cvd and ald of group iv- and v-oxides for dielectric applications160934/fulltext01.pdf · this...

63
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 665 _____________________________ _____________________________ CVD and ALD of Group IV- and V-Oxides for Dielectric Applications BY KATARINA FORSGREN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001

Upload: others

Post on 01-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Comprehensive Summaries of Uppsala Dissertationsfrom the Faculty of Science and Technology 665

_____________________________ _____________________________

CVD and ALD of Group IV- andV-Oxides for Dielectric Applications

BY

KATARINA FORSGREN

ACTA UNIVERSITATIS UPSALIENSISUPPSALA 2001

Page 2: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Dissertationfor the Degree of Doctor of Philosophyin Inorganic Chemistrypresentedat UppsalaUniversityin 2001

ABSTRACT

Forsgren,K. 2001. CVD andALD of Group IV- andV-Oxidesfor DielectricApplications.Acta Univ. Ups.,ComprehensiveSummariesof UppsalaDisserta-tions from the Faculty of Scienceand Technology 665. 56 pp. Uppsala. ISBN91-554-5143-8.

Due to the constantlydecreasingdimensionsof electronicdevices,the conven-tionaldielectricmaterialin transistorsandcapacitors,SiO2, hasto bereplacedbyamaterialwith higherdielectricconstant.Someof themostpromisingcandidatesaretantalumoxide,Ta2O5, zirconiumoxide,ZrO2 andhafniumoxide,HfO2.

Thisthesisdescribesnew chemicalvapourdeposition(CVD) andatomiclayerdeposition(ALD) processesfor depositionof Ta2O5, ZrO2 andHfO2 usingthemetaliodidesasstartingmaterials.The layer-by-layergrowth in ALD wasalsostudiedin real time with a quartzcrystalmicrobalance(QCM) to examinetheprocesscharacteristicsandto find suitableparametersfor film deposition.

All theprocessespresentedhereproducedhigh-purityfilms at low depositiontemperatures.It wasalsofound that films depositedon Pt substratesgenerallycrystalliseat lower temperature,or with lower thickness,than on silicon andsingle-crystallineoxidesubstrates.Filmsgrown onMgO(001)andα-Al2O3(001)substrateswere strongly texturedor epitaxial. For example,monoclinic HfO2

depositedonMgO(001)wereepitaxialfor depositiontemperaturesof 400-500C

in ALD and 500-600C in CVD. Electrical characterisationshowed that the

crystallinity of thefilms hada strongeffect on thedielectricconstant,exceptincasesof very thin films, wherethe dielectric constantwasmoredependentonlayerthickness.

Key words: CVD, ALD, Dielectricconstant,Tantalumoxide,Ta2O5, Zirconiumoxide,ZrO2, Hafniumoxide,HfO2, QCM.

Katarina Forsgren,Departmentof MaterialsChemistry, TheAngstrom Labora-tory, Box538,SE-75121Uppsala,Sweden

c

KatarinaForsgren2001

ISSN1104-232XISBN 91-554-5143-8

Printedin Swedenby EklundshofsGrafiskaAB, Uppsala2001

Page 3: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Till Mor ochFar

Page 4: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)
Page 5: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Contents

Preface VII

1 Intr oduction 1

2 Dielectric Oxides 32.1 Tantalumoxide . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Zirconiumoxide. . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Hafniumoxide . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 DepositionTechniques 73.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2 ALD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3 Precursorsfor CVD andALD . . . . . . . . . . . . . . . . . . 10

3.3.1 Previouswork . . . . . . . . . . . . . . . . . . . . . . 10

4 Experimental 134.1 CVD experiments. . . . . . . . . . . . . . . . . . . . . . . . . 134.2 ALD experiments. . . . . . . . . . . . . . . . . . . . . . . . . 144.3 Film characterisation. . . . . . . . . . . . . . . . . . . . . . . 15

5 Depositionof Tantalum Oxide 175.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175.2 In situmonitoring . . . . . . . . . . . . . . . . . . . . . . . . . 195.3 ALD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Depositionof Zir conium Oxide 256.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256.2 In situmonitoring . . . . . . . . . . . . . . . . . . . . . . . . . 276.3 ALD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 Temperatureseries . . . . . . . . . . . . . . . . . . . . 296.3.2 Thicknessseries . . . . . . . . . . . . . . . . . . . . . 31

Page 6: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

VI Contents

7 Depositionof Hafnium Oxide 347.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347.2 In situmonitoring . . . . . . . . . . . . . . . . . . . . . . . . . 377.3 ALD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Depositionof Mixed TiO2-Ta2O5 Films 428.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 Concluding remarks 45

Acknowledgements 47

Bibliography 49

Page 7: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Preface

This thesiscomprisesthepresentsummaryandthefollowing papers,which arereferredto in thesummaryby theirRomannumerals.

I Halide chemicalvapour depositionof Ta2O5.KatarinaForsgrenandAndersHarstaThin SolidFilms, 343-344(1999)111.

II Atomic layer deposition of tantalum oxide thin films from iodideprecursor.KaupoKukli, JaanAarik, AleksAidla, KatarinaForsgren,JonasSund-qvist, AndersHarsta,TeetUustare,HugoMandar, andAlma-AstaKi-islerChem.Mater., 13 (2001)122.

III Characterisation of Ta2O5 films prepared by ALCVD .KatarinaForsgren,JonasSundqvist,AndersHarsta,KaupoKukli, JaanAarik, andAleks AidlaIn ChemicalVapor DepositionFifteenth International CVD Confer-ence. Editors M. D. AllendorfandM. L. Hitchman(TheElectrochem.Soc.PenningtonN. J., 2000)p. 645.

IV CVD of ZrO 2 using ZrI 4 asmetal precursor.KatarinaForsgrenandAndersHarstaJ. Phys.IV France, 9 (1999)Pr8-487.

V Atomic layer depositionof zirconium oxide from zirconium tetra-iodide, water and hydrogenperoxide.KaupoKukli, KatarinaForsgren,JaanAarik, TeetUustare,AleksAidla,Antti Niskanen,Mikko Ritala,MarkkuLeskela, andAndersHarstaJ. Cryst.Growth,231(2001)262.

VI Iodide-basedALD of ZrO 2: Aspectsof phasestability and dielec-tric properties.KatarinaForsgren,JorgenWestlinder, JunLu, JorgenOlsson,andAn-dersHarsta

Page 8: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

VIII Preface

Submittedto Chem.Vap. Deposition.

VII Depositionof HfO2 thin films in HfI 4-basedprocesses.KatarinaForsgren,JaanAarik, Aleks Aidla, JorgenWestlinder, JorgenOlsson,andAndersHarstaSubmittedto J. Electrochem.Soc.

VIII In situ preparation of Ti-containing Ta2O5-films by halide CVD.KatarinaForsgrenandAndersHarstaIn ChemicalvapourDepositionFifteenthInternationalCVD Confer-ence. Editors M. D. AllendorfandM. L. Hitchman(TheElectrochem.Soc.PenningtonN. J., 2000)p. 652.

Page 9: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

1 Intr oduction

Themicroelectronicsindustryis constantlystriving towardsincreasedfunction-ality andperformanceof integratedcircuits,thatis, to producefaster, smallerandcheaperelectronicdevices.This is achievedby increasingthedensityof cellsonachip throughreductionof theminimumfeaturesizeandtheproductionof morecomplex circuits. Whenthe featuresize is reduced,a lower operatingvoltagemustbe appliedto maintaina constantelectricalfield, andthis in turn requiresthecapacitanceto increasein orderfor thedevice to functionproperly. Sincethecapacitanceis inverselyproportionalto the thicknessof the isolatinglayer, thisthicknessis reducedaccordingly. Theconventionalcapacitormaterialin randomaccessmemoriesandfield effect transistorsis silicondioxide,SiO2, andthesuc-cessfulscalingof devicedimensionsover thepast30yearshasleadto thecurrentdielectric thicknessof about2 nm. However, leakagecurrentsarebecomingaseriousproblemat thispoint,andfurtherscalingwouldverysoonleadto adirecttunnelingcurrentthroughthe oxide. In addition,an oxide layer this thin is aninsufficient barrieragainstdopantdiffusion. By replacingtheSiO2 with a mate-rial of higherdielectricconstant,therequiredcapacitancecanbeachievedwith athicker layer, therebyreducingtheleakagecurrents.Thescalingtowardshighercell densitiescanthuscontinue.

Theamorphousthermallygrown SiO2 currentlyin use,offersa stable,high-quality interfacewith silicon, in combinationwith superiorelectricalisolationproperties,and will thus be very hard to replace. The main requirementsforfuturegatedielectricsare[1]:

i) technologycompatible,

ii) homogeneousstructureandefficientbarrieragainstpenetrationof con-taminantspecies,

iii) largebandgap,high dielectricstrengthandlow loss,

iv) largebreakdown strength,

v) negligible chargeleakageandlow interfacetrapdensities,

vi) suitablethresholdvoltage,and

Page 10: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

2 Intr oduction

vii) stableelectricalcharacteristics.

It shouldbepointedout thattherearesomedistinctionsbetweentherequire-mentsfor memoryand transistorapplications. Memory capacitorsrequireex-tremelylow leakagecurrentsandvery high capacitancedensityfor charge stor-age,but thequality of the interfaceis not ascritical. Sincetheelectricalfield isnot requiredto penetratebelow thebottomelectrode,theelectrodecanconsistofmetalor nitrided poly-silicon. For a field effect transistor, on theotherhand,itis essentialthat theelectricalfield penetratesinto theSi channelunderneaththegateoxideto modulatethecarriertransport.It is thereforenecessarythatthesub-strateis Si andthattheinterfacebetweenthedielectricandthechannelis of veryhighquality. Transistorshave lowerdemandson leakagecurrentthancapacitors,althoughahigh capacitanceis still needed[2].

A numberof materialshave someof the qualitiesnecessaryfor replacingSiO2, but very few areconsideredpromisingin all areas.Thematerialsthathavereceived the mostattentionareTa2O5, SrTiO3, TiO2, Al2O3, ZrO2 andHfO2.Amongthese,Ta2O5, SrTiO3 andTiO2 have thehighestdielectricconstants,be-tween25 and80 in thin films, but arenotstablein contactwith silicon. Reactionat the interfacebetweenfilm andsubstrateduring the depositionexperimentorsubsequentheattreatment,mayleadto formationof siliconoxideorsilicides,thataredetrimentalto theelectricalproperties.Ta2O5 andSrTiO3 arestill consideredfor memoryapplications,but TiO2 is generallycharacterisedby a high leakagecurrent,andcannotbeusedin its pureform. Furthermore,theprocessintegrationof the ternarySrTiO3 presentsa greaterchallengethanthatof thebinaryTa2O5

andTiO2. Al2O3, ZrO2 andHfO2 arethermodynamicallystablein contactwithsilicon [3], andif aninterfacial reactiondoestake place,theresultis likely to besilicates,thatexhibit intermediatedielectricconstantsandmayevenbebeneficialfor theleakagecharacteristics.Thedielectricconstantof Al2O3 is only 8-10,andsubstitutingSiO2 with Al2O3 wouldthusonly bea temporarysolution.ZrO2 andHfO2, on theotherhand,have dielectricconstantsof around20 andoffer morelong-termsolutions.

The electricalpropertiesof a materialaredeterminedby a complicatedin-teractionof many factors,mostof which will not bediscussedhere.This thesisdescribesnew chemicalvapourdeposition(CVD) andatomic layer deposition(ALD) processesfor depositionof thehigh dielectricconstantmaterialsTa2O5,ZrO2, HfO2 andmixedTiO2-Ta2O5 oxide.

Page 11: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

2 Dielectric Oxides

Therearedifferentcontributions to the permittivity of a materialdependingonthefrequency of theappliedelectricalfield asshown schematicallyin Fig.2.1[4].Thecurrentfrequency rangefor transistor(CMOS)operationis indicatedin thefigure,andit canbeseenthatthemaincontributionsin this region areelectronicandionic polarizations.

Theelectroniccontribution comesfrom interactionof the“electroncloud” ofanion with theexternalelectronicfield,andionswith alargeradiuscangenerallybepolarizedto a greaterextent.Theelectroniccontribution tendsto increasethepermittivity for oxidesof metalswith high atomicnumbers.Theionic contribu-tion is causedby thedisplacementof certainions in theunit cell in responsetotheappliedelectricalfield. Thepolarizabilitycanvary betweenthepolymorphicformsof a material,probablydueto differentdensityor displacementpossibili-ties. An amorphousbodydoesnot exhibit ashigh a permittivity asa crystallineonesincethedisplacementof theions is not uniform over any extendedvolumeof material.It hasalsobeenfoundthattheadditionof asecondmetalto acertainoxidecanenhancethedielectricconstantconsiderably[5, 6,7]. Theexactreasonfor this effect is not known, however. This is a simplified description,but it is

ε

ε ε

Interfacial and space charge

Orientational, Dipolar

IonicElectronic

Radio Infrared Ultraviolet light

Figure2.1: Thefrequency dependenceof thepermittivity [4].

Page 12: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

4 Dielectric Oxides

clearthatboththenatureof theelementsandtheir arrangementin thesolid stateareof importancefor thepermittivity.

The dielectricconstantincreasesuponcrystallisation,but at the sametime,grain boundariesform. In thegrain boundaries,theconcentrationof impuritiesanddefectsis higher, andtheelectricalconductivity is higherthanin the“bulk”of thegrains.Thesmallerthegrains,thelargerthepartof thefilm thatconsistsofgrainboundaries.This is normallythereasontheleakagecurrentincreaseswhenamaterialgoesfrom theamorphousto thecrystallinestate.Thecloseconnectionto the electricalpropertiesis a strongreasonto maintaincarefulcontrol of thephasecontentof thefilms.

2.1 Tantalum oxide

In theTa-Ophasediagram,Ta2O5 appearsasa line phase,i.e. it hasno extendedstability region, and shouldhave a well-definedstoichiometry. Orthorhombic[8], monoclinic [9], hexagonal[10] and tetragonal[11] phasesof Ta2O5 havebeenidentified,but despitemucheffort, their respective stability areasarenotfully known. Thereseemsto be generalagreementthat the hexagonalandor-thorhombicphasesarestableat low temperaturesandthemonoclinicandtetrag-onalphasesat high temperatures.Theorthorhombicβ-Ta2O5 andthehexagonalδ-Ta2O5 structuresarecloselyrelated:

a (β-Ta2O5) = 3 a (δ-Ta2O5) andb β-Ta2O5) = a (δ-Ta2O5)

The δ-phaseis often claimedto be understoichiometric,indicating that Ta2O5

could possiblyhave a stability region. However, in thin film deposition,the β-phaseof Ta2O5 is themostcommonlyobserved(Fig. 2.2).

Ta2O5 is bestknown for its highdielectricconstant,but it alsohasotherinter-estingpropertieslikepiezoelectricity, protonicconductivity, highrefractive indexandcorrosionresistance.Thin films of Ta2O5 canbeusedin electroluminescentdevices[12], biologicalandchemicalsensors[13, 14], corrosionresistantcoat-ings [15], andanti-reflective coatings[16, 17]. Thin films of Ta2O5 have beenproducedby laserablation[18], sputtering[19], evaporation[20], sol-gel [21]andALD [22], but themostcommonlyusedtechniqueis CVD [23, 24, 25].

Page 13: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

2.2Zir conium oxide 5

O

Ta

Figure 2.2: Thestructureof β Ta2O5.

2.2 Zir conium oxide

Zirconium oxide, ZrO2, is known to have four different crystal modifications:monoclinic,tetragonal,cubicandorthorhombic.Dueto hysteresisin thetransi-tionsanda stronginfluenceof thepreparationtechniqueaswell asthemeasure-mentconditions,the reportson their stability regionsdiffer widely. Therefore,the following dataare not to be taken as universal truths. Under atmosphericpressure,themonocliniclow-temperaturephasetransformsinto tetragonalZrO2

around1145C [26], and the tetragonalphaseis stableup to 2370

C whereit

transformsto cubicZrO2 [27]. Thehigh-temperaturephasescanalsobeobtainedat low temperatureswhenstabilisedby otheroxides,for instanceY2O3 or CeO2

[28, 29], or in materialswith smallgrainsizes,oxygendeficiency or impurities[30]. An orthorhombicphaseexists at elevatedpressure,anda triple point hasbeenreportedfor themonoclinic,tetragonalandorthorhombicphasesat 600

C

and23kbar[31]. The homogeneityrangefor ZrO2 extendsdown to 63 atomicpercentoxygen[32]. TheZrO2 phasesareunusualin that thestructurebecomesmoresymmetriconheating.Thetruecubicfluoritephase( seeFig. 2.3) is stableabove 2450

C, but the monoclinicandtetragonalpolymorphscanbe described

asdistortedfluorite structures,with the low temperaturephasebeing the mostdistorted[33].

ZrO2 is a materialwith well-known physicalpropertiesthat rendersindus-trial applicationsin many fields. For instance,zirconiumoxidehaslow thermalconductivity, high refractive index anda high dielectricconstantandis usedinthermalbarriercoatings,high temperatureopticalfilters [34] andoxygensensors[35]. Someof thetechniquesthathave beenusedto producethin films of ZrO2

Page 14: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6 Dielectric Oxides

O

Zr

Figure 2.3: Thecubic(fluorite) structureof ZrO2.

aresol-gel[36], evaporation[37], sputtering[38], ALD [39] andCVD [30].

2.3 Hafnium oxide

Hafniumoxide,HfO2, is very similar to ZrO2 in chemicalandphysicalproper-ties,andtheoxidesarecompletelysolublein all proportionsin thepseudo-binarysystem[40]. TheHfO2 andZrO2 phasesareisostructural,but therearesomedif-ferencesin atomic positionsand transitiontemperatures,and the hysteresisisconsiderablysmallerfor HfO2. For HfO2, themonoclinicto tetragonaltransfor-mationtakesplacebetween1620and1650

C [40], andthetetragonalto cubicat

2700C [41]. Thetriple-pointrelationis analogousto thatfoundin theZrO2 sys-

tem,but locatedat approximately1200C and15kbar[31]. HfO2 hasthesame

homogeneityrangeasZrO2, down to 63 atomicpercentoxygen,but thedensityis higherdueto theheavier Hf atom.

As canbeexpected,HfO2 hasthesameexcellentmaterialpropertiesasZrO2:extremechemicaland thermalstability, good electricalproperties,and a highrefractive index, andmoreor lessthesameapplicationsresult:protectivecoatings[42], opticalcoatings[43] andoxygensensors[44]. Thin films of HfO2 havebeenproducedby laserablation[45] ion beamsputtering[46], sol-gel[47], ALD [48]andCVD [49].

Page 15: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

3 DepositionTechniques

For mostthin film applications,thedepositionmethodis a crucial factorin de-terminingthequality andpropertiesof thelayer. Theprocessmustalsobecom-patiblewith otherfabricationsteps,becost-efficient andsuitablefor large-scaleproduction.CVD methodshavebeenappliedin variousfabricationprocessesforquitesometimewith greatsuccess,andin recenttime,thepulsedCVD technique,ALD, hasenteredtheindustrialscene.UsingCVD techniques,a largevarietyofmaterialscanbe depositedover a wide pressureandtemperaturerange.Dense,well-adherentfilms canbeformedwith excellentuniformity over largeareasandon complex shapes.With ALD, thecompositionandthicknessof the layercanbecontrolleddown to theatomiclevel. Thedifferenteffectsthatcontrolthefilmgrowth in CVD andALD will bediscussedfurtherin thefollowing paragraphs.

3.1 CVD

ThenameChemicalVapourDepositionimpliestheformationof a solidmaterialfrom thegaseousstateby wayof achemicalreaction[50]. Thisreactionnormallytakesplaceon, or in the vicinity of, a surfaceandis activatedby somekind ofenergy. CVD processescanbeclassifiedaccordingto i) their activation energy,for instancethermallyactivated,plasma-enhanced,laser-inducedandelectron-beamassisted,ii) thenatureof thestartingmaterial:metalorganicor halide,iii)the processpressure:atmospheric,low-pressure,high-vacuumetc. In addition,conventional,thermal-activation CVD chambersareusuallydenotedhot-wall orcold-wall reactors,dependingon which part is heated.The depositionprocesscanbedescribedastakingplacethroughthefollowing steps(Fig. 3.1):

1. transportof thereactantsto thevicinity of thesubstratesurface

2. diffusionof thereactantsto thesubstratesurface

3. reactantadsorptionon thesubstratesurface

Page 16: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

8 DepositionTechniques

3

2

18

7

64

5

Substrate

Figure 3.1: TheCVD processdividedinto steps.

4. surfacechemicalreaction

5. surfacemigrationandlatticeincorporation

6. reactionproductdesorption

7. diffusionof reactionproductsaway from thesubstratesurface

8. transportof reactionproductsoutsidethedepositionzone.

In general,thevariablesaffecting thedepositionrateandfilm propertiesarethe natureof the reactantsandtheir purity, the amountof energy supplied,thesubstratetemperature,theratio of reactants,thegasflow rates,thesystempres-sure,thegeometryof thedepositionchamberandthesubstratesurfaceprepara-tion. CVD processesgenerallyhave high depositionratesandaresuitableforlarge-scaleproductionat low cost.Thechoiceof startingmaterialsis notveryre-stricted,althoughsomemayrequirehighdepositiontemperatures.In unfortunatecases,wheretheexperimentalparametershave not beenoptimised,reactioncantake placein thegasmixtureabove thesubstrate,so-calledhomogeneousnucle-ation.This leadsto formationof powderthat,whenit fallsdown on thesubstrateor thegrowing film, cancausepooradhesionof thefilm.

3.2 ALD

Throughoutthis thesis,the nameAtomic Layer Deposition,ALD, will be usedto describethetechniquethatwasoriginally calledAtomic LayerEpitaxy, ALE

Page 17: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

3.2ALD 9

Reactant A After first purge

Reactant B A

fter second purge

Figure3.2: Processingstepsin thegrowth of abinarycompound.

[51]. The term “epitaxy” wasabandonedsincethe depositedfilms mostoftenarenotepitaxial.Anotherdenomination,whichemphazisestherelationshipwithconventionalCVD, is Atomic LayerChemicalVapourDeposition,ALCVD. TheALD techniqueis basedon sequentialadmissionof reactantsinto the reactionchamber. Onereactantatatimeis allowedtoadsorbto thesurfaceof thesubstrateor thegrowing film. After eachreactantpulse,thereactoris purgedwith inertgasto remove superfluousmaterialandto make surethe reactantsareseparatedintimeandspace.Fig. 3.2 illustratesthegrowth of abinarycompoundfrom binarysourcematerials.Thecentralfeaturesfor processcontrolareto achieve surfacesaturationin eachreactantpulse,andthatno morethanonemonolayerremainsafterthepurge,sincethesequencingalonedoesnot resultin asurfacecontrolleddeposition. Saturationalsomakes the thicknessproportionalto the numberofgrowth cyclesinsteadof to thereactantflux.

Theminimisationof electroniccircuits requiresanatomiclevel accuracy inthin film depositionthat is inherentin theALD technique.Theseparatepulsingof thesourcematerialsandlayerby layergrowth alsomakesALD anexcellenttool for producingcomplex andlayeredcoatings.Otheradvantagesarethat theseparationof the reactantseliminatesthe risk for gas-phasereactions,andthatlower depositiontemperaturescanbe usedin ALD thanin CVD. However, thechoiceof precursorsfor ALD is generallymorelimited, thanin CVD, seesec-tion 3.3,theprocessesareinherentlyslow, andlarge-scaleproductionis not veryeasyto accomplish.On the otherhand,with atomiclevel control of thickness,uniformity andcomposition,theuseof ALD processesin industrialfabricationcanstill becost-efficient. Thereactionsin ALD havetraditionallybeenthermallyactivated,but otherenergy sourceslike plasmasandlasersarenow comingintouse.

Page 18: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

10 DepositionTechniques

3.3 Precursorsfor CVD and ALD

Unlike physicalfilm depositiontechniqueslike sputteringandevaporation,thechemicalprocessesCVD andALD arevery dependenton the propertiesof thesourcematerials. Chemicalandphysicalpropertiesdeterminewhich materialswill be possibleto usefor deposition,aswell asthe propertiesof the resultingfilms. Sincethefilm growth in CVD andALD processesis basedon somewhatdifferentprinciples,the demandson suitablestartingmaterialsareslightly dif-ferent. Both techniquescanutilize materialsthat aregases,liquids or solidsatroom temperature,as long as they are stableenoughto be evaporatedor sub-limated,andhave high enoughvapourpressures.Gaseouscompoundsare themosteasyto handle,andcanalsobe suppliedat a controllablerateby simplyusingamassflow controller. Theevaporationrateof liquid andsolidsources,onthe otherhand,is determinedby temperature,surfaceareaandcarriergasflux.In all classesof materials,it is of coursepreferableto avoid theonesthatarepoi-sonous,explosive or flammablefor thesake of personalsafety, andalsoto avoidcorrosive or etchingmediafor thesake of theequipment.

In ALD, it is essentialthat theprecursorsadsorbto thesurface,sinceother-wisenogrowth canbeachieved.Uniform,self-limiting growth demandsuniformsaturation,for which it is importantthat theprecursorsarestableat theprocesstemperature.Decompositiononthesurfaceor incompleteexchangereactionscancauselossof saturationandincorporationof impuritiesin thefilm. Theneedforthermalstability usuallylimits theALD processesto a narrower working rangethanwith CVD. Furthermore,theactivationenergy for surfacereactionshouldbelow, andsincethereactantsareseparatedin timeandspace,therisk for gas-phasereactionsis eliminated,whichfacilitatestheuseof morereactivesourcematerialsthanin CVD. With morereactivesourcematerials,lowerdepositiontemperaturescanbeused.

EachCVD precursordoesnot needto adsorbto thesurfacein orderfor filmgrowth to occur, andit is not necessarythat it is stableon thesurface.However,the precursorsshouldnot be too reactive, sincea certainreactionthresholdisneededto avoid reactionsin the gasphaseandfor the depositionto occuruni-formly over thesurface.

3.3.1 Previous work

The metalsourcesthat have beenusedin depositionof Ta2O5, ZrO2 andHfO2

by CVD andALD aremetalhalidesandmetalorganics,andin somecases,ni-trate compounds.Among these,both liquid and solid materialsare available.

Page 19: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

3.3Precursorsfor CVD and ALD 11

Material Precursorsin CVD Precursorsin ALD

Ta2O5 TaCl5 [49, 53, 25] TaCl5 [22, 54, 55]Ta(OC2H5)5 [56, 23, 57] Ta(OC2H5)5 [58, 59]

Ta[N[CH3]2]5 [60]t(BuN)-Ta(NEt2)3 [61]

ZrO2 ZrCl4 [62, 63, 64] ZrCl4 [65, 54, 59]Zr(NO3)4 [66, 67] Zr[OC(CH3)3]4 [68]

Zr(acac)4 [56, 34, 30]Zr(NEt2)4 [69]

Zr[OC(CH3)3]4 [70]HfO2 HfCl4 [71] HfCl4 [72, 73, 54]

Hf(acac)4 [49]Hf(thd)4 [49]

Hf(NO3)4 [67]

Table3.1: Precursorsutilisedin previousworks.

Table3.1 is a compilationof precursorsthat have beenusedin CVD andALDof therespective oxides.It appearsthatfor Ta2O5, Ta(OC2H5)5 is themostcom-mon precursorin both CVD and ALD. For ZrO2 andHfO2, the chloridesarealmosttheonly sourcesusedin ALD, whereasa numberof metalorganicshavebeenusedin CVD. Thechloridesaretheoutstandinglymostpopularhalidepre-cursors,andthereareonly a few exampleswhereotherhalideshave beenused.With chloride sources,there is a risk for etchingreactionswith the substrate,thegrowing film or thereactor, andin CVD ratherhigh depositiontemperaturesareusuallyrequired.Themetalorganicprecursorsseldometchthesubstrate,andthegrowth temperaturesarelow. However, a commonproblemfor chlorideandmetalorganicstartingmaterialsis thatchlorideor carbonimpurities,respectively,often areincorporatedinto the films. For example,Ta2O5 films containing2%Cl [52], andHfO2 films containing5% Cl [39], have beengrown by ALD usingtherespective chloride,andZrO2 films containing15%C [34] have beengrownby CVD usingzirconiumacetylacetonate.Nitrateprecursorshave beenusedinCVD of ZrO2 andHfO2 at low temperatures,apparentlyleaving no impuritiesinthefilms, but they maynotbecompletelysafeto handle.

Metal iodideshave earlierproven to besuitableprecursorsfor depositionofthin films of for exampleBi2Sr2CaCu2O8 x [74], Bi4Ti3O12 [75] andTiO2 [76]by CVD andTiO2 by ALD [77, 78]. The CVD processesemployed O2 asthe

Page 20: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

12 DepositionTechniques

only oxygensource,andin ALD, O2 [78] or H2O2 [77] wasused.ThegroupIV-andV-metaliodidesareall solidsat roomtemperature,but the thermalstabilityis goodandthe vapourpressurehigh enoughto give a reasonableevaporationrate[79, 80]. Accordingto literature,TaI5 [81] andZrI4 [49] reactwith oxygenalreadyat100

C to form their respectiveoxides.Informationaboutthereactivity

of HfI4 is scarce,but it is usually said to have similar propertiesto TiI4 andZrI4 [82]. Basedon the said reactivities and resultsfrom previous studies,itshouldbe possibleto depositof Ta2O5, ZrO2 andHfO2 usingiodidesourcesatlow temperatures.It alsopointsto the possibility of usingO2 assingleoxygensource,at leastin CVD, therebyminimisingthenumberof elementsinvolved. Inmostchlorideprocesses,H2O mustbe introducedto remove thechlorinein theform of HCl.

Page 21: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

4 Experimental

4.1 CVD experiments

Thefilms weredepositedin ahorizontalhot-wall CVD reactorconsistingof twoconcentricquartztubes(Fig. 4.1). Thereactoris heatedby a four-zonefurnacethatallows carefuladjustmentof thetemperatureprofile. Thesolid metalsourceis evaporatedfrom anopenboatin the inner tubeanda flow of inert gasis usedfor transportingthevapourinto thedepositionzone.Theoxygensourceis sup-pliedby theoutertubedirectly to thedepositionzone,wheretheinnertubeends.Theflow of reactantscanbecontrolledby theevaporationtemperatureandcar-rier gasflow. All gasflows aremonitoredby massflow controllersanda throttlevalve is usedfor maintaininga constantpressureof 10 torr in thechamber. Ar-gon (99.9999%)wasusedascarriergaswith a flow of 150 sccm,andoxygen(99.998%)wassuppliedasthesingleoxygenprecursorwith a rateof 175sccmandwasdiluted with an additional100 sccmof argon. The linear gasflow ve-locity was105cm s 1 andthe air leak rateinto thesystem(1 10 6 Pa m3 s 1)correspondsto anair contaminationlevel of lessthan1 ppm.

O

Ar2

Ar

to pump

Figure4.1: Schematicillustrationof theCVD reactor.

Page 22: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

14 Experimental

Metal source Tevap Treactor Substrates Paper(purity) (

C) (

C) no.

Si(100)TaI5 (99%) 275 300-800 Pt/Ti/SiO2/Si, I

MgO (001)Si(100)

ZrI4 (99.5%) 200 400-700Pt/Ti/SiO2/Si

IV

Poly-SiHfI4 (99%) 300 300-700

MgO (001)VII

Ti-Ta-OTaI5 (99%) 265-275TiI4 (99%) 135-145

500,600 Poly-Si VIII

Table4.1: Processparametersfor theCVD experiments.

4.2 ALD experiments

Theexperimentswereperformedin ahot-wall flow-typeALD reactorthatcanbefitted with aquartzcrystalmicrobalance(QCM) masssensorfor in situmonitor-ing. Thereactorconsistsof anouterstainlesssteeltube,linedwith aquartztube,andan inner quartztubethat connectsthe precursorevaporationzonewith thedepositionzone(Fig. 4.2). Thegasesarefedthroughvalvescontrolledby micro-processorsthatallow theflows to beswitchedon andoff in lessthan0.1s. Themetalsourcewasevaporatedfrom a silica crucibleandcarriedto thesubstratesby aflow of inertgas.Theevaporationrateof themetalsourcewascontrolledbythechoiceof evaporationtemperature.An aqueoussolutionof H2O2 (30%H2O2)wasusedasoxygenprecursorfor depositionof Ta2O5 andZrO2, anddeionisedwaterfor depositionof HfO2. The liquids werekept in anexternalcontainerat20

C, andthepartialpressureof H2O andH2O2 wasregulatedby aneedlevalve.

Nitrogen(99.999%)wasusedasbothcarrierandpurgegas,andwith a total re-actor pressureof 250 pascal,the linear flow ratewas 5 m/s. The film growthcharacteristicswerestudiedin real time by QCM monitoringwith thesusceptorplacedin thereactionzoneinsteadof thesubstrateholder. TheQCM consistsofa quartzcrystalconnectedto anelectricalcircuit anda read-outunit. Thecrystalhasa certainvibrationfrequency, andwhengasesadsorbto its surfaceandit be-comesheavier, thevibrationfrequency is reduced.Thereductionin frequency isrecordedasa gainin mass.Analogously, desorptionleadsto increasedvibration

Page 23: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

4.3Film characterisation 15

frequency, which is recordedasa lossof mass.

N2+ Reactants

N2

N2

Exhaust

Mass sensorSubstrate

T

hermocoupleSubstrate holder

HeaterReactor tubes

Figure 4.2: Schematicillustrationof theALD reactor.

Metal source Tevap Treactor Substrates Paper(purity) (

C) (

C) no.

Si(100)TaI5 (99%) 245 250-400 Pt/Ti/SiO2/Si II,III

MgO (001)Si(100)

ZrI4 (99.5%) 240 250-500 Pt/Ti/SiO2/Si, Poly- V,VISi, α-Al2O3(001)Poly-Si,Si(100)

HfI4 (99%) 205 225-500MgO (001)

VII

Table4.2: Processparametersfor theALD experiments.

4.3 Film characterisation

Thephasecompositionof thefilms wasexaminedwith X-ray diffraction(XRD),anddependingon thecharacterof thefilm, differentanalysingmodeswereused.For thin films of randomorientation,usingalow incidenceangle,so-calledGraz-ing Incidence,isusuallysuitable.It makestheanalysismoresurfacesensitiveand

Page 24: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

16 Experimental

helpsraisingthepeakintensitiesandavoiding overlapwith substratepeaks.Forthicker films, standardθ-2θ scansaremoreappropriate.Also, stronglytexturedor epitaxialfilms mustbeanalysedin θ-2θ mode,sinceatomicplanesthatarepar-allel to thesubstratecannotbeobservedin GrazingIncidence.In caseof stronglytexturedfilms, RockingCurve (ω-scan)analysiscanbeperformedto investigatethefilm quality. In RockingCurve, theBraggangleis keptconstantwhile vary-ing the incidenceangle,andthe full width at half maximum(FWHM) valueoftheresultingpeak,givesanindicationof thefilm quality. A smallFWHM valueindicatesthe possibility of epitaxy, which canbe confirmedby a ϕ-scan. A ϕ-scanis doneby recordingtheintensityfrom aplanenon-parallelwith thesurface,while rotatingthesamplearoundits normal,whereϕ denotesthe rotationalan-gle. Comparingϕ-scansperformedfor both the film and the substraterevealsthein-planerelationshipbetweenthem.In somecases,Ramanspectroscopy wasusedasa complimentto the phaseanalysisby XRD, sinceRamanhashighersensitivity for short-rangeorder.

Thepurity andcompositionof thefilms wereanalysedby X-ray photoelec-tron spectroscopy (XPS)andX-ray fluorescencespectrometry(XRFS).In XPS,the analysiswas performedafter removing the surfacecontaminationand thetopmostlayersof film by sputteringwith Ar ions, and in somecases,depthprofiling wasperformed.Surfacemorphologieswerestudiedby scanningelec-tron microscopy (SEM) andatomicforce microscopy (AFM). Film thicknessesweredeterminedin differentwaysdependingonthethicknessrangeof thefilms:Large film thicknessesweredeterminedby surfaceprofilometryover a stepinthe film or by measuringthe cross-sectionof the film in SEM. EllipsometryorX-ray reflection(XRR) wasusedfor thinnerfilms. For theelectricalcharacter-isation,capacitorswerefabricatedby depositingmetalliccontactson top of thefilms. Leakagecurrentsin thefilms weremeasuredasa functionof voltage.Ca-pacitancewasmeasuredasa functionof voltageor frequency, andthedielectricconstantsof thefilms werecalculatedfrom

εr = (ε0 A C) / d

where εr = relative permittivityε0 = permittivity of vacuumA = areaof contactC = capacitanced = film thickness

Somefilms werestudiedby transmissionelectronmicroscopy (TEM) to eval-uatethequality of theinterfacebetweenfilm andsubstrate.

Page 25: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

5 Depositionof Tantalum Oxide

5.1 CVD

The orthorhombicβ-Ta2O5 [8] phasewasobtainedwithout post-depositionan-nealing in the temperaturerange300-800

C. The films were texture free on

Si(100) substrates,but showed preferentialgrowth in the c-axis direction onMgO(001) substrates.X-ray diffractogramsfor films depositedat 600

C can

beseenin Fig. 5.1.

20 30 40 50 60

MgO

(001)

(112)

(112)

(111)(110)

(310)

(002)

(001)

Inte

nsity

(a.

u.)

2

θ ( )o

Figure 5.1: X-ray diffractogramsfor Ta2O5 films depositedat 600C.

No iodine could be detectedin the films for any of the depositiontempera-turesby XRFS(thedetectionlimit for iodine is about0.01%).Furthermore,thefilms werecontinuousandhada very smoothsurfaceascanbeseenin theAFMmicrographin Fig. 5.2 for afilm grown on Si(100)at 600

C.

Thedepositionratewasfound to bestronglydependenton the reactortem-perature.Theoxidethicknessincreasedwith 1 µm/h at 600

C, but loweringthe

Page 26: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

18 Depositionof Tantalum Oxide

1µm

2µm

1µm

0µm2µm0µm

Figure 5.2: AFM micrographof a Ta2O5 film depositedon Si(100)at600

C.

reactortemperatureto 500C reducedthe growth rate to about0.5 µm/h. At

300C, thegrowth ratewasfoundto bevery low, about0.015µm/h,andthiswas

thereasonfor notattemptinganevenlower depositiontemperature.At theotherextreme,800

C, the depositionratewasagainsubstantiallyreduced,probably

dueto thermaldecompositionof TaI5 beforereachingthedepositionzone.FromtheSEM cross-sectionof a film depositedat 600

C shown in Fig. 5.3, it canbe

seenthattheoxidehasgrown with adense,columnarstructureandformsasharpinterfacewith theSi(100)surface.

Electricalcharacterisationof a film depositedat 600C indicatedthe value

of thedielectricconstantto be25.8with no measurabletemperaturedependencebetween24and90

C. However, a relatively highdcconductivity wassimultane-

ouslyobserved,which wasbelievedto becausedby hydrogenincorporatedintothefilm duringdepositionor from wateruptake uponstoragein air. A morede-tailedstudyof theelectricalbehaviour of afilm depositedat600

C film hasbeen

publishedelsewhere[83].In most other studies,the electricalcharacteristicsare given for annealed

films. However, Burte and Rausch[84] performedmeasurementsboth beforeandafterthermaltreatmentof theamorphousfilms.They foundthatthedielectricconstantincreasedfrom 24.5 to 32 while the leakagecurrentdecreasedconsid-

Page 27: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

5.2 In situ monitoring 19

Figure 5.3: SEM cross-sectionof a Ta2O5 film depositedon Si(100)at600

C for 5h.

erably. Therearenumerousexamplesof investigationsreportingthatannealinghelpsto improvetheelectricalcharacteristics,but for mostindustrialapplications,high processtemperaturesshouldpreferentiallybeavoided.

It is interestingto notethatpure,crystallineβ-Ta2O5 films canbeproducedalreadyat 300

C, usingTaI5 asprecursorin CVD. In studiesemploying other

tantalumprecursors,the lowestdepositiontemperaturewherecrystallineTa2O5

hasbeenobtainedby thermallyactivatedCVD hasbeenreportedto be 625C

[85]. In most cases,however, somesort of thermaltreatmentabove 700C is

requiredfor crystallisation.

5.2 In situ monitoring

The depositionkinetics were investigatedby recordingthe masssignalduringrelatively long depositioncycles(Fig. 5.4). During the TaI5 pulse,t1, themassincreasedsharplyandstabilisedat a certainlevel, ∆m1. Thestabilisationof theQCM signalindicatesthat theprecursoradsorptionis saturative andtheprocesstherebyself-limiting. During the H2O-H2O2 pulse,a massdecrease,denoted∆m2, was recorded,andafter completionof the growth cycle, the massof thedepositedlayerwasobservedas∆m0. For temperaturesin therange240-325

C,

themasssensorsignalremainedstableaftersaturationhadbeenreached,but athighertemperatures,themassdecreasedcontinuouslyduringextendedTaI5 ex-posures(Fig. 5.4).Thelossof masswasenhancedby increasingthetemperature,andconcurrently, ∆m0 decreased.At sufficiently long pulsetimesandhigh sub-stratetemperatures,∆m0 becamenegative, indicatingthatsomeof thepreviously

Page 28: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

20 Depositionof Tantalum Oxide

0 1 0 30 4

0 50 60 0 8 9 "! 0 #

TR = 363 oC TR = 295 oC

- m0

m0

m2

mp1

m1

H2O2 off

H2O2 on

TaI5 off

T

aI5 on

QC

M S

IGN

AL

(a.u

.)

TIME (s)

Figure 5.4: Themasssensorsignalasa functionof time duringa longTa2O5 depositioncycle.

depositedmaterialwasremovedby etchingreactionswith TaI5. Theetchingre-actionwas,however, notedto beslower thanin theTaCl5-H2O precursorsystem[86].

At sourcetemperatures(Ts) above 245C, theTaI5 adsorptionstabilisedand

remainedfairly insensitive to furtherchangesin Ts. During thesubsequentstud-ies,Ts waskeptatabout245

C. Theamountof tantalumoxidedepositedin each

cycle, ∆m0, increasedrapidly with the TaI5 pulselength,t1, between0.5 and1s (Fig. 5.5). Upon further increasesin t1, the ∆m0 valuecontinuedto increasebut at a considerablylower rate. This non-saturative increasein massmight beattributed to thermaldecompositionof the metal precursor. The samekind ofbehaviour hasbeenobserved, for instance,in the TiI4-H2O2 precursorsystemin the temperaturerange200-400

C [87], and in the Ta(OC2H5)5-H2O system

at temperaturesabove 300C [58]. During thefirst purge period,t2, a consider-

ablemassdecreasewasobserved (Fig. 5.4), the magnitudeof which increasedwith temperature.This effect wasattributedto thereleaseof I2, formedby pre-cursordecomposition,which wasalsoconfirmedby the fact that ∆m0 wasnotsignificantlyaffectedby variationsin t2. Therefore,the purging processcouldnot includedesorptionof Ta-containingsurfacespecies.

At thesametime, ∆m0 only hada weakcorrelationwith thegrowth temper-atureandwasactuallydecreasingwith increasingtemperature.This indicatedthat the contribution of the etchingeffects to the growth ratewasmoresignifi-

Page 29: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

5.2 In situ monitoring 21

0 10

5

10

15

2$

0

25

30

35

t1-2-2-2 s 1-2-t3-2 s 1-2-0.5-t4 s

TR = 295 oC

TS = 243 oC

TIME (s)

MA

SS

INC

RE

ME

NT

(a.u

./cyc

le)

2 3 4

Figure 5.5: Dependenceof thegrowth rate,∆m0, on the lengthof theTaI5 pulse,t1, H2O2 exposuretime, t3, andsecondpurge time, t4. Thefirst purgeperiod,t2, waskeptconstantat 2 s.

cantthantheinfluenceof thermaldecompositionof theprecursorduringt1. Thegrowth ratewasnot noticeablyaffectedby the lengthof the H2O-H2O2 pulse,t3, but it wasaffectedby thevapourpressureof the liquid. For this reason,theH2O-H2O2 dosewaskeptrelatively high in thesubsequentexperimentsto ensurerapidcompletionof theexchangereactions.

Assumingthat theALD-grown oxidesurfaceis terminatedwith OH-groupsaftertheendof eachwaterpulse,thesubsequentTaI5 adsorbsto thehydroxylatedsurfacethroughanexchangereaction.Calculatingthemassexchangeratio fromQCM datarecordedatdifferenttemperaturesgives∆m0 ∆m1 valuesrangingfrom0.333to 0.345,without clearcorrelationwith growth temperature.Thesevaluescorrespondquitewell to asituationwhereTaI5 reactswith oneOH-groupduringt1, accordingto

%Ta-OH+ TaI5(g) & %

Ta-O-TaI4 + HI(g)

For thedepositionof samplefilms, theTaI5 exposuretime wassetto 2 s inorderto achieve a fairly high degreeof saturation,while minimizing theeffectsof etchingandprecursordecomposition.Although the growth ratewas ratherindependentof the purging time, both the first, t2, andsecondpurge, t4, werechosento be aslong as2 s to ensurereliableseparationof theprecursors.Theoxygenprecursorpulsewasalsosetto 2 s.

Page 30: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

22 Depositionof Tantalum Oxide

250 300 350 400

0,5

1,0

1,5

2,0

2,5

3,0

3,5 Si(100) MgO(100) Pt/Ti/SiO ')(+*-, .0/213154

Gro

wth

Rat

e (Å

/ cy

cle)

Deposition Temperature ( C)o

Figure 5.6: Ta2O5 growth rateasa function of temperatureandsub-strate.

5.3 ALD

It wasconcludedthatthegrowth ratewasinfluencedbothby reactortemperatureand substrate(Fig. 5.6). For Si(100) and MgO(100) substratesthe depositionratedecreasedwith increasingtemperaturewhich canbeexplainedby a certaindegreeof etchingof the growing film by the oncomingTaI5 [88]. This trendagreeswith theresultsfrom theQCM studies.For thePt substrate,thethicknesswasthe sameat the lower temperatures,but startingat 350

C, the growth rate

increaseddrasticallywith the temperature.At 300C, the depositionrate was

approximately0.8A percycle,independentof thesubstrate,but for Ptit increasedto 3 A per cycle at 400

C. XPS analysisshowed that the depositedfilms were

iodine-freefor all reactortemperaturesandall substrates.Thesubstratealsohadastronginfluenceonthecrystallisationtemperatureof

thefilms. Thefilms grown on Si(100)substrateswerefoundto beamorphousinthewholetemperatureinterval 250-400

C.FilmsonMgO(100)substratesstarted

to crystalliseat 350C, andat 400

C strongly[001]-texturedTa2O5 hadformed

(Fig. 5.7). For Pt substrates,therewereno signsof crystallisationof the filmsat 325

C andbelow, but above this temperature,randomlyorientedTa2O5 had

formed. The strongestXRD peakscanbe assignedto either the hexagonalδ-phase[10] or the orthorhombicβ-Ta2O5 [8], but while thepeaksat d-valuesof

Page 31: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

5.3ALD 23

400 o6C

350 o6C

MgO(001)

20 40

60 80 100

2θ ( )o

Inte

nsity

(a.

u.) (0

01)

(110

)

(002

)(0

20)

(310

) (003

)

(004

)

Figure 5.7: X-ray diffractogramsfor Ta2O5 depositedon MgO(001)substrates(pleasenotethelogarithmicintensityscale).

1.82A and1.80A bothcanbeindexedasorthorhombic,only the1.82A peakfitswith thehexagonalphase.Thus,theTa2O5 phaseis identifiedastheorthorhombicβ-phase.

Surfacestudiesby SEM andAFM revealedthat the amorphousfilms wereextremelysmooth. Rmsvaluesof 0.5 nm weremeasuredfor films on Si(100)andMgO(100)substrates,and1.7nmfor films onPt. Thecrystallinephasegrewaslargegrainsthatincreasedthesurfaceroughnessconsiderably, anddependingon the substrate,different shapeswere observed. For Si(100) at 400

C, large

outgrowths werefoundembeddedin theamorphousmatrix with randomdistri-bution over thesurface.Theshapeof theseoutgrowths indicatedthat they werecrystalline,but nocrystallinephasecouldbedetectedby XRD. The[001]-textureof theTa2O5 on MgO(100)at 400

C causedgrainsof hexagonalshapeto grow

out of thefilm (Fig. 5.8). The randomlyorientedTa2O5 depositedon Pt at 350and400

C hadadifferentappearancewhichcanbeseenin theSEMmicrograph

displayedin Fig. 5.8. Theincreasedsurfacetopographyof thefilms grown onPtleadsto increasedsurfaceareafor adsorption,which seemsto be thereasonfortheenhancedgrowth rateon Ptabove 350

C.

Electricalcharacterisationwasperformedfor filmsdepositedonPtsubstrates.Thecapacitancemeasurementfailedfor the250

C film, but it wasfoundthatthe

samplesof amorphousfilms depositedat300and325C haddielectricconstants

of approximately26,whereasthecrystallisedTa2O5 films at350and400C both

Page 32: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

24 Depositionof Tantalum Oxide

Mag = 100kX1µm Mag = 100kX 1µm

Figure5.8: SEMmicrographsof Ta2O5 grown at400C onPtsubstrate

(left) andMgO(001)(right).

gave thevalue66. Theseareveryhighdielectricconstantsfor pure,as-depositedTa2O5, and other ALCVD studies[59] have reportedvaluesof 25 for weaklycrystallisedfilms. It is known that thecrystallisationenhancesthe permittivity,andin addition,with thePtsubstrate,no interfacialoxidecanform, loweringthetotalpermittivity. However, it cannotberuledout thatinterfacialchargetrappingaffectsthemeasurements[89].

Page 33: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6 Depositionof Zir conium Oxide

6.1 CVD

From the X-ray diffraction studies,it wasconcludedthat all films depositedonSi(100)werecrystallineas-depositedandconsistedof themonoclinicZrO2 phase[90]. Thefilms werestronglytexturedwith preferencefor the002,020and200reflections,but the 020 reflectionwas usually the strongest. Fig. 6.1 shows atypicalX-ray diffractogramwheretheverystrong020reflectionindicatesthatthefilm hasastrong[020] texture.However, theω-scanfull width athalf maximum(FWHM) valuefor the020reflectionwasashighas15

, ruling outthepossibility

of epitaxialgrowth.

001

031

-111

002

020

Inte

nsity

(a.

u.)

20 30 40 50 60

2θ ( )o

Figure 6.1: X-ray diffractogramfor a ZrO2 film depositedon Si(100)at 500

C.

According to XRFS analysis,the films were iodine-free,even for the low-est depositiontemperatures.The depositiontemperaturewas found to have a

Page 34: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

26 Depositionof Zir conium Oxide

10µm

5µm

0µm5µm 10µm0µm

Figure6.2: AFM micrographof ZrO2 depositedon Si(100)at500C.

stronginfluenceon thegrowth ratewith a maximumof 0.3µm/h at 500C. The

reductionin growth rateat highertemperaturescannotbeexplainedby reactionkinetics. Onepossibleexplanationis that the depletionof the gasmixture in-creaseswith temperature,causinga steeperthicknessgradientanddisplacementof the actualdepositionzone. It is alsopossiblethat iodine-containingspeciesetchthegrowing oxide to someextent,aneffect that is likely to be larger at el-evatedtemperatures.Anotherpoint that hasto be consideredis that ZrI4 hasaboiling point of approximately600

C, andsomeauthorsclaim thatthemolecule

is dissociatedat650C [79]. If this is thecase,partof theZrI4 shoulddecompose

or reactbeforethe depositionzoneis reached,therebyreducingthe depositionratefor thehighesttemperatures.

SurfacemorphologystudiesusingAFM showedthatthedepositiontempera-turehadno significanteffect on thesurfaceroughnessor grainsizeof thefilms.Continuousfilms with smoothsurfacesweregrown atall temperatures,andfromthemicrographin Fig. 6.2 theaveragegrainsizecanbeestimatedto 0.3µm.

A dielectric constantof 18 was calculatedfrom the capacitancemeasuredat 1 Mhz for a film depositedon Pt(2000A)/Ti(200A)/SiO2(800A)/Si(100) sub-strateat 500

C. Measurementof the electricalresistanceof the samefilm gave

a conductancevalueof 145 µΩ 1. Thesevaluesarewithin the rangeof what

Page 35: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6.2 In situ monitoring 27

canbe expectedfor thin films of ZrO2 without any post-depositiontreatments.However, this processhasother featuresthat areworth specialnotice. First ofall, by usingZrI4 asmetalsource,films of pureZrO2 canbe depositedalreadyat 400

C, whereasthe typical depositiontemperaturefor thechlorideprocessis

around900C [62]. It is alsointerestingto notethatall reflectionsin XRD belong

to themonoclinicphase,independentlyof film thicknessanddepositiontemper-ature.In many studiesusingmetalorganicprecursors[69, 91], films depositedinthe range400-600

C containboth monoclinicandtetragonalZrO2. Generally,

thetetragonalphasehasbeenfoundto befavouredby thin films.

6.2 In situ monitoring

QCM studiesrevealedthatZrI4 hadtobeevaporatedattemperaturesabove235C

to achieve film depositionat an appreciablerate. The ZrI4 adsorptionwasde-tectedasanincreasein theQCM signal,denoted∆m1 (Fig. 6.3),duringtheZrI4

exposure.Thesignalcontinuedto increaseup to 40 s, which shows that thead-sorptionof ZrI4 wasnot completelyself-limiting in this temperaturerange.Thiskind of behaviour is analogousto thatobservedfor adsorptionof TiI4 on a TiO2

surfacetreatedin H2O-H2O2 flux [92]. In bothcases,theeffectmaybeexplainedby thedecompositionof metaliodideon theoxidesurface. With increasingex-posuretime,therateof themasschangedecreasedsignificantly:abouttwo timeshighermassincreasewasobtainedduringthefirst 5 s thanin thefollowing 35 s.Onecanthusrely on thesurfacecoveragewith iodidespeciesto becloseto themaximumvaluealreadyafterthefirst few seconds.

Using long purge timesbetweenthe ZrI4 andH2O-H2O2 exposurescausedthethefilm masstodecreaseby anamountdenoted∆mp1 in Fig.6.3.Thisisprob-ably dueto thedesorptionof iodinereleasedin theZrI4 decompositionprocess.Desorptionof ZrI4 itself canprobablyberuledout sinceno decreasein themassincrementper completeALD cycle wasobserved uponthe prolongationof thepurgetime from 2 to 10 s. During theH2O-H2O2 pulse,thefilm massdecreasedabruptlyby ∆m2 (Fig. 6.3). This decreasewasrelatedto an exchangereactionbetweenthe -ZrIx adsorbedon thesurfaceandtheoncomingoxygenprecursor,wheretheheavy iodineis replacedby oxygenor -OH groups.Whenthecycle iscompleted,anew layerwith themass∆m0 hasformed.A H2O-H2O2 pulseof 2 swaslong enoughto recover theadsorptioncapabilityof thesurfacetowardsZrI4

andachieve stablegrowth in a seriesof repeatedALD cycles(Fig. 6.4),andwasthereforeusedin furtherstudies.

As could be expected,the massincrement∆m0 asa function of ZrI4 pulse

Page 36: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

28 Depositionof Zir conium Oxide

0 10 20 30 40 50 60

c7 ycle times: 40-10-58

s

Tgrowt9h = 300 oC, Tsource = 238 oC

m0

m2

mp1

m1

H2O2 off

onH2O2

Z:

rI4 off;

Z:

rI4 on

QC

M S

IGN

AL

(a.u

.)

TIME (s)

<>= ? =

Figure 6.3: QCM signal recordedduring an extra long ZrO2 growthcycle.

0 10 20

m0

m0

m2

m1

H2O2off;

off;

on

H2O2

Z:

rI4

ZrI4 on

m0

c7 ycle times: 2-2-2-2 s

Tgrowt9h = 300 oC, Tsource = 238 oC

QC

M S

IGN

AL

(a.u

.)

T@

IME (s)

30 40

Figure6.4: Consecutive ZrO2 growth cyclesusing2-2-2-2spulses.

Page 37: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6.3ALD 29

duration,did not saturate.After asteepincreasefor pulsetimesbetween0.4and1.0 s, an almostlinear increasein ∆m0 with a considerablylower but constantratewasobserved. Extendingthe ZrI4 pulsedurationfrom 2 to 10 s madethevalueof ∆m0 increaseby a factorof 1.8. To avoid thecontribution from theZrI4

decomposition,probablyresponsiblefor this increase,ZrI4 pulsesof 2 s wereusedfor thedepositionof thefilms for post-depositionstudies.A morecompletesaturationof themassincrementpercyclewasachievedby increasingtheoxygenprecursorpulseduration. The valueof ∆m0 increasedby a factorof 1.3 whenthe exposuretime of H2O-H2O2 increasedfrom 2 to 10 s. The QCM studiesalsoshowed that purge periodsof 2s weresufficiently long to remove gaseousproductsfrom thereactorandto avoid overlapbetweentheprecursorpulses.

6.3 ALD

6.3.1 Temperature series

TheXPSanalysisshowedthatsmallamountsof iodine,1.3-0.8atomic%, wereincorporatedinto films depositedat 250 to 350

C, but for highertemperatures,

no contaminationwasfound in the films. Films depositedon both Si(100)andPt substratesat temperaturesbetween250and500

C werecrystalline. Fig. 6.5

shows how the diffractogramsfor films depositedon Si(100)changewith tem-perature,but thesametrendsapplyfor films onPt. PeaksthatarecharacteristicofmonoclinicZrO2 [93] weredetectedin thewhole temperatureinterval (d-valuesof approximately3.14,2.84,2.62,2.32,2.19,1.84and1.65A). The remainingpeaksin thediffractogram,atd = 2.93, 2.58,2.54, 2.10,1.80, 1.69,1.55and1.53A, couldall beattributedto thetetragonalphase[94], andtheonesin bold printalsoto thecubic phase[95]. The intensityof thepeaksat 2.54and1.53A firstincreasesandthendecreasesabruptlywith increasingtemperature.At thesametime, the intensityof thepeaksat 2.58and1.55A that clearlydo not belongtocubicZrO2, increasesstronglywith depositiontemperature,startingfrom 300

C.

Thesetrendscould indicatea changein phasecontent,from cubicto tetrag-onal, with increasingtemperature,but it could alsoreflecta changeof orienta-tion of the tetragonalgrainswith depositiontemperature.Indeed,Ramanspec-troscopy studiesverifiedthattetragonalZrO2 hadformedevenat thelowesttem-peratures.A few peaksof both tetragonalandmonoclinicphase[96] appearedalreadyat 275

C, andthenumberaswell astheintensityof thepeaksincreased

with temperature.Thedepositionratereachesa sharpmaximumof 1.25A/cycle at 275

C, and

decreasesto approximately0.7 A/cycle for the highertemperatures.No differ-

Page 38: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

30 Depositionof Zir conium Oxide

30 40 50 60

2.58

2.19

2.32 1.

531.

55

1.80

1.84

2.10

2.54

2.61

2.84

2.93

3.14

375oC

500oC

450oC400oC

350oC325oC300oC

250oC275oC

Inte

nsity

(a.

u.)

2θ ( )o

1.69

1.65

Figure 6.5: X-ray diffractogramsfor ZrO2 films depositedon Si(100)at differenttemperatures.

encecanbeseenin thedepositionrateonPtandSi(100)substrates,andtheSEMstudiesshowed that the surfacemicrostructureis practically identical for filmsdepositedon thetwo substrates.Thesurfacemorphologychangeswith tempera-tureascanbeseenfrom theSEMmicrographsof Fig. 6.6.

100nm Mag = 150kX 100nm Mag = 150kX

3A

00 Co 5B

00 Co

Figure 6.6: SEM micrographsof films grown on Si(100)substrateat300

C and500

C.

Page 39: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6.3ALD 31

25Å

Figure6.7: TEM micrographof afilm depositedonSi(100)at500C.

TEM studiesperformedon films depositedon Si(100) at 325 and 500C

showed thatan amorphouslayer of approximately2 nm hasformedat the sub-strate/filminterfaceof bothsamples,seeFig. 6.7 for the500

C film. EDSanal-

ysispointsto thecompositionof this layer to beSiO2. Thegrainsarerandomlyorientedfor both temperatures,and in low-magnificationcross-sectionsof thewhole films (not shown here),it wasobserved that large equi-axed grainshaveformedat 325

C whereasa columnarstructurehasdevelopedat500

C.

6.3.2 Thicknessseries

Films of thicknessesbetween3 and30 nm weredepositedat anaveragerateof0.09nm/cycle. No significantdifferencesin depositionratebasedon substrateor temperaturecould be seen.The growth rateat 275

C wasapparentlynot as

highaswasfoundpreviously (seeabove),andeventhoughasmalloffsettowardslower temperaturewould easilyreducethegrowth rate,this cannotfully explainthediscrepancy betweenthetwo results.

FromXRD studies,it couldbeconcludedthatnot only thetemperature,butalso the substrateinfluencesthe crystallisation. The ZrO2 films crystallisedatlower thicknesseson Pt substratesthanon poly-Si andα-Al2O3(001),an effectthat wasstrongerat the lower temperature.At 275

C, the sametetragonalre-

flectionsappearedasfor thethicker films depositedat thesametemperature,i.e.

Page 40: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

32 Depositionof Zir conium Oxide

d = 2.93, 2.54, 1.80 and1.53 A. For depositionat 325C, the first peakswere

thesameasfor 275C, but with increasingthickness,thetetragonalreflectionsat

d = 2.58and1.55A, aswell asmonoclinicreflectionsappeared.For both tem-peratures,films depositedon α-Al2O3(001)substratesexhibitedonly onestrongreflectionatd=2.54A, whichwasassignedto the(110)planeof tetragonalZrO2.Rockingcurve (ω-scan)analysisof this peakgave full-width-at-half-maximum(FWHM) valuesof about4.5

for both depositiontemperatures.Consequently,

thefilms have astrongtexture,but areprobablynotepitaxial.The SEM studiesshowed that films on Pt andpoly-Si substratesdeveloped

verysimilarmicrostructureswith increasingthickness,andtheappearanceof the30 nm thick films werealreadyvery similar to thatof thethicker films. A minoreffectof thegrowth temperaturecouldbeseenin thatthefilms depositedat325

C

hadsomewhat largergrainsandhigherroughnessthanat 275C. Independentof

temperatureandthickness,thefilms depositedonα-Al2O3 (001)wereextremelysmoothandarebarelyvisible in theSEM.

Fig. 6.8 shows thedielectricconstantasa functionof film thickness,wherethevaluesvary between2.5and17 for thicknessesbetween3.5and20 nm. Thedielectric constantappearsto be higher for films grown at 325 thanat 275

C,

andalsosomewhatenhancedfor Ptsubstrates,but thedatapointsaretoo few forconclusionsto bedrawn. However, thefilm thicknesshasa stronginfluenceonthe permittivity, regardlessof temperatureandsubstrate.The leakagecurrentsin thefilms weredifficult to determinereproduciblyandno generaltrendscouldbeseen.Excellentreproducibilitywas,however, obtainedfor a 10 nm thick filmgrown on Pt at 275

C for which a leakagecurrentof 1 µA/cm2 at 1 MV was

measured.Thebreakdown voltagefor thisfilm was4MV/cm. Theinstabilityin theleak-

agecurrentscouldpossiblybe causedby oxygenvacanciesin theoxide,whichwouldalsohave astabilizingeffect on thetetragonalphase.

Page 41: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

6.3ALD 33

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

16

18

20

Pt 325 C poly-Si 275 C poly-Si 325 C

Die

lect

ric c

onst

ant

TC

hickness (nm)

o

o

o

Figure6.8: Dielectricconstantof ZrO2 films asafunctionof thickness,temperatureandsubstrate.

Page 42: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

7 Depositionof Hafnium Oxide

7.1 CVD

The film thicknessmeasurementsshowed that the growth rate increasedexpo-nentially with temperature,from 0.5 nm/min at 300

C to 90 nm/min at 700

C.

XPS analysisshowed that films depositedat 300C containedabout0.8 atomic

% iodine,andvery small amounts( D 0.1 atomic%) werealsodetectedin filmsdepositedat 400and500

C. Fromthediffractionstudies,it wasfoundthatmon-

oclinic HfO2 [97] hadgrown on poly-Si andMgO(001)substratesin thewholetemperaturerange300-700

C. Depositionon poly-Si resultedin poly-crystalline

films with a preferencefor the [001] orientationthat becamemorepronouncedwith temperature.FilmsonMgOshowedageneralpreferencefor the[001], [010]and[100] orientations,but thecontributionsfrom thedifferentorientationsvariedwith temperature(Fig. 7.1). For 300

C, thefilms wereonly partly crystallised,

with broadpeaksof very low intensity.The500and600

C films gaveverystrong0k0reflections,androckingcurve

analysisof the 020 peakgave FWHM valuesof approximately1.4 and1.8 de-grees,respectively. For 700

C, theoverlappingpeaksmadeRockingCurveanal-

ysis impossible,but a comparisonof the resultsfrom θ-2θ and GIXRD scansshowedthat the(0k0) planeswereexclusively orientedparallelwith thesurface,in contrastwith theotherplanes.ϕ-scanswereperformedfor the(024)planeofMgO andthe(041)planeof HfO2 for the500and600

C films, resultingin four

peaksfrom thefilm coincidingwith thepeaksfrom thesubstrate.ThisshowsthatanepitaxialrelationshipexistsbetweentheHfO2 andthesubstrate:thea-axisofHfO2 is parallelwith thea- or theb-axisof theMgO. Dueto low peakintensityin theθ-2θ scan,noattemptsweremadeto analyzetheorientationalrelationshipsfor thefilm depositedat 400

C.

Thedevelopmentof themicrostructureof thefilms asa functionof temper-atureandsubstratewasstudiedby SEM. Fig. 7.2 a) andb) show micrographsof films depositedat 400 and600

C on MgO substrates.At 400

C, spherical

crystalliteswith small diametersarevisible andthe surfaceis very smooth. In

Page 43: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

7.1CVD 35

30 32 34 36 38 40 42 44 46 48 50

0 50 100 150 200 250 300 350

4E

00oC

500oC

600oC

700oC

In

tens

ity (

a.u.

)

2θ ( )oF

Inte

nsity

(a.

u.)

( o )ϕ

Figure 7.1: θ-2θ X-ray diffractogramsfor HfO2 films depositedonMgO substrates,at400-700

C with theϕ-scanfor 600

C in theinset.

contrast,the films depositedat 600C consistof oblongcrystallites,whoseor-

dering wasstrongly influencedby the substrate.On MgO, the crystallitesareorientedin oneof two possibledirections,90

rotatedfrom eachother, while on

poly-Si,they arerandomlyoriented.Thisstructurewasdevelopedgraduallywithincreasingtemperatureandis themostobviousin thethick films grown at700

C,

wherethecrystalliteshavegrown to about200nmlongneedles(notshown here).

Thedielectricconstantincreasedrathersharplyfrom 10.5for the300C film

to 17 for the400C film, but wasalmostconstantbetween400and700

C where

it reacheda value of 19 ( Fig. 7.3). This shows that the dielectric constantisdependenton the crystallinity of the film. For films that have almostthe samethickness,the 300

C film that is only partly crystallisedhasa muchlower per-

mittivity thanthecrystallinefilms. No obvioustrendscanbeseenfor theleakagecurrentsmeasuredfor thedifferentgrowth temperatures.However, asanexam-ple, a leakagecurrentdensityof 0.1µA/cm2 at 1 MV/cm anda breakdown fieldabove 1.5MV/cm wasmeasuredfor the300

C film.

Page 44: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

36 Depositionof Hafnium Oxide

Mag = 200kX100nm Mag = 200kX100nm

a) b)

Figure 7.2: SEM micrographsof HfO2 films depositedon MgO(001)substratesata)400

C andb) 600

C.

300 400 500 600 70002468

1012141618202224

Die

lect

ric c

onst

ant

Temperature ( C)o

Figure7.3: Dielectricconstantof HfO2 asafunctionof depositiontem-perature.

Page 45: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

7.2 In situ monitoring 37

7.2 In situ monitoring

TheQCM studiesrevealedthataHfI4 vapourpressuresufficiently highfor ALD-typegrowth at acceptableexposuretimes,wasobtainedat HfI4 sourcetempera-turesexceeding195-200

C. Fig. 7.4shows a typicalbehavior of theQCM signal

recordedatTG = 300C duringarelatively longALD cycle. Themostsignificant

amountof HfI4 is adsorbedin thebeginningof thepulse,but thefilm masscon-tinuesto increaseatexposuretimesreaching20s. Themassdecreasesduringthesubsequentpurge,indicatingdesorptionof somespeciesfrom thefilm surface.

-100

0

100

200

300

400

500

tG

4tG

1 tG

2tG

3

TH

G = 300oC

TH

S = 200oC

HfI4 on

H2O off

H2O onHfI4 off

HfI4on

QC

M s

igna

l, ar

bitr

ary

units

Time, s

0 20 40 60 80 100

Figure 7.4: QCM signalrecordedin an HfO2 ALD cycle during longexposureandpurgetimes.

However, as can be seenin Fig. 7.5, the amplitudeof this massdecrease,∆mp, doesnot influencethemassincrementpercompleteALD cycle,∆m0. Con-sequently, the amountof hafniumreleasedduring the purge cannot be consid-erableandthemassdecreaseis mostprobablydueto desorptionof iodine fromthesurfacespeciesformedduringtheHfI4 pulse.Exposureof thesurfaceto H2O(Fig. 7.4 and7.5) causesanabruptdecreaseof thefilm mass.Suchresponsetothe oxygenprecursoris typical for ALD processesin which a halideandwatervaporareusedasprecursors[73, 87] andis explainedby substitutionof theheavyiodineligandswith muchlighteroxygenatomsand/orhydroxylgroups.As a re-sultof theexchangereaction,anew layerof oxidewith themass∆m0 hasformedanda relatively stablesurfaceis obtained(Fig. 7.4).

Page 46: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

38 Depositionof Hafnium Oxide

-100

0

100

200

300

400

500

mp

m0

m1

H2O offH2O off H2O on

H2O onHfI4 offHfI4 off

HfI4 onHfI4 on

TG = 300oCI

TS = 207oCI

QC

M s

igna

l (a.

u.)

TC

ime (s)0 10 20 30 40 50 60

Figure 7.5: Time dependenceof theQCM signalin ALD cycleswithdifferentpurgetimeaftertheHfI4 pulse.

The massincrement∆m0 dependson the HfI4 pulsedurationaswell asonthe oxygenprecursorpulseduration,but both dependenciessaturatewhensuf-ficiently long pulsesareused. The relatively high sourcetemperatureof HfI4

(205C) limits the rangeof substratetemperaturesthat canbe usedbecausethe

adsorptionof themetalprecursordoesnot saturatewhenthesubstratetempera-tureis lower thanthesourcetemperature.

By comparingcalculated∆m0/∆m1 ratioswith experimentalvalues,the av-erageI/Hf ratio in the adsorbatelayer formedduring the HfI4 pulsecanbe es-timated. The obtainedI/Hf ratiosare1.9, 2.0 and2.3 at 220, 260 and290

C,

respectively. This increasein the I/Hf ratio with temperaturecouldbe aneffectof decreasingconcentrationof surfacehydroxyl groupswith increasingtemper-ature. For comparison,the ligand/metalratios,which weredeterminedfor thesurfaceintermediatelayerformedduringtheHfCl4 pulsein theHfCl4-H2O pro-cess,were 2.4, 2.5 and 3.0 at substratetemperaturesof 225, 300 and 400

C,

respectively [73]. Thus, theseQCM resultsshow that HfI4 decomposesmoreeasilythanHfCl4.

7.3 ALD

Thegrowth ratedeterminedfrom film thicknessmeasurementswas0.075J 0.007nm per cycle, andwas independentof the depositiontemperaturein the range

Page 47: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

7.3ALD 39

225-500C. Smallamountsof iodineweredetectedin thefilms depositedat 225

and300C, 0.85and0.35atomic% respectively, but thefilms depositedathigher

temperatureswerefreefrom contamination.Thefilms grown at 225

C weremainly amorphous,whereasthosegrown at

300-500C werecrystallineandconsistedmainly of monoclinicHfO2 [97]. The

diffractogramsfor films depositedon poly-Si substratesat 400 and500C also

containeda peakat about2θ K 30L 4 , that could be attributed to orthorhombic[17], tetragonal[98], or cubic[99] HfO2, but thepeakwasnotpossibleto identifyunambiguously.

Thesubstratehadaverystronginfluenceonthetextureof thegrowing HfO2.On poly-Si, thefilms werepoly-crystallinewith a slight preferencefor the[001]orientation,whereason MgO, only reflectionsoriginatingfrom the(0k0) planesweredetected(Fig. 7.6). Rockingcurve analysisof the020peakfor the400and500

C films on MgO gave FWMH valuesof approximately1 degree,indicating

the possibility of epitaxy. ϕ-scanswereperformedfor the (024) planeof MgOandthe(041)planeof HfO2, seetheinsetin Fig.7.6. for the500

C film. Boththe

400and500C films gavefourpeaksthatcoincidedwith thesubstratepeaks.This

showsthatthereis anepitaxialrelationshipsuchthatthea-axisof HfO2 is parallelwith eitherthea- or theb-axisof thesubstrate.Dueto low peakintensityin theθ-2θ scan,noattemptsweremadeatanalyzingtheorientationalrelationshipsforthefilm depositedat 300

C.

20 40 60 80

Inte

nsity

(a.

u.)

2θ ( )oM

Inte

nsity

(a.

u.)

( N )ϕ500 100 150 200 250 300 350

Figure 7.6: X-ray diffractogramfor a HfO2 film depositedon MgO at500

C. Theinsetshows theϕ-scanfor thesamefilm.

Page 48: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

40 Depositionof Hafnium Oxide

IL

Si

23Å

132Å HfO2

O

5nm

Figure7.7: TEM micrographof afilm depositedonSi(100)at500C.

TheSEM-studiesof thesurfacemicrostructureshowedthatextremelysmoothfilms weredepositedat all temperatures.Thepoly-Si substratein itself is roughcomparedto theMgO surface,but thefilms depositedon MgO andpoly-Si hadthe samemicrostructuralfeatures.All the films hada small andvery uniformgrainsizeof approximately15 nm. TEM analysisof films depositedon Si(100)at 500

C showed that a 2-3 nm thick layer of amorphousSiO2 had formedat

the film-substrateinterface,Fig. 7.7. The films werecrystallinethroughoutthethicknessandconsistedof randomlyorientedmonoclinicHfO2.

Thedielectricconstantof thefilms wasfound to increasewith temperature,from 10 at 225

C to 18 at 500

C (Fig. 7.8). Sincethefilm thicknessesareequal,

but the crystallinity of the oxide increaseswith growth temperature,it can beconcludedthat the permittivity is dependenton the crystallinity. Typical DCcurrent-voltage(I-V) characteristicsareshown in Fig. 7.9,whereit canbeseenthattheleakagecurrentincreaseswith thedepositiontemperature,exceptfor the500

C film. Thebreakdown voltageincreasesstrictly with decreasingdeposition

temperature,andreachesveryhighvaluesfor thelow temperaturefilms. It is alsoworthnotingthattheleakagemechanismis fairly similar for all thefilms.

Page 49: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

7.3ALD 41

200 250 300 350 400 450 50002468

1012141618202224

Die

lect

ric c

onst

ant

Temperature ( C)o

Figure7.8: Dielectricconstantof HfO2 asafunctionof growth temper-ature.

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

Electrical field (MV/cm)

Leak

age

curr

ent (

A/c

m )2

0 2 4 6

500 Co225 Co300 Co400 Co

Figure 7.9: Current-voltagecharacteristicsof HfO2 films depositedonpoly-Si at225-500

C.

Page 50: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

8 Depositionof Mixed TiO2-Ta2O5

Films

Thin films of mixed tantalumandtitanium oxideshave beenproducedby sput-tering[100, 7], sol-gel[5], but noneof thesehave reachedashighpermittivity asthebulk material[6]. Oneof the techniquesthathave not previously beenusedfor depositionof mixedTi-Taoxidesis conventionalCVD.

8.1 CVD

Accordingto XRFSanalysis,thefilms depositedat 500C hadcompositionsin

the range5-100%titanium, andat 600C in the range40-65%titanium. XPS

depthprofilesof thefilms show acertaintitaniumenrichmenttowardsthesurfacewhichcouldbedueto a lowersurfaceenergy for TiO2. No iodineresiduescouldbedetectedat thesurfaceor aftersputtering.

Both theTi/Taratioandthedepositiontemperaturehadastronginfluenceonthecrystallinityof thefilms. Filmsdepositedat500

C wereamorphousfor com-

positionsup to 50%titanium,but highertitaniumcontentresultedin crystallineTiO2 (anatase).However, theanataseXRD peaksweredisplacedtowardshigherd-values(lower angle)thanin the literature,indicatingthat the cell parameterswereenlargeddueto solid solutionwith the larger Ta atom. It shouldbenotedthat pureTa2O5 grown from TaI5 hasbeenfound to be crystallineat this tem-perature[101]. The X-ray diffractogramsfor pureTiO2 andthe solid solution(approximately80%Ti) areshown in Fig. 8.1a) andb) respectively. Films con-taining approximately50% titanium depositedat 600

C containeda mixture of

crystallineβ-Ta2O5 andanatase,seeFig. 8.1 c). The samedisplacementof theanatasepeaksis observed as for the 500

C films, whereasthe positionsof the

β-Ta2O5 peaksremainat literaturevalues[102].SEM studiesof the surfacemicrostructuresrevealeda dependenceon tita-

nium concentrationthatcorrelateswith thephasecontent.Theamorphousfilmsare relatively smoothwith no specialfeatures,but upon crystallisationof the

Page 51: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

8.1CVD 43

films, differentshapesareobserved(Fig. 8.2).

20 30 40 50 60

c)

b)

a)

= β-Ta2O5(0

01)

(112

)(2

11)

(105

)

Si

(002

)

(112

)(0

04)

(103

)

Si

(101)

Si

2

θ ( )o

Inte

nsity

(a.

u.)

Figure 8.1: Diffractogramsfor a) pureTiO2 grown at 500C, b) TiO2

with Tain solidsolutiongrown at500C,andmixedfilm, 50%Ti grown

at 600C.

10µm Mag = 10kX 1µm Mag = 100kX

a) b)

Figure 8.2: SEM micrographsof films containinga) 80%Ti depositedat 500

C, b) pureTiO2 depositedat500

C.

It wasfound that thedielectricconstantwasconnectedto thephasecontentandthe film thickness.For films depositedat 500

C, amorphousfilms (5-50%

Ti) haddielectricconstantsof approximately35, irrespective of thecomposition.For films of crystallisedanatasewith tantalumin solid solution the dielectricconstantwasapproximately60,againwithoutcompositiondependency. For pureanatase,the valueswere around70. For comparison,600

C films containing

Page 52: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

44 Depositionof Mixed TiO2-Ta2O5 Films

about50%titaniumin amix of crystallisedβ-Ta2O5 andanatasehadadielectricconstantof about20. Theincreasein dielectricconstantwith increasingtitaniumconcentrationappearsto be relateddirectly to the phasecontent,which in turnis controlledby thecomposition.Within thesephasestability regions,the layerthicknesshada stronginfluenceon thedielectricconstant.

The dielectricconstantscalculatedfor thesefilms correlatewell with thoseof Umezawa et al. [7], who foundthatthedielectricconstantof thin films of Ti-Taoxideincreasedfrom 30 to 70 whenthetitaniumconcentrationwasincreasedfrom 10 to 90%. Ganet al. [100] studiedthin films of (TiO2)x-(Ta2O5)1 x pre-paredby sputteringandfoundthat8% TiO2 givesa maximaldielectricconstantof 30 for as-depositedfilms. High-temperatureannealinducedcrystallisationofthefilms andenhancedthepermittivity but themaximum,now 55,wasstill foundat 8%Ti.

Page 53: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

9 Concluding remarks

Thisthesisdescribesthebasicfeaturesof iodide-basedCVD- andALD-processesfor depositionof Ta2O5, ZrO2 andHfO2. Theseprocesseshave beenstudiedforthefirst time, andtheprocessparametershave thereforenot yet beenoptimised.Already at this stage,however, it is clear that the iodide precursorsoffer thepossiblityto depositpure,crystallinefilms at lower temperaturesthanmostotherprocesses.In theCVD processes,thisisdoneusingO2 astheonly oxygensource,whereasH2O is usuallyneededin chloride-processesto remove Cl in the formof HCl. It is preferableto avoid introducinghydrogeninto theprocesssinceHIthat is formedmight etch the film, andhydrogencanbe incorporatedinto thefilms which affects the electricalproperties.Recently, it wasshown that TiO2

canbedepositedby ALD usingTiI4 andO2 [87]. Work is currentlyin progressto prove that O2 canbe usedin ALD of Ta2O5 aswell [103]. A reasonfor thelower contaminationlevels in iodide processescomparedwith thevery popularchlorideprocessescanbe found in the formationenthalpies.Themetaliodideshave lower formationenthalpies,andtherebylower thermalstabilitiesthat leadto easierremoval of theligandsin chemicalreactions.Thedifferencein thermalstability also meansthat the energy gain on going from a metal iodide to theoxide is larger thangoing from thechlorideto thesameoxide. Theenergy thatis releasedcanbe usedfor crystallisationof the oxide, which would thereforerequirea lower temperaturewhenusingan iodide precursorthanwhenusingachloride[104].

The metal iodidesusedin this work arevery similar both in their chemicalreactionsand thermalstabilities,but therearesomedifferencesin the processcharacteristics.For TaI5 and ZrI4, the growth rate in CVD increasesup to acertainpoint, and then decreaseswith increasingtemperature.In ALD usingTaI5, the growth ratedecreasesslightly with temperature,andfor ZrI4 thereisa maximumandthendecreasinggrowth ratewith increasingtemperature.HfI4,on theotherhand,givesagrowth ratein CVD thatincreasesmonotonicallywithtemperatureandin ALD that is constantwith temperature.It thusappearsthatHfI4 is morestableandcanmoreeasilygive self-limiting growth in ALD.

Page 54: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

46 Concluding remarks

AlthoughZrO2 andHfO2 arepredictedto bestablein contactwith silicon, itwasshown thataninterfacial layerof SiO2 hadformedin theALD experiments.A SiO2 layerhasmostlikely formedin theTa2O5 samplesaswell, but no TEManalysishasbeenperformedto confirm this. The SiO2 can form either in thebeginningof thedepositionexperiment,whenthesubstratesurfacehasnot beencompletelycoveredandis exposedto oxygen-containingspecies,or later in theexperimentsinceoxygendiffusesrathereasilyin bothZrO2 andHfO2. It is alsopossiblethattheinterfaciallayerformedin asolidstatereactionbetweenthefilmand the substrate,but in that case,the ZrOx formed in the reactionmusthavereoxidisedto ZrO2. The seriesconnectionwith the SiO2 layer lowersthe totaldielectricconstantandmustsomehow beavoidedfor futureapplications.

Page 55: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Acknowledgements

Anders(Silverback)Harsta,you’ve beena greatsupervisor!Thankyou for al-waystakingthetime for all kindsof discussionsandfor generouslysharingyourknowledge.

ProfessorJan-OttoCarlssonis gratefullyacknowledgedfor giving methisoppor-tunity andfor puttingtheexcellentfacilitiesat TheAngstrom Laboratoryat mydisposal.

I amalsogratefulto Jan-OttoandEva Fredrikssonfor giving mea goodstartasaPhDstudent.

I would like to expressmy deepestgratitudeto JaanAarik andKarpo Kukli atThe University of Tartu for their enthusiasmandfriendlinessin a very fruitfulcooperation.

Thanksarealsodueto Prof.MarkkuLeskela andAss.Prof.Mikko RitalaatTheUniversityof Helsinki,whereI have hadthepleaseto beaguest.

David GilmeratMotorolais acknowledgedfor providing mewith valuablechar-acterisationandfor beingsuchaniceguy.

Thereis abunchof peopleatTheDep.of SolidStateElectronicsthathavehelpedme out in timesof needandI would especiallylike to thankJorgenWestlinderfor workingsohardon theelectricalcharacterisation.

It cannot be said too many times that this kind of work would be impossiblewithout the skillful assistanceof the technicalandadministrative staff. Thankyou Nisse,Torvald, Anders,Janne,Gunilla, Ulrika, andKatarinafor alwaysbe-ing helpfulandfriendly.

Page 56: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

48 Acknowledgements

Specialthanksto:

Kajsa,whohasalwaysbeentherefor me.It wouldn’t havebeenthesamewithoutyou.

Sofia,Ulrika, Micke, Marie, Asa, Vickan, Nina, andothers..., for beinggoodfriends.

All thepeopleof TheDep.of Mater, Chem.,who aremorelike friendsthancol-leagues.

Mina underbaraforaldrar, som alltid har stott mina mer eller mindre konstigaprojektochsomaldrig ifr agasattnyttanav ennio ar langutbildning.

And of courseUli, thecoolestguyI know, for having thenerveto takecareof me.

Uppsala,September2001

Eject!

Page 57: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

Bibliography

[1] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland,Mater. Sci.Eng., vol. R22,pp.269–322,1998.

[2] G. D. Wilk, R. M. Wallace,andJ.M. Anthony, J. Appl.Phys., vol. 89,no.10,pp.5243–5274,May 2001.

[3] K. J.HubbardandD. G. Schlom,J. Mater. Res., vol. 11,no.11,pp.2757–2776,Nov. 1996.

[4] S.O.Kasap,Principalsof ElectricalEngineering, 2nded., (McGraw-Hill,New York, 2000).

[5] A. Cappellani,J.L. Keddie,N. P. Barradas,andS.M. Jackson,Solid-StateElectronics, vol. 43,no.84,pp.1095–1099,1999,

[6] R. F. Cava,W. F. Peck,andJ.J.Krajewski, Nature, vol. 377,no.84,1995,

[7] T. Umezawa,S.Yajima,andK. Matsumoto,ThinSolidFilms, vol. 52,pp.69–75,1978.

[8] L. D. Calvert andP. H. G. Draper, CanadianJournal of Chemistry, vol.40,pp.1943–1950,1962.

[9] N. C. StephensonandR. S. Roth, ActaCryst., vol. B27, pp.1037–1044,1971.

[10] N. Terao,Jpn.J. Appl.Phys., vol. 6, no.1, pp.21–34,1967.

[11] J.L. WaringandR. S.Roth,J. Res.Nat.Bur. Stand.Sect.A, vol. 72A, no.2, pp.175–186,1968.

[12] H. FujikawaandY. Taga,J. Appl.Phys., vol. 75,pp.2538,1994.

[13] A. Gebbert,M. Alvarez-Icaza,W. Stocklein, and R. D. Schmid, Anal.Chem., vol. 64,pp.997,1992.

Page 58: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

50 Bibliography

[14] U. Teravaninthorn,Y. Miyahara,andT. Moriizumi, Jpn.J. Appl. Phys.,vol. 26,pp.2116,1087.

[15] P. M. Natishan,E. McCafferty, P. R. Puckett,andS.Michel, Corros.Sci.,vol. 38,pp.1043,1996.

[16] T. J.Rehg,J.A. Ochoa-Tapia,A. Knoesen,andB. G. Higgins,Appl.Opt.,vol. 28,pp.5215,1989.

[17] F. Rubio, J. Denis,J. M. Albella, andJ. M. Martinez-Duart, Thin SolidFilms, vol. 90,pp.405,1982.

[18] Y. Nishimura,H. Ujita, andM. Tsuji, Appl.Surf. Sci., vol. 89,no.84,pp.393–399,1995.

[19] C.-C.Lee,J.-C.Hsu,D. T.Wei, andJ.-H.Lin, Thin SolidFilms, vol. 308-309,no.84,pp.74–78,1997.

[20] F. Gitmans,Z. Sitar, andP. Gunter,Vacuum, vol. 46,pp.939,1995.

[21] N. Ozer and C. M. Lampert, J. Sol-GelSci. Tech., vol. 8, no. 84, pp.703–709,1997.

[22] K. Kukli, J. Aarik, A. Aidla, O. Kohan,T. Uustare,andV. Sammelselg,ThinSolidFilms, vol. 260,no.84,pp.135–142,1995.

[23] B. C.-M. Lai andJ.Y.-M. Lee,J. Electrochem.Soc., vol. 146,no.184,pp.266–269,1999.

[24] K. D. PollardandR. J. Puddephatt,Chem.Mater., vol. 11, no. 84, pp.1069–1074,1999.

[25] S.Tanimoto,N. Shibata,K. Kuroiwa, andY. Tarui, J. Electrochem.Soc.,vol. 141,no.584,pp.1339–1346,1994.

[26] A. Ono, Mineral J., vol. 6, no.6, 1972.

[27] R. C. Garie,High Temperature Oxides, (AcademicPress,1970).

[28] J.Cai,C. Raptis,Y. S.Raptis,andE. Anastassakis,Phys.Rev. B, vol. 51,no.1, pp.201–209,Jan.1995.

[29] M. Ozawa,S.Suzuki,C.-K. Loong,andJ.C. Nipko, Appl.Surf. Sci., vol.121/122,pp.133–137,1997.

Page 59: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

51

[30] J.S. Kim, H. A. Marzouk,andP. J. Reucroft, Thin SolidFilms, vol. 254,pp.33–38,1995.

[31] G. Bocquillon,C. Susse,andB. Vodar, Rev. Int. HautesTemp.Refract.,vol. 5, no.4, pp.247,1968.

[32] L. G. Liu, J. Phys.Chem.Solids, vol. 41,pp.331–334,1980.

[33] C. J. Howard, R. J. Hill, andB. E. Reichert, Acta Cryst., vol. B44, pp.116–120,1988.

[34] S. B. Desu,T. Shi and,C. K. Kwok, Mater. Res.Soc.Symp.Proc., vol.168,pp.349–356,1990.

[35] M. SayerandK. Sreenivas,Science, vol. 247,pp.1056,1990.

[36] C. Mary, R. Guinebretiere,G. Trolliard, B. Soulestin,P. Villechaize,andA. Dauger,ThinSolidFilms, vol. 336,pp.156–159,1998.

[37] S. B. Qadri, E. F. Skelton, M. Z. Harford, C. Kim, and P. Lubitz,Surf. Coat.Tech., vol. 63,pp.155–157,1994.

[38] T. Ngai,W. J.Qi, R.Sharma,J.Fretwell,X. Chen,J.C. Lee,andS.Baner-jee, Appl.Phys.Lett., vol. 76,no.4, pp.502–504,2000.

[39] J. Aarik, A. Aidla, H. Mandar, V. Sammelselg,ang T. Uustare,J. Cryst.Growth, vol. 220,pp.105–113,2000.

[40] E. Ruh, H. J. Garrett,R. F. Domagala,andN. M. Tallan, J. Amer. Ce-ram.Soc., vol. 51,no.4, pp.27,1968.

[41] A. G. Boganov, V. S. Rudenko, and L. P. Makorov,Dokl. Akad.Naut.SSSR, vol. 160,no.5, pp.1065,1965.

[42] J.Wang,H. P. Li, andR. Stevens,J. Mater. Sci., vol. 27,pp.5397,1992.

[43] A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante,Appl.Opt., vol. 32,no.28,pp.5583–5593,1993.

[44] V. V. Kharton,A. A. Yaremchenko, E. N. Naumovich, andF. M. B. Mar-ques,J. SolidStateElectrochem., vol. 4, pp.243–266,2000.

[45] G. Reiße,B. Keiper, S.Weißmantel,H. Johansen,R. Scholz,andT. Mar-tini, Thin SolidFilms, vol. 241,pp.119–125,1994.

Page 60: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

52 Bibliography

[46] S. Capone,G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi,L. Mirenghi, andA. Rizzo, J. Vac.Sci.Tech. A, vol. 16, no.6, pp.3564–3568,1998.

[47] T. Nishide,S. Honda,M. Matsuura,andM. Ide, ThinsSolid Films, vol.371,pp.61–65,2000.

[48] J. Aarik, A. Aidla, H. Mandar, T. Uustare,K. Kukli, and M. Schuisky,Appl.Surf. Sci., vol. 173,pp.15–21,2001.

[49] M. Balog,M. Schieber, M. Michman,andS.Patai, Thin SolidFilms, vol.41,pp.247–259,1977.

[50] J.-O.CarlssonandU. Jansson,Prog. SolidSt.Chem., vol. 22,pp.237–292,1993.

[51] T. SuntolaandJ.Antsom,USPatent4,058,430, 1977.

[52] H. Kattelus,M. Ylilammi, A. Saarilahti,J.Antson,andS.Lindfors, ThinSolidFilms, vol. 225,no.84,pp.296–298,1993.

[53] S. Tanimoto,N. Shibata,K. Kuroiwa, andY. Tarui, Appl. Surf. Sci., vol.79/80,no.84,pp.220–226,1994.

[54] H. ZhangandR. Solanki, J. Electrochem.Soc., vol. 148,no. 4, pp. F63–F66,2001.

[55] J.Aarik, K. Kukli, A. Aidla, andL. Pung,Appl.Surf. Sci., vol. 103,no.4,pp.331–341,1996.

[56] M. Balog,M. Schieber, S.Patai,andM. Michman, J. Cryst.Growth, vol.17,pp.298–301,1972.

[57] H. Ono,Y. Hosokawa, T. Ikarashi,K. Shinoda,N. Ikarashi,K. Koyanagi,andH. Yamaguchi,J. Appl.Phys., vol. 89,no.2, pp.995–1002,2001.

[58] K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, and M. Leskela,Appl.Surf. Sci., vol. 112,no.84,pp.236–242,1997.

[59] K. Kukli, J. Ihanus,M. Ritala,andM. Leskela, J. Electrochem.Soc., vol.144,no.184,pp.300–306,1997.

[60] H. Koyama,S. Tanimoto,K. Kuroiwa, andY. Tarui, Jpn.J. Appl. Phys.,vol. 33,no.11,part184,pp.6291–6298,1994.

Page 61: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

53

[61] H.-T. Chiu, C.-N. Wang,andS.-H.Chuang,Chem.Vap. Deposition, vol.6, no.5, pp.223–225,2000.

[62] J.Minet, F. Langlais,R. Nasrin,andC. Bernard,J. Less-Comm.Met., vol.119,pp.219–235,1986.

[63] H. YamaneandT. Hirai, J. Cryst.Growth, vol. 94,pp.880–884,1989.

[64] R. N. Tauber, A. C. Dumbri, andR. E. Caffrey, J. Electrochem.Soc, vol.118,no.5, pp.747–754,1971.

[65] M. RitalaandM. Leskel, Appl. Surf. Sci., vol. 75,pp.333–340,1994.

[66] R. C. Smith,N. Hoilien, C. J.Taylor, T. Ma, S.A. Cambell,J.T. Roberts,M. Copel,D. A. Buchanan,M. Gribelyuk,andW. L. Gladfelter, J. Elec-trochem.Soc., vol. 147,no.9, pp.3472–3476,2000.

[67] R. C. Smith, T. Ma, N. Hoilien, L. Y. Tsung,M. J. Bevan, L. Colombo,J. Roberts,S. A. Campbell,andW. L. Gladfelter, Adv. Mater. Opt. Elec-tron., vol. 10,pp.105–114,2000.

[68] K. Kukli, M. Ritala,andM. Leskela, Chem.Vap.Deposition, vol. 6, no.6,pp.297–302,2000.

[69] A. Bastianini,G. A. Battiston,R. Gerbasi,M. Porchia,and S. Daolio,J. Phys.IV France, vol. 5, pp.C5525–531,1995.

[70] M. A. CameronandS.M. George, Thin SolidFilms, vol. 348,pp.90–98,1999.

[71] C.F. Powell, ChemicallyDepositedNonmetals, (JohnWiley & Sons,NewYork, 1966).

[72] K. Kukli, J. Ihanus,M. Ritala,andM. Leskela, Appl.Phys.Lett., vol. 68,no.2684,pp.3737–3739,1996.

[73] J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare,andV. Sammelselg,ThinSolidFilms, vol. 340,pp.110–116,1999.

[74] P. MartenssonandA. Harsta,J. Cryst.Growth, vol. 156,pp.67,1995.

[75] M. Schuisky andA. Harsta,Chem.Vap.Deposition, vol. 4, pp.213,1998.

[76] M. Schuisky andA. Harsta,J. Phys.IV France, vol. 9, pp.Pr8–831,1999.

Page 62: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

54 Bibliography

[77] M. Schuisky, A. Harsta,A. Aidla, K. Kukli, A.-A. Kiisler, andJ. Aarik,J. Electrochem.Soc., vol. 147,pp.3319,2000.

[78] M. Schuisky, J.Aarik, K. Kukli, A. Aidla, andA. Harsta,,Langmuir, vol.17,pp.5508,2001.

[79] Gmelin Handbuch der anorganischen Chemie, Number 42. (VerlagChemie,Weinheim,1958).

[80] J.Gerlach,J.-P. Krumme,andF. Pawlek, J. Less-Comm.Met., vol. 15,pp.303–310,1968.

[81] P. J. DurrantandB. Durrant, Introductionto AdvancedInorganic Chem-istry, (Longmans,London,1962).

[82] E. deBarry BarnettandC. L. Wilson, Inorganic Chemistry, (LongmansGreen& Co,London,1953).

[83] M. StrømmeMattsson,G. A. Niklasson, K. Forsgren,and A. Harsta,J. Appl.Phys., vol. 85,no.4, pp.2185–2191,1999.

[84] E. P. Burte and N. Rausch, J. Non-Cryst.Solids, vol. 187, no. 84, pp.425–429,1995.

[85] K. Tominaga, R. Muhammet, I. Kobayashi, and M. Okada,Jpn.J. Appl.Phys., vol. 31,no.5A, part284,pp.L585–587,1992.

[86] J.Aarik, A. Aidla, K. Kukli, andT. Uustare,J Cryst.Growth, vol. 144,no.84,pp.116–119,1994.

[87] K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Harsta,M. Ritala, andM. Leskela, Langmuir, vol. 16,pp.8122,2000.

[88] K. Kukli, J. Aarik, A. Aidla, K. Forsgren, J. Sundqvist, A. Harsta,T. Uustare,H. Mandar, and A. -A. Kiisler, Chem.Mater., vol. 13, no.1, pp.122–128,2001.

[89] K. Chen, M. Nielsen, E. J. Rymaszewski, and T. M. Lu,Mater. Chem.Phys., vol. 49,no.84,pp.42–45,1997.

[90] J.D. McCulloughandK. N. Trueblood,ActaCryst., vol. 12,pp.507–511,1959.

Page 63: CVD and ALD of Group IV- and V-Oxides for Dielectric Applications160934/FULLTEXT01.pdf · This thesis describes new chemical vapour deposition (CVD) and atomic layer deposition (ALD)

55

[91] C. S. HwangandH. J. Kim, J. Mater Res., vol. 8, no.6, pp.1361–1367,1993.

[92] J.Aarik, A. Aidla, T. Uustare,andV. Sammelselg,J. Cryst.Growth, vol.148,pp.268,1995.

[93] C. J. Howard, E. H. Kisi, R. B. Roberts,and R. J. Hill, J. Amer. Ce-ram.Soc., vol. 73,no.10,pp.2828–2833,1990.

[94] B. Bondars,G. Heidemane,J. Grabis,K. Laschke, H. Boysen,J. Schnei-der, andF. Frey, J. Mater. Sci, vol. 30,pp.1621–1625,1994.

[95] P. Duwez,andF. Odell, J. Amer. Ceram.Soc., vol. 33,pp.274–283,1950.

[96] B.-K. Kim, J.-W. Hahn,andK. R. Han, J. Mater. Sci.Lett., vol. 16, pp.669–671,1997.

[97] R. E. Hann,P. R. Suitch,andJ.L. Pentecost,Comm.Amer. Ceram.Soc.,vol. 68,no.10,pp.C–286–C–286,1985.

[98] C. E. Curtis,L. M. Doney, andJ. R. Johnson,J. Amer. Ceram.Soc., vol.37,no.10,pp.458–465,1954.

[99] I. A. El-Shanshoury, V. A. Rudenko, and I. A. Ibrahim, J. Amer. Ce-ram.Soc., vol. 53,no.5, pp.264–268,1970.

[100] J.-Y. Gan,Y. C. Chang,andT. B. Wu, Appl.Phys.Lett., vol. 72,no.384,pp.332–334,1998,

[101] K. ForsgrenandA. Harsta,Thin SolidFilms, vol. 343-344,pp.111–114,1999.

[102] K. Lehovec, J. Less-Comm.Met., vol. 7, pp.397–410,1964.

[103] J.SundqvistandA. Harsta,to bepublished.

[104] A. Harsta,Chem.Vap.Deposition, vol. 5, no.4, pp.191–193,1999.