. ....i DC UfIIU"

OTHtlt.wrSlNali:.D.

CI7CR3 CI6CI4

CI5 IC3 CI8 Clg

Figure 6-7. Sample and Hold Circuits (CH-A10)

6-15

Page 85: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I CKT. REF. I DESCRIPTION ~ C/E STOCK NO. I I MFR.

CAPACITORS (Continued)

C53 Cer, 0.002 /-LF ± 20%, 600V 1005-0003 Erie C54 Mica, 82 pF ±5%, 100V 1002-0020 ~lm,","C55 Cer, 3.3 pF ± .25 pF, 500V 1005~0011 ne

C56 Mica, 270 pF ± 5%, 100V 1002-0031 lmenco C57 Cer, 0.002 /-LF ± 20%, 600V 1005-0003 rie C58 Cer, 0.002 /-LF ±20%, 600V 1005-0003 !Erie

DIODES

CRI Si, IN3064 1281-0013 CR2 Ge, G633 1282-0005 CR3 Ge, G633 1282-0005 CR4 Si, IN3064 1281-0013 I ~ransitron CR5 Si, IN3064 1281-0013 ransitron

I II COILS

Ll RF Choke, 12 /-LH ± 10% 1585-0011 L2 RF Choke, 12 /-LH ± 10% 1585-0011 L3 Val', .19-.21 /-LH 1596-0010 L4 Val', .19-.21 /-LH 1596-0010 L5 RF Choke, 12 /-LH ± 10% 1585-0011

I L6 Not Used L7 RF Choke, 12 /-LH ± 10% 1585-0011

r'~"L8 RF Choke, 12 /-LH ± 10% 1585-0011 elevan L9 RF Choke, 12 /-LH ± 10% 1585-0011 elevan LI0 RF Choke, 12 /-LH ± 10% 1585-0011 elevan

L11 Val', .19-.21 /-LH 1596-0010 rL12 RF Choke, 12 /-LH ± 10% 1585-0011 elevan L13 Val', .19-.21 /-LH 1596-0010 RW L14 RF Choke, 12 /-LH ± 10% 1585-0011 elevan

I L15 Val', .19-.21 /-LH 1596-0010 RW

L16 Val', .19-.21 /-LH 1596-0010 ~RWL17 Val', .19-.21 /-LH 1596-0010 RW L18 Val', .19-.21 /-LH 1596-0010 iTRW L19 Val', .19-.21 /-LH 1596-0010 I ~RW.

TRANSISTORS

Ql Si, TIS37 1271-0003 Q2 Si, TIS37 1271-0003 Q3 Si, TIS37 1271-0003 Q4 Si, TIS37 1271-0003 Q5 Si, TIS37 1271-0003

Q6 Si, TIS37 J

1271-0003 iT. I. Q7 Si, TIS37 1271-0003 ~.I. Q8 Si, TIS37 1271-0003 I . I. Q9 Si, TIS37 1271-0003 (T.I. QI0 Si, TIS37 1271-0003 tr.I.

RESISTORS

Rl Comp, 10k ohm ±5%, 1/4W 1066-1035 I ~llen-Bradley R2 I Comp, 10k ohm ± 5%, 1/4W I 1066-1035 llen-Bradley

I I

C/E STOCK NO. I MFR. I CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

Cl Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C2 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Erie C3 Mica, 91 pF ± 5%, 100V 1002-0027 Elmenco C4 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C5 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie

C6 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C7 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C8 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C9 Cer, 0.002 /-LF ± 20%, 600V 1005-0003 Erie CI0 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie

Cll Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C12 Mica, 91 pF ±5%, 100V 1002-0027 Elmenco C13 Cer, 2.2 pF ± .25 pF, 500V 1005-0017 Erie C14 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C15 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Erie

-C16 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C17 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C18 Mica, 33 pF ±5%, 100V 1002-0024 Elmenco C19 Val', eel', 9-35 pF 1001-0006 Erie C20 Mica, 470 pF ± 5%, 100V 1002-0035 Elmenco

C21 Cer, 0.05 /-LF +80% -20%, 25V 1005-0014 Erie C22 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C23 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C24 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C25 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie

C26 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C27 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C28 Mica, 82 pF ± 5 %, 100V 1002-0020 Elmenco C29 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Erie C30 Cer, 0.002 /-LF±20%, 600V 1005-0003 Erie

C31 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C32 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C33 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C34 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C35 Mica, 68 pF .± 5 %, 100V 1002-0013 Elmenco

C36 Cer, 5.6 pF ± .25 pF, 500V 1005-0042 Erie C37 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C38 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C39 Mica, 82 pF ± 5 %, 100V 1002-0020 Elmenco C40 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Erie

C41 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C42 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C43 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C44 Mica, 68 pF±5%, 100V 1002-0013 Elmenco C45 Cer, 4.7 ± .25 pF, 500V 1005-0015 Erie

C46 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C47 Mka, 82 pF ±5%, 100V 1002-0020 Elmenco C48 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Erie C49 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie C50 Cer, 0.002 /-LF ±20%, 600V 1005-0003 Erie

C51 Mica, 75 pF ± 2 %, 100V 1002-0025 Elmenco C52 Cer, 2.2 pF 10 .25 pF, 500V 1005-0017 Erie

I 1066-1025 I Allen-Bradley 1066~1035 Allen-Bradley 1066-3925 , Allen-Bradley I i066-1035 A llen- Bradley 1066-1035 Allen-Bradley 1066-1035 Allen-Bradley 1066-1025 Allen- Bradley 1066-1025 Allen-Bradley

1066-3925 Allen- Bradley 1066-2235 AHen- Bradley I1066-1035 Allen-Bradley 1066-1035 Allen-Bradley 1066-3925 Allen- Bradley I1066-2235 Allen-Bradley 1066-1035 Allen- Bradley 1066-1035 Allen-Bradley I 1066-3925 Allen- Bradley 1066-1035 Allen-Bradley I 1066-1035 Allen-Bradley 1066·3925 Allen-Bradley 1066-1035 A llen- Bradley 1066-1035 A llen- Bradley 1066-3925 Allen-Bradley I

A llen- Bradley 1066-1035 1066-1035

Allen-Bradley I 1066-3925 Allen-Bradley 1066-1025 Allen-Bradley

I 1579-0007 I Cushman I

I I I I I I6-16

Page 86: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

RESISTORS (Continued)

R3 Camp, lk ohm ±5%, 1/4W 1066-1025 Allen-Bradley R4 Camp, 10k ohm ± 5%, 1/4W 1066-1035 Allen-Bradley R5 Camp, 3.9k ohm' 5%, 1/4W 1066-3925 A llen- Bradley

R6 Camp, 10k ohm x 5%, 1/4W 1066-1035 Allen-Bradley R7 Camp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R8 Camp, 10k ohm ;1,.5%, 1/4W 1066-1035 Allen-Bradley R9 Camp, lk ohm ± 5%, 1/4W 1066-1025 A llen- Bradley RIO Camp, lk ohm ~ 5%, 1/4W 1066-1025 Allen-Bradley

R11 Camp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R12 Camp, 22k ohm ±5%, 1/4W 1066-2235 A llen-Bradley R13 Camp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R14 Camp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R15 Camp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley

R16 Camp, 22k ohm, 5%, 1/4W 1066-2235 Allen-Bradley R17 Camp, 10k ohm ± 5%, 1/4W 1066-1035 Allen-Bradley R18 Camp, 10k ohm ± 5%, 1/4W 1066-1035 Allen-Bradley R19 Camp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R20 Comp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley

R21 Comp, 10k ohm ±5%, 1/4W 1066-1035 A llen- Bradley R22 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R23 Comp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R24 Comp, 10k ohm ± 5%, 1/4W 1066-1035 Allen-Bradley R25 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley

R26 Comp, 10k ohm ±-5%, 1/4W 1066-1035 Allen-Bradley R27 Comp, 10k ohm olo5%, 1/4W 1066-1035 Allen-Bradley R28 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R29 Comp, lk ohm ± 5%, 1/4W 1066-1025 A llen-Bradley

TRANSFORMERS

Tl Toroid, .31 J..lH primary inductance 1579-0007 Cushman

CKT. REF.

C53 C54 C55

C56 C57 C58

CRI CR2 CR3 CR4 CR5

Ll L2 L3 L4 L5

L6 L7 L8

I L9 LI0

L11 L12 L13 L14 L15

L16 L17 L18 L19

Ql Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 QI0

Rl R2

DESCRIPTION

CAPACITORS (Continued)

Cer, 0.002 J..lF ±20%, 600V Mica, 82 pF ±5%, 100V Cer, 3.3 pF ± .25 pF, 500V

Mica, 270 pF ± 5%, 100V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ± 20%, 600V

DIODES

Si, lN3064 Ge, G633 Ge, G633 Si, IN3064 Si, IN3064

COILS

RF Choke, 12 J..lH ± 10% RF Choke, 12 fiH ± 10% Var, .19-.21 J..lH Var, .19-.21 J..lH RF Choke, 12 J..lE ol,10%

Not Used RF Choke, 12 J..lH ± 10% RF Choke, 12 J..lH ± 10% RF Choke, 12 J..lH ± 10% RF Choke, 12 J..lH ± 10%

Var, .19-.21 J..lH RF Choke, 12 J..lH ± 10% Var, .19- .21 J..lH RF Choke, 12 J..lH ± 10% Var, .19-.21 J..lH

Var, .19-.21 J..lH Var, .19-.21 J..lH Var, .19-.21 J..lH Var, .19-.21 J..lH

TRANSISTORS

Si, TIS37 Si, TIS37 Si, TIS37 Si, TIS37 Si, TIS37

Si, TIS37 Si, TIS37 Si, TIS37 Si, TIS37 Si, TIS37

RESISTORS

Comp, 10k ohm ± 5%, 1/4W Camp, 10k ohm ± 5%, 1/4W

C/E STOCK NO.

1005-0003 1002-0020 1005-0011

1002-0031 1005-0003 1005-0003

1281-0013 1282-0005 1282-0005 1281-0013 1281-0013

1585-0011 1585-0011 1596-0010 1596-0010 1585-0011

1585-0011 1585-0011 1585-0011 1585-0011

1596-0010 1585-0011 1596-0010 1585-0011 1596-0010

1596-0010 1596-0010 1596-0010 1596-0010

1271-0003 1271-0003 1271-0003 1271-0003 1271-0003

1271-0003 1271-0003 1271-0003

I 1271-0003 1271-0003

1066-1035 1066-1035

MFR.

!Erie Elmenco

r-rie ~l~enco

ne Erie

~can'iteon ITT [ITT Transitron

[can'iteon

Delevan ipelevan [rRW ~RW Delevan

Delevan

Delevan elevan

TRWr m

pelevan

rERW ,Delevan TRW

~RW RWfRWRW

r.1. .1.

T.1. T.1.

.r.

.1.r f·1..1.

~ 1100- Bcadl,yllen- Bradley

\

I

CKT. REF. I

Cl C2 C3 C4 C5

C6 C7 C8 C9 CIO

Cll C12 C13 C14 C15

C16 C17 C18 C19 C20

C2l C22 C23 C24 C25

C26 C27 C28 C29 C30

C3l C32 C33 C34 C35

C36 C37 C38 C39 C40

C41 C42 C43 C44 C45

C46 C47 C48 C49 C50

C5l C52

DESCRIPTIO

CAPACITORS

Cer, 0.002 J..lF ±20%, 600V Cer, 3.3 pF ± .25 pF, 500V Mica, 91 pF ± 5%, 100V Cer, 0.002 J..lF ± 20%, 600V Cer, 0.002 J..lF ±20%, 600V

Cer, 0.002 J..lF ,,20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ± 20%, 600V Cer, 0.002 J..lF ±20%, 600V

Cer, 0.002 J..lF ±20%, 600V Mica, 91 pF ± 5%, 100V Cer, 2.2 pF ± .25 pF, 500V Cer, 0.002 J..lF ±20%, 600V Cer, 3.3 pF ± .25 pF, 500V

Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Mica, 33 pF ± 5%, 100V Var, cer, 9-35 pF Mica, 470 pF ± 5%, 100V

Cer, 0.05 fiF +80% -20%, : Cer, 0.002 /IF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V

Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Mica, 82 pF ±5%, 100V Cer, 3.3 pF ± .25 pF, 500V Cer, 0.002 J..lF ±20%, 600V

Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Mica, 68 pF ± 5 %, 100V

Cer, 5.6 pF ± .25 pF, 500V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Mica, 82 pF ± 5%, 100V Cer, 3.3 pF ± .25 pF, 500V

Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V Mica, 68 pF ±5%, 100V Cer, 4.7 ± .25 pF, 500V

Cer, 0.002 J..lF ±20%, 600V Mica, 82 pF ±5%, 100V Cer, 3.3 pF ± .25 pF, 500V Cer, 0.002 J..lF ±20%, 600V Cer, 0.002 J..lF ±20%, 600V

Mica, 75 pF ±2%, 100VI Cer, 2.2 pF ± .25 pF, 500V

Page 87: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I I I C31

I C37

CR5

C32

I C35

C36

C43

I C6

C44

C46

I C50

C45

I C51

I I RI7

R24 ..

I RI5

I Ll6

R22

Q7

I R28

Ll8

I R23

Q9

I I I I

RI5 3.9K

C31

~OO2

RII 3.9K

Tg~~

L12 12

C26

r 002

C25

r 002

L9 12

i ~. (~PJ I: •

R9 IK

40MHz FIUER _I_ MIXER----J

R5 3.9K

LI 12

R2

L

I + 20V ,,(,1-"------.-­:::!::C~ :::!::CIO I

I ~002 TOO2

L2

-12V( 4 12

I · :::!:: c6r-vY'1'-T'--tl-----------------l

+ 20V FROM /_ 18 T002 .1 FP-SWI-C-6" I ­ I I I

I

I . ,(120 MV AC ( I' I I I •20 MHz FROM

CH-JI7-17 ~

I 200 MV AC <-"1 '7

3 MHz FROM f-----------­CH-JI7-4 ,I....

I

I C2

115 MV AC40 MHz FROM FP-SWI-G-5 16 C34

002 T

3.3 pF~5 I,., ,., ,

12 ~ I'OK +20VFROM~

1,3 "?

FP-SWI-E-6

L I..

, lI:Ul!f~~l/o'W RV"'LUl.SIHOHY.~WH~

OI"'lII'll'iM. NOTro t [.AI'.-.ofDM-v"W($I'If,,\ONLW01,.fl'lwm!I'tQt!D :l 1"'[)i.IICjTQlIIS-WI~U'liI~""'~lH!!OTWf'I'II\I~iiOliO • • I'-..cTOfI:T KlEtUO 't'AI.Ut. t loll.. YOl.rAGllIIlAblI'ilGS "lilt LX: llNlESS

(llOl(RW1$t.~t£D

C33 C38

I

C52 C34

Ll3 Q5 Ll2

....... ""

I....... ~

R8 Ll4

CI3 C26 CI8 CI7 CI2 CI9 CII CR2 C8 CR3 C20 C22 C30 CR4 C58 C28 C29 C24

C23

C39

C40

C57

C47

C41

C48

C54

C53

C42

CI4 C5 C7 CIO CI CRI CI6 C9 CI5 C4 C3 C2 C21 C56 C25 C27 C55 C49

RI8 RI6 R7 Q3 L2 R9 R5 TI L3 R3 L4 L9 L7 L8 RI2 RI4 Q4 RI3 R21 Lli

"- '\. '\ \ \ \ \ \ \ 1 I I I I ; / ./ ././ RII

"A"........~._lIP FW.....~ _ Q6E5

RI9

Ll5

R25

Ll7

R29

R20

R2 LI RI R4 QI L5 R6 Q2 LlO R27 QIO R26 Q8 Lt9

Figure 6-8. 40-M

Page 88: Cushman Model CE-3 FM Communication Monitor Manual, 1968

C8 CR3 C20 C22 C30 CR4 C58 C28 C29 C24

C23

C39

C40

C57

C47

C41

C48

C54

C53

C42

I L4 L9 L7 L8 RI2 RI4 04 RI3 R21 L11

RII

06

RI9

L15

R25

L17

R29

R20

15 C4 C3 C2 C21 C56 C25 C27 C55 C49

R6 02 L10 R27 010 R26 08 L19

+ZO V FROM FP- SWI- C-10

J

RZ7 10K

RZ8 3~9K

C51 75pF

A • • II ZllZ5MVAC46 MHz TO

C5Z ~ CH-J8-Z

ZZt>F 1 '! ~ IC46

~OOZ

RZ4 10K

RZZ 3~9K

RZI 10K

C38 ~OOZ

- ­ ~

43 MHz FILTER -­ -­ -­ --­ ., l I

C54 I8Z PF

A • .\ ~ 130 MV AC

f+ r- -: /43 MHz TO

3J~F CH-A4-JI

ZI

~ I

RI5 3.9K

034 ~ OOZ

I­ 46 MHz FILTER .. I

40MHz FILTER .. I_

CI5 3.3t>F

R6 10K

CI6 ~ ~OOZ

CIO ~002

LZ IZ

OZ TlS37

R4 10K

C9

r OOZ

C5 ~002

R3 IK

C7 TOOZRZ

10K

L

I +ZOV ( ,5 LI

IZ :!::: 'YV' :!:: I

-IZV( 14

I :!::: C;:rr'l'--t,----------------~

+ ZOV FROM / 18 T ~OOZ FP-SWI-C-6 " +, I I I

• fIZO MV AC ~ I' I I I •ZO MHz FROM

CH-JI7-17 ~

1 ZOO MVAC ~'7 ==t -. - ,.

3 MHz FROM , CH -JI7- 4 I .. 40 MHz AMPL

I I 3

Clt>F 115MVAC~540 MHz FROM

FP-SWI-G-5 16

~.J~13~~::....--~--J"Y''''--~r_~':''''~]+ ZOV FROM L FP-SWI- E-6

I _tIr$lOltS '4-' "'·...\Hj[JfJliOHIlt5UNL[SS OlW..IMitIIfOTlU

J C~I''''cno"Iio-'o'~U!U IN /III U"uJII,Ol...t "WI:'" HOTI:O .. \HOUC'tUflS ~AltJl:..f" .. Uk....01WIPlwiS{NOng ... -tACTtM'f" ML\CTLD VAUJt. • Al.lvCK.tAoGt"lAt)lhQA ..."'t DCUNLbI

OlHllrl¥l$l fIlOTEO

40,43,46 MHz FILTERS CH-AI8

COl',..".(jri't,"'ItrC·..,.frIlANfLr-T"'OfrIIQI, ,"'. o-llWlNQ .. IW((lliufO '0'1 l"" 4"~..TIQfrt ...".1) "'41"1' (~NtC:I Of C'UiIH'WtJo • Lltt"Olohtl .au......~"" -"'0 II HOT TO., lAta O'!"'ll ".-fa 0" IlUIl:lOuC.ID "'''iOUT ...,llnt:", CONK"" ,~., Il,I&.1,j Ul '"OHJCl./N(;

Fl,rul'w G-8, 40-MHz, 43-MHz, and 46-MHz Filters (CH-A18)

6-17

Page 89: Cushman Model CE-3 FM Communication Monitor Manual, 1968

C/E STOCK NO. MFR.

I

I Allen-Bradley1066-3925 Allen-Bradley1066-1035

1066-1035 Allen-Bradley Allen-Bradley1066-1025

I

Fairchild1272-0022 1271-0003 T.!.

T.I.1271-0003 T.!.1271-0003 Fairchild1272-0022

I

1271-0003 T.!. T.I.1271-0003 T.I.1271-0003

I

CKT. REF. I DESCRIPTION ~E STOCK NO. II MFR.

DIODES

CRI I Si, IN3064 I 1281-0013 IjTransitron CR2 Si, IN3064 1281-0013 Transitron

INTEGRATED CIRCUITS

IC 1 I

Audio Amp., PA-222 I 2025-0015 1)0' E.IC2 TTL, Gate Package SN7400N 2025-0003 T.!.

COILS

Ll RF Choke, 220 J-LH ± 5 % 1585-0018 Delevan L2 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW L3 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW L4 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW L5 Val' Inductor, 0.19-0'.21 J-LH 1596-0010 TRW

L6 RF Choke, 15 J-LH ± 10% 1585-0034 Delevan 1.,7 RF Choke, 15 J-LH ± 10% 1585-0034 Delevan L8 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW L9 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW LI0 Val' Inductor, 0.19-0.21 J-LH 1596-0010 TRW

L11 Val' Inductor, 0.19-0.21 J-LH 1596-0010 IjTRWL12 RF Choke, 15 J-LH ± 10% 1585-0034 Delevan

L13 RF Choke, 15 J-LH ± 10% 1585-0034 Delevan

RESISTORS

Rl Comp, 220 ohm ±-5%, 1/4W 1066-2215 A llen- Bradley R2 Comp, 22k ohm ± 5%, 1/4W 1066-2235 A llen- Bradley R3 Comp, 22 ohm ±-5%, 1/4W 1066-2205 A llen- Bradley R4 Comp, lOOk ohm ± 5%, 1/4W 1066-1045 A llen- Bradley R5 Comp, lk ohm ± 5%, 1/4W 1066-1025 A llen- Bradley

R6 Camp, 10 ohm ± 5%, 1/4W 1066-1005 Allen- Bradley R7 Camp, 560 ohm ±5%, 1/4W 1066-5615 A llen- Bradley R8 Comp, 10k ohm ",5%, 1/4W 1066-1035 A llen- Bradley R9 Comp, 10k ohm ± 5%, 1/4W 1066-1035 A llen- Bradley RIO Camp, 10k ohm±5%, 1/4W 1066-1035 Allen-Bradley

R11 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R12 Comp, 10k ohm ±5%, 1/4W 1066-1035 A llen- Bradley R13 Comp, 10k ohm =5%, 1/4W 1066-1035 Allen-Bradley R14 Comp, 3.9k ohm.! 5%, 1/4W 1066-3925 Allen-Bradley R15 Camp, 10k ohm ±5%. 1/4W 1066-1035 Allen-Bradley

R16 Comp, 10k ohm ±5'10. 1/4W 1066-1035 A llen- Bradley R17 Camp, lk ohm :105%, 1/4W 1066-1025 A llell- Bradley R18 Camp, 10 ohm ± 5%, 1/4W 1066-1005 Allen-Bradley R19 Comp, 560 ohm ,,5%, 1/4W 1066-5615 Allen-Bradley R20 Comp, 10k ohm ± 5%, 1/4W 1066-1035 Allen-Bradley

R21 Comp, 10k ohm ± 5%, 1/4W 1066-1035 A llen- Bradley R22 Comp, 10k ohm ± 5%, 1/4W 1066-1035 Allen- Bradley R23 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen- Bradley R24 Comp, 10k ohm ±5%, 1/4W 1066-1035 . Allen-Bradley R25 Comp, 10k ohm ± 5%, 1/4W 1066-1035 IAllen-Bradley

I

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

I CAPACITORS

C1 Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 Erie C2 Elect., 1 J-LF, 25V 1013-0004 Sprague C3 Cer, 0.05 IlF +80% -20%, 25V 1005-0014 Erie C4 Mica, 470 pF ± 5%, 100V 1002-0035 Elmenco C5 Mica. 51 pF ± 5%, 100V I 1002·0045 Elmenco

C6 I Elect., 15 J-LF, 25V 1013-0005 Sprague C7 Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 Erie C8 Elect., 250 J-LF, 12V 1013-0012 Sprague C9 Elect., 100 IlF, 25V 1013-0003 Sprague CI0 Mica, 470 pF ± 5%, 100V 1002-0035 EJlmenco

C11 Elect" 100 J-LF, 25V 1013-0003 Sprague C12 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie C13 Mica, 91 pF ± 5%, 100V 1002-0027 Elmenco C14 Cer, 3.3 pF C" .25 pF, 500V 1005-0011 Sprague C15 Cer, 0.002 J-LF 120%, 600V 1005-0003 Erie

C16 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie C17 Mica, 91 pF ± 5%, 100V 1002-0027 Elmenco C18 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Sprague C19 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie C20 Cer, 0.002 IlF ±20%, 600V 1005-0003 Erie

C21 Cer, 0.002 J-LF ±20%, 600V I

1005-0003 Erie C22 Mica, 91 pF ± 5%, 100V 1002-0027 Elmenco C23 Cer, 3.3 pF ± .25 pF, 500V 1005-0011 Sprague I C24 Cer, 0.002 IlF ±-20%, 600V 1005-0003 Erie C25 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie

C26 Mica, 91 pF ± 5%, 100V 1002-0027 Elmenco C27 Cer, 3.3 pF ±.25 pF, 500V 1005-0011 Sprague C28 Cer, 0.002 J-LF ~20%, 600V 1005-0003 Erie C29 Cer, 0.002 J-LF ±-20%, 600V 1005-0003 Erie C30 Cer, 0.002 IlF ±20%, 600V 1005-0003 Erie

C31 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie C32 Mica, 150 pF ±5%, 100V 1002-0021 Elmenco C33

I Cer, 4.7 pF ± .25 pF, 500V 1005-0015 Sprague

C34 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie C35 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie

C36 Mica, 150 pF .:<5%, 100V 1002-0021 E lmenco C37 Cer, 4.7 pF ± .25 pF, 500V 1005-0015 Sprague C38 Cer, 0.002 J-LF 3020%, 600V I 1005-0003 Erie C39 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie

I C40 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie

C41 Mica, 150 pF ± 5%, 100V 1002-0021 Elmenco C42 Cer, 4.7 pF i.25%, 500V 1005-0015 Sprague C43 Cer, 0.002 J-LF ±20%, 600V 1005-0003 Erie C44 Cpr, 0.002 J-LF ± 20%, 600V 1005-0003 Erie C45 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie

C46 Mica, 150 pF ± 5%, 100V 1002-0021 Elmenco C47 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie C48 I Cer, 4.7 pF j .25 pF, 500V 1005-0015 Sprague C49 Cer, 0.002 J-LF ± 20%, 600V 1005-0003 Erie C50 Cer, 0.05 J-LF +80% -20%, 25V 1005-0014 Erie

6-18

I I I I I I

I I I

I I

I

Page 90: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. 1 MFR.

R26 R27 R28 R29

RESISTORS (Continued)

Comp, 3.9k ohm ± 5%, 1/4W Comp, 10k ohm ±59'0, 1/4W Comp, 10k ohm ±59'0, 1/4W Comp, 1k ohm ± 5%, 1/4W

1066-3925 1066-1035 1066-1035 1066-1025

Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley

I

Q1 Q2 Q3 Q4 Q5

Q6 Q7 Q8

TRANSISTORS

Si, NPN, 2N3563 Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37 Si, NPN, 2N3563

Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37

1272-0022 1271-0003 1271-0003 1271-0003 1272-0022

1271-0003 1271-0003 1271-0003

Fairchild T.r. T.r. T.r. Fairchild

T.r. T.r. T.r.

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

I

I

CR1 CR2

IC1 IC2

L1 L2 L3 L4 L5

L6 L7 L8 L9 L10

Lll L12 L13

I

mODES

Si, 1N3064 Si, 1N3064

INTEGRATED CIRCUITS

Audio Amp., PA-222 TTL, Gate Package SN7400N

COILS

RF Choke, 220 IlH ±59'0 Val' Inductor, 0.19-0.21 IlH Val' Inductor, 0.19-0.21 IlH Val' Inductor, 0.19-0.21 IlH Val' Inductor, 0.19-0.21 IlH

RF Choke, 15 IlH ± 10% RF Choke, 15 IlB ± 10% Val' Inductor, 0.19-0.21 IlH Val' Inductor, 0.19-0.21 IlH Val' Inductor, 0.19-0.21 IlH

Val' Inductor, 0.19-0.21 IlH RF Choke, 15 IlH ± 10% RF Choke, 15 J.LH :!: 10%

1281-0013 1281-0013

2025-0015 2025-0003

1585-0018 1596-0010 1596-0010 1596-0010 1596-0010

1585-0034 1585-0034 1596-0010 1596-0010 1596-0010

1596-0010 1585-0034 1585-0034

Transitron Transitron

"

G. E. T.r.

I

IDelevan TRW TRW TRW TRW

Delevan Delevan TRW TRW TRW

TRW Delevan Delevan

I

I

,

R1 R2 R3 R4 R5

R6 R7 R8 R9 RIO

Rll R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24 R25

RESISTORS

Comp, 220 ohm ± 5%, 1/4W Comp, 22k ohm ±59'0, 1!4W Comp, 22 ohm ±59'0, 1/4W Comp, lOOk ohm± 5%, 1/4W Comp, 1k ohm ± 5%, 1/4W

Camp, 10 ohm ± 5%, 1/4W Comp, 560 ohm ±59'0, 1/4W Comp, 10k ohm ± 5%, 1/4W Comp, 10k ohm ± 5%, 1/4W Comp, 10k ohm ±59'0, 1/4W

Comp, 3.9k ohm ±59'0, 1/4W Comp, 10k ohm ±59'0, 1/4W Comp, 10k ohm ± 5%, 1/4W Comp, 3.9k ohm ± 5%, 1!4W Comp, 10k ohm±5%, 1/4W

Comp, 10k ohm ±5%. 1/4W Comp, lk ohm ± 5%, 1!4W Comp, 10 ohm ± 5%, 1!4W Comp, 560 ohm ±5%, 1/4W Comp, 10k ohm ± 5%, 1!4W

Comp, 10k ohm ± 5%, 1!4W Comp, 10k ohm ±5%, 1!4W Comp, 3.9k ohm ± 5%, 1/4W Comp, 10k ohm ±59'0, 1!4W Comp, 10k ohm ± 5%, 1!4W

1066-2215 1066-2235 1066-2205 1066-1045 1066-1025

1066-1005 1066-5615 1066-1035 1066-1035 1066-1035

1066-3925 1066-1035 1066-1035 1066-3925 1066-1035

1066-1035 1066-1025 1066-1005 1066-5615 1066-1035

1066-1035 1066-1035 1066-3925 1066-1035 1066-1035

!A llen- BradleyIAllen- Bradley Allen-Bradley Allen- BradleyIAllen- Bradley ,

\ Allen-Bradley Allen- Bradley

' Allen-Bradley Allen- Bradley Allen- Bradley

Allen-Bradley , Allen-Bradley

Allen- Bradley Allen-Bradley

, Allen-Bradley

Allen-Bradley Allen- Bradley Allen- Bradley Allen- Bradley

I Allen-Bradley

IAllen-Bradley Allen- Bradley Allen-Bradley Allen- Bradley Allen- Bradley

,

I

CKT. REF.

r-= I

1 CAPACITORS

DESCRIPTI<

Cl C2 C3 C4 C5

Cer, 0.05 IlF +80% -20%, Elect., 1 IlF, 25V Cer, 0.05 IlF +80% -20%, Mica, 470 pF ± 5%, 100V Mica, 51 pF ± 5%, 100V

C6 C7 C8 C9 C10

Elect., 15 IlF, 25V Cer, 0.05 IlF +80% -20%, Elect., 250 IlF, 12V Elect., 100 IlF, 25V Mica, 470 pF ± 5%, 100V

C 11 C12 C13 C14 C15

Elect., 100 IlF, 25V Cer, 0.002 IlF ±20%, 600\ Mica, 91 pF ± 5%, 100V Cer, 3.3 pF ± .25 pF, 500V Cer, 0.002 IlF ± 20%,600\

C16 C17 C18 C19 C20

Cer, 0.002 IlF ±20%, 600\ Mica, 91 pF ±59'0, 100V C er, 3.3 pF ± .25 pF, 500V Cer, 0.002 IlF ;1,20%,600\ Cer, 0.002 IlF ±20%, 600\

C21 C22 C23 C24 C25

Cer, 0.002 IlF :20%, 600\ Mica, 91 pF ±59'0, 100V Cer, 3.3 pF ± .25 pF, 500V Cer, 0.002 IlF ± 20%, 600\ Cer, 0.002 IlF ±20%, 600\

C26 C27 C28 C29 C30

Mica, 91 pF ± 5 %, 100V C er, 3.3 pF ± .25 pF, 500V Cer, 0.002 IlF ±20%, 600\ Cer, 0.002 IlF ±20%, 600\ Cer, 0.002 IlF 120%, 600\

C31 C32 C33 C34 C35

C er, 0.002 IlF ± 20%, 600"1 Mica, 150 pF ±59'0, 100V Cer, 4.7 pF ± .25 pF, 500\' Cer, 0.002 IlF ±20%, 600"1 Cer, 0.002 IlF ±20%, 600"1

C36 C37 C38 C39 C40

Mica, 150 pF ± 5%, 100V Cer, 4.7 pF ± .25 pF, 500\' Cer, 0.002 IlF ± 20%, 600"1 Cer, 0.002 IlF:!: 20%,600' Cer, 0.002 IlF ± 20%,600'

C41 C42 C43 C44 C45

Mica, 150 pF ± 5%, 100V Cer, 4,7 pF ±.259'0, 500V Cer, 0.002 IlF ± 20%, 600' Cpr, 0.002 IlF ±20%, 600' Cer, 0.002 IlF ±20%, 600i

C46 C47 C48 C49 C50

Mica, 150 pF ± 5%, 100V Cer, 0.002 IlF ±20%, 6001

Cer, 4.7 pF ± .25 pF, 500\ Cer, 0.0021lF ±20%, 6001 Cer, 0.05 IlF +80% -20%,

Page 91: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I I L3 L2 R8 L6 RII RI4 RI R4 R22 RI9 R20 R21

I I

R7

R9

RIO

RI2

~L8 . ~ R25

L9

R23

R24

I L4

R26RI3

1I0

I RI5

I RIG L5 RI7 L7 R3 R2 R5 LI REi RI8 L12 1I3 R28 R27 1I1 R29

I I QI C14 CI7 CI3 CI2 CI6 C2 IC2 C28 C5 C9 IC I CII CR2 Q5 C34 C33 Q6 C32

CRI C31 C36Q2

I C37CI5

C35CI8

C41

I C22

C20 Q7

C39

C38

I Q3

C42C24

C46C21

I C44

C23

04 C27 C26 C25 C29 C30 C8 C7 C50 C6 Cl C3 CIO C4 C49 C47 C40 C48 Q8 C43 C45

I I I

lIS' IC19""""""

, ,

r- ­f- IAUDIO AMPLIFIER ..I

18.5V (OV AC OUTPUT)

C3H I IIAUDIO FROM 15 70 MV AC ,

FP-R3-2

I ,05

-C4 T470PF

R5( 1,4 IK

I~ 1- 42 MHz FILTE

I R6

,V.OY I

-= 10I I R7

560

I

I PULSE -SHAPERI. .1

+5V

riO'C2

CI2 CI5 CI

T·002 ~.002 ~ooa RIO

10K R8

10K C 50

T .05

R23 3.9K

IC2

SN7400N

RI9

560

~Hr.:~f;:~OM ( I6 + RI

220 C5I R20~5IPF

I 10K

*- FACTORY SELECTED VALUE1 3

-= R22 10K

C34 ~.002

( I 0{:­

J

,----- ­, IlUlSTOA$-l/.W. 5" VALUES I'" OHYS UNLESS

OTH£R~'lse NOTED ? CooilPAClTORs_ ...."Lues IN jll L..NlfSSOTHEAVoI$E NOTED. ] INDUCTORS· "'''lUES IN;<II UHUSS OTHERWISE NOTED 4•• FACTORY SEL£CTCO VALUE S ALL VOLTAGE READINGS .... Il.f DC UNLESS

OTH~AWIS" Nono.

1- 33Mlz~

Page 92: Cushman Model CE-3 FM Communication Monitor Manual, 1968

, -HOY. ~

RI4 3,9K

RII 3.9K

-=

I

:

I- ­ -1 I~ AUDIO AMPLIFIER ~II I

18.5V IOV AC OUTPUT! I =t ~ 161~+20V i

v.", , I

I +CIJ 10

~'OO I C3

FP-RH H II,AUDIO FROM 15 70 MV AC

I WATT (22m AC ,05

I "I' C4470pF

R5 IK( 1,4

42 MHz FILTERI_ .11"=1­

I R6 -= 10

I

I I

I.. ~IPULSE -SHAPERI +5V

!C2

~10

C 50

T .05

IC2

51<74001<

~H~~:;:~OM ( 1 6 •

RI

I 220 C5 ~51pF

I

1 3 * FACTORY SELECTED VALUE

~( 1

I 1 _

1, FlEli"ISlOflS-I/-tW. 5"\~AlUESlt.lOHM5U1'''LlSS

ont[I!I'I'i'-.JE:\oIOTEQ

1.. cM..cnOA5;-:'lI''-'ll.,ES IN 10" UNLESS OfH£HWlSE NOTED. J '~OlJ\."'cfls.-""~ufS tlll.ll"- UNi.E~ OTkERWISE NOTED ". '_F":'CTQl'ff' "LEeTED VALUE Iii. ALL ....OLTAGE AeJ"OINGS ,UlfDCUNlESS

Oll'<ERWlSl NOTEO.

R7

560

CI2 CIS ~.002 *002

R8 RIO 10K 10K

• til

I

R23 3.9K

RI9

560

I. 33 M

L7 41 )-12V------<t·--~7 • C30RI7

I 002IK "I ,002C29

II

91pF 2

'" C27 1 ) 125MVAC 42 MHz TOI

FP-SWI-G"4II I '''' ~

CI9 C24 ,002 I,*",002

RI3 RI6 10K 10.K

I

L6 51 ~ +20V FROM+ • 'iT,. FP-SWI-E-9 C21 C28I ,002 I,002

L12 171 ) -12V, , '7 , C44 C47

R26 R29~,002 *,0023,9K IK

I C46 ~ 150pF

C48 III 115 MVAC 21 ) 33MHzTO CH-A3-JI

4.7pF 1

II

~ I II

18 I );~~~:,~~~ C40 -'-C49

I-002 I,002

z FILTER-= • T 33MHz a. 42 MHz FILTERS I AUDIO AMPLIFIER a. SPEAKER CH-At6

COPYRIGHT'1iRJ IIY CUSHMAN H£C'tRONICS, INC THI!; DfiA..... INl; IS IN1£NDF.0 FOR THE OPEI1ATION ..NO MJ,INU"'lANCE OF CU5HM,t,N EI,.ECTFlON1C5 EaU'~ENT

"'ND IS NOT TO fiE LISt-a OTHEJIWISE Ofll REPAQOVCeO WITHOUT WRITTEI'lI COHSE"NT FROM CUSHMAN I:'LEC· TRO"'ICS. INC

Figure 6-9. 33-MHz and 42-MHz Filters, Audio Amplifier, and Speaker (CH-A16)

6-19

L 13 15

A • -".0'.

R28 10K

C43 ~,002

R25 10K

R22 10K

C34 -:;r002

R20 10K

Page 93: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I E STOCK NO.

1066-4725 1066-4715 1066-2215 1066-5105

1579-0013 1579-0013

MFR.

Allen- Bradley Allen- Bradley Allen- Bradley Allen-Bradley

I Cushman Cushman

I I CKT.REP.

Ll L2 L3 L4 L5

L6 L7

I L8 L9 LI0

L11 L12 L13 L14

ICI IC2

Ql Q2 Q3 Q4

Rl R2 R3 R4 R5

R6 R7 R8 R9 RIO

Rll R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24 R25

I DESCRIPTION

COILS

RF Choke, 12 J..LH ± 10% Val' I!lductor, 0.19-0.21 J..LH RF Choke, 1 J..LH ± 10% RF Choke, 0.56 J..LH ± 10% RF Choke, 0.68 J..LH ± 10%

Val' Inductor, 0.28-0.34 J..LH Val' Inductor, 0.28-0.34 J..LH Val' Inductor, 0.28-0.34 J..LH Val' Inductor, 0.28-0.34 J..LH Val' Inductor, 0.28-0.34 J..LH

RF Choke, 12 J..LH ±- 10% Val' Inductor, 0.28-0.34 J..LH Val' Inductor, 0.28-0.34 J..LH RF Choke, 12 J..LH ± 10%

INTEGRATED CrnCUITS

RF Ampl, CA3028AI RF Ampl, CA3028A

TRANSISTORS

Si, NPN, 2N3563

I I Si, NPN, 2N3563

Si, NPN, 2N3563 Si, NPN, 2N3563

RESISTORS

Comp, 120 ohm ± 5%, 1/4W Comp, 68 ohm 0105%, 1/4W Comp, 51 ohm ± 5%, 1/4W Comp, lk ohm ±-59'0, 1/4W Comp, 2.2k ohm ±- 5%, 1/4W

Comp, 5.6k ohm ±-59'0, 1/4W Comp, 51 ohm ± 5%, 1/4W Comp, 270 ohm ± 5%, 1/4W Comp, 1.5k ohm ±-59'0, 1/4W Comp, 150 ohm ±- 5%, 1/4W

Comp, 2.2k ohm 01. 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 8.2k ohm ±59'0, 1/4W Pot, comp, lk ohm ±- 20%, 1/4W Comp, 68 ohm ±59'0, 1/4W

Comp, 330 ohm ± 5%, 1/2W Comp, 1.5k ohm ±5%,1/4W Comp, 5.6k ohm ± 5%, 1/4W Comp, 51 ohm :5%, 1/4W Comp, 12k ohm ±-59'0, 1/4W

Comp, 3.9k ohm ±-59'0, 1/4W Comp, 680 ohm ±59'0, 1/4W Comp, lk ohm ± 5%, 1/4W Compo 3.9k ohm ± 5%, 1/4W Comp, 51 ohm ± 5%, 1/4W

I C/E STOCK NO.

1585-0011 1596-0010 1584-0027 1585-0036 1585-0024

7050-0021 7050-0021 7050-0021 7050-0021 7050-0021

1585-0011 7050-0021 7050-0021 1585-0011

I 2025-0012I 2025-0012

I

1272-0022 1272-0022 1272-0022 1272-0022

I

1066-1215 1066-6805 1066-5105 1066-1025 1066-2225

1066-5625 1066-5105 1066-2715 1066-1525 1066-1515

1066-2225 1066-2225 1066-8225 1200-0012 1066-6805

1067-3315 1066-1525 1066-5625 1066-5105 1066~ 1235

1066-3925 1066-6815 1066-1025 1066-3925 1066-5105

I IMFR.

. DelJan Cusq.man Delevan Delevan Dellan

Cushman Cusllman Cushman Cusl)man Cushman

I Delevan Cushman Cushman Dele,van

I I

IRCA RCA'

II

Fairchild Fairchild Fairphild Fairchild

I I

Allelt Bradley Alle1l- Bradley A llel\- Bradley Aller BradleyAller -Bradley

AllerBradley Aller -Bradley Alle - Bradley

AlI'l""dleyI Allel -Bradley

Allell- Bradley Alled- Bradley Allel!-Bradley AlleJ -Bradley Alie11-Bradley

Allej- Bradley Alle -Bradley Alle~-Bradley Alle -Bradley AlletBradley

lIe!""die,AA He - Bradley AHel Bradl.ey Aller Bradley Alle -Bradley

I CKT. REF.I

Cl C2 C3 C4 C5

C6 C7 C8 C9 CI0

C11 C12 C13 C14 C15

I I C16 C17

I r C18 C19 C20

I I C21 C22 C23 C24 C25

C26 C27II I C28 C29 C30

C31 C32 C33 C34 C35

C36 C37 C38 C39 C40

C41

I I CRI CR2 CR3 CR4 CR5

I DESCRIPTION

I CAPACITORS

Cer, .05 J..LF +80% -20%, 25V Cer, .05 J..LF +80% -20%. 25V Cer, .05 J..LF +80% -20%, 25V Cer, .002 J..LF ± 20%, 600V Cer, .05 J..LF +80% -20%, 25V

Cer, .002 J..LF ± 20%, 600V Cer, .002 J..LF ±20%, 600V Mica, 68 pF ± 5 %, 100V Mic2., 330 pF ± 5%, 100V Mica, 33 pF ±-59'0, 100V

Mica, 56 pF ±- 5%, 100V Elect., 15 J..LF, 25V Mica, 470 pF ±-59'0, 100V Mica, 270 pF ±- 5%, 100V Mica, 430 pF ±-59'0, 100V

Mica, 220 pF ±- 5%, 100V Mica, 270 pF ±-59'0, 100V Elect., 15 J..LF, 25V Elect., 15 J..LF, 25V Mica, 100pF ± 5%, 100V

Mica, 68 pF ±- 5 %, 100V Cer, 5.6 pF ±- .25 pF, 500V Mica, 33 pF ±- 5%, 100V Cer, 5.6 pF ±- .25 pF, 500V Cer, .05 J..LF +80% -20%, 25V

Mica, 43 pF ±-59'0, 100V Mica, 12 pF ±-59'0, 100V Cer, .002 J..LF ±-20%, 600V eel', .002 J..LF ±- 20%, 600V Cer, .002 J..LF ±- 20%, 600V

Mica, 43 pF ±-59'0, 100V Cer, 6.8 pF ±- .25 pF, 500V Mica, 39 pF ±59'0, 100V Mica, 15 pF *-5%. 100V Cer, .002 J-LF ±20%, 600V

Cer, .002 J-LF ±- 20%, 600V Mica, 43 pF ± 5 %, 100V Cer, 8.2 pF ±- .25 pF. 500V Mica, 68 pF 01.5%, 100V Mica, 120 pF ±- 5%, 100V

Cer, .002 J-LF ±20%, 600V

I DIODES

Zener, ZD-9.1B Hot Carrier, HPA2800 Hot Carrier, HPA2800 Hot Carrier, HPA2800 Hot Carrier, HPA2800

I C/E STOCK NO.

1005-0014 1005-0014 1005-0014 1005-0003 1005-0014

1005-0003 1005-0003 1002-0013 1002-0032 1002-0024

1002-0019 1013-0005 1002-0035 1002-0031 1002-0034

1002-0029 1002-0031 1013-0005 1013-0005 1002-0011

1002-0013 1005-0042 1002-0024 1005-0042 1005-0014

1002-0046 1002-0017 1005-0003 1005-0003 1005-0003

1002-0046 1005-0006 1002-0018 1002-0001 1005-0003

1005-0003 1002-0046 1005-0043 1002-0013 1002-0010

1005-0003

1281-0027 1283-0001 1283-0001 1283-0001 1283-0001

I MFR.

Erie Erie Erie Erie Erie

Erie Erie Elmenco Elmenco Elmenco

Elmenco Sprague Elmenco Elmenco Elmenco

Elmenco Elmenco Sprague Sprague Elmenco

Elmenco Erie Elmenco Erie Erie

Elmenco Elmenco Erie Erie Erie

Elmenco Erie Elmenco Elmenco Erie

Erie Elmenco Erie Elmenco Elmenco

Erie

Diodes Inc. HPA HPA HPA HPA

I

I

I

I

II

I

I

I

I

I

I

I

I

6-20

I I I I I I I I I I I I

I

I

I I

Page 94: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF.

,

DESCRIPT ION C/E STOCK NO. MFR.

RESISTORS (Continued)

R26 Comp, 4.7k ohm ± 5%, 1!4W 1066-4725 Allen-Bradley R27 Comp, 470 ohm ± 5%, 1/4W 1066-4715 A llen- Bradley R28 Comp, 220 ohm =: 5%, 1!4W 1066-2215 Allen- Bradley R29 Comp, 51 ohm Co 5%, 1/4W 1066-5105 A llen- Bradley

TRANSFORMERS

Tl Transformer 1579-0013 Cushman T2 Transformer 1579-0013 I Cushman

CKT. REF. DESCRIPTION C/E STOCK NO. MFR. ,

COILS I

Ll RF Choke, 12 /lH ± 10% 1585-0011 Delevan L2 Val' Inductor, 0.19-0.21 /lH 1596-0010 Cushman L3 RF Choke, 1 /lH ± 10% 1584-0027 Delevan L4 RF Choke, 0.56 I.LH ± 10% 1585-0036 Delevan L5 RF Choke, 0.68 /lH ± 10% 1585-0024 Delevan

L6 Val' Inductor, 0.28-0.34 /lH 7050-0021 Cushman L7 Val' Inductor, 0.28-0.34 /lH 7050-0021 Cushman L8 Val' Inductor, 0.28-0.34 /lH 7050-0021 Cus&man L9 Val' Induetor, 0.28-0.34 /lH 7050-0021 Cus~man LI0 Val' Induetor, 0.28-0.34 /lH 7050-0021 Cus~man

L11 RF Choke, 12 /lH ,,10% 1585-0011 Delevan L12 Val' Inductor, 0.28-0.34 /lH 7050-0021 Cushman L13 Val' Inductor, 0.28-0.34 /lH 7050-0021 Cushman L14 RF Choke, 12 /lH =: 10% 1585-0011 Dele,·an

INTEGRATED CIRCUITS I IC 1 RF Ampl, CA3028A 2025-0012 RCA

I IC2 RF Ampl, CA3028A 2025-0012 RCA ,TRANSISTORS

Ql Si, NPN, 2N3563 1272-0022 Fairchild Q2 Q3 Q4

Si, NPN, 2N3563 Si, NPN, 2N3563 Si, NPN, 2N3563

1272-0022 1272-0022 1272-0022

Faireild Fair hild

F'iTild RESISTORS

Rl Comp, 120 ohm ± 5%, 1/4W 1066-1215 AllerBradley R2 Comp, 68 ohm ±5'70, 1/4W 1066-6805 A lle - Bradley R3 Comp, 51 ohm ±5'70, 1!4W 1066-5105 AHelt-Bradley R4 R5

Comp, lk ohm :5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W

1066-1025 1066-2225 ~ g:r= ~:~~::;

R6 Comp, 5.6k ohm =5%, 1!4W 1066-5625 Alle l-Bradley R7 Comp, 51 ohm ± 5%, 1!4W 1066-5105 Allen-Bradley R8 Comp, 270 ohm ±.5'70, 1/4W 1066-2715 Alle,l- Bradley R9 Comp, 1.5k ohm =5%, 1/4W 1066-1525 Allen-Bradley RIO Comp, 150 ohm ,~5'70, 1/4W 1066-1515 Alle~-Bradley

R11 Comp, 2.2k ohm ,),5%, 1/4W 1066-2225 A llel\- Bradley R12 Comp, 2.2k ohm ;.!:5'70, 1/4W 1066-2225 A11e 1,1- Bradley R13 R14

Comp, 8.2k ohm .,l, 5%, 1/4W Pot, comp, lk ohm ± 20%, 1/4W

1066-8225 1200-0012 ~~~:~=~~~~i:~

R15 Comp, 68 ohm ± 5%, 1/4W 1066-6805 AlleI;l- Bradley

R16 Comp, 330 ohm ±5'70, 1!2W 1067-3315 AlleLBradley R17 Comp, 1.5k ohm ±5%,1!4W 1066-1525 Alle~-Bradley R18 Comp, 5.6k ohm ± 5%, 1/4W 1066-5625 A lle - Bradley R19 Comp, 51 ohm 10 5%, 1/4W 1066-5105 Alle1t Bradley R20 Comp, 12k ohm± 5%, 1/4W 1066-1235 AllerBradley

R21 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen- Bradley R22 Comp, 680 ohm ±5'70, 1/4W 1066-6815 A llen-Bradley R23 Comp, lk ohm 10 5%, 1/4W 1066-1025 Allen-Bradley R24 Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 Allen-Bradley R25 Comp, 51 ohm ± 5%, 1/4W 1066-5105 Allen-Bradley

1

Page 95: Cushman Model CE-3 FM Communication Monitor Manual, 1968

R22 L9 RI9TI L4 CR3 CR2 CR5 CR4 L5

I II

-12V < 1 4

I I~ I

40/42 101Hz FROMFP-SWI-H-2 <I

2 RI 51

RI8 5.6K

Rza 12K

.".

C27 12pF

C26 L8 ;-f43PF 28-.34

l

C24 5.6pF

C25

'J05

RI7 1.5K

RI'

3301/2W

CISJ'5

RI5 68

CR3 HPA2800 C21 C22

/ ::+F5.~pF

100pF L6 .28-.34

TP 4

CII -:;); 270pF

CR2 HPA2800

-S.5V C7

~ .002

C5 .05

.".

'+-CIS

T'5$RII ~R12 .".

-.S4V

CRI I ;/1'

ZDS.IS ~.2K

I I

-.S3V-QI

RI4

2N3563

w1~ RI3 8.2K IKRS

1.5K

+ Cl2

*"'5

R6 5.6K

.OS5V

R4 IK

LI 12

I.. VOLTAGE CONTROLLED AMPL I .. I. ALC LOOP AMPL ...1

RI 120

C205T

II II

I

I L_._

6-10 101Hz {FROM CH-A21-JA

CO"TflKlofTlllO 11'1' CUS>4""AN ELEClA-UN',CS; IN<: Itt}! l)A.U.P'~(;" .NTlI\jOlD fDA THE O"ERAT'ON M.D ~""'dl""'I'U~{ Uf cu~,... '" ELECTRONICS (CUllI'lolENT

"'NU II NOT TOc.' V;«) OTHEAI\IIS[ 01'1 AEPACOUC{O w!T>l()U' ~"j:lITlEN CON5I:N' fAOY­ Cl.'S.n"''''N ElfC IA-o .... ,C! INC

JII ~r------!~. ~'~'

W R2 C4100 MVAC 68 .002 I ru /0~ • ~. I~

l .". I

I

I

I I II 8MVAC

R23

R26

R25

04

03

L10

R21

R24LI

R5 R3 R9 R2 RI RI5 01 R4 RI6 RII IC I RI2 RI7 IC2 R29 R28 L14 L11 L13 R27 L12

L3

R8

02

R7 I ,

R6

L2

TPI

RIO

C7 CI4 C4 C6 C9 C5 C3 C2 CI2 CI CI9 C25 C28 C41 C39 C40 C38 C35 C37 C36

C8 CIO CII CI6 CI5 CI3 CI7 C20 C21 CI8 C22 C23 C24 C26 C27 C29 C34 C30 C32 C31 C33

I

I I

I I I

I

I

I I

I

I I I I

Page 96: Cushman Model CE-3 FM Communication Monitor Manual, 1968

1---------- ~ 12V C~

002 ~ BALANCED MIXER I ...L L14 R21 I·-12V'/ 4 ~ ,ll..ELI 1 MIXER DRIVERI T ~g~, -t- ~I I roo'- 46-50.2 MHz BANDPASS AMPL - --" -:::t::"C41

II' r­ ~~ l~ 3.9K

I II R5 R8 2.2K 270 IC35C29

r·002R22 T002RI8 R24 R27

I680 =5.6K-9.5V 3.9K

11 470

CR3HPA2800

100pF

')TP 4

CI7 ~270PF

=

~002

r-- 10 MHz LOW PASS

-• ~~----, I~

C7I -3.8V C21 -9.5VROM < 2 OOM~I I C36~

04

, L12

.28",34r 43pF

T002::+F5.6pF C39 r4RI -= C38 68pF120 800MVAC 46-50.2 MHz21 TO

L6 CH-A2-JI~~C37 LI3 .l.. 8'2pF.28-.34

R28C40- 220 =.28-.34 II20PFI -= ~

18 1,85MVAC >TO CH-J8-4

I R29 51

I

I ~ +20V

C5 .05

&I

05r

------'l~

I 3301/2W

CRI R4 RII RI2ZD9.IB

l' £. &~ 2.2K 2.2KIK *""I .. ,~. ,"-,,-~

.94V ! 1,{:h,.", 01 8 2N3563 RI7 C25

J.5K 6.1V

-.93V r 05

C2 RI3 RI4R9 CI98.2K IKJ.5K II -= JI5 .085V --II l~15

-= cI2 I~]

IL _ -~~ 46-50.2 MHz 8ALANCE MIXER CH-AI5

1 FlfS1STOflS-lr.Y;. ~~ \'J>.LU~S IN OWo'S UNltoSS ""elr.iH""'N hf..CHIO!HC'lIINC OT ..eFt'NiSEfIIOTEO

'110 It 1~'f".9f:O 'OA: T!-4f Ol'f:.AAT'ON A.... l.I "2 C",J>",CITQRS_VAlUE.S IN '" U!'rtLESS afHEH.... IS[ NOT[O ~r CJI tU!'H"',\'" fLlCrllONrCS tOU''''''E1oIT to I[ U51.D OfHEf!WISf Ott fU""HOOUClQ

J IHtluCTOllS· VALUES IN 10" UNLESS OTHEH'i';I~[ ~OTEO

... FACTORY SfLECTfD 'I.'A.LUE",IlIH Cc.~srNT ''''0\\ CUS"'~"'N H[£ S ALL VOL TAGE- READINGS AfiE DC UNLI:S."

OTMtkw.SE NOT[D

Figure 6-10. 46-50.2 MHz Balanced Mixer (CH-A15)

6-21

Page 97: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. I DESCRIPTION I IC/E STOCK NO. MFr'

RESISTORS

Rl Comp, 120 ohm ± 5%, 1/4W 1066-1215 Allen-Br~dley R2 Comp, lk ohm ±590, 1/4W 1066-1025 Allen-Brpdley R3 Comp, 1.2k ohm ",5%, 1/4W 1066-1225 Allen-Br~dley R4 Comp, 2.7k ohm =5%, 1/4W 1066-2725 Allen-Bradley R5 Comp, lk ohm "'5%, 1/4W 1066-1025 Allen-Bradley

R6 Comp, 1.2k ohm ± 5%, l!4W 1066-1225 IAllen-Bradley R7 Comp, 2.7k ohm ± 5%, 1/4W 1066-2725 Allen-Bradley R8 Comp, 220 ohm =5%, 1/2W 1067-2215 Allen-Brfdley R9 Camp, 68 ohm ± 5%, 1/4W 1066-6805 Allen-Br dley RIO Camp, 180 ohm ± 5%, 1/2W 1067-1815 Allen-Br dley

R11 Comp, lk ohm ±590, 1/4W 1066-1025 Allen-Brfdley R12 Comp, 150 ohm =5%, 1/2W 1067-1515 Allen-Brjidley R13 Comp, 180 ohm ±590, 1/2W 1067-1815 Allen-BrjJ.dley R14 Comp, 3.3k ohm 15%, 1/4W 1066-3325 Allen-Bradley R15 Camp, 91 ohm 15%, 1/4W 1066-9105 Allen-Br~dley

I TRANSFORMERS

Tl I Transformer I 1579-0013 I Cushman

I ICKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS I

Cl Feedthru, 1000 pF ±.20%, 500V 1005-0008 Erie C2 Feedthru, 1000 pF ± 20%, 500V 1005-0008 Erie C3 Feedthru, 1000 pF .>.20%, 500V 1005-0008 I Erie C4 Cer, .05 J1.F + 80% -20%, 25V 1005-0014 I Erie C5 Cer, .002 J1.F ±20%, 600V 1005-0003 Eric

C6 Cer, .002 /IF ± 20%, 600V 1005-0003 Erie C7 Cer, .002 /IF .1-20%, 600V 1005-0003 Erie C8 Cer, .002 /IF .i 20%, 600V 1005-0003 Erie C9 Cer, .002 IJ.F ±20%, 600V 1005-0003 Erie C10 Mica, 24 pF :, 5%, 100V 1002-0051 Elmenco

Cll l'vlica, 10 pF :, 5%, 100V 1002-0016 Elmenco C12 Cer, .002 /IF ±20%, 600V 1005-0003 Erie C13 Cer, .002 /IF 0,20%, 600V 1005-0003 Erie C14 Cer, .002 /IF ±20%, 600V 1005-0003 Erie C15 Cer, .002 /IF ± 20%, 600V 1005-0003 Erie

C16 Mica, 36 pF ~ 5%, 100V 1002-0041 Elmenco C17 Mica, 22 pF :, 5%, 100V 1002-0023 Elmenco C18 Cer, .002 IJ.F .;. 20%, 600V 1005-0003 Erie C19 Cer, .002 /IF ± 20%, 600V 1005-0003 Erie C20 Cer, .002 /IF . 20%, 600V 1005-0003 Erie

C21 Mica, 30 pF ± 5%, 100V 1002-0043 Elmenco C22 Mica, 56 pF ± 5%, 100V 1002-0019 Elmcnco C23 Cer, .002 /IF ±20%, 600V 1005-0003 Erie C24 Cer, .002 /IF ±20%, 600V 1005-0003 Erie

I DIODES

CRI Ge, G633 1282-0005 ITT CR2 Hot Carrier, HPA2900 1283-0001 HPA CR3 Hot Carrier, HPA2900 1283-0001 HPA CR4 Si, HPA0136 1282-0006 HPA

FILTERS I

Fil-l Filter, Coaxial, 460-502 MHz 1040-0010 Cushman I

COILS

Ll RF Choke, 4.7 /lH ±20% 1585-0021 Delevan L2 RF Choke, 4.7 /lH ± 20% 1585-0021 Delevan L3 RF Choke, 4.7 /lH ±20% 1585-0021 Delevan L4 Val' Inductor, .11-.13 J1.H 7050-0022 Cushman L5 RF Choke, 4.7 /lH ± 20% 1585-0021 Delevan

L6 RF Choke, 4.7 /lH ± 20% 1585-0021 Delevan L7 Var Inductor, .11-.13 /lH 7050-0022 Cushman L8 Val' Inductor, .11-.13 /lH 7050-0022 Cushman

TRANSISTORS

Ql Si, NPN, 2N3563 1272-0022 Fairchild Q2 Si, NPN, 2N3563 1272-0022 Fairchild Q3 Si, NPN, 2N3866 1271-0005 RCA

6-22

I

I I

I

I

I

I I I I

I

Page 98: Cushman Model CE-3 FM Communication Monitor Manual, 1968

460-502 MHz 100 mVAC

II

I T: )~ I

R13> 180

Rl2

R8

220

R7> 2,7K

CI3

T ,002

"::" L7

CI4 - ­ ,002

R6>1.2K T

CI2

T

,002

"::" • ,I

4,7

R4>2,7K

R3S1.2~8T,002 ~

C5 T002

HPA2900

L3 ~ 4,7

"::"

LI

4,7

,002 I I

I

I II -----------,-------------- -----1

f---FREQ DOUBLER_j.. 92-100.4 MHz AMPL, i -I-- X5 MULTIPLIER-H

I I C3 CI C2

/ TP2\ _/ - / C4TP3 ..... C4 -,OS

I ':;I:" CRI

/ / /' TP4 JI

I CRI

RI ..... ........... .Al. JY

TI RI

LI

C9 "::"

R3 112W

I L5

C8 C9 ,002 CI5 ,002 1/2w CIS 00QI I r TT

I C 15 L~_

R6

I R8

1 R~SIS.TORt 1,'41'0', .......'4,Lt.'~~ IN OK"'-S 1.!)IlL! OTHERWISt NonD

R5

CI4 ,. CI"'~ClTOHtL V.....UE-SIN .. ' I»!Ll;:!5ll)ft-B;R....1$f Nono :J: INOUCTOR$·V4LUE<j IN Ill' \,.WlEJ;S.OTHI.ttWJ$E' HQTI(D

4 • Jo\C1'O""'SEltCTtO'l'All1l' !o A.lL"'OLT"GEIIIAD'NG~A"'F,OG",'IIlf$.~

OfHEflwlSl NQUD

II Q2 Cl7

CI9

R9

I RII

RI3

C23

I C21 RI2

C22

03 TP6

I ~J2P2:~:I/ RI5

I FII-II . CR4 TP5 I -"­I

I P3

I I II

C24 T

G633

L2

120 ,9

I I

I

I I I

_I

P3 TO

CH-AI-J3

46 - 50,2 MHz MULTIPLIER CH-A2

CO!"'lIIl(]"-" .....y WtJ"'~ [l.1tll'ONiCS, INC. "'~ l,)l!lANIIIC 1$ IIHI:NDlo ~OR h<e OPElIl.#ItloOH AND "'-AlNie".....cl OF CUSKUIUI fUC:rJlQkICS (Ol.fInlCNT ..NO ... I'ClT to IIIIt51!O Ol,,,FlrIflllISl 0" fU"-OOUC£D ~H"OUT 'lIt"Ht'TtN ~T FRO," C\lSJotMIlN [tXc· TMI)Nlct.,l!C

Figure 6-11. 46-50.2 MHz Multiplier (CH -A2)

6-23

Page 99: Cushman Model CE-3 FM Communication Monitor Manual, 1968

DESCRIPTIONCKT. REF. C/E STOCK NO. MFR.

RESISTORS (Continued)

CKT. REF.

R3 R4 R5

Comp, 2.2k ohm ±59'0, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W

1066-2225 1066-2225 1055-2225

Aller- Bradley Aller-Bradley AllerBradley

I

R6 R7 R8 R9 RIO

I

Comp, 1k ohm ± 5%, 1/4W Comp, lk ohm ± 5%, 1/4W Camp, 1.2k ohm ± 5%, 1/4W Comp, lk ohm ± 5%, 1/4W Comp, 470 ohm ± 5%, 1/4W

I

1066-1025 1066-1025 1066-1225 1066-1025 1066-4715

I

Allel- BradleyAlle - Bradley Alle - Bradley Alle -Bradley

Allel, -Bradley I

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

Cll C12 C13 C14 C15

C16 C17 C18 C19 C20

C21

CR1 CR2

Fil-1

L1 L2 L3 L4 L5

L6 L7 L8

Ql Q2 Q3

Rl R2

DESCRIPTION

CAPACITORS

Cer, .01 IJ.F +80% -20%, 50V Cer, .002 IJ.F .:.20%, 600V Cer, .01 IJ.F +80% -20%. 50V Cer, .002 IJ.F '" 20%, 600V Cer, .002 IJ.F ±20%, 600V

Cer, .002 IJ.F ± 20%, 600V C er, .002 IIF .!o 20%, 600V Cer, .002 IlF .... 20%, 600V Mica, 150 pF ± 5%, 100V Mica, 18 pF ± 5%, 100V

Cer, .002 IJ.F ",20%, 600V Mica, 47 pF ±5%, 100V Cer, .002 IJ.F ,,20%, 600V Mica, 15 pF .>.5%, 100V Cer, .002 IlF 1:20%, 600V

Cer, .002 IlF .1.20%, 600V Mica, 47 pF ± 5%, 100V Mica, 12 pF ± 5 %, 100V Cer, .002 IJ.F ",20%, 600V Feedthru, 1000 pF :20%, 500V

Feedlhru, 1000 pF 10 20%, 500V

DIODES

Si, IN3064 Si, HPA0136

FILTERS

Filter, Coaxial, 330 MHz

COILS

RF Choke, 22 ,uH '" 10% RF Choke, 22 IJ.H .... 10 Val' Inductor, 0.19-0.21 ,uH RF Choke, 5.6 ,uH ± 10% RF Choke, 22 IJ.H ± 10

RF Choke, 5.6 IJ.H ±10'% Val' Inductor, 0.13-0.15 IJ.H Val' Inductor, 0.13-0.15 ,uH

TRANSISTORS

Si, NPN, 2N3563 Si, NPN, 2N3563 Si, NPN, 2N3866

RESISTORS

Comp, 68 ohm ±59'0, 1/4W Comp, 2.2k ohm ±5%, 1/4W

6-24

C/E STOCK NO. MFR.

1005-0013 1005-0003 1005-0013 1005-0003 1005-0003

Erie Erie Erie Erie Eric

1005-0003 1005-0003 1005-0003 1002-0021 1002-0014

Erie Erie Erie E1menco E1menco

1005-0003 1002-0012 1005-0003 1002-0001 1005-0003

Erie E1menco Eric E1menco Erie

1005-0003 1002-0012 1002-0017 1005-0003 1005-0008

Erie E1menco Elmenco Erie Erie

1005-0008 I Eric

1281-0013 1282-0006

Transitron HPA

1040-0008 Cushma.n

1585-0012 1585-0012 1596-0010 1585-0028 1585-0012

Delevan Delevan Cushman Delevan Delevan

1585-0028 7050-0005 7050-0005

Delevan Cushman Cushman

1272-0022 1272-0022 1271-0005

Fairchild FairchHd RCA

1066-6805 Allen- Bradley 1066-2225 Allcn- Bradley

J I I I I I I I I I I I I I I I I I I

Page 100: Cushman Model CE-3 FM Communication Monitor Manual, 1968

RIO 470

I I

TP) I 5 I

1

I I I I J

Cl7 47pF

CI9 .002

R8 1.2K

R6 IK

R4 2.2K

R5 2.2K

CI3 ~.002

CRI IN 3064

OV

L5 22

C8 J002

L4 5.6

L6 5.6

R3 2.2K

C4 J002

AMP .. I.. 66 MH, FILTER ~ .. 1--X5 MULTIPLIER

----.., I I I I I

C6 :J".002

22 L2

R2 2.2K

C7

r·002

"""--'-33 MHz

I

I I I

~. I (I I

LLL--­

C20

J

C6

TP I

CI

L3

L4-~

C12­

R4

C8 R6

L8 CI7 CI5 CI8

R9

P2

F 11- I

P3

C20 I+ 20V

T'OOOPF I I

C21 I II I

33 MH, FROM CH-J/6-21RI 100 MV AC

C2

01 I CIO

L6

C7 1"L5

-'" '~"~,:':. Too'"CI6

R5

",.02

CI4

CI3

R7 1 "l~ISTOKS-I"'''''",~" 'JALUCS IN OHMS U~LE:SS

R8 OTHEHWI$E NOJED

') C"~"CJTOR!)-'VAlUES IN),II ~INL(SS Ol;UIiWIS"- OOTf.O

3 1""l>UCTOM~"''''lUf$ 110;- .iItl40S~[SS otM't"""tQ .-l)un03 •• r,ll,CTORYS(LCCl(Ov .....UL

.. ""U. VOL TAC.itriADlliUSAA( DC liNLESS 01HC~~.HOTEOCI9

TP4

TP5

CR2

FIL -I

P3330MH,

TO CH '" ~I COAXIAL FILTER 120 MV AC

33 MH, MULTIPLIER CH-A3

Figure 6-12. 33-MHz Multiplier (CH-A3)

6-25

Page 101: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. I DESCRIPTION C/E STOCK NO. MFR.

R1 R2 R3 R4 R5

R6 R7 R8 R9 RIO

RESISTORS

Comp, 68 ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 2.2k ohm ±5%, 1/4W Comp, 2.2k ohm ±5%, 1/4W

Comp, 1k ohm ±5%, 1/4W Comp, 1k ohm ± 5%, 1/4W Camp, 1.2k ohm ± 5%, 1/4W Camp, 1k ohm ± 5%, 1/4W Comp, 51 ohm ± 5%, 1/4W

1066-6l:l05 1066-2225 1066-2225 1066-2225 1066-2225

1066-1025 1066-1025 1066-1225 1066-1025 1066-5105

Aile -Bradley AIley- Bradley Aller Bradl.ey Aile! ­ Bradley Allell-Bradley

Allel -Bradley Aile! - I3radley AIle] -Bradley AlleT Bradley A Ilel - Bradley

DESCRIPTION

CAPACITORS

Cer, .01 flF +80% -20%, 50V Cer, .002 flF ±20%, 600V Cer, .01 flF +80% -20%. 50V Cer, .002 flF =.20%, 600V Cer, .002 ,uF ,,20%, 600V

Cer, .002 flF ' 20%, 600V Cer, .002 flF 20~, 600V Cer, .002 IJ.F 20'l. GOOV Micn. 75 "f f)". , 10llV Mi"'l. 12 pF n~, 100\1

Cl'l, ,IJ02 IIF 20' .OOOV MI":' :!(I11P 5" IDUV C,'" ,DO" II l :W n , lJDIiY r,1I,';l t III pI-' !5%, lilOV Col 1' ••Ull:l 'I f-' * :!O" Iionv

0',.1.I0IlV • JllllV

"r.,. IOOV \l~', .002 /iI,' 20'l-i. GOOV

['!'L'lll hl'lI. 100U pF 20%. 500V

I FnCdlhl'L1, 1000 pF ±20%, 500V

DIODES

I Si, lN3064 Si, HPA0136

FILTERS

I Filter, Coaxial, 4.30 MHz

COILS

TIF Choke, 12 /-IH 1O(.'f,L

RF Cholw. 12 11H ± 10% Val' InductOr, 0.19-0.21 IlH RF' Choke, 5.6 pH 10% flF Chul'c. 22 pH.!. 10'1

HF Ch")(t!. 5.6 I.d'! ' 10% V:II' IJIllu,·t"", 0.13-D.l;; Ilil V:II' lildudlJr, n.13-0.l!j Ill! Ill- ("hllk.' , 12 pl'l 1au, rH' Chuk<, 121111 Ill';

TltANSlS'I'OH~

I Si, NPN, 2N3503 SI, NPN. 2N35G;j Si. NPN. 2N311liG

CKT.REF.

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

ell C12

l:l 1'1 15

c:n

CRl CR2

Fil-1

L1 L2 l..3

'1 !l

Ll' L7 LH Ll1 LI0

Q1 Q2 Q3

C/E STOCK NO.

1005-0013 1005-0003 1005-0013 1005-0003 1005-0003

1005-0003 1005-0003 1005-0003 1002-0025 1002-0017

IU05-0U03 1002-0043 lOOfl-0003 11.)02-0016 1005-000:3

1005-0003 1002-0043 1002-0016 1005-0003 1005-0008

1005-0008

1281-0013 1282-0006j

I 1040-0009

I

1585 -0011 1585-0011 1596-0010 1585-0028 1585-0012

1585-0028 7050-0005 7050-0005 1585-0011 1585-0011

I

1272-0022 1272-0022

I 1271-0005

I MFR.

Erie Erie Erie Erie Erie

Erie Erie Erie Elmenco Elmenco

Erie Elmenco Erie Elmenco Erie

EJ'ie EllllC'IH;O

£lllll'I1(:O Eric Eric

Erit'

I Transitron HPA

I Cushmal1

I

Delevan Delevan Cushman Delevan Delevan

Delevan Cushman Cushman Delevan Delevan

I

I Fairchild Fairchild RCA

I I

I

I

I

I I

I

I

I I

I

I I I I I I I I I I I

I I

6-26

Page 102: Cushman Model CE-3 FM Communication Monitor Manual, 1968

__

I

I I

C4I 002

/..

~~

:-------~43MH.~: ~:----~---:-M::LTER ---------I=+-~5-=,:,:_11

I r-------------------------------------------l I

1C20 L 9 I LI L4 1000pF 12 12 56

I +20V

T I C7 C8I I -:r:- .002 ~ .002

- ~.~K ­

I I II

- ~~>.

....r J I"~~-I ~ IIC3~ "i ..3 ~~:: I

I 43 'MH. FROM JI C2 CH-JI8-21~1, 100 MV AC "( ! '-£/ .~02

I I CRIL5 ':' IN306422

I I I

I C5 =

R2 .002 LIO 2.20;­ L6L2C:!I 12 I(12 5.6-12V aW'fQ1'-' ..... IOOOpF.

ce CI3"'OM II -:r:- .0 I -:r:- 002 ~O02

C:H-JI&-II T C3

I L __ __~ ~ ~I I

5 IL­

I C8 ~02R6

C 13Cll

I I RESISTOR" 1J<l1".5'"'\lAlUESINOHMS"""t..nI!O

OTHEIIlWISE NOHOCl6 CI4 '1 CM'ACHc>I'S VA.lUES IN II' UfrCLUS onCE I'IWlSE .-.olEO

J INDUCTORS .......lUI=S IN ~ UNl.t.SS 01WJ:1IlWlSf. HOTED

... fACTOR" !;ElECTEO \lA.U}1'CI8 R8 5 ALL VOLTA.GE RE"OINGS A.IIIE OClJNUSS

OrHF.Rw,SE NOTED

I

I I I

l2 R2 RI C2 L3

C9~ 01 CIO

R3~ -C6

l l;1'(1

lCII L4 - CI:I

==----1.7

P3

P2

FII-I

R6 IK

R4

22K

CI~

~002 R5 2.2K

I I I

CI6 II 002 I = I 'I

~7pF I AL-I

I CR2 I -----" CI8 HPA-OI36 J2 P2

430 MH. TO CH-AI-,~ COAXIAL FILTER

RIO I 51 I

I

I R8 I ICI9 1.2K ~.002

_

I I I I I I I I I

____-.J 43 MHz MULTIPLIER

I

I CH-A4

I ~

001"'>,,(0141 ,....... cu.&A'" ItUCTlIIO....UIHC, ~,s: 0Il"Ar.1,,",," IHTrNDfD ..Oft Ttf( Of'(flATNJfIif Ilo

\Il.~"HNt!,;( 0' CItNl"'''''' JUCTI'O'iIC$ t0U4""41 ,.,.g rI ~t TO &1 ..-.0 Ot'*1k'tlln ClJl PU'AQOUC NlTM(lvr .... ~lTTrN Ol',)Jor1:C.. t tlilOW CV':toIMoUt UJ

''''''J<lIcs.·lC,

Figure 6-13. 43-MHz Multiplier (CH-A4)

6-27

Page 103: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

C1 Cer, 0.05 I.LF +80% -20%, 25V 1005-0014 Erie C2 Cer, 0.05 J.LF +80% -20%; 25V 1005-0014 Erie C3 Cer, Stand Off, 0.001 J.LF, GIVIV, 500V 1005-0048 Erie C4 Cer, Stand Off, O.OOll.LF, GMV, 500V 1005-0048 Erie C5 Cer, 5.6 pF •.25 pF. 250V 1005-0042 Erie

DIuDES

CHI fh. IN300'! 1281-0013 Transitron Cll~ Si, IN:JOIH I 2H 1- 0013 Transitron

nES1~TOHS

HI Camp, 1k ohm ± 5%, l/4W 1066-1025 Allen-Bradley R2 Comp, 1kohm ±5%, l/4W 1066-1025 Allen-Bradley H3 Comp, 1k ohm ± 5%, 1/4W 1066-1025 AlJcn- Bradley H4 Comp, 1k ohm ± 5%, 1/4W 1066-1025 Allen- Bradley R5 Comp, 22 ohm ± 5%, 1/4W 1066-2205 Allen-Bradley

R6 Comp, 22 ohm ± 5%, 1/4W 1066-2205 Allen-Bradley H7 Comp, 33 ohm ± 5%, 1/4W 1066-3305 Allen-Bradley lIB Com11, 270 ohm ± 5%, 1/4W 1066-2715 Allen-Bradley no CllI1lP, 10 ohm' 5%, 1/4W 1066-1005 A llen- Bradley

I

I I I

6-28

I

I

Page 104: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I I I I I I

,

_

I J

J2R4CR2TP4C4TP5R6

I J

I '41

I ,. i -

RITP2 IZY SWITCHED TIP II<

I FROM CH-JI4-18 I I CI :::! ~

330 MHz IZO mY AC t" ~" FROM CH -A3- P3

I C5 ,

I

430MHZIzomYACCZFlloM CH-A4-P3

_J4

I RZ

~IZY SWITCHED TP I K FIOM CH-JI4-16 Z

I CZ­I I·05-=

R8

I 460-50Z MHz ~J3 = ,

100 mY AC OM CH-AZ-P3

I I

L I

CI L 1II[~OflS_II.w.nVAlUESINOHMSUHUSS

aT ._WISE ,,;ono 2 c.. lQflS_v....LU£S IN .. ' UNllSS01"HlI'lWI$f NOTEO 3 IN TOAS_VALUUIN jIt\UNUSSOTHEIIIWI'$ENOTEO

• o_r O"Y SU.lCtEO VALU£' S AL '101,. tACli Ar.-,OtNQS AAI DC UNLESS

TPI OT "WISE NonD

I I

RI J3 R7 R5 C3 TP3 CRI R3 R9 JI

I I I I I

Page 105: Cushman Model CE-3 FM Communication Monitor Manual, 1968

---------

~J4

R2 R6 TP5 C4 TP4 CR2 R4 J2

i -------­

~IOOOPI

JI

I I

460-002 MHz

43CN.MHz 120 mV AO Ff/OM CH-·A4

-----1 112V SWITCH[D

M CH-JI4-" IC3 R3 IIK

CR I IN3064

~z ~~~A"SV AO C5 I

R2 5.6pl

IN3064

.-

V R622 5 ~ CH-KI-JI C5

~ TO

I ~ A4 I~

R7 I 33 I

100 mV At FROM CH-A' '" i0/

I

RI J3 R7 R5 C3 TP3 CRt R3 R9 JI

Figure 6-14. UHF Matrix (CH-Al)

6-29

Page 106: Cushman Model CE-3 FM Communication Monitor Manual, 1968

MFR.C/E STOCK NO.

I

A11en- Bradley1066-8205 Allen- Bradley1066-2225 Allen- Bradley1066-1025 Allen- Bradley1066-1035 Allen- Bradley1066-1235

I

Allen- Bradley1066-2235 Allen- Bradley1066-2725

Cushman1579-0007

CKT.REF. I DESCRIPTION

L3 L4 L5 I L6 L7 L8 I

Q1 Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9

R1 R2 R3 R4 R5

R6 R7 R8 R9 RIO

R11 R12 R13 Rl4 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24 R25

R26 R27 R28 R29 R30

COILS (Continued)

Val' Inductor, 2.2-5.1 IlH Val' Inductor, 2.2-5.1 IlH Val' Inductor, 2.2-5.1 IlH

Val' Inductor, 2.2-5.1 IlH Val' Inductor, .5-.75 IlH RF Choke, 5.6 IlH ± 10%

TRANSISTORS

Si, NPN, 2N3563 Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37

Si, NPN, 2N3563 Si, NPN, 2N3642 Si, PNP, 2N4121 Si, NPN, 2N3563

RESISTORS

Comp, 27k ohm ± 5%, 1/4W Comp, 8.2k ohm ± 5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 10k ohm ± 5%, 1/4W Comp, 1k ohm ± 5%, 1/4W

Comp, 1k ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 120 ohm ± 5%, 1/4W Comp, 3.9k ohm ±5%, 1/4W Comp, 150 ohm ± 5%, 1/4W

Comp, 22 ohm ± 5%, 1/4W Comp, 680 ohm =5%, 1/4W Comp, 68 ohm ± 5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 10k ohm ± 5%, 1/4W

Comp, 3.9k ohm± 5%, 1/4W Comp, 1.2k ohm ± 5%, 1/4W Comp, 2.7k ohm ± 5%, 1/4W Comp, 120 ohm ± 5%, 1/4W Comp, 1k ohm ± 5%, 1/4W

Comp, 10k ohm ± 5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 3.9k ohm ± 5%, 1/4W Comp, 1k ohm± 5%, 1/4W Comp, 1.2k ohm ± 5%, 1/4W

Comp, 6.8k ohm ± 5%, 1/4W Comp, 8.2 ohm ± 5%, 1/4W Comp, 560 ohm ±5%, 1/4W Comp, 330 ohm ±5%, 1/4W Comp, 1kohm ±5%, 1/4W

II C/E MODEL NO. MFR.I

1596-0004 1596-0004 1596-0004

1596-0004 1596-0011 1585-0028

I

1272-0022 1271-0003 1271-0003 1271-0003 1271-0003

1272-0022 1272-0018 1272-0023 1272-0022

I

1066-2735 1066-8225 1066-1035 1066-1035 1066-1025

1066-1025 1066-2225 1066-1215 1066-3925 1066-1515

1066-2205 1066-6815 1066-6805 1066-1035 1066-1035

1066-3925 1066-1225 1066-2725 1066-1215 1066-1025

1066-1035 1066-1035 1066-3925 1066-1025 1066~1225

1066-6825 1066-8225 1066-5615 1066-3315 1066-1025

I'

Cushman Cushman Cushman

Cushman Cushman Delevan

II

!Fairchild T.!. T.!. T.!. T.!.

Fairchild Fairchild Fairchild Fairchild

II

Allen- Bradley Allen-Bradley Allen- Bradley Allen-Bradley Allen-Bradley

Allen-Bradley Allen-Bradley Allen- Bradley Allen-Bradley Allen-Bradley

Allen- Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley Alleil-Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley Allen-Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley Allen-Bradley

I I

I II

I II

I I

CKT. REF.

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

C11 C12 C13 C14 C15

C16 C17 C18 C19 C20

C21 C22 C23 C24 C25

C26 C27 C28 C29 C30

C31 C32 C33 C34 C35

C36 C37 C38 C39 C40

C41 C42

CR1 CR2

L1 L2

DESCRIPTION

CAPACITORS

Cer, 0.01 IlF +80% -20%, 50V Cer, 0.01 IlF +80% -20%, 50V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Mica, 560 pF ±5%, 100V

Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Val', Cer, NPO, 9-35 pF Mica, 27 pF ±5%, 100V Cer, 0.002 IlF ±20%, 600V

Cer, 0.05 IlF +80% -20%, 25V Mica, 510 pF ±5%, 100V Cer, 0.05 IlF +80% -20%, 25V Mica, 27 pF ± 5%, 100V Cer, 0.05 IlF +80% -20%, 25V

Mica, 12 pF ±5%, 100V Elect., 1.0 IlF +80% -20%, 25V Mica, 27 pF ± 5%, 100V Elect., 15.0 IlF + 80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V

Mica, 12 pF ± 5%, 100V Mica, 510 pF ±5%, 100V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Elect., 15.0 IlF +80% -20%, 25V

Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Mica, 12 pF ± 5%, 100V Mica, 510 pF ± 5%, 100V Cer, 0.05 IlF +80% -20%, 25V

Cer, 0.05 IlF +80% -20%, 25V Elect., 100 IlF +80% -20%, 25V Elect., 1.0 IlF +80% -20%, 25V Elect., 1.0 IlF +80% -20%, 25V Mica, 620 pF ± 5%, 100V

Poly, .0082 IlF ± 10%, 100V Cer, 0.05 IlF +80% -20%, 25V Cer, 0.05 IlF +80% -20%, 25V Poly, .0082 IlF ± 10%, 100V Mica, 430 pF ± 5%, 100V

Cer, 0.05 IlF +80% -20%, 25V Cer, 0.01 IlF +80% -20%, 50V

DIODES

Ge, G633 Ge, G633

COILS

RF Choke, 680 IlH ±5% RF Choke, 680 IlH ± 5 %

6-30

I C/E STOCK NO.

1005-0013 1005-0013 1005-0014 1005-0014 1002-0037

1005-0014 1005-0014 1001-0006 1002-0008 1005-0003

1005-0014 1002-0036 1005-0014 1002-0008 1005-0014

1002-0017 1013-0004 1002-0008 1013-0005 1005-0014

1002-0017 1002-0036 1005-0014 1005-0014 1013-0005

1005-0014 1005-0014 1002-0017 1002-0036 1005-0014

1005-0014 1013-0003 1013-0004 1013-0004 1002-0038

1008-0015 1005-0014 1005-0014 1008-0015 1002-0034

1005-0014 1005-0013

1282-0005 1282-0005I

1585-0023 1585-0023

I

I MFR. I

I

Erie Erie Erie Erie Elmenco

Erie Erie Erie Elmenco Erie

Erie Elmenco Erie Elmenco Erie I I Elmenco Sprague Elmenco Sprague Erie

I I

I Elmenco Elmenco Erie Erie Sprague

Erie Erie Elmenco Elmenco El'ie

I I

Erie Sprague Sprague Sprague Elmenco

I I Sprague Erie Erie Sprague Elmenco I I Erie Erie

I I I

ITT ITT I I Delevan Delevan

I 'I

I

Page 107: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

R31 R32 R33 R34 R35

R36 R37

RESISTORS (Continued)

Comp, 82 ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 1k ohm ± 5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 12k ohm ±5%, 1/4W

Comp, 22k ohm ±5%, 1/4 W Comp, 2.7k ohm ± 5%, 1/4W

, 1066-8205 1066-2225 1066-1025 1066-1035 1066-1235

1066-2235 1066-2725

I

Allen- Bradley Allen- Bradley Allen- Bradley Allen- Bradley Alien-Bradley

Allen-Bradley Alien- Bradiey

I

ITRANSFORMERS

I

Cushman1579-0007T1 Transformer 0.31 iLH

CKT. REF.

L3 L4 L5

L6 L7 L8

Q1 Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9

R1 R2 R3 R4 R5

R6 R7 R8 R9 RIO

Rll R12 R13 R14 R15

R16 R17 R18 R19 R20

R21 R22 R23 R24 R25

R26 R27 R28 R29 R30

I

DESCRIPT ION

COILS (Continued)

Val' Inductor, 2.2-5.1 iLH Val' Inductor, 2.2-5.1 iLH Val' Inductor, 2.2-5.1 iLH

Val' Inductor, 2.2-5.1 iLH Val' Inductor, .5-.75 iLH RF Choke, 5.6 iLH '" 10%

TRANSISTORS

Si, NPN, 2N3563 Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37 Si, PNP, TIS37

Si, NPN, 2N3563 Si, NPN, 2N3642 Si, PNP, 2N4121 Si, NPN, 2N3563

RESISTORS

Comp, 27k ohm ±5%, 1/4W Comp, 8.2k ohm ±5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 10k ohm ~ 5%, 1/4W Comp, 1k ohm ± 5%, 1/4W

Comp, 1k ohm ± 5%, 1/4W Comp, 2.2k ohm ± 5%, 1/4W Comp, 120 ohm ± 5%, 1/4W Comp, 3.9k ohm ",5%, 1/4W Comp, 150 ohm ± 5%, 1/4W

Comp, 22 ohm ± 5%, 1/4W Comp, 680 ohm ± 5%, 1/4W Comp, 68 ohm±5%, 1/4W Comp, 10k ohm ± 5%, 1/4W Camp, 10k ohm±5%, 1/4W

Comp, 3.9k ohm ± 5%, 1/4W Comp, 1.2k ohm ± 5%, 1/4W Comp, 2.7k ohm ±5%, 1/4W Comp, 120 ohm ± 5%, 1/4W Comp, 1k ohm ±5%, 1/4W

Comp, 10k ohm ± 5%, 1/4W Comp, 10k ohm ±5%, 1/4W Comp, 3.9k ohm ± 5%, 1/4W Comp, 1k ohm ±5%, 1/4W Comp, 1.2k ohm ± 5%, 1/4W

Comp, 6.8k ohm ± 5%, 1/4W Comp, 8.2 ohm ± 5%, 1/4W Comp, 560 ohm ±5%, 1/4W Comp, 330 ohm ±5%, 1/4W Comp, 1kohm ± 5%, 1/4W

I

I'

C/E MODEL NO.

1596-0004 1596-0004 1596-0004

1596-0004 1596-0011 1585-0028

1272-0022 1271-0003 1271-0003 1271-0003 1271-000~

1272-0022 1272-0018 1272-0023 1272-0022

1066-2735 1066-8225 1066-1035 1066-1035 1066-1025

1066-1025 1066-2225 1066-1215 1066-3925 1066-1515

1066-2205 1066-6815 1066-6805 1066-1035 1066-1035

1066-3925 1066-1225 1066-2725 1066-1215 1066-1025

1066-1035 1066-1035 1066-3925 1066-1025 1066-1225

1066-6825 1066-8225 1066-5615 1066-3315 1066-1025

MFR.

Cushman Cushman Cushman

CushmanI Cushman Delevan

Fairchild IT. !.

T.r. T.!. T.!.

Fairchild Fairchild FairchildI Fairchild

Allen-Bradley Allen-Bradley Allen- Bradley Allen-Bradley Allen~Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley

Allen-Bradley Allen- Bradley Allen-Bradley Allen-Bradley Allen-Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen- Bradley Allen-Bradley

Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley

I

-_.­

,

CKT. REF. DESCRIPT

I CAPACITORS

C1 Cer, 0.01 iLF +80% -20% C2 Cer, 0.01 iLF +80% -20% C3 Cer, 0.05 iLF +80% -20% C4 Cer, 0.05 liF +80% -20% C5 Mica, 560 pF ± 5%, 100V

C6 Cer, 0.05 iLF +80% -20% C7 Cer, 0.05 iLF +80% -20% C8 Val', Cer, NPO, 9-35 pF C9 Mica, 27 pF ± 5%, 100V C10 Cer, 0.002 iLF ±20%, 600

Cll Cer, 0.05 iLF +80% -20% C12 Mica, 510 pF ± 5%, 100V C13 Cer, 0.05 iLF +80% -20% C14 Mica, 27 pF ±5%, 100V C15 Cer, 0.05 iLF +80% -20

C16 Mica, 12 pF ±5%, 100V C17 Elect., 1.0 iLF +80% -20~ C18 Mica, 27 pF ±5%, 100V C19 Elect., 15.0 IlF +80% -2( C20 Cel', 0.05 iLF +80% -20%

C21 Mica, 12 pF ± 5%, 100V C22 Mica, 510 pF ±5%, 100V C23 Cer, 0.05 IlF +80% -20% C24 Cer, 0.05 iLF +80% -20% C25 Elect., 15.0 iLF +80% -20

C26 Cer, 0.05 IlF +80% -20% C27 Cer, 0.05 IlF +80% -20% C28 Mica, 12 pF ± 5 %, 100V C29 Mica, 510 pF ± 5%, 100V C30 Cer, 0.05 iLF +80% -20%

C31 Cer, 0.05 iLF +80% -20% C32 Elect., 100 iLF +80% -20( C33 El.ect., 1.0 iLF +80% -209 C34 Elect., 1.0 iLF +80% -209 C35 Mica, 620 pF ± 5%, 100V

C36 Poly, .0082 iLF ± 10%,101 C37 Cer, 0.05 IlF +80% -20% C38 Cer, 0.05 iLF +80% -20% C39 Poly, .0082 IlF ± 10%, 101 C40 Mica, 430 pF ± 5%, 100V

C41 Cer, 0.05 IlF +80% -20%IC42 Cer, 0.01 IlF +80% -20%

DIODES

CR1 Ge, G633ICR2 Ge, G633

COILS

L1 RF Choke, 680 iLH ± 5% L2 I RF Choke, 680 iLH ± 5%

Page 108: Cushman Model CE-3 FM Communication Monitor Manual, 1968

R31 I K

~Cl"*(

R26 6.8 K

_C30 R23 T.053.9K

C20 ,*"05

R21 10 K

RI6 _C23

3.9K J'05

CI~

r 05

RI4 10 K

_C13 R9 T'O~~9K

, II----+-,(

...LC4 ,*O~

(R510 K

-------::L CII ,*oe

[ "JRI7 IK1.2K

:!:L C2~

~i~ I I T'~

~Q89.3V

L8 ... " I~1.0

2N4121

~.6 ~~

--- ­ ---- ­CI4

- 27Ip, ± ..J...

~I ~R20 :!:LC19

CRI G633

R~ IK

C42 ~.Ol

C2 fR2I·OI 8.2K

f7-= -= 2.2K -LCIO --'.002

~R8120

I I 4~r~~ b2H~-Tr8~~ (( I 2 I

5.6V

II 11

R37CR2 RI7 R36 RI8 09 R35 R20 RI9 R28 R24 R30 05 R27 R26 R21 R23 R22 2.7K

I46-~0.2 MHz ~ R2~8~ mVAC 4

rl L2KFROM CH-PI~-18

I CRt 04

IIRI6

RI2 IK

1'5

I RS RI4

LI

120 68008 +20 V .- • ryy

03

I R37

RI5 R6

I RI

R9 FROM CH-J9-4 < ,2101

I 11 I , •-12 V <:=-1'-"------'- . - ,

C7. •'YY"'1'3

+,05I CI7 C24 C33 CI9 L2 C36 C37 L6 C35 C41 C27 C7 C28 C30

C29

CI8 L5

I 1. ltE$lSTOM$-lI<1W. ft V....LUES IN OHWS UNLESS OTHERWISE NOTED

C20 1 CAl'A'ITOR$_v/Oll"ES IN ", UNLESS 01HI'''WI5'': NOnO.L8 J. INDUCTORs.. VALUES IN..,. UNLESS OTHEAWIS( NOY'"O •. '-FACTOlilY SELECTEO VALUt:. 5 ....u vOl TAGIIlIAl)IMGS ....1 DC UNl£SI

OTHlMWI$E NOllO.C23

I CI4

L4

CI C22

I C21

CI3C32

I U

C8 CIS

C42 TI C2 CIO C2S C26 C34 C31 C38 C6 C39 L7 C40 C4 C3 LI C5 CII CI6 CI2

I I

Figure 6-15. 0­

I I

Page 109: Cushman Model CE-3 FM Communication Monitor Manual, 1968

~

~C41

R29

~ +11_

C37T 0

I C24 .05

C27 J;:"0S

±.L C25 TIS

R24 IK

cro .0

R20

~R

IK -=

L8 5.6

I~~4 pI

CRI G633

~J

R5 IK

R8 120

-=

I -~ ~R2

8.2K

~ I

• II---"-,(

I +20 V MlOM FP-SWI -C-IO

C42 R28 "*.01 RI7 5601.2K

-:.±LC33 ~I.O4"~Ji~ ~2HS_3'~8~~ < 12

i

11 J R24 R30 OS R27 R26 R21 R23 R22

0-4MHz-IVAC 10 4-40 MHz- 5 V.P.I' I) TO fp 1121 AND CH-J4-946-50.2 MHz :-T-l

85 mV AC SQUARE WAVE I I

33004 '",. ,"-"'-"~ RI6

CI ID - 8 TO F'P-swll-I

-= ~ 16 RI4

...,. ~I 20

03 +20 V ( 1 IC4 T T + T I"*.05 R33 IKR3 1t14 R21 R26

10K 10 K 10K 6.8K

_C38RI5 T'OS

C39

.0082 TO CH-J20-21I 15 '> 9.9 MHz

100 mV ACC40 R9 < 121 430pl

FROM CH-J9-4 ~::..:......-_--~ ~

R25 R33 06 R32 R34 R3 02 R4

05 R30 R34I·10K

...,.

= IK 5

-= 113 , .....-v> I-12V< ~ •.. --,

C7 ===~~~~tl-J~~:__t1~r~.05

L6 C35 C41 C27 C7 C28 C30 0-4 M 11,

C29 .O-I.n, Ctl-AI

L5 1. RESISTOR~U4W.!it. VALun IN OHMS UNL[SS

OTHEI'lWISt: NonD

C20 2. CA''''CITOII'S-VALUES IN "I UNLESS OTHEA'A'iSii NOTEO J, lNOUCTOflS--VALUES IN,,~ UNLESS OTHERwlSt NOTED.

4. ·'-""'CTOflY~LECTEO"'''''LUl::: . ... ...u. VOLTAGE AUOINGfi, ..."e DC UNLUS

OTHEAwtst NOTEDC23

L.4

C22

C21

CI3

'L3

CI5

I \' \ \ \ \ \ \ L7 C40 C4 C3 LI C5 CII CI6 CI2

Figure 6-15. 0-4 MHz Mix.er and 9.9-MHz Mixer (CH-A8)

6-31

Page 110: Cushman Model CE-3 FM Communication Monitor Manual, 1968

C!E STOCK NO. MFR.

1066-2205 1066-2225 1066-2225 1066-1235 1076-0007

1076-0012 1066-6805 1066-1235 1067~1225

1066-1025

1075-0010 1075-0009 1076-0011 1075-0024 1075-0010

1066-4725 1066-3335 1076-0007 1200-0016 1076-0013

1066-,5615 1075-0023 1066-4715

DESCRIPTION MrH.CKT. REF.

COILS

1585-001 !)L1 RF Choke, 470 flH ±59'0 RF Choke, 470 flH ± 5% lS8S-00J!JL2

15%-0011Val' Inductor, 0.5-0.75 flHL3 Val' Inductor, 0.5-0.75 flH 1596·0011L4

1585·0U32L5 RF Choke, 82 flH ±59'0

1S8S-1l0:fL6 RF Choke, 82 flH ±59'0 15flri-002.RF Choke, 22 mHL7 15R5 002!)RF Choke, 22 mHL8 lSliS-u030L9 RF Choke, 2.2 mH ±59'0 1flf\5-000GRF Choke, 4.7 mH ± 5%L10

15115-00L11 RF Choke, 4.7 mH ±59'0 lSR!'i-OO:~lIL12 RF Choke, 2.2 mH ± 5%

elcv~11I

el('vall

J:>elvv:II' elc\':tn

'rRW 'RW elc\'~LI1

TRANSISTORS

Q1 Si, PNP, TIS-37 I. I. • airclllidSi, NPN, 2N3565Q2

airclllirlQ3 Si, NPN, 2N3646 ail'childQ4 Si, NPN, 2N3565 airchiltlSi, NPN, 2N3565Q5

ail'chlltJQ6 Si, NPN, 2N3646 airch ilelSi, NPN, 2N3567Q7 airchllQ8 Si, NPN, 2N3565 airchtlMQ9 Si, NPN, 2N3646 airch I II.!Si, NPN. 2N3565Q10

RESISTons

Allen-Bradley Allen- Bradley Allen-Bradley Allen-Bradley Electra

Electra A llell-Bradley Allen-Bradley Allen-Bradley Allen- Bradley

Electra Electra Electra Electra Electra

A llen- Bradley Allen-Bradley Electra Allen-Bradley Electra

Allen- Bradley Electra Allen- Bradley

11100-3025COIllP, 3.91< [JhmR1 10110-3025R2 CCl1np. 3.0k ohm 10(,li 3325R3 CQmp, 3.3k "IU11

R4 Comp, 820 IJlltf IU07-11215 R5 Cump, 1.21< uhm lU06-1225

Ih;II-Bnlillt yR6 Cump, 2.21:. nhnl Sr~,. 1/4W llen-Ill ;ldh·yR7 ump. lk ohm' 51>, 1!4W llQn- fll':lll}, yR8 Comp, 220 uhm 5%, 1/4W llcll-Il,':,lllt'yCamp, 51 [)hm .,5%, 1/4WR9 llell- B1'IIdll!YComp, 3.9k ohm 1 5%, 1!4WRIO

lll'l1- Dr:, dluy R11 Comp, 1.2k ohm ± 5%, 1!4W llCll-Ot":ldloyR12 Comp, 2.2k ohm ± 5%, 1/4W llen- Bl'anlcyR13 Comp, 1.5k ohm .=..5%, 1!4W llcn-J:lradloyR14 Comp, 3.3k ohm ±5%, 1!4W

Allcn- JJra.dl,oyR15 Camp, 3.3k ohm ± 5%, 1!4W

llcn-Br:ldlcyR16 Comp, 2.2k ohm ± 5%, 1!4W llcn-BradleyComp, 22 ohm ;,5%, 1!4WR17 llell- I3radleyR18 Comp, 2.2k ohm ± 5%, 1!4W llen-13r;ldleyR19 Comp, 3.3k ohm ±590, 1!4W llell- BradlcyR20 Camp, 10k ohm ±590, 1!4W

R21 Camp, 1k ohm ±590, 1/4W 10011-1025 llen-Bradley R22 Camp, 4.7k ohm ±590, 1!4V 1066-4725 llon-Bradley R23 Comp, 2.2k ohm ±590, 1!4W 1066-2225 llen-Bradley R24 Comp, 3.9k ohm ±-590, 1!4W 1066-3925 llcll-Bradley R25 Camp, 1k ohm ± 5%, 1/4W 1066-1025 lh:n-Uradley

CKT.REF.

C1 C2 C3 C4 C5

ClIl

I" 1

CHI 'Ill 20

C21 C22 C23 C24 C25

31 :I JJ

IC1 IC2

CRG CR7 CR8 CR9 CR10

C26 C27 C28 C29 C30

cnl CU:

U3 U

cn.

DESCRIPTION

CAPACITORS

Electro, 15 I.LF, 25V Electro. 100 IlF, 12V

cr, 0.01 ILF ... lJO"'; -20%, 25V CN', 0.05 11F +HO% -20%. 25V Ccr, n.O!) ,IF -icHOr;, -20't.25V

Cer. 0.01 !iF +80% -20%, 25V Ccr, 0.05 I.iF +80% -20%, 25V Mica, 470 pF ± 5%, 100V Mica, 470 pF ± 5%, lOOV Cer, 0.05 flF +80% -20%, 25V

Electro, 15 flF, 6V Mica, 100 pF -" 5%, 100V Cer, 0.05 IJ.F +80% -20%, 25V Mica, 470 pF ± 1%, 100V Mica, 470 pF ±590, 100V

v

, 2(i\!

CA3028 CA3028

Si, 1N3 Si. 1N306 Si, 1N30G4 Ge, G633 Si 1N3064

Cer, 0.05 flF +80% -20%, 25V Poly, 0.027 IlF ± 10%, 100V Electro, 100 IlF, 25V Puly, 0.027 IJ.F "-10%, 100V Miell, 2000 pF ' 5%. 100V

r; ", f~{j:l:!

GI!. C033 33

SI, IN3U SI,lN3ll01

I)lOIl)

INTEGRATED CIRCUITS

C/E STOCK NO.

1005-0013 1002-0034 1002-0034 1005-0015 1005-0017

1005-0013 1005-0013 1005-0013 1005-0013 1005-0013

1013-0005 1013-0011 1005-0013 1005-0014 1005-0014

1005-0013 1005-0014 1002-0035 1002-0035 1005-0014

1013-0009 1002-0011 1005-0014 1002-0044 1002-0035

lOOli-003' 1013 con 1005 001-1

2025-0012 2025-0012

1282-0005 12f.l2~0005

12~2·0005 12,l}-0013 12HI-0013

1005-0014 1008-0032 1013-0003 100il-0032 1002~0077

1281-0013 1281-0013 1281-0013 1282-0005 1281-0013

MFR.

Eric Erie Erie Erie Erie

Erie Elmenl' ElmCfi" Erie Eri(!

Sprague Sprague Erie Eric Erie

EriC Erie Elmcnl'o EllllcncI' Edc

Sprul:U ElnlcnclI E1'I< ELmcnl'P ElnlE'llclI

£1'1 Sp"nmH SP1':l1nl Spr~\t;u

Ii: Ifll!:nco

RCA RCA

SIJrl!gue Sprague ::""ie

Sylvania Sylvania Sylvania ITT Sylvania

ITT ITT ITT Sylvania Sylvania

I I I I I

I I I I I I

I I

6-32

I

Page 111: Cushman Model CE-3 FM Communication Monitor Manual, 1968

DESCRIPTION C/E STOCK NO.CKT. REF. MFR.

RESISTORS (Continued)

R26 1066-2205 Allen- BradleyComp, 22 ohm ± 5%, 1/4W 1066-2225R27 Allen-BradleyComp, 2.2k ohm ± 5%, 1/4W

R28 1066-2225 Allen-BradleyComp, 2.2k ohm ± 5%, 1/4W 1066-1235R29 Comp, 12k ohm ± 5%, 1/4W Allen-Bradley 1076-0007R30 M Film, 1k ohm ± 1%, 3/4W Electra

1076-0012 ElectrR31 M Film, 357 ohm ± 1%, 3/4W R32 1066-6805 Allen-BradleyComp, 68 ohm ± 5%, 1/4W

1066-1235R33 Comp, 12k ohm ± 5%, 1/4W Allen- Bradley R34 1067-1225 Allen-BradleyComp, 1.2k ohm ± 5%, 1/2W

1066-1025R35 Comp, 1k ohm ± 5%, 1/4W Allen-Bradley

R36 1075-0010M Film, 2.21k ohm ± 1%, 1/4W Electr:l R37 M Film, 10k ohm ± 1%, 1/4W 1075-0009 Electra R38 1076-0011 ElectraM Film, 14.7k ohm ± 1%, 1/2W

1075-0024R39 M Film, 332 ohm .1.1%,. 1!4W Electra 1075-0010R40 M Film, 2.21k ohm 1%, l/4W Electr!

Allen- nradleyR41 1066-4725 1066-3335 Allen-111'adleyR42

R43 1076-0007 Electro 1200-0016 Allen-13 radleyR44 1076-0013 ElectraR4~

1066-5615 Allen- HradleyC1Inll, 5R46 M 1,'llm 1075-0023 ElectraH4

1066-4715 Allen- Bradley'(,fUll,R48

CKT. REF. DESCRIPTION C/E STOCK NO. I MFR.

COILS I L1 RF Choke, 470 IlH ..,5% 1585-0019 DelevaH L2 RF Choke, 470 IlH io 5% 1585-0019 belevan L3 Val' Inductor, 0.5-0.75 11H 1596-0011 TRW L4 Val' Inductor, 0.5-0.75 ILI-I 1596-0011 TRW L5 RF Choke. 82 ~(H ±5% 1585-0032 Delevan

RF Choke, 82 ~(H ~ 5% l

1,,6 1585-0032 l)elevan L7 RF Choke, 22 mtI 1585-0029 l)elevan L8 RF Choke, 22 mH 1585-0029 Delevan

I L9 RF Choke, 2.2 mH ±5% 1585-0030 pelevan L10 RF Choke, 4.7 mH 5'}. 1585-0006 relcvan

Lll RF Choke, 4.7 mH ± 5% 15~li-OOO{j )elevan L12 RF Choke, 2.2 mH d. 5% 1565-00:W Delevan

i

I I

TRANSISTORS I I

Q1 Si, PNP, TIS-37 1271-0003 ir. 1. Q2 Si, NPN, 2N3565 1272-0017 Fairchild Q3 Si, NPN, 2N3646 1272-0016 Fairchild Q4 Si, NPN, 2N3565 1272-0017 );'airchild Q5 Si, NPN, 2N3565 1272-0017 Fairchild

Q6 Si, NPN, 2N3646 1272-0016 Fairchild Q7 Si, NPN, 2N3567 1272-0011 Fairchild Q8 Si, NPN, 2N3565 1272-0017 Fairchild Q9 Si, NPN, 2N3646 1272-0016 Fairchild Q10 Si, NPN, 2N3565 1272-0017 ["''''lid

RESISTORS

R1 Comp, 3.9k ollm 51,1/4W lOGO-3D25 Allen-Bradley R2 Camp, 3.9k ohm ± 5Cl>, 1/4W 1066-3925 j\l1en-Bl·adley R3 Compo 3.3k ohnl .15%. 1/4W 1066-3325 J\ 11en-Bradl,cy R4 Comp, 820 ohm .i" 5%. 1/2W 1067-8215 i\ 11cII-Bradley R5 Comp, 1.2k ohm ± 5%, 1!4W 1066-1225 tllen- Bradley

R6 Comp" 2.2k ohm ... 5%, 1/4W 1066-2225 j\llen-J)radley R7 Comp, 1k ohm ± 5%, 1/4W 10G6-1025 i\ 11en- Bradley R8 Comp, 220 ohm ±5'1'0, 1/4W 1066-2215 tllen- Bradley R9 Comp, 51 ohm ±5'1'0, 1/4W 1066-5105 llcn- Br'ldley RIO Comp, 3.9k ohm ± 5%, 1/4W 1066-3925 ~\ llcn- Bradley

Rll Comp, 1.2k ohm ± 5%, 1/4W 1066-1225 j\llen- Bradley R12 Comp, 2.2k ohm ± 5%, 1!4W 1066-2225 \ llen- Bradley R13 Comp, 1.5kohm±5%, 1/4W 1066-1525 lUlen-Bradley R14 Comp, 3.3k ohm ±5'1'0, 1/4W 1066-3325 tllen-Bradley R15 Camp, 3.3k ohm ± 5%, 1/4W 1066-3325 llen-Bradley

R16 Comp, 2.2k ohm ± 5%, 1!4W 1066-2225 Allen-Bradley R17 Comp, 22 ohm ± 5%, 1/4W 1066-2205 j\llen-Bradley R18 Comp, 2.2k ohm ±5'1'0, 1/4W 1066-2225 \ 11en- Bradley RIg Comp, 3.3k ohm ± 5%, 1/4W 1066-3325 I.llen-I3radley

I R20 Comp, 10k ohm ±5'1'0, 1/4W 1066-1035 tHen-Bradley

R21 Camp, 1k ohm ± 5%, 1/4W 1066-1025 j\ lle 11- I3radley I'R22 Comp, 4.7k ohm ± 5%, 1/4V 1066-4725 \llen-Bradley R23 Comp, 2.2k ohm ± 5%, 1/4W 1066-2225 \UCJl-Bradley R24 Comp, 3.9k ohm :105%, 1/4W 1066-3925 k11en-Bradley R25 Comp, 1k ohm ±5'1'0, 1/4W 1066-1025 llcl1- Bradley

I

l"

DESCRIPTI(CKT. REF.

CAPACITORS

C1 Electro, 15 IlF, 25V C2 Electro, 100 IlF, 12V C3 Cer, 0.01 IlF +80% -20%, C4 Cer, 0.05 IlF +80% -20%, C5 Cer, 0.05 IlF +80% -20%,

C6 Cer, 0.01 IlF +80% -20%, C7 Cer, 0.01 IlF +80% -20%, C8 Cer, 0.01 IlF +80% -20%, C9 Cer, 0.01 IlF +80% -20%, C10 Cer, 0.01 IlF +80% -20%,

Cll Cer, 0.01 IlF +80% -20%, C12 Mica, 430 pF ± 5%, 100V C13 Mica, 430 pF ± 5%, 100V C14 Cer, 4.7 pF ",0.25 pF, 500' C 15 Cer, 2.2 pF ±0.25 pF, 500'

C16 Cer, 0.01 IlF +80% -20%, C17 Cer, 0.05 IlF +80% -20%, C18 Mica, 470 pF ±5'1'0, 100V C19 Mica, 470 pF ± 5 %, 100V C20 Ccr, 0.05 IlF +80% -20%,

C21 Electro, 15 IlF, 6V C22 Mica, 100 pF ± 5%, 100V C23 Cer, 0.05 IlF +80% -20%, C24 Mica, 470 pF ± 1%, 100V C25 Mica, 470 pF ci.5%, 100V

C26 Cer, 0.05 IlF +80% -20%, C27 Poly, 0.027 IlF ± 10%, 100' C28 Electro, 100 IlF, 25V C29 Poly, 0.027 IlF ± 10%, 100' C30 Mica, 2000 pF ±5'1'0, 100V

C31 Po[y, 0.027 IlF ± 10%, 100' C32 Electro, 151lF, 25V C33 Cer, 0.05 IlF +80% -20%,I

DIODES

em Ge, G633 CR2 Ge, G633 CR3 Ge, G633 CR4 Si, 1N3064 CR5 Si, 1N3064

CR6 Si, 1N3064 CR7 Si, 1N3064 CR8 Si, 1N3064 CR9 Ge, G633 CR10 S1. lN3064

INTEGRATED CIRCUITS

IC 1 CA3028 IC2 I CA3028

Page 112: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I I.. 10 MHz AMPLIFIER .. , .. 100 KHz MIXER .. I.. 100 KHz DRIVER ----- ­

I CR7 CR4 C25 06 CRIO CR5 09 CR8 CR9 CR2 CRI 03 C22 07 C20 CI9 TPI C4 C5

I L9 CR6~ ~~ '\ \ \ \ \ I III1//////~~~8 08 C33

C30 02

CI6 LO

L5 C27 CI7

CI L4

C24 IC2

CI3 C28 CI5

L7 C9 LII C'14

CIC32 ...--­ ./ /' /' / • I,e! I I I,' I III I I I I I • II 1\ I • 1\ I '\. \. \. '""-.,.

'""-.,."'-~ CI2

C29 .,.­ /' /' / / / / / I I , \ \ \ \ \. \. "'''-.,. '" "' ­ CIO C2

L3

\. '"

I I

I I

I C31 '" / / / / / / / J \ \ \ \

010 L12 C23 C26 L8 CR3 C21 05 04 LI L2 C8 \C3 CII LC ""C7"'" 0 I

I I R40 R31 R34 R35 R38 R43 R20 RI6 RI9 RI8 RI5 RI7 RI4

RI3

R39 ......

./ .,.-

'" \. \ \ I I I I / / / /' ./ ./

I RI2 R37

RII

I R36 R4

R32 R5

I R6R45

R9

I R30 RIO

I R48 ----­

~R';// R7

I R47 R46 R44 R33 R29 R28 R27 R22 R21 R23 R25 R24 R26 RI R3 R2

I

I +20V 17 ~CI~ T-- T T

I *15 R5 RI3 RI5 RI91.2K 1.5K 3.3K3.3KI

I L4

R6 O.SO­ CI3 C220.4VAC 430PF0.752.2K

-=­I ~~7~" ~

I CI4 C8 4.7PF

100M VAC .01

10MHZFROM( I I II • -1..,./ 0.9VAC 4.5V 3 10MHzCH-J4-7 ~

RI 3.9K

RI8 05 2.2K I( -=­

~C6

R2 OI O.5VAC

I 3.9K r 9.9MHz

C7

I R3 I·OI C3 3.3K

100 MVAC .01 R23 99 MHz FROM <-i II t-

100.F

C20

100KHzRI2 2.2K

RII 1.2K

ICI CA3028

R9 51

CH-J8-IS 21 O.6VQI

I

~ TIS37 22

1 ~ rfllI

-5AV

T

f,.

ciaII RIO 1.0 V01

3.9K

I.OVDC < I - 9.9MHz I AMPLIFIER - I SQUELCH VOLTAGE ~~;-..L:-;---------------------_.r------------~------------.J.

115CH-J4-3

L2 470

2.2K

5C~

I ~ESI)lUJISI 1 .. " ......ll,IU('~INC~'"IS'lI'.lfs.s

Q!HIOl.WISf 'WQ1l0

7 CAII,t.ClfQft5 VALUES IN ..I Ur.,L~OTHtPl\N'St. NOTED

) IN(JJI.:fOfl~ ......1.lJ£~'N .UlltlESSuTt{tll'NJs1 NOTE:O

•. ~~"'fO"" !.E~t"Cr[O v .....1.L !> AU, "'O~ f"G:ll"E"O'NCi!oAA~ DC U~lES5

01~l"'WISf~(O

Page 113: Cushman Model CE-3 FM Communication Monitor Manual, 1968

t

I

I.. 10 MHz AMPLIFIER .. I. 100 KHz MIXER .. I.. 100 KHz DRIVER -t---I.. I - SHOT .. I

+ 20V 'I----~------ -- ,-- -- -- -- -- -- -- -- -~- -- -- -- -- -- - -- -- -- ,--.--' -- -- -- -- -- -- -­CI R4 -- -- -- -- -- -- -- -- -- -- - ­

'5 -­ --I I

I -_C4 620 -_C5 '" ""'''~, -= I.05 II2W I'OS R5

:1, '"~l,,-1

100M VAC " ~ 10 MHz FROM

CH-J4-7 ~9II

. 0.75 430PF RI22,2K 4.2V C3'3

.05

CIG

~r CI4 ,01 I 4.7PF -

,,00= '" ~ """' L5

62

-4,5V

" [l, :r"

--- "

0.5VAC 9.9MHz

'"'''' .1 [" r"'I -5.4V

II9.9 MHz FROM ~I I -= r--- ­O,GV ICH-J6-15 . 121

RI9~R15 t3.3K 3,3K

0,4VAC RIG I C22 100KHz I~OpF, ?K I - < ~, < "

I ~_'7,,~2N~rLl~~hl

~ _ f"w "" _ ~ ~ ov 10K

CR2

• ,,~ ce-e,-,R30 ~R43 ,,.IKI%IKr%.

1/2W 47K 3/4W3/4W

I ,I)L7 CRG R36 L6 22MH IN3064 147K 22MH R44

1%1/2W 200n 20 %

C23 CR7 .~~6R31 05

3571% I IN 3064 T CRIO R45 2741%3/4W -= IN 3064 3/4W

'"' f! r

""" •."

.. .,,"" """ . """ TO FP- DSI-2

10 I .~R35064R32

66 ,ro I

I LI_~ "':';::'::"__

9 r TO FP-AI-TP3

'" I ,,>-> "CHHe<

",. I

17.9V + C26R23 < R27 T IOO

2.2KS R24 2,2K R26 -«2,2K 0.7V 06 - I'3.9K 0,3 VAC

2ND IF!l DISCRIMINATORI.. SCHMITT TRIGGER .. I. 20 KHz LOW PASS FILTER .. I CH-A20

2N3565 ­I AUDIO OUT PUT

TO FP - R3- 3

~ ~:S37 '05 1&~S3TC21 ~

I 115

2N356S -= I I

0,32 VAC WHEN IIFp

RIO •± 15 KHz AUDIO OUT PUTLOV 3,9K TO CH-J3-11

LOVDC I R33 ,,, -'- ~ ~~OUELCH ~ -- 9,9MHz IVOLTAGE AMPLIFIE IR26 12K

J:R22 I 470 FT I -- - I_H-J4-3 1 15 ' R ---- I 0,25 VAC4.7K p12211 100 KHz OUT PUT

C30L2 2000pF 6 TO CH-JI-3470 -J= 5,1)-12V ~18 =C2 ...L.CII

IL I OI~IOO

_ _ __ -.JII

~------------ ---- ------ -- -- -- -- -- -- -- -- -- -+-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -­

"a..M1'QIIU ,'...... !A """~ I'; c)HY:> UNl.(SS r.()tN'~I,,"' ,.... 1:Il,IIJ11rUl" U'CJII:,...a., ... O'fHII'WI" N01'''O rlllj: D...Ith,,~ II '14UfltPTO 'QJlI UH 01"1.'-'10" "'''0

J botACIJ01U VALUl'IN,Il'lI~US1'OTHE"-oIIIS{,,"one .....1~nH ..~ 0' C\.4Hvt,H • ,p.;tN»jlC:S 'OulfWll'" .I;'::)UCU:J*~. "''''lutl ''''101, Uttu.ssur.<ll;whl ~Olt(J "'it') III ~, 'UII. \M.D (lhltIlWII.1 Of! I'tFI"IW)nvc.-,O

wl'MOlJI 'JIIlt,n,', '"CIM u-H.u.... ILl~II.'

\. ""~~ ~T.IoL. ~1"'OlihlC;S;AIilt' oc UNU~S

• ''''C;:TQI'I'' iiEl_tCfrO ".....UI "'-.cJI'IIIl:~ ;N

Ulf1E,Fl~.NOT"E'O

Figure 6-16. 2nd IF and Discriminator (CH-A20)

6-33

Page 114: Cushman Model CE-3 FM Communication Monitor Manual, 1968

C/E STOCK NO.

1066-6805 1066-1035 1066-1035 1066-5615 1066-5615

1066-2715 1066-1025 1066-2205 1200-0014 1066-1235

1200-0013 1066-0004 1200-0013 1066-1035 1066-1035

MFR.I

Allen-Bradley Allen-Bradley Allen - Bradley Allen - Bradley Allen - Bradley

Allen - Bradley Allen - Bradley Allen-Bradley Allen - Bradley Allen - Bradley

Allen - Bradley Allen-Bradley Allen - Bradley Allen-Bradley Allen - Bradley

I I

I

I I

I

I

I

6-34 I I

I I MFR.I CKT. REF. I DESCRIPTION I~E STOCK NO.

INTEGRA TED CIRCUITS

IC1 I SN72709L II 2025-0014 II Fairchild

COILS

L1 1585-0032RF Choke, 82 IlH ±5% Delfvan L2 1596-0025 Delevan L3

Val' Inductor, 3.8-7.3 I_LlI 1596-00.11 TR

L4 Val' Inductor, 0.5-0.75 IiI-!

Ei85-0032 Del,evan L5

RF Choke, 82 Il H ±6~ 1585-0032 DelevanRF Choke, 82 11H ±5%

I Delevan

L7 .1:iH"-Q032L6 RF Choke, 82 J-lH ±5%

Delevan L8

RF Choke, 82 J-lH ±5% 1.585 - 0032 1:;0(;-0011 TR

I L9 Val' Inductor, 0.5-0.75 11H

1:;85-0032 Dell!vanRF Choke, 82 J-lH ±590

TRANSISTORS

Q1 Si, NPN, 2N3565 1272-0017 F'I~'hild 1272-0017 Fai child

Q3 Q2 Si, NPN, 2N3565

1272-Qo1C, Fairchild Q4

Si, NPN, 2N3646 127) -0003 1'.1

Q5 Si, PNP, TIS-37

1272-00115Si, NPN, 2N3646 Falchild

Q6 I Si, NPN, 2N3642 1272-00Ht Fai child

RESISTORS

R1 10(j(j-lB25 106(;-10:35

Comp, 1.8k ohm ±5'10, 1/4W AUf""''''yAll n-Bradlcy R3

Comp, 10k ohm ±5'10, 1/4WR2 10Gf; 1025 All n-Bradh'y

R4 Comp, 1k ohm ±5'10, 1/4W

10(jll-1035Comp, 10k ohm ±5'10, 1/4W All~n-Bradh:y R5 107:. -00211 Electra

R6

M Film, 294k ohm ± 1%, 1/4W

106(;-5825 Allt-Bradley R7

Comp, 5.6k ohm ±5'10, 1/4W 1066-:;G25Comp, 5.6k ohm ±5'10, 1/4W Allf-Bradlf'Y

R8 106(j-2225 All n-BradLc}' R9

Comp, 2.2k ohm ±5'10, 1/4W I07!i-0027 Ele tra

RIO M Film, 2.49k ohm ± 1%, 1/4W

1075··0UMl Electra

Rll

M Film, 10k ohm ± 1%, 1/4W

107!,) -0000M Film, 10k ohm ± 1%, 1/4W ElefraE1e tra

R13 R12 M Film, 137 ohm ±1%, 1/4W 1075 -00213

1066-1525 All n-DradlC'y R14

Camp, 1.5k ohm ±5'10, 1/4W lQOIl-1035

R15 Camp, 10k ohm ±5'10, 1/4W

100G-2055 All n-BradlevComp, 2m ohm ±5'10, 1/4W Al""""10r,6-2245 All n-Bractlcy R17 R16 Camp, 220k ohm ±5'10, 1/4W

All n-Bradley R18

100G-1255Camp, 1.2m ohm ±5'10, 1/4W 10GG -1 035 All n-Dradley

R19 Comp, 10k ohm ±5'10, 1/4W

All n-Bradlev R20

Comp, 8.2k ohm ±5'10, 1/4W 106G-8225 101lG-B225 All~n - Bradley

R21

Camp, 8.2k ohm ±5'10, 1/4W

1066-1035 R22

Camp, 10k ohm ±5'10, 1/4W 10GG-1015 All n-BradleyCamp, 100 ohm ±5'10, 1/4W AUr""""All n-Bradley

R24 R23 106G-2225Comp, 2.2k ohm ±5'10, 1/4W

1066-1015Comp, 100 ohm ±5'10, 1/4W All r -Bradley R25 1066-8205 All~n-BradleyComp, 82 ohm ±5'10, 1/4W*

*Factory selected value, average value shown.

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

1005-0013C1 Cer, 0.01 J-lF +80% -2Wh, 25V Erie C2 1013-0004Electro, 1 J-lF, 25V Sprague

Mica, 180 pF ±5'10, 100V 1002-0005 ElmencoC3 1013-0004C4 Electro, 1 J-lF, 25V Sprague

Poly, 0.1 J-lF ±10%, 100V 1008-0031 SpragueC5

Mica, 820 pF ±5%, 100V 1002-0039 ElmencoC6 1013-0010C7 Electro, 25 J-lF, 25V Sprague

Poly, 0.022 J-lF ±5'10, 200V 1008-0010 SpragueC8 1008-0010C9 Poly, 0.022 J-lF ±5'10, 200V Sprague

C10 Mica, 200 pF ±5%, 100V Elmenco1002-0042

Cll Poly, 0.0056 ± 10%, 100V 1008-0022 Sprague C12 Poly, 0.022 J-lF ±5'10, 200V, 1008-0010 Sprague C 13 Mica, 330 pF ±5'10, 100V 1002-0032 Elmenco C14 Poly, 0.1 J-lF ±lo%, 100V 1008-0031 Sprague C15 Metahzed Mylar, 1.0 J-lF ± 10%, 100V Good-AllI 1008-0033

C16 Poly, 0.027 J-lF ±10%, 100V 1008-0032 Sprague C17 Mica, 180 pF ±5%, 100V 1002-0005 Elmenco C18 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C19 Mica, 22 pF ±5'10, 100V 1002-0023 Elmenco C20 Cer, 22 pF ±2%, 600V, N750 1005-0007 Centralab

C21 Mica, 470 pF ±5'10, 100V Elmenco1002-0035 C22 I Mica, 470 pF ± 5%, 100V 1002-0035 Elmenco C23 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C24 Mica, 10 pF ±5'10, 100V 1002-0016 Elmenco C25 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie

C26 Mica, 39 pF ±5'10, 100V 1002-0018 Elmenco C27 Mica, 390 pF ±5'10, 100V 1002-0033 Elmenco C28 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C29 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C30 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie

C31 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C:l2 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie

Cer, 0.01 J-lF +80% -20%, 25V 1005-0013C33 Erie r~4 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C35 Cer, 0.01 J-lF +80% -20%, 25V 1005-0013 Erie

C:lEl eel'. 0.01 J-lF +80% -20%, 25V 1005-0013 Erie C':i7 Ctlr, 0.01 11F +80% -20%, 25V 1005-0013 Eric C":JB Cer. 0.01 IlF +80% -20%, 25V 1005-0013 Erie

Mka. 470 pF ±5%, 100V r..::.l!J 1002-0035 Elmaneo C40 Pqly. 0.0033 flF ±10%, 100V 1008-0041 Sprague

C41 C,·r. 0.01 }' F' +80~ -20'p, 25V 1005-0013 Erie C42 Cl'r. 0.U1 }II" +liO'; -20%.25V 1005 -0013 Erie

DIODES

CR1 Voltage Variablt: C, V33 1281-0010 PSI CR2 Si, 1N3064 1281-0013 Sylvania CR3 Si, 1N3064 1281-0013 Sylvania

Page 115: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. I MFR.

INTEGRATED CIRCUITS ,

lCI SN72709L 2025-0014 Fairchild

COILS r ,Ll RF Choke, 82 11H :1 5% 1585-0032 De~:cvan L2 Var Inductor, 3.8-7.3 JlH 1596-0025 Delevan L3 Var Inductor, 0.5 -0.75 JlH 1596-0011 TRW L4 RF Choke, 82 11H :15% 1585-0032 Delevan L5 RF Choke, 82 JlH ±5% 1585-0032 Delevan

L6 RF Choke, 82 JlH :15% 1585-0032 Delevan I L7 RF Choke, 82 JlH ±5% 1585-0032 Delevan

L8 Var Inductor, 0.5-0.75 JlH 1596-0011 TRW L9 RF Choke, 82 JlH :15%

TRANSISTORS

1585-0032 Delevan

r, I

I Ql

I Si, NPN, 2N3565 1272-0017 Fairchild

Q2 Si, NPN, 2N3565 1272-0017 Fairchild Q3 Si, NPN, 2N3646 1272 -0016 Fairchild Q4 Si, PNP, TIS-37 1271-0003 T.!. Q5 Si, NPN, 2N3646 1272-0016 Fairchild

Q6 Si, NPN, 2N3642

RESISTORS

1272-0018 Fairchild , Rl Comp, 1.8k ohm :15%, 1/4W 1066-1825 All(In - Bradley R2 Comp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R3 Comp, lk ohm :1 5%, 1/4W 1066-1025 Allen-Bradley R4 Comp, ]Ok ohm :1.5%, 1/4W 1066-1035 Allen-Bradley R5 M Film, 294k ohm i 1~, 1/4W 1075-0028 Electra

R6 Compo 5.uk ohm ±!i%, ]/4W 1066-5625 AllGn - Bradley R7 Compo 5.6k ohm A5~, 1/4W 1066-5625 All(ln - Bradley Ha Compo 2.2k ohm ±5%. l/4W 1066-2225 Allen - Bradley R9 M Film. 2.49k ohm .1.1'1" 1/4W 1075-0027 Electra RIO M Fi 1m. 10k ohm j, 1%, 1/4W 1075-0009 Electra

Rll M Film, 10k ohm J:cl%, 1/4W 1075-0009 Elel~tra

RI2 M Film, 137 ohm ± 1%, 1/4W 1075-0026 Electra R13 Compo 1.5k ohm ,,5%, 1/4W 1066-1525 Alien - Bradley R14 Comp, 10k ohm ±5%, 1/4W 1066-1035 All~I11-Bradley

R15 Comp, 2m ohm ±5%, 1/4W 1066-2055 All(!n - Bradley

R16 Comp, 220k ohm :15%, 1/4W 1066-2245 Allen - Bradley R17 Comp, 1.201 ohm ±5%, 1/4W 1066-1255 Allen - Bradley R18 Comp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R19 Comp, 8.2k ohm :15%, 1/4W 1066-8225 Allen-Bradley R20 Comp, 8.2k ohm :15%, 1/4W 1066-8225 Allen - Bradley

R21 Comp, 10k ohm :15%, 1/4W 1066-1035 Allen-Bradley R22 Comp, 100 ohm :15%, 1/4W 1066-1015 Allen - Bradley R23 Comp, 2.2k ohm :15%, 1/4W 1066-2225 Allen-Bradley R24 Comp, 100 ohm :15%, 1/4W 1066-1015 Alle'n - Bradley R25 Comp, 82 ohm :15%, 1/4W* 1066-8205 AlI€ll- Bradley

CKT. REF. I DESCRIPTION ~ESTOCKNO. I MFR.

RESISTORS (Continued)

R26 Camp, 68 ohm ±5% 1/4W 1066-6805 Allen - Bradley H27 ('omp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R28 ('omp, 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley R29 Comp, 560 ohm ±5%, 1/4W 1066-5615 Allen-Bradley R30 ('ump, 560 ohm ±5%, 1/4W 1066-5615 Allen-Bradley

lUI Comp, 270 ohm ±5%, 1/4W 1066-2715 Allen-Bradley H32 Comp, lk ohm ±5%, 1/4W 1066-1025 Allen-Bradley R33 Comp, 22 ohm ±5%, 1/4W 1066-2205 Allen - Bradley R34 Var. 25k, 1/4W 1200-0014 Allen- Bradley R3fi Lump, 12k ohm ±5%, 1/4W* 1066-1235 Allen-Bradley

H3G VUI', 10k, 1/4W 1200-0013 Allen - Bradley H37 Cllml), G.8 ohm 1:5%, 1/4W* 1066-0004 Allen - Bradley

36 VUI'. 10k, 1/4W 1200-0013 Allen-Bradley R3V ('umll. I.Ok ohm ±5%, 1/4W* 1066-1035 Allen - BradleyU40 ('Olllp. 10k ohm ±5%, 1/4W 1066-1035 Allen-Bradley

I

,

I

I I

*Factory selected value, average value shown.

1

Page 116: Cushman Model CE-3 FM Communication Monitor Manual, 1968

RI3

R22

RI8

R21

R24

R23

R28

H30

R

R32

R27

C3

C7. \

C5

01

CI5

C2

CI6

CIB

C30

C21

L4

C36

CI

L9 C23

C41

03

TPB

TP6

TP4

TP7

TP5

CJ7

l6

C35

CR3

CR2 TP2

L5

C33

C40

L7

C39

C34

ICI

C6

CII / / /

I I I CB

CI4

C9

CI2

LI

CI3

C4

CI9

CRI

CI7

C20

L2

C25

04

C27

C2B

C42

C26

C29 TPI C31

TP3

05

C32

06

LB

C3B

r ~ I.I KH, DRIVER 10 MHz MODULATO

,------------------ ­l j

02 2N1565

TO FP-SWII-9 -OV.

RI5 RI7 -C182 MEG 1.2 MEGT·01

C4

~1.0

FROM FP-R4-2

C 4? 01 T CI9

C21 470,

-'-cao

RI6 220K

10K

J22PFJZh

R8 2.2K

0.18VAC IKH~ ( ~4

1 --------;C:18 vw .CI2 -.-- 0.1TO FP-SWII-~ R9 022 lCI4 0Z2

1 2.49KI RII-RIO """IOK±I""

1- _10 K~:.±~_I:.:"":.-.- _\""~

OMFP-SWII-7( RI2 ,:,' llOpF5 I Tg~2C1l HO'.," "".. I

""'N\o CIO 200PF

I RS

0.5VAC IKHZ~294Ktl"" .6VAC FROM CH-9- 9 10V

C5 c.6 ::;r01 8Z0pF. •. '1

. I, R7 ~ 5.6K

I ':'L

':'

. . _ I. ~ II KHZ FILTER

, RE5ISl01\S-1{itW. S, ""lUIES IN QHIIfS UNLESS QTH('RW1SE NOTED

2 CA'ACITQfl:5-II"LUn 11'11 "I UNlfSS on4E~tSE PoKlTEO 1 INDUCTQA$--V"lUES IN II" UNLESS OTHERWIse NOTED

... rACTOllY SELECTIO "'''lUI: 5 .... lL VOLT AGE REA.OINGS "'U DC UNLESS

OTHERWISE NQT(O

I

Page 117: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I

I

I

I

III

CII

I.. I KHz DRIVER .. I.. 10 MHz MOdYLATOR .. I.. AMPLIFIER .1

,---- ­I

ICI

I C6

~q+ R3IK

TO FP-SWII-9 - I ...LCI

'

1 *01

I -=

C8

CI4

II

9 O.IB VAC C9 FROM FP-R4- 2

I CI2 I

I CI3 I

I O.IB VAC 1KHZ ~ 4

C4 TO FP-SWII-2~ 3

CI9 1-= CRI

+20V,FROMFP-SWII-7( 15 i

CI7

C20

---------------,----------------------1 AFC FROM FP-SWB-D2

FP-R5-2 Q2 2N3565

~IOV. FROM

FP-SWB-B2

+20V

~C4R4f10K ~1.0

j B I I

!.f7 FROM

I ~+20V

L6 B2 21 I ,

~TOCH-J4-1

ry I I

191

~ 14 _

'.

C37 ~.Ol

.5-3.0VAC

C34

I·OI

R31 270

R32 IK

C35

IOI

L5 B2

R30 560

C31

I·OJ

L4 B2

C30

*01R40 10KRI9

B.2K

R20 B.2K

RI7 -CIB 1.2 MEG~.OI

RI6 220K

RI5 2 MEG

10K

i

10mV TO 700mVAC 10MHz

C 42 .01 T --I )TO FP-R6-1

RB 2.2K

CB \NI."'-c-12-l-' CI4 -12V FROM .022 022 -.- 0.1 FP- SWI-6B

~I. I -12V FROM FP- SWI- 67

I·C9 022 C36

RI2 C13 I OI -12V FROM FP-SWI-66

137± 1'1(, -= 330 pF

-=

---"oM. CIO200PF

F. . ~I

5.6K

I

L9 .6VAC

LI _ B2 10V IYVY''--------'~II ) -12V

~i'I 4OAV AC 15 10 MHZ FROM

CH-JI7-9

10 1

~ _ ___. ..J

I 10 MHz MODULATOR FILTER .. CH-AI4

IlOr'VRfDH'T ....,. CUSP'tlUoN f.LEl;TRQNICS. I"C ""'-1& OIlA~NIG ., IrsTf:-.otD EDR IttE on".'fIO~ 4f'fO ~.IHTEl\I.v.lJf tIf tU1H'tA." Ulcrtfl""J;CS 100.,....[..' ..."'0- 1& NOT TO BE USEi') OT'HUlWfl>[ Of( AfPROlrJC[tl wmtOtIJ ....loIfmloi CONSUlT FROito'. CUSH"~A,~ ELfe T"ONICl.lHC.

Figure 6-17. lO-MHz Modulator (CH-A14)

6-35

L2

_ C25

_ 04

_ C22 _ C24

- L3

, C27

, C28

C42

\ C26

\ C29

\ TPI

\ C31

\ TP3

\ 05

\ C32

\ 06

\ L8

\ C38

I RS 294K0.5 VAC I KHZ Tm±I'I(,

FROM CH-9- 9 C5 C± 0.1 828p

, L R7 ~

I -=

L I..

I AESISTOR:!i_lI......·.!i'll. VALUES IN OHMS UNLESS

OTI-tO....U NOno :i CAPACITORS-VALUES tNj,l1 UNLESS OTHUtWrSE NOTED 3 IHOVCTOAS- VALUES 1101 j,l1'l UNLESS OTHERWISl NOTED.

• ·-I'.CTO~Y S£t£CTEO VALUE $. ...U VOLT AGE READINGS AilE' DC UNLESS

OTHE R'MSE NOTED

I KHZ

Page 118: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT.REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

C1 Cer, Feedthru, 0.001 IJ.F ± 20%, 500V 1005-0008 Erie C2 Cer, 0.05 IJ.F +80% -20%, 25V 1005-0014 Erie C3 Cer, Stand Off, 0.001 IJ.F, GMV, 500V 1005-0048 Erie C4 Cer, Stand Off, 100 pF, GMV, 500V 1005-0049 Erie C5 Cer, Stand Off, 100 pF, GMV, 500V 1005-0049 Erie

C6 Cer, 0.01 IJ.F +80% -20%, 50V

DIODES

1005-0013 Erie

CR1 Si, 2800

COILS

1283-0001 HPA

L1 RF Choke, .47 IJ.H ±20%

RESISTORS

1585-0031 Delevan

R1 Comp, 120 ohm ± 5%, 1/4W 1066-1215 Allen-Bradley R2 Comp, 47k ohm ± 5%, 1/4W 1066-4735 Allen- Bradley R3 Comp, 22 ohm ± 5%, 1/4W 1066-2205 Allen- Bradley R4 Comp, 47k ohm ±5%, 1/4W 1066-4735 Allen-Bradley R5 Comp, 82 ohm ± 5%, 1/4W 1066-8205 Allen- Bradley

I

I I

I I I I I I I I

6-36

I

I

Page 119: Cushman Model CE-3 FM Communication Monitor Manual, 1968

1----­ --I ~ J I 22 I J2 ~ L 0 INPUT

TO FP-J3( • 'No.' i CH-KI-J R

I I

HI 120

47K +20 V)lcl

'VVI R2I" .

-:-

· : ~O JOOICI R2 R4 C3

J3 C2 L~

R5 I l'IrSls"u"~ " .. \Oo''''' ....~I·ltt.1

QTH(R'''li,::.l NUI~t;I

2 C"h\CITOJg,.,VALlJOINIoIUl~~Oh'I". frfnll ) lND'UCTOM..VALU1l$I'll PUljjI ,Qhfl""'\

JI • '_f"'CIOlH' Sl::LIOCHO "'4U!l !> ALL VUll.\Gto H~ALl'N(illUiIIl DC ""'....i" "'1fj OTHEHWISl: NOTEO J2

L

RI

C6 C5 R3 LI C4 CRI

-II 'WI2-1 01 ~)~ 10 "IHS rAOMI.

"• I I

=

-~ SIG (lEN MIXER

CH-A7

Figure 6-18. Signal Generator Mixer (elI-A7)

6-37

Page 120: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

Cl C2 C3

CRI CR2 CR3 CR4 CR5

CR6 CR7 CR8 eR9 eRI0

ell I) Crll2

1'1 1"2 1-'3

CAPACITORS

Elect., 2300 /J.F, 50V Elect., 2300 IlF, 50V Elect., 4000 /l F, 25V

DIODES

Si, SD-l Si, SD-l Si, SD-l Si, SD-l Si, SD-l

Si, SD-l Si, SD- I Si, SD-I Si, 20S05 Si, 20S05

Si, 20S05 Si. 20S05

FUSI<S

I Amp ~11I Bill r'IH'" I Amp SIII-nill I'U8'~

1-1/2 AIIIIJ 1"Ust'

1014-0004 1014-0004 1014-0005

I I

1281-0023 1281-0023 1281-0023 1281-0023 1281-0023

1281-0023 1281-0023 1281-0023 1281-0024 1281-0024

1281-0024 1281-0024

Ul!'l5-0008 Il);,!; 0006 IlHili -nOn7

I Sprague Sprague Sprague

Diodes Inc. Diodes Inc. Diodes Inc. Diodes Inc. IDiodes Inc.

Diodes Inc. Diodes Inc. Diodes Inc. I Diodes Inc. Diodes Inc.

Diodes Inc. Diodes Inc.

IJU!1R

Buss Buss

6-38 I I

Page 121: Cushman Model CE-3 FM Communication Monitor Manual, 1968

-t-----:-;o~ REC~F~~F~-' --:1--' FROM RP-TI-7

FROM RP-TI-B

FROM RP-TI-9

CI FI C2 CFi6 F2 CRa C3 F3

FROM RP-TI-IO

FROM RP-TI-II

FROM RP-TI-I"

'fiD flLT(JI IOAlIn .CRIO liP-AI

CR2 I • CRI2 I ''.'If'J0I'I'" 1,1Il.'"lO\''~!'''

Q'rKl.llwrll:t«'ttrlll ~ CAMttftltli \I,AUM.I" ..~t,illiltllliiirM;-..tt".nl' ! \'40UC1'QIS.- " ..... lal .IoI..,/,lKI.1 ~vu.flIII';I..:rt1a'CR4 •• FACTOlh'YUL"HQlI'.&nW

CR9 6. IlU.Y[JI:TAl>toltt",[)lHIII4JI1 I'r,t"', OTH.~"wrfi,l"""VTTO

CRI I _, ., ,1 CRII

Figure 6-19. Power Supply Rectifier and Filter Board (RP-A1)

6-39

o CH-JIII-B

TO CH-JI9-IO

ro CH· Jill-I

TO CH - JI9 -17

TO CH-JI9-ll

v AC

I I

IL _

TPI TP2 TP3 CR3 TP4 TP5 TP6 TP7 CR5 TP8 CR7 TP9 TPII TPI2 TPI3

Page 122: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. FR.

RESISTORS (Continued)

R16 Comp, 470 ohm ± 5%, 1/4W 1066-4715 AllentBradley R17 Comp, 1.8k ohm ± 5%, 1/4W 1066-1825 Allent Bradley R18 Comp, 100 ohm ± 5%, 1/4W 1066-1015 AllenlBradley R19 WW,l ohm .103%, 3W 1159-0001 Dale R20 Camp, 470 ohm ± 5%, 1/4W 1066-4715 Allen:Bradley

R21 Camp, 820 ohm ± 5%, 1/4W 1066-8215 AlleniBradley R22 Camp, 4.7k ohm ± 5%, 1/4W 1066-4725 Allen Bradley R23 Camp, 10k ohm ± 5%, 1/4W 1066-1035 Allen Bradley R24 Camp, 470 ohm ± 5%, 1/4W 1066-4715 Allen~Bradley R25 Val', WW, 500 ohm, 2W 1200-0003 CTS

R26 Comp, 470 ohm ± 5%, 1/4W 1066-471fi Allenmradley

CKT.REF.

C1 C2 C3 C4 C5

em '''TI2

H3 ; JIll

ell!)

ellG 117

(';II

412 Q3 Q4 Qfi

Q6 Q7 Q8 Q9 Q10

Q11 Q12 Q13 Ql4 Qlfi

H-Ql 1I-Q2 11 Q3

HIH, Tl3 1/4 HS

HG R7 HS R9 RIO

R11 R12 R13 R14 R15

C/E STOCK NO. DESCRIPTION

CAPACITORS

Elect., 100 ilF, 6V Elect., 500 JlF, 25V Elect., 250 IlF, 12V Elect., 100 JlF, 6V Elect., 500 IlF, 25V

DIODES

Si. 1N3064 Si, Zelwr 6.8V, 1N957 Si. IN:306·1 Si, Zener 4.3V, ZD 4.3B St, Zenol' 7.5V, ZD 7.5A

Si, 1N3064 Si. Zener 6.8V, 1N957

TRANSISTORS

Si, NPN, 2N3053 P Channel FET, 2N4342 Si, NPN, 2N3827 Si, NPN, 2N3565 Si, PNP, 2N4248 or 2N4249

Si, PNP, 2N4248 or 2N4249 Si, NPN, 2N3053 Si, NPN, 2N3827 Si, NPN, 2N3827 Si, NPN, 2N3053

P Chanuel FET, 2N4342 Si, NPN, 2N3827 Si, NPN, 2N3827 Si, PNP, 2N4248 or 2N424D Si, PNP, 2N 4248 or 2N 4249 Si, NPN, 2N3054 Si, NPN, 2N3054 Si, NPN, 2N3054

RESISTORS

Comp, 1.8k ohm ± 5%, 1/4W Comp, 100 ohm ± 5%, 1/4W WW, 1 ohm ±39'0, 3W

omp, 470 ohm J. 5~, 1/4W limp. 2.2k ohm .t 5%, 1/4W

C"lllj), 4.7k ohm ± 5%, l/4W :IIIJ1jJ, 10k ohm < 5%, 1!4W

(Inli'. 390 ()hm 5%, 1/4W ::lI'. WW. 500 ohm. 2W

Cump, lk uhm :1-5%, 1/4W

WW,O.Sohlll '3%,3W Comp, 6.8k ohlll 5%, 1/4W.L

Comp, 2.7k ohm %5%, 1/4W Comp, 33 uhm 5%, 1/4W.L

Var. camp, 100 ohm, 1/2W

1013-0006 1014-0002 1013-0012 1013-0006 1014-0002

1281-0013 12111-0007 1281-0013 1281-0025 12111-0026

12Rl-()013 14!81-UOO

1272

10tl6-1H2 10613-1015 1159-0001 10GG-471 1066-2225

1066-4725 1066-1035 1066-3915 1200-0003 1066-1025

1159-0002 1066-6825 1066-2725 1066-3305 1200-0011

MFR.

Sprague Whale Sprague Sprague Whale

Transitron Continental Devices Transitran Diodes Inc. Diodes Inc.

Transitron Continental Devices

I~a 1l'('hlLd BCA T. l. T. I. HCA

I'aln;hlltl l' l. l . l. (.1"II'I'I,11cl F;I irl'lllId mil fiCA llC'A

Alll'l1- J3radley A l.Ie11- Bradley Dale AIle11- Bradley Allel1- Bradley

Alleu-Bradley Alleu- Bradley Allen-Bradley CTS A llen- Bradley

Dale A11el1- Bradley Allen-Bradley Allen-Bradley Allen- Bradley

1 'I 1 1 I I I I I I I I I 1

1 1

6-40

1

Page 123: Cushman Model CE-3 FM Communication Monitor Manual, 1968

R5" "'"

R5~~r. ~R22

C2_ - 5 GL. ••• _'~T7 -­04-­ • ....~..... __-.r"f,·~,~·

---- C5

-C4

----1--------- ­r• I • r .:ao VO~l IlREGULATOR

RI 390

RIO IK

R7 10K

(I • •

(I' v' ......,... [ •• • • • • I

FROM RP-AI-TPI

, 2N CJ7--« III 1~CR4

RI4 33

~.9V 07 LB 3054 I

~3e~2N30U ID

tCRS ZO

10 7.5A

•••• 51)I .ZOV

CH-OI

I I

c:a-L! I !lOO.,.- I

I I

II• I) GNO

I T+I 5V

CH -02 -l:!:. C3 --.- 250

.~ 1'106 05 R9 R6 R8 02 RI5 RI6 CR4 RI4 08 RI3 C3 R23 R26 R25 013 "',,/ I

\ \ \ I \ \ I I / / / /////012 I

12015 OV

I I • GNOI 'lOlA RP'AI TPIO

Q.5014 f "" +~ VOIJ ~[OUl.ATO~

R24

CH-03

CR7

R21

R20

R4 - ­RIB

CR2

OilRI

CRGCI 01 R2 R3 03 CRI 08 RI2 RII CR3 07 CR~ R27 010 RI7

RrfoUl.AlOR CH'AI

Figure 6-20. Power Supply Rct:ulalor (CH-A19)

6-41

Page 124: Cushman Model CE-3 FM Communication Monitor Manual, 1968

, CKT. REF.

C1

CR1 CR2 CR3 CR4 CR5

Q1 Q2

HJ n2

I

DESCRIPTION

CAPACITORS

Electro, 200 J.LF, 25V

DIODES

Si, SD-1 Si , 1N3064 Si. 1N3064 Si. 1N30G4 Si, IN30G4

'I'I1A NSlliTOHS

Sl ~I'N, 2N3H27 81. NJl"l, 2l\:Hl!\3

I~ 1·:~W·,..ruH$

('OJllp. 10k ,,11111 !i',. J 4W (:1Il1l1', 1.2k ,,11111 !)r;.1/4W

I

C!E STOCK NO.

1013-0013

1281-0023 1281-0013 1281-0013 1281-0013 1281-0013

1271-0006 J272-0011

IUljlj-I035 LOljlj-1225

MFR.

Sprague

Diodes Inc. Sylvania Sylvania Sylvania Sylvania

T.!. RCA

Allen-Bradley Allen-Bradley

I I

Page 125: Cushman Model CE-3 FM Communication Monitor Manual, 1968

_____

02

--Ir--­FROM CH-J4-21 -+-{TP) , , (TP}---+--TO FP-TB4-3

8 CR4 8 CR3 IN 3064 IN3064

TP7 TPB TP9 TPIO CI FROM CH-J4-20 TO FP-TB6-3

CR2 IN 3064

TO FP- TB3-3FROM FP-SW9-4 --r---<

TO FP-TB6-5FROM CH-J4-23 ~1b) I I

10K r TO FP-TB6-1

'0-1 A I (1

CRI RI

I I FROM

RP-T1-56RP-TI-6 I CR5 IN 3064 !

FROM CH-J4-22 I FROM FP-SWI-F2 I (

I

·CIMAl. LIOMT SWITCHBOARD eM-A

RI

.J

R2

01

I ...J.. . .l. J.. ~... .~,

CR2

CR3 - -:-"1.1~ /.-r- CR1

CR4

CR5

TPI TP2 TP3 TP4 TP5 TP6

Figure 6-21. Decimal Light Switchboard (CH-A5)

6-43

Page 126: Cushman Model CE-3 FM Communication Monitor Manual, 1968

DESCRIPTION C/E STOCK NO.CKT. REF.

C1

OSl OS2 OS3 OS4 OS5

OS6 OS7 OS8 OS9 DS10

DS11 OS12 DS13 DS14 OS15

D816

HI R2 R3 R4 R5

CAPACITORS

Cer, 0.1 !U' t-80ct -30%, 75V

LAMPS

IIH.:andescent Cartridge, 10V, 14 ma Nt' Ineandeseent, #2310 Incandescent, #2310 Ineandescent, #2310

Incandescent, #2310 Ineandescent, #2310 Incandescent, .2310 Incandescent, #2310 Incandescent, #2310

Incandescent, frosted, #19, 14.4V Incandescent, frosted, '1119, 14.4V Incandescent, frosted, -1/19, 14.4V Incandescent, frosted. #19, 14.4V Incandescent, frosted, #19, 14.4V

Incandescent, trosted, #19, 14.4V

HESISTORS

Pol.. COI11!', lill, 100 ohm, 2W Pul., camp, lin, 250 ohm, 2\V Pot.. comp, lin, 10k ohm, 2W Pol., camp, log, 1k ohm, 2W PoL, eump, lin, 0.5m ol1m, 2W

1005-0019

2870-0010 2871-0001 2870-0011 2870-0011 2870-0011

2870-0011 1170-0011

2870-0011 2870-0011 21'170-0011

21l70-(JOOO21l7fl-oooa 211711-0000 2117n-oOOn 211711-0000

2H7fJ-O()U~1

11

MFR.

Centralab

Dialco G. E. G. E. G. E. G. E.

G. E. G. E. G. E. G. E. G. E.

G. E. G. E. G. E. G. E. G. E.

I G. E.

AllCll- Bradley Allen-Bradley A llen-Bradley Allen-Bradley Allen-Bradley

Allen-Bradley AHen- Bradley Elecu'a Electra Elcetra

Electra Electra Allen-Bradley A llen- Bradley

Marco-Oak Marco-Oak Marco-Oak Marco-Oak Marco-Oak

Marco-Oak Centralab CTS Centralab A llen- Bradley

Aleo CRL

R6 R7 118 R9 IUD

Hll Rl2 HI3 H14

SW1 SW2 SW3 SW4 SW5

SW6 SW7 SW8 SW9 SW10

SW11 SW12

PuL, comp, lin, 50 ohm, 2W Camp, 68k ohm :5%, 1!4W M Film, 499 ohm ... 1%, 1/4W M Film, 54.9 ohm =1%. 1/4W M Film, 61.9 ohm ~1%~ 1/4W

M Film, 499 ohm'" 1%, 1/4W M Film, 121 ohm~l%, 1/4W Comp, 51 ohm .L5%, 1/4W Camp, 470k ohm ± 5%, 1/4W

SWrTCHES

notary, special, first digit ulary, special, secOnd digit

Rol;u'y, special, third-sixth digit Hul:lry, special, third-sixth digit Hutary, o[lccial, third-sixth digit

Rotary, 8jJecial, third-sixth digit Lever, 2P3 po,;, range Rotary, special, function Rotary, 4P2 pus, IF range On-Off

Toggle, 3P2 pas, FM mod Rotary, 1P3 pas, sig gen atten

1075-000 lU75-0006 1066-5105 1066-4735

le51-0020 1851-0021 U:J51-0027 1851-0027 1851-0027

1851- 002 7 1851-0016 1851-0025 1851-0022

P/01203-0018

1850-0007 1851-0001

6-44

Page 127: Cushman Model CE-3 FM Communication Monitor Manual, 1968

-12V

RP-SWI-6

RP-SWI-3

CH-J20-11

RP-SWI-2

RP-SWI-S

~ ~'~~'I CE-3 FRON r PANEL FP

~LTSI

-----,

Rf2 121 1'4

SIGNAL GEN. ATT[N

@I

R9 S4.9 1'4

~~ IFM CAL!

SW7

CH-A7-J3

JDE\! ADJ.I

CH-JI4-9 wCH_JI4_7

lIS

- 5 RI4~wl." f' .~IK 3

J2

-=­

3

SW-1l1!E!J

~

SWll

+20V

B

100 3

RI

lili.J

CH-J20-ll

SWIO ~CH-J20-4@ill

n o R3 2 CH-J'6-15 ,,10K I

, I I SPEAKER RP-TBI-3 ',­ -.J VOLUME RP-TBI-$ -­

0512

CH-J20-18

CH-T83-3

SW9

CH-J20-1O

OSIl

ABe

RP-TI-6 or 5 • • ••

• 'I-V(

I •~

I ur I

I I ",(.

CH-JIS-2 •• ,

E llF

~ lIk:

GBH

~:~~:=:~O·

H7

~ I CH-JII-184-----------~ .

~ ffffi~~ ~ CH-JII-6 4

'~D2 h Pl CH-J,,-3:::Zil i n I <) ~ ~I-

u~'1L ~n ~ I ~ I

~II I I

CH-J2-4 CH-J2-S

CH-JI9-22 CH-JIB-33

IOVEN ONI CH-TBI-S

CH-JI6-I8. CH-JI8-le

CH-AS-3 •

CH-JI6-S' IUNLOCKEOI

CH-JIH3'

RP-TI-5or6 CH-Je-13 CH-JIB _I)

CH-JI6- 2

CH-JI4 ··16

CH-JII-17 :

CH-A21-Q-0. CH-JII-oISI •

---------tI~I.F::...~FR~E~QUE=N.:::C:::IES::.:.JII CH-Je-IO

CH-T82-3

CH ....B-B

I No) II.F.LEVELI-=-

IOlJTPUTI

1 "'5$TtlItt· I·~ M. ........I.IJESll\,iO•• MSUN\..ES,.ot

UfttlflW1Si NOlltl J (.A'oIlCIfU'.I,. V.AI.Ul",lI,I ..1UNLi.isor,..ilMlslHQT£O 1 IHOUClOflo:.- V",wu IN /oil liNl" OHtl:.HWlU IiOTt:O •• foAOO"'lr$lUC1'lP.VALUt" ....~ VOl-lAG( ,.'AbtHOS,t,Al DC VNl..lSS

oh~U.1Sf! NO"Jl.D

COf''I'FlIOttT 1ilc.6 n CUSM_~ ELLCTHOt'II~. INC THIS OHAWIN(i IS INtENDED FO" THE Of'EFIATIQN AND ........!-NUNM/Cf OF CUSHMAN EL[CTflONIC$ fOVI'M(NT AND l!i ",aT TO liE USt'D OTHERwIS( 0'" IU'"00ucID ..... ITHOUt """ITTI:'" CQHSENT "flaM CUSHMAN U ..lC rflONlCs"INC

Figure 6-22. Front-Panel Wiring (FP)

6-45

Page 128: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I

"

CKT, REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

II .1005-0003Cl Ene 1005-0003C2 Erie

C3 1005-0003 Erie 1005-0003C4 Erie

t!j85-0025 IDelevanLl Rf ( hoke.:, 22 Jj H .±.IO'fJ L2 I RI Choke', 22~111 ±10% I Hi85 -0025 Delevan

con..s. CU-

Ll I H I" (",hoke, 100 /-l H ± 10% I 15!l5-0026 j Delevan

TRANSFORMERS

'I I Transformer, Power I 1575 none; , Cushman

FUSES

1"1 I 3 AG 1 Amp Slo-Blo I 1055 IInoa I Lillclfuse

PLUGS

PI :It'ln null I 1111'lrI"1l

JACKS

Jl I 8 Pin Female

Moulded Plug, 3 Wire, 18 GaugeI I

25arl 0003 I C':illl=h-,!<111VS

I SWITCHES

SWI I Slide, 3 P.D.T. I 11:150 0011 I SWIl(;IH'!'all

I

I

I

Page 129: Cushman Model CE-3 FM Communication Monitor Manual, 1968

,-- - -- - - ----------- ­I I I

I AII I I I I L

1 I'IESISTOM:i 11.·.... h, VllolUU IN ~l"" IMI L OTHEMWI. NOTED

~ CA'"CITOI'l5-VAlUU IN III VH....UO!lt. """',S(JMJIJt. 3 INDUC10I'IS ·"""'LUES IN .."UNLls..c1Tl'iI"lfll\t MIll .. --'IlClOHY !liUCT£O "'4tU£

b ALL VOLTAGE illE_OING$ "Ht. DC UNt,l$S OTHUtwlSl OOT'O

------l I I I I I I I I I

-.J

AIN ~IllE

-=

-=HARNESS I~ II

REAR PANEL WIRING CE-3

U)Ii"l.Iltt(1 f_'TC~¥."'hI'L~CTPOHICfi,''fC

lHII O'l~.,~g" IN1UIM.O "0111 TIi£ O"£"'YIO" ANO .....INU ..ANC( 0" C~IoI."'N ELECTfltO"'la EOU'....fNl "-"to IS I'«)T TO liE USf.D OTHEHW,S[ OR Hf"!lODUCID '#f1l1'40VT wl'UrHN oo"l$£"'T .Ila... CUSHMA,.. ELie TIlONIcs.IMC

Figure 6-23. Rear-Panel Wiring (RP)

6-47

Page 130: Cushman Model CE-3 FM Communication Monitor Manual, 1968

i -- ----------------­I I I

I II AI

II I I L

I

I AI

I I

I I

JI

I SWI 1

" ) .. !),

I I I I I

~

I

------l I I I I I I I I I

T8,

MAIN CABLE HARNESS

~

CH-JI9-8

CH-JI9-IO

CH- J19-17

CH- JI9-21

CH-JI9-6

CH-JI9-7

JI I 1 FP-AI-TP-2

I SWI I

I FP-AI-TP-7

4 4 5 6 FP-AI-TP-I2

e I 6 I 1 8 CH ­ J3-17

I T 1 EXT INT CH-J3-16

FP-AI-TP-8

CH-J3-12,24

AUISTOJtS.-l,oAN," lo'4LtJE~ IN 0,","':> UN.lrtt OTI'lf:"WISt~OTtO

C:A'ACl1'ORS \lIIoLUES IN .. ~ U",LfS$ Qr..tkl'o'liC NOTrQ INDUCTORS ·ilAlUES IN~" UNLESS QTHERWI!l1 HOTfe o_'ACTOA'rS£LEcno .... ,t,lUf, ALL VOUIIOE lU... OINGS ,IlillE DC IJNLE~"

QTHE AWI!>E ",on c

Page 131: Cushman Model CE-3 FM Communication Monitor Manual, 1968

6-48

CKT. REF. I DESCRIPTION C!E STOCK NO. I I MFR.

CAPACITORS

C1 1013-0006Electro, 100 IlF, 6V I~prague1013-0006 prague C3 Cer, 0.1 IlF +80% -30%, 75V 1005-0019 entralab C2 Electro, 100 IlF, 6V

DIODES

CR1 Si, 1N816 1281-0009 Y1 CR2 Si, 1N816 1281-0009 f "";'I ylvania

RELAYS

K1 I 12 VDC, DPDT 1313-0002 I IGuardian

METERS

M1 I Frequency Error 1402-0018 ushman

HESISTORS

R1 1066-2735Camp, 27k ohm :105%, 1!4W Allen-Bradley R2 PUI.., WW, 10k ohm, 1!2W 1215-0005 ~ourns R3 1066-6825COIllP, G.8k ohm ±5%, 1!4W ~ll'"-n,-,d1<-yR4 1215-0003Pnl., WW. 5k ohlJl.1/2W ourns R5 1066-3305Comp, 33 olun i fl~, 1/4W Hen-Bradley

R6 I'llt.. WW. III llhlll, I/2W 1215-0004 ~ourns R7 Cump, 4. 7k ohlll !j'lo,,1/4W 1066-4725I llen-Ol'urllvy

R6 R4 R2 HI R3 R5 R7

TPI2

TPII

TPIO

TP9

TP8

TP7

TP6

TP5

1<1 CI C2 C3 CRI CR2

I

Page 132: Cushman Model CE-3 FM Communication Monitor Manual, 1968

r- - - -r-------,i~ I ~DEVlATIONI

+V~

IUNLOCKEDI I I rL-=-JF~'-~=---~-~T - - I

) -= .10

I:J~ I

I I

""'------ I [£ill I

~: O~I 0- __ J

-=~

-----INOICATE RECEIVED SIGNAL

- INDICATE SYNTHESIZED LOCAL OSCILLATOR SIGNALS WHEN DIALED TO 120 MH3

_____ INDICATE VOLTAGE CONTROLLED OSCILLATOR LOOP SIGNALS

-------lNDICATE ffEDBACK SIGNALS

~117VAC

:--::.:1-~--r---,---,-~--~~

I ; __, 1 , I

IJ: ------- - I

I

I ,18 L J' L J CH-AIO J J'----- - - ---- -- I

I ''''~ I I I I

I ---~

o

IL _

r ­I I

[F'R£QO£NgJ

I I

lAUDIOAMPL.lH1J1 PART OF -,-CJ:l..-~~J

I I

AFC+

--'

[£:M]

~~A~ _

I - 1.10

FUNCTIONAL BLOCK DIAGRAM

Figure 6-24. Functional Block Diagram

6-49

Page 133: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I

I I I I I

I

r---­I~ I~ I I I I L_

I I

-+­CH-AIO I---------------'

r-- ­

r - - - - - -.­ - - - - - - -I~

I I I I I L_

II '''DIGIT

---,

j

I I ;-­

IL.. _

I

I r I IJ~

I I

@] I

r<' ~''1 r-<' ~~ rn l!B

I I I

r- ­

CH-A21

IUNLOCKEOI

+V~

o

r ­I I I I IL-=-==­ .:_

IFM DEVIATIONI

~

~iiKJ AMPlJkJ], PART OF _

L<:!!.-~LJ

I I

AFC+

I

I 1---, I I I I

I I I I

@illl

~: o [£!] I o--_J~

I CH-A8L _

I MICROVOLTS I

ATTEN.

~ ' ,10 ,100

'M

!FREOUENC'\1

WHEN DIALED TO 120 MH3

SIGNALS

I I

I I NOlf. 111'1('/

LlNl!IJ

LINE'

LINES

I ~U'STOtilS "4W_!l'll.YAl.UE.SINOM""l,lIlIIIL( OTl'lEAWI!££ NanD

, up"'ClTQP.S-VAlUES: IN III UNL[~ OTw'''lltfN NOnD ) INQUCTOAS VAlU"-S IN II" UNL(!;S OlwL"",,,,, •• '''CTOATSEUCTEOV,t,LUf

" ... llVOlT ....GEAF~INGS ...IIUOCUfilll£S.'.. Q't<lEAWlSE Nono

I I I .1

INOICA'Tr RECEIVED SIGNAL

------ Ml!CAT[ SYNTHESIZED LOCAL OSCILLATOR SIGNALS

__- INDICATE VOLTAGE CONTROLLED OSCILLATOR LOOP

--------IHDICATE FEEDBACK SIGNALS

I-~----------------l

I Iiii i I

6th DIGIT 5th DIGIT

FUNCTIONAL a.OCK DIAGRAM

Page 134: Cushman Model CE-3 FM Communication Monitor Manual, 1968

CKT. REF. DESCRIPTION C/E STOCK NO. MFR.

CAPACITORS

C1 Var, Glass, .5-18 pF 1001-0001 J.F.D. C2 Mica, 91 pF ±5%, 100V* 1002-0027 Elmenco

OVEN XTAL OVEN 2045-0003 Cushman

Xl XTAL,3 MHz 2035-0003 Cushman

I I I

Page 135: Cushman Model CE-3 FM Communication Monitor Manual, 1968

COl"YHIGHT ,. IVCl.1SHMAN ELlCTfIll)HICS, tNC ntiS DRAWING IS INf[NOEO '0" THE Ol"EH....TIOH AND .....INTE ......NCE Of' CUSHMAN ElfCTI"Of'IlICS [OUINlNT .-.HO IS NOT TO 8f lJSt:D OlI1UY'$l Oil liIfl'.mQUC.l,n WITHOUT w'ltTTEN CONSENT fIIlOW C\JSH.....~

TfIlON1C$. INC.

,} TO OVEN , ON LAMP

}

117V.•C. FRO~ RP-TBI

-I I ..

CRYSTAL OVEN ASSEMBLY CH-A6

CH-J2

OVEN SOCKET

TO CH-AI7B

-=

6-51

Ct<-CI .5-18 PF

CH-A6

OVEN

Figure 6-25. Crystal Oven Assembly (CH-A6)

". CI (TYPJ"t'F

I

I

I

I

I I

II I

I

I

Page 136: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I I I r CKT. REF.

Jl J2 J3 J4 J5

J6 J7 J8 J9 JI0

J11 J12 J13 J14 J15

J16 J17 J18 J19 J20

Kl

Fl

Ql Q2 Q3

LSI

DESCRIPTION

CONNECTORS

12 Pin Connector Socket, octal 24 Pin Connector 24 Pin Connector B.N.C. Connector

NOl Used Not Used 22 Pin Connector 22 Pin Connector 22 Pin Connector

22 Pin Connector 22 Pin Connector 22 Pin Connector 22 Pin Connector 22 Pin Connector

22 Pin Connector 22 Pin Connector 22 Pin Connector 22 Pin Connector 22 Pin Connector

COAXIAL, RELAY

Coaxial, !iOn 250W, 28V

FUS~S

Mell 2/10 A. Slo. Ulo. (SL'riell No. 45.5 and up only lucatl'd under J3 connector)

TnA NSISTORS

Transistor Silicon T ra nsistor Silicon Transistor Silicon

SPEAKERS

3" x 5" Speaker

C/E STOCK NO.

2535-0013 2605-0001 2535-0020 2535-0020 253C-0003

2535-00lR 25:i5-00HI 2535 DOHI

25:15-0018 2535-001H 2&36-001!l ., !J35- (10 1B

535-001

2!illfl-OUllJ 25:15-00111 "53fJ-0018

5:15-0018 2S:i5-0018

1313-0003

1955-0009

1271-0001 1271-0001 1271-0001

1715-0003

6-52

MFR.

Cinch-Jones Elco Amphenol Amphenol Amphenol

Vikill1' Viklllg Vlkin

Vlkin~

Vikinl\ Viking Viking Viking

Viking Viking Viking Viking Viking

Dow-Key

Bussman

RCA RCA RCA I Quam I

I I I

Page 137: Cushman Model CE-3 FM Communication Monitor Manual, 1968

A3 A4 JS J4 AS KI

J3 AI A2

A20 J20

A19, Jig

A21,

J2

A18, JI8

JI

A17, JI7

A16, JI6

AI5, JI5

A7 A6

Figure 6-26. Top Assembly

6-53

Page 138: Cushman Model CE-3 FM Communication Monitor Manual, 1968

I All, AI2, AI3, A14, JII JI2 JI3 JI4

-

- - - ~ ,~ - --- ~

-- ----

"''' _....

~ .. -- ~.--.,., ..... ~- -- ~ -- _iFF ............J '{

= » . .- -;;rwti."1 -_...... -.. ,i .-A21,

a. IL ~I --~

• . ....._.~ '~ II • ___ AI8,

, - - ~

J3 AI A2 , / I

I I

A20

I J20

AI9, JI9

• ,I

Ie I J2I, I',

I, JI8

JI

I' AI7, JI7

AI6, JI6

AIS, JIS

I I AIO, A9, A8,

JIO J9 J8

-""IliA

I

Page 139: Cushman Model CE-3 FM Communication Monitor Manual, 1968