cvut.czczech technical university in prague fac ulty of electrical engineering department of control...

60
Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering bachelor’s thesis Modelling of acoustic plane waves in gases with variable temperature Hanna Chaika Supervisor: doc. Dr. Ing. Michal Bednarik May 2015

Upload: others

Post on 19-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Czech Technical University in PragueFaculty of Electrical EngineeringDepartment of Control Engineering

    bachelor’s thesis

    Modelling of acoustic plane waves in gaseswith variable temperature

    Hanna Chaika

    Supervisor: doc. Dr. Ing. Michal Bednarik

    May 2015

  • Czech Technical University in Prague Faculty of Electrical Engineering

    Department of Control Engineering

    BACHELOR PROJECT ASSIGNMENT

    Student: Hanna Chaika

    Study programme: Cybernetics and Robotics Specialisation: Systems and Control

    Title of Bachelor Project: Modelling of acoustic plane waves in gases with variable temperature

    Guidelines:

    1. Study problems concerning description of acoustic waves in fluids with spatially variable temperature, including derivation of model equations. Take into account one-dimensional temperature distribution. 2. Find analytical solutions of linear model equations for given temperature distributions and realize their analysis. 3. Derive model equation describing nonlinear acoustic plane waves for small temperature gradients. Solve this equation numerically by means of a suitable numerical code in the programming language C. Analyze the numerical results.

    Bibliography/Sources:

    [1] Press, W. H., Teukolsky, S.A., Vetterling, W. T., Flannerz, B. P.: Numerical Recipes (3ed), Cambridge Univ. Press, New York, 2007, [2] Blackstock, D.T.: Fundamentals of Physical Acoustics, John Eley & Sons, USA, 2000 [3] Rudenko, O V., Shvartsburg, A. B.: Nonlinear and Linear Wave Phenomena in Narrow Pipes, Acoustical Physics, vol. 56, No. 4, pp. 429-434, 2010. [4] Sujith, R. I., Waldherr, G. A. and Zinn, B. T.: An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient, Journal of Sound and Vibrafon, vol. 184, No. 3, pp. 389-402, 1995. [5] Subrahmanyam, P. B., Sujith, R. I., Lieuwen, T. C.: A family of exact transient solutions for acoustic wave propagation in inhomogeneous, non-uniform area ducts, Journal of Sound and Vibrafon, vol. 240, No. 4, pp. 705-715, 2001. [6] Brekhovskikh, L. M., Lysanov, Yu.P.: Fundamental of Ocean Acoustics, Sprinter, New York, 1991.

    Bachelor Project Supervisor: doc.Dr.Ing. Michal BednaΕ™Γ­k

    Valid until the summer semester 2014/2015

    L.S.

    prof. Ing. Michael Ε ebek, DrSc. Head of Department

    prof. Ing. Pavel Ripka, CSc. Dean

    Prague, January 8, 2014

  • AcknowledgementI would like to express my sincere gratitude to my supervisor, doc. Dr. Ing. MichalBednarik, for his immense knowledge, patience and friendly manner.

    DeclarationI declare that I completed the presented thesis independently and that all used sourcesare quoted in accordance with the Methodological Instructions that cover the ethicalprinciples for writing an academic thesis.

    In Prague on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Signature

    v

  • AbstraktBakalΓ‘Ε™skΓ‘ prΓ‘ce se zabΓ½vΓ‘ modelovΓ‘nΓ­m rovinnΓ½ch akustickΓ½ch vln v plynech s pro-mΔ›nnou teplotou. Pro Ε‘Γ­Ε™enΓ­ rovinnΓ½ch vln v teplotnΔ› nehomogennΓ­m prostΕ™edΓ­ bylaodvozena vlnovΓ‘ rovnice s promΔ›nnΓ½mi koeficienty. Pro vybranΓ© teplotnΓ­ distribucejsou v prΓ‘ci prezentovΓ‘na pΕ™esnΓ‘ analytickΓ‘ Ε™eΕ‘enΓ­ tΓ©to rovnice. PomocΓ­ nalezenΓ½chobecnΓ½ch Ε™eΕ‘enΓ­ byly vypočteny koeficienty transmise a reflexe. Pro pΕ™Γ­pad vln koneč-nΓ½ch amplitud (nelineΓ‘rnΓ­ vlny) Ε‘Γ­Ε™Γ­cΓ­ch se tekutinou s malΓ½m teplotnΓ­m gradientembyla odvozena modifikovanΓ‘ Burgersova rovnice. Tato rovnice byla Ε™eΕ‘ena numericky vkmitočtovΓ© oblasti pomocΓ­ Runge-Kuttovy metody 4. Ε™Γ‘du v programovacΓ­m jazyce C.

    KlíčovΓ‘ slovaVlnovΓ‘ rovnice s promΔ›nnΓ½mi koeficienty; koeficienty transmise a reflexe; Burgersovarovnice.

    vii

  • AbstractThe thesis presents the modelling of acoustic plane waves in gases with variable temper-ature. The wave equation with variable coefficients for the propagation of plane wavesin a thermally inhomogeneous medium was derived. For chosen temperature distribu-tions the exact analytical solutions of this equation are presented in this thesis. Thecoefficients of transmission and reflection were calculated using found general solutions.For the case of finite amplitude waves (nonlinear waves), propagating in a fluid with alow temperature gradient, the modified Burgers equation was derived. This equationwas solved numerically in the frequency domain using the fourth-order Runge-Kuttamethod written in the C programming language.

    KeywordsWave equation with variable coefficients; transmission and reflection coefficients; theBurgers equation.

    ix

  • Contents

    1 Introduction 1

    2 Derivation of model equations 22.1 Fundamental equations of fluid mechanics . . . . . . . . . . . . . . . . . 22.2 Derivation of basic model equations for temperature-inhomogeneous region 3

    3 Exact analytical solutions for various temperature functions 73.1 Transformation of derivatives . . . . . . . . . . . . . . . . . . . . . . . . 73.2 Analytical solutions for unknown temperature functions . . . . . . . . . 8

    3.2.1 First method of finding analytical solution . . . . . . . . . . . . . 83.2.2 Second method of finding an analytical solution . . . . . . . . . . 113.2.3 Third method of finding an analytical solution . . . . . . . . . . 14

    3.3 Finding analytical solutions for known temperature distributions . . . . 153.3.1 Linear temperature distribution . . . . . . . . . . . . . . . . . . . 163.3.2 Exponential temperature distribution . . . . . . . . . . . . . . . 18

    4 Transmission and reflection coefficients 214.1 Sound velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.2 Sound pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    4.2.1 Second exact analytical solution . . . . . . . . . . . . . . . . . . 274.2.2 Exact analytical solution for a linear temperature distribution . . 294.2.3 Exact analytical solution for an exponential temperature distri-

    bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    5 Derivation of the Burgers-type equation for temperature-inhomogeneous flu-ids 335.1 Westervelt equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.2 Burgers-type equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.3 Dimensionless Burgers-type equation . . . . . . . . . . . . . . . . . . . . 35

    6 Numerical solution of the Burgers-type equation for temperature-inhomogeneousfluids 366.1 Description of the numerical method . . . . . . . . . . . . . . . . . . . . 366.2 Representation of an artificial attenuation filter . . . . . . . . . . . . . . 386.3 Graphical representation of the Burgers-type equation solution for a lin-

    ear temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . 386.3.1 Positive temperature gradient . . . . . . . . . . . . . . . . . . . . 386.3.2 Negative temperature gradient . . . . . . . . . . . . . . . . . . . 396.3.3 Different lengths of a duct with a positive temperature gradient . 40

    7 Conclusion 41

    Bibliography 43

    Appendices

    A Attached CD contents I

    xi

  • Abbreviations

    Latin capital letters𝐴 constant in Eqs. (3.19), (3.24) and (3.71)𝐢1, 𝐢2 integration constants in Eqs. (3.34), (3.53), (3.55), (3.88) and (3.116)𝐿 characteristic length𝑃 acoustic pressure amplitude𝑅 specific gas constant𝑇𝐴, 𝑇𝐡 characteristic temperatures of temperature-homogeneous regions A, B

    resp.𝑇0 absolute temperature in temperature-inhomogenious region𝑉 acoustic velocity amplitudeπ‘Š dimensionless acoustic velocity

    Latin lowercase letters𝑏 constant in Eq. (3.88)𝑐0 linear sound speed in temperature-inhomogenious region𝑐𝐴 =

    βˆšΞΊπ‘…π‘‡π΄, sound speed in temperature-homogeneous region A with

    absolute temperature 𝑇𝐴𝑐𝐡 =

    βˆšΞΊπ‘…π‘‡π΅, sound speed in temperature-homogeneous region B with

    absolute temperature π‘‡π΅π‘˜π΄ = πœ”/𝑐𝐴, wave number at π‘₯ = 0π‘˜π΅ = πœ”/𝑐𝐡, wave number at π‘₯ = 𝐿𝑝 pressure𝑝0 atmospheric pressure𝑝′ acoustic pressureπ‘ž constant in Eq. (3.44)π‘Ÿ constant in Eq. (3.17)𝑑 time𝑣 acoustic velocity (the particle velocity of the medium)π‘₯ distance

    Greek capital lettersΞ” = 𝑐2π΄π‘ž2 βˆ’ 4πœ”2, discriminant of Eq. (3.49)Ξ = 𝑇0/𝑇𝐴, dimensionless absolute temperatureΞ  = 𝑝′/

    (οΈ€πœŒπ΄π‘

    2𝐴

    )οΈ€, dimensionless acoustic pressure

    ϒ dimensionless acoustic velocity amplitudeΦ dimensionless acoustic pressure amplitude

    Greek lowercase letters𝛼 sound diffusivity𝛽 coefficient in Eq. (5.2a)𝛾 constant in Eq. (3.90)πœ– a shear viscosity

    xii

  • 𝜁 a bulk viscosityπœ‚ variable, given by Eq. (3.3)πœƒ dimensionless timeπœ… thermal conduction coefficientΞΊ ratio of specific heatsπœ‡ small dimensionless parameter𝜈 variable, given by Eq. (3.32)πœ‰ =

    βˆšπœ”2 βˆ’ π‘Ÿ2, coefficient in Eq. (3.27)

    𝜌 density of the medium𝜌0 density of the medium before sound propagation𝜌𝐴, 𝜌𝐡 densities of the medium in regions A, B resp.𝜎 = π‘₯/𝐿, dimensionless length𝜏 = π‘‘βˆ’ π‘₯/𝑐𝐴, retarded timeπœ‘ = 2/

    (︀κ𝑅𝛾2

    )οΈ€, coefficient in Eq. (3.112)

    πœ” angular frequency

    xiii

  • 1 Introduction

    The description and analysis of acoustic waves in ducts with a region containing tempera-ture-inhomogeneous fluid represents a significant problem of scientific and practical in-terest. This interest is induced by the need to understand how temperature fields affectacoustic processes. This would lead to the possibility of more effective design and con-trol systems in which interactions between acoustic and temperature fields occur. Thisincludes, for instance, thermo-acoustic devices and engines, combustors, automotivemufflers, measuring methods of impedance of high-temperature systems, the investiga-tion of thermo-acoustics and combustion instabilities among other possible applications.

    This thesis presents modelling of plane acoustic waves in gases with variable tem-perature. The whole work can be divided into two parts, the first part is devoted tolinear model equations, and the second describes nonlinear acoustic plane waves forsmall temperature gradients.

    The analysis consists of seven chapters. Within Chapter 2 the basic linear one-dimensional model equations for fluids in temperature-inhomogeneous regions are de-rived. Chapter 3 is devoted to the exact analytical solutions of linear model equationsfor varoius temperature distributions. Chapter 4 deals with an application of the foundsolutions for calculation of transmission and reflection coefficients. In Chapter 5 is pre-sented a derivation of the Burgers equation for temperature-inhomogeneous fluids. Thenumerical method for the Burgers equation for small temperature gradients is shownin Chapter 6. Chapter 7 states the conclusion.

    1

  • 2 Derivation of model equations

    2.1 Fundamental equations of fluid mechanics

    To describe acoustic waves in fluids the following system of equations is considered (seee.g. [1], [2]) :

    1. The Navier – Stokes equation (Momentum equation)This equation describes the motion of fluid substances and the general form is

    𝜌

    [οΈ‚πœ•vπœ•π‘‘

    + v Β· βˆ‡v]οΈ‚

    = βˆ’βˆ‡π‘+(οΈ‚πœ + πœ–3

    )οΈ‚βˆ‡ (βˆ‡ Β· v) + πœ–βˆ‡2v , (2.1)

    where 𝜌 is the density of the medium, v is the particle velocity of the medium, 𝑑is time, 𝑝 is the pressure, 𝜁 is a bulk viscosity, πœ– is a shear viscosity.

    2. Equation of continuityThis equation describes the transport of a conserved quantity, i.e. fluid.

    πœ•πœŒ

    πœ•π‘‘+ βˆ‡ Β· (𝜌v) = 0 . (2.2)

    3. Energy equation

    πœŒπ‘‡

    (οΈ‚πœ•πœ€

    πœ•π‘‘+ v Β· βˆ‡πœ€

    )οΈ‚= πœ–2

    (οΈ‚πœ•π‘£π‘–πœ•π‘₯π‘˜

    + πœ•π‘£π‘˜πœ•π‘₯𝑖

    βˆ’ 23π›Ώπ‘–π‘˜πœ•π‘£π‘™πœ•π‘₯𝑙

    )οΈ‚2+𝜁 (βˆ‡ Β· v)2+βˆ‡Β·(πœ…βˆ‡π‘‡ ) , (2.3)

    where πœ€ is entropy per unit mass, 𝑇 is absolute temperature, πœ… is the thermalconduction coefficient, π›Ώπ‘–π‘˜ is the Kronecker delta.

    4. Equation of state𝑝 = 𝑝 (𝜌, πœ€) . (2.4)

    βˆ™ If a perfect gas is considered then the Navier – Stokes equation (2.1) is reduced tothe form

    πœ•vπœ•π‘‘

    + v Β· βˆ‡v = βˆ’1𝜌

    βˆ‡π‘ , (2.5)

    which is called the Euler equation.βˆ™ Equation of state (2.4) for a perfect gas is (see e.g. [2])

    𝑝 = π‘…πœŒπ‘‡ , (2.6)

    where 𝑅 is the specific gas constant, i.e. the (molar) gas constant divided by themolar mass of the gas.

    2

  • 2.2 Derivation of basic model equations for temperature-inhomogeneous region

    2.2 Derivation of basic model equations fortemperature-inhomogeneous region

    In order to derive model equations it is necessary to take into consideration four equa-tions from the previous section and make some assumptions, which enable us to ne-glect nonlinear terms. Assuming a perfect, inviscid and non-heat-conducting gas withone-dimensional temperature distribution, Eqs. (2.2), (2.3), (2.5) and (2.6) can betransformed in the following ways (see e.g. [2]) :

    βˆ™ Energy equationIn a perfect gas no energy is dissipated, so dπœ€/d𝑑 = 0, and hence a specific entropyπœ€ is a constant. From this an isentropic process and an adiabatic gas law takeplace.

    βˆ™ Equation of stateFrom Eq. (2.4) it follows

    d𝑝 =(οΈ‚πœ•π‘

    πœ•πœŒ

    )οΈ‚πœ€

    d𝜌+(οΈ‚πœ•π‘

    πœ•πœ€

    )οΈ‚πœŒ

    dπœ€ . (2.7)

    As the process is isentropic then state equation can be written as 𝑝 = 𝑝(𝜌) and

    d𝑝 =(οΈ‚πœ•π‘

    πœ•πœŒ

    )οΈ‚πœ€

    d𝜌 . (2.8)

    As an adiabatic gas law takes place then

    𝑝

    𝑝0=(οΈ‚πœŒ

    𝜌0

    )οΈ‚ΞΊ, (2.9)

    where 𝑝 and 𝑝0 are different specific pressures, 𝜌 and 𝜌0 are different specific den-sities, ΞΊ is the ratio of specific heats.

    By assuming the gas to be inviscid, it is permissible to express the sound speed 𝑐

    𝑐2 = d𝑝d𝜌 . (2.10)

    Taking into account Eqs. (2.9) and (2.6), the equation above can be written as

    𝑐2 = ΞΊπ‘πœŒ

    = κ𝑅𝑇 . (2.11)

    Equation (2.10) lets us take into account the following equality

    d𝑝d𝑑 = 𝑐

    2 d𝜌d𝑑 . (2.12)

    The total derivative isd(Β·)d𝑑 =

    πœ•(Β·)πœ•π‘‘

    + πœπœ•(Β·)πœ•π‘₯

    . (2.13)

    Then Eq. (2.12) can be written as

    πœ•π‘

    πœ•π‘‘+ 𝜐 πœ•π‘

    πœ•π‘₯= 𝑐2

    (οΈ‚πœ•πœŒ

    πœ•π‘‘+ 𝜐 πœ•πœŒ

    πœ•π‘₯

    )οΈ‚. (2.14)

    3

  • 2 Derivation of model equations

    βˆ™ Equation of continuityOne-dimensional equation of continuity is

    πœ•πœŒ

    πœ•π‘‘+ πœ•πœ•π‘₯

    (πœŒπ‘£) = 0 . (2.15)

    From this equation the equality π‘£πœ•πœŒ/πœ•π‘₯ = βˆ’πœ•πœŒ/πœ•π‘‘ βˆ’ πœŒπœ•π‘£/πœ•π‘₯ can be obtained.After substitution into Eq. (2.14) the resulting equation is

    πœ•π‘

    πœ•π‘‘+ 𝑣 πœ•π‘

    πœ•π‘₯= βˆ’π‘2πœŒπœ•π‘£

    πœ•π‘₯. (2.16)

    From Eq. (2.11) the above equation can be written as

    πœ•π‘

    πœ•π‘‘+ 𝑣 πœ•π‘

    πœ•π‘₯+ ΞΊπ‘πœ•π‘£

    πœ•π‘₯= 0 . (2.17)

    βˆ™ Euler equationBy assuming one-dimensional temperature distribution, Eq. (2.5) takes the formof the one-dimensional Euler equation

    πœŒπœ•π‘£

    πœ•π‘‘+ πœŒπ‘£ πœ•π‘£

    πœ•π‘₯+ πœ•π‘πœ•π‘₯

    = 0 . (2.18)

    Each of the dependent variables can be expressed in the following way (see e.g. [3])1. the density 𝜌(π‘₯, 𝑑) = 𝜌0(π‘₯) + πœŒβ€²(π‘₯, 𝑑) is the sum of the ambient density 𝜌0 and an

    acoustic density πœŒβ€²,2. the velocity 𝑣 = 𝑣(π‘₯, 𝑑) is the particle velocity of the medium, resp. acoustic

    velocity,3. the pressure 𝑝(π‘₯, 𝑑) = 𝑝0 +𝑝′(π‘₯, 𝑑) is the sum of the atmospheric pressure 𝑝0, which

    is supposed to be constant (see e.g. [3]) and the acoustic pressure 𝑝′.The assumptions can be taken into account |𝑝′|/𝑝0 ∼ |𝑣|/𝑐0 ∼ πœŒβ€²/𝜌 ∼ πœ‡ β‰ͺ 1, where

    𝑐0 is the linear sound speed, πœ‡ < 0 is a small dimensionless parameter. It is consideredthat 𝑐0 = 𝑐0(π‘₯) and temperature 𝑇0 = 𝑇0(π‘₯) are dependent on the distance π‘₯, where𝑇0 is the ambient temperature of the fluid.

    The substitution of the above dependent variables into the equation of continuity(2.17)

    πœ•(𝑝0 + 𝑝′)πœ•π‘‘

    + π‘£πœ•(𝑝0 + 𝑝′)

    πœ•π‘₯+ ΞΊ

    (︀𝑝0 + 𝑝′

    )οΈ€ πœ•π‘£πœ•π‘₯

    = 0 (2.19)

    and linearization of Eq. (2.19) leads us to the following linear form of the equation ofcontinuity

    πœ•π‘β€²

    πœ•π‘‘+ κ𝑝0

    πœ•π‘£

    πœ•π‘₯= 0 . (2.20)

    The same substitution into the Euler equation (2.18)

    (οΈ€πœŒ0 + πœŒβ€²

    )οΈ€ πœ•π‘£πœ•π‘‘

    +(οΈ€πœŒ0 + πœŒβ€²

    )οΈ€π‘£πœ•π‘£

    πœ•π‘₯+ πœ•(𝑝0 + 𝑝

    β€²)πœ•π‘₯

    = 0 (2.21)

    and linearization of Eq. (2.21) leads us to the linear form of the Euler equation

    𝜌0πœ•π‘£

    πœ•π‘‘+ πœ•π‘

    β€²

    πœ•π‘₯= 0 . (2.22)

    4

  • 2.2 Derivation of basic model equations for temperature-inhomogeneous region

    Differentiating of Eq. (2.20) with respect to time t and Eq. (2.22) with respect tocoordinate x and eliminating the cross-derivative term by their combination yields

    πœ•2𝑝′

    πœ•π‘₯2+ d𝜌0dπ‘₯

    πœ•π‘£

    πœ•π‘‘βˆ’ 𝜌0

    κ𝑝0πœ•2𝑝′

    πœ•π‘‘2= 0 . (2.23)

    Expressing the derivative πœ•π‘£/πœ•π‘‘ from Eq. (2.22) and substituting it into Eq. (2.23)obtains the equation

    πœ•2𝑝′

    πœ•π‘₯2βˆ’ d𝜌0dπ‘₯

    1𝜌0

    πœ•π‘β€²

    πœ•π‘₯βˆ’ 𝜌0

    κ𝑝0πœ•2𝑝′

    πœ•π‘‘2= 0 . (2.24)

    From the perfect gas law 𝑝0 = π‘…πœŒ0𝑇0 the total derivative of 𝑝0 with respect to π‘₯ is

    0 = d𝑝0dπ‘₯ = 𝑅d𝜌0dπ‘₯ 𝑇0 +π‘…πœŒ0

    d𝑇0dπ‘₯ . (2.25)

    After multiplying the above equation by 1/(π‘…πœŒ0𝑇0) the resulting expression is

    1𝜌0

    d𝜌0dπ‘₯ +

    1𝑇0

    d𝑇0dπ‘₯ = 0 . (2.26)

    From Eq. (2.11) follows𝑐20 =

    κ𝑝0𝜌0

    , (2.27)

    and using Eq. (2.26) hence is obtained the wave equation with variable coefficients (seee.g. [3])

    πœ•2𝑝′

    πœ•π‘₯2+ 1𝑇0

    d𝑇0dπ‘₯

    πœ•π‘β€²

    πœ•π‘₯βˆ’ 1𝑐20

    πœ•2𝑝′

    πœ•π‘‘2= 0 . (2.28)

    Assuming a time periodic source of sound, where πœ” is an angular frequency, it ispossible to consider

    𝑝′(π‘₯, 𝑑) = 𝑃 (π‘₯)π‘’βˆ’jπœ”π‘‘ . (2.29)

    Equation (2.28) can be written now as

    d2𝑃dπ‘₯2 +

    1𝑇0

    d𝑇0dπ‘₯

    d𝑃dπ‘₯ +

    πœ”2

    𝑐20𝑃 = 0 . (2.30)

    Now, let us differentiate vice versa - Eq. (2.20) with respect to x and Eq. (2.22) withrespect to t, then the cross-derivative term can be eliminated. This manipulation leadsto the wave equation

    πœ•2𝑣

    πœ•π‘‘2βˆ’ 𝑐20

    πœ•2𝑣

    πœ•π‘₯2= 0 . (2.31)

    Substituting𝑣(π‘₯, 𝑑) = 𝑉 (π‘₯)π‘’βˆ’jπœ”π‘‘ , (2.32)

    into Eq. (2.31) obtains the equation

    d2𝑉dπ‘₯2 +

    πœ”2

    𝑐20(π‘₯)𝑉 (π‘₯) = 0 . (2.33)

    This is the Helmholtz equation.

    5

  • 2 Derivation of model equations

    Let us rewrite the model equations (2.28) and (2.31) in dimensionless form (see e.g.[4])

    πœ•2Ξ πœ•πœŽ2

    + 1Ξ(𝜎)dΞ(𝜎)

    dπœŽπœ•Ξ πœ•πœŽ

    βˆ’ 1𝐢20 (𝜎)

    πœ•2Ξ πœ•πœƒ2

    = 0 , (2.34)

    πœ•2π‘Š

    πœ•πœƒ2βˆ’ 𝐢20 (𝜎)

    πœ•2π‘Š

    πœ•πœŽ2= 0 . (2.35)

    Here

    Ξ  = 𝑝′

    πœŒπ΄π‘2𝐴= 𝑝

    β€²

    κ𝑝0, 𝜎 = π‘₯

    𝐿, πœƒ = πœ”π‘‘ ,

    𝐢20 (𝜎) =𝑐20(𝜎)πœ”2𝐿2

    = κ𝑅𝑇0(𝜎)πœ”2𝐿2

    = Ξ(𝜎)β„Ž2

    , Ξ = 𝑇0𝑇𝐴

    , π‘Š = 𝑣𝑐𝐴

    ,

    (2.36)

    where 𝑇𝐴 is a characteristic temperature, 𝑐𝐴 = 𝑐0(𝑇𝐴) =βˆšΞΊπ‘…π‘‡π΄, 𝜌𝐴 = 𝜌0(𝑇𝐴) =

    𝑝0/(𝑅𝑇𝐴), 𝐿 is a characteristic length and β„Ž = πœ”πΏ/𝑐𝐴.Assuming that the solutions of Eqs. (2.34) and (2.35) have a periodic time depen-

    dence, i. e.Ξ (𝜎, πœƒ) = Ξ¦(𝜎)π‘’βˆ’jπœƒ (2.37)

    andπ‘Š (𝜎, πœƒ) = Ο’(𝜎)π‘’βˆ’jπœƒ , (2.38)

    then equations can be written as

    d2Φd𝜎2 +

    1Ξ(𝜎)

    dΞ(𝜎)d𝜎

    dΦd𝜎 +

    1𝐢20 (𝜎)

    Φ(𝜎) = 0 , (2.39)

    d2Ο’d𝜎2 +

    Ο’(𝜎)𝐢20 (𝜎)

    = 0 . (2.40)

    6

  • 3 Exact analytical solutions for varioustemperature functions

    This chapter is devoted to exact analytical solutions. These solutions can be dividedinto two cases. The first case represents solving equations where the temperature dis-tribution 𝑇0(π‘₯) is unknown, so it is necessary to find both the temperature distribution𝑇0(π‘₯) and the solution of the equation. The second case deals with equations whereit is supposed the function 𝑇0(π‘₯) must be known. For this reason only the equationsolution is to be found in this case. Linear and exponential temperature distributionsare assumed.

    3.1 Transformation of derivativesSuppose that a function 𝑓(π‘₯) is known then can be derived the following spatial deriva-tives

    d(Β·)dπ‘₯ =

    d(Β·)d𝑓

    d𝑓dπ‘₯ , (3.1)

    and

    d2(Β·)dπ‘₯2 =

    ddπ‘₯

    (οΈ‚d(Β·)dπ‘₯

    )οΈ‚= ddπ‘₯

    (οΈ‚d(Β·)d𝑓

    d𝑓dπ‘₯

    )οΈ‚=[οΈ‚ d

    dπ‘₯

    (οΈ‚d(Β·)d𝑓

    )οΈ‚]οΈ‚ d𝑓dπ‘₯ +

    [οΈ‚ ddπ‘₯

    (οΈ‚d𝑓dπ‘₯

    )οΈ‚]οΈ‚ d(Β·)d𝑓

    =[οΈ‚ d

    d𝑓

    (οΈ‚d(Β·)dπ‘₯

    )οΈ‚]οΈ‚ d𝑓dπ‘₯ +

    d2𝑓dπ‘₯2

    d(Β·)d𝑓 =

    [οΈ‚ dd𝑓

    (οΈ‚d(Β·)d𝑓

    d𝑓dπ‘₯

    )οΈ‚]οΈ‚ d𝑓dπ‘₯ +

    d2𝑓dπ‘₯2

    d(Β·)d𝑓

    =(οΈ‚d𝑓

    dπ‘₯

    )οΈ‚2 d2(Β·)d𝑓2 +

    d2𝑓dπ‘₯2

    d(Β·)d𝑓 . (3.2)

    Taking into account a new variable (see e.g. [5])

    πœ‚ =∫︁ π‘₯

    0

    1𝑐0(π‘₯1)

    dπ‘₯1 , (3.3)

    thendπœ‚dπ‘₯ =

    1𝑐0(π‘₯)

    , (3.4)

    d2πœ‚dπ‘₯2 =

    ddπ‘₯

    (οΈ‚ 1𝑐0(π‘₯)

    )οΈ‚. (3.5)

    Putting πœ‚(π‘₯) ≑ 𝑓(π‘₯) can be used the transformation relations (3.1) and (3.2) asfollows

    d(Β·)dπ‘₯ =

    d(Β·)dπœ‚

    dπœ‚dπ‘₯ , (3.6)

    d2(Β·)dπ‘₯2 =

    (οΈ‚dπœ‚dπ‘₯

    )οΈ‚2 d2(Β·)dπœ‚2 +

    d2πœ‚dπ‘₯2

    d(Β·)dπœ‚ =

    1𝑐20(π‘₯)

    d2(Β·)dπœ‚2 +

    ddπ‘₯

    (οΈ‚ 1𝑐0(π‘₯)

    )οΈ‚ d(Β·)dπœ‚ . (3.7)

    7

  • 3 Exact analytical solutions for various temperature functions

    3.2 Analytical solutions for unknown temperature functionsIt is assumed that a temperature distribution 𝑇0(π‘₯) in a temperature-inhomogeneousregion of the length 𝐿 in a waveguide separates two regions of different constant tem-peratures 𝑇𝐴 and 𝑇𝐡, see Fig. 1 (see e.g. [4]) .

    Region A𝑇𝐴

    Region B𝑇𝐡

    Temperature –inhomogeneous region

    0 π‘₯𝐿

    Fig. 1 Temperature regions in a waveguide.

    In dimensionless equations the temperature-inhomogeneous region has the lengthequal to 1 and separates two temperature-homogeneous regions with constant dimen-sionless temperatures Ξ𝐴 = 1 and Ξ𝐡 = 𝑇𝐡/𝑇𝐴.

    3.2.1 First method of finding analytical solution

    To solve the Helmholtz equation (2.33) the first step is to introduce a new function𝐹 (π‘₯) (see e.g. [6])

    𝑉 (π‘₯) =βˆšοΈπ‘0(π‘₯)𝐹 (π‘₯) . (3.8)

    Its derivatives ared(βˆšπ‘0𝐹 )

    dπ‘₯ = 𝐹dβˆšπ‘0

    dπ‘₯ +βˆšπ‘0

    d𝐹dπ‘₯ , (3.9)

    d2(βˆšπ‘0𝐹 )dπ‘₯2 =

    d𝐹dπ‘₯

    dβˆšπ‘0dπ‘₯ + 𝐹

    d2βˆšπ‘0dπ‘₯2 +

    dβˆšπ‘0dπ‘₯

    d𝐹dπ‘₯ +

    βˆšπ‘0

    d2𝐹dπ‘₯2 , (3.10)

    wheredβˆšπ‘0

    dπ‘₯ =1

    2βˆšπ‘0d𝑐0dπ‘₯ , (3.11)

    d2βˆšπ‘0dπ‘₯2 = βˆ’

    14𝑐0

    βˆšπ‘0

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2+ 12βˆšπ‘0

    d2𝑐0dπ‘₯2 . (3.12)

    Substituting into Eq. (2.33)

    βˆ’ 𝐹4𝑐20

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2+ 𝐹2𝑐0

    d2𝑐0dπ‘₯2 +

    12𝑐0

    d𝑐0dπ‘₯

    d𝐹dπ‘₯ +

    12𝑐0

    d𝑐0dπ‘₯

    d𝐹dπ‘₯ +

    d2𝐹dπ‘₯2 +

    πœ”2

    𝑐20𝐹 = 0 . (3.13)

    And rearranging leads to the equation

    d2𝐹dπ‘₯2 +

    1𝑐0

    d𝑐0dπ‘₯

    d𝐹dπ‘₯ βˆ’

    14𝑐20

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2𝐹 + 12𝑐0

    d2𝑐0dπ‘₯2 𝐹 +

    πœ”2

    𝑐20𝐹 = 0 . (3.14)

    8

  • 3.2 Analytical solutions for unknown temperature functions

    Imposing the variable πœ‚ from Eq. (3.3) then it is possible to write Eq. (3.14) in thefollowing form

    1𝑐20

    d2𝐹dπœ‚2 +

    ddπ‘₯

    (οΈ‚ 1𝑐0

    )οΈ‚ d𝐹dπœ‚ +

    1𝑐20

    d𝑐0dπ‘₯

    d𝐹dπœ‚ βˆ’

    14𝑐20

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2𝐹 + 12𝑐0

    d2𝑐0dπ‘₯2 𝐹 +

    πœ”2

    𝑐20𝐹 = 0 . (3.15)

    After modification Eq. (3.15) takes the form

    d2𝐹dπœ‚2 + πœ”

    2𝐹 = 𝐹[οΈƒ

    14

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2βˆ’ 𝑐02

    d2𝑐0dπ‘₯2

    ]οΈƒ. (3.16)

    Equation (3.16) is an ordinary differential equation with varible coefficients. In orderto get an ordinary differential equation with constant coefficients, it is necessary toequalise the expression in the square brackets using a constant π‘Ÿ2. After this step isobtained

    d2𝐹dπœ‚2 + πœ”

    2𝐹 = π‘Ÿ2𝐹 (3.17)

    andπ‘Ÿ2 = 14

    (οΈ‚d𝑐0dπ‘₯

    )οΈ‚2βˆ’ 𝑐02

    d2𝑐0dπ‘₯2 . (3.18)

    In solving the differential equation (3.18) its solution can be written as

    𝑐0(π‘₯) =14

    (︀𝐴2 βˆ’ 4π‘Ÿ2

    )οΈ€π‘₯2

    𝐡+𝐴π‘₯+𝐡 , (3.19)

    where 𝐴 and 𝐡 are integration constants.After some small algebraic manipulation the relation (3.19) can be expressed in the

    convenient form

    𝑐0(π‘₯) = 𝑐𝐴

    [οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯2 + 2𝐴π‘₯+ 1

    ]οΈƒ. (3.20)

    Now, let us remember some relations with characteristic temperature 𝑇𝐴. Fromprevious chapter

    𝑐0(𝑇𝐴) = 𝑐𝐴 , 𝜌0(𝑇𝐴) = 𝜌𝐴 . (3.21)

    From Eqs. (2.11) and (2.27) it follows that

    𝑐0(π‘₯) =βˆšοΈΞΊπ‘…π‘‡0(π‘₯) . (3.22)

    As Eq. (3.22) takes place then with the help of Eq. (3.20) it is possible to write atemperature relation

    𝑇0(π‘₯) =𝑐2𝐴κ𝑅

    [οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯2 + 2𝐴π‘₯+ 1

    ]οΈƒ2. (3.23)

    According to Eqs. (2.36) and (3.23)

    𝑇0(π‘₯) = 𝑇𝐴

    [οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯2 + 2𝐴π‘₯+ 1

    ]οΈƒ2, (3.24)

    where 𝑇𝐴 = 𝑐2𝐴/(κ𝑅) .

    9

  • 3 Exact analytical solutions for various temperature functions

    Using expressions (2.36) temperature-inhomogeneous region 𝑇0 can be expressed indimensionless form (see e.g. [4])

    Ξ(𝜎) = 𝑇0(𝜎)𝑇𝐴

    =[οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )︃𝐿2𝜎2 + 2𝐴𝐿𝜎 + 1

    ]οΈƒ2. (3.25)

    Let characteristic length 𝐿 be equal to 1 m. By choosing different values of constants𝐴, π‘Ÿ and velocity 𝑐𝐴 it is possible to see exemplary solutions for temperature Ξ amongmany instances.

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    𝜎

    Ξ

    𝑐𝐴 = 345 msβˆ’1, |π‘Ÿ| = 597.558 sβˆ’1, 𝐴 = 1 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    𝜎

    Ξ

    𝑐𝐴 = 345 msβˆ’1, |π‘Ÿ| = 172.5 sβˆ’1, 𝐴 = βˆ’ 0.008 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    𝜎

    Ξ

    𝑐𝐴 = 345 msβˆ’1, |π‘Ÿ| = 301.39 sβˆ’1, 𝐴 = 0.662 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    𝜎

    Ξ

    𝑐𝐴 = 345 msβˆ’1, |π‘Ÿ| = 0.97 sβˆ’1, 𝐴 = 0.328 mβˆ’1

    Fig. 2 Dimensionless temperature function Ξ(𝜎) for different coefficients of Eq. (3.25).

    To solve Eq. (3.17) let us use the following substitution

    πœ‰2 = πœ”2 βˆ’ π‘Ÿ2 , (3.26)

    where πœ”2βˆ’π‘Ÿ2 > 0, because an evanescent wave is not considered. After this substitutionEq. (3.17) can be written as

    d2𝐹dπœ‚2 + πœ‰

    2𝐹 = 0 . (3.27)

    The above equation is a second-order linear ordinary differential equation, where thediscriminant is less than zero. Then the roots of the characteristic equation of Eq.(3.27) are complex

    πœ†1,2 = Β±jπœ‰ . (3.28)

    10

  • 3.2 Analytical solutions for unknown temperature functions

    The solution of Eq. (3.27) is then

    𝐹 (πœ‚) = 𝐢1 cos(πœ‰πœ‚) + 𝐢2 sin(πœ‰πœ‚) , (3.29)

    where 𝐢1 and 𝐢2 are constants.According to Eqs. (3.3) and (3.20) the variable πœ‚ can be written as

    πœ‚ =∫︁ π‘₯

    0

    1𝑐0(π‘₯1)

    dπ‘₯1 =∫︁ π‘₯

    0

    1

    𝑐𝐴

    [οΈ‚(︂𝐴2 βˆ’ π‘Ÿ2

    𝑐2𝐴

    )οΈ‚π‘₯21 + 2𝐴π‘₯1 + 1

    ]οΈ‚ dπ‘₯1 . (3.30)After integration the variable πœ‚ can be written as

    πœ‚ = βˆ’ 1|π‘Ÿ|

    tanh-1[︃𝑐𝐴|π‘Ÿ|

    (︃𝐴+

    (︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯1

    )οΈƒ]οΈƒβƒ’βƒ’βƒ’βƒ’βƒ’π‘₯

    0= βˆ’ 1

    |π‘Ÿ|𝜈(π‘₯) , (3.31)

    where

    𝜈(π‘₯) = tanh-1[︃𝑐𝐴|π‘Ÿ|

    (︃𝐴+

    (︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯

    )οΈƒ]οΈƒβˆ’ tanh-1

    (︂𝑐𝐴|π‘Ÿ|𝐴

    )οΈ‚. (3.32)

    The absolute value of 𝑐𝐴 was omitted, because 𝑇𝐴 is an indoor temperature when𝑐𝐴 > 0.

    Now the function 𝐹 (π‘₯) can be written as

    𝐹 (π‘₯) = 𝐢1 cos(οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚βˆ’ 𝐢2 sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚. (3.33)

    Taking into account Eq. (3.8), the solution of the Helmholtz equation (2.33) is

    𝑉 (π‘₯) =βˆšοΈπ‘0(π‘₯)𝐹 (π‘₯) =

    βŽ―βŽΈβŽΈβŽ·π‘π΄[οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯2 + 2𝐴π‘₯+ 1

    ]οΈƒ

    Γ—[︂𝐢1 cos

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚βˆ’ 𝐢2 sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚]οΈ‚. (3.34)

    The dimensionless form of the velocity is (see e.g. [4])

    Ο’(𝜎) = 𝑉 (𝜎)𝑐𝐴

    =

    ⎯⎸⎸⎷ 1𝑐𝐴

    [οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )︃𝐿2𝜎2 + 2𝐴𝐿𝜎 + 1

    ]οΈƒ

    Γ—[︂𝐢1 cos

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝜎)

    )οΈ‚βˆ’ 𝐢2 sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝜎)

    )οΈ‚]οΈ‚, (3.35)

    where

    𝜈(𝜎) = tanh-1[︃𝑐𝐴|π‘Ÿ|

    (︃𝐴+

    (︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπΏπœŽ

    )οΈƒ]οΈƒβˆ’ tanh-1

    (︂𝑐𝐴|π‘Ÿ|𝐴

    )οΈ‚. (3.36)

    3.2.2 Second method of finding an analytical solution

    Now let us solve Eq. (2.30). It can be rewritten once more

    d2𝑃dπ‘₯2 +

    1𝑇0

    d𝑇0dπ‘₯

    d𝑃dπ‘₯ +

    πœ”2

    𝑐20𝑃 = 0 . (3.37)

    11

  • 3 Exact analytical solutions for various temperature functions

    Using Eqs. (3.1)–(3.7) the above equation can be written as

    1𝑐20

    d2𝑃dπœ‚2 +

    ddπ‘₯

    (οΈ‚ 1𝑐0

    )οΈ‚ d𝑃dπœ‚ +

    1𝑇0

    d𝑇0dπ‘₯

    1𝑐0

    d𝑃dπœ‚ +

    πœ”2

    𝑐20𝑃 = 0 . (3.38)

    From Eq. (3.22) can be derived

    d𝑇0dπ‘₯ =

    1κ𝑅

    d𝑐20dπ‘₯ . (3.39)

    Multiplying Eq. (3.39) by 1/𝑇0 leads to

    1𝑇0

    d𝑇0dπ‘₯ =

    2𝑐0𝑐20

    d𝑐0dπ‘₯ . (3.40)

    So, Eq. (3.37) can be modified as follows

    1𝑐20

    d2𝑃dπœ‚2 βˆ’

    1𝑐20

    d𝑐0dπ‘₯

    d𝑃dπœ‚ +

    2𝑐0𝑐30

    d𝑐0dπ‘₯

    d𝑃dπœ‚ +

    πœ”2

    𝑐20𝑃 = 0 , (3.41)

    and after rearranging and reducing it becomes

    d2𝑃dπœ‚2 +

    d𝑐0dπ‘₯

    d𝑃dπœ‚ + πœ”

    2𝑃 = 0 . (3.42)

    In order to solve Eq. (3.42) as an ordinary differential equation with constant coeffi-cients, it is necessary take into account that d𝑐0/dπ‘₯ = π‘π‘œπ‘›π‘ π‘‘. Let this constant be π‘ž1.Thus, 𝑐0 has the form

    𝑐0(π‘₯) = π‘ž1π‘₯+ π‘ž2 , (3.43)

    where π‘ž1 and π‘ž2 are integration constants and π‘ž2 β‰₯ 0.By choosing π‘ž2 = 𝑐𝐴 and denoting π‘ž1/π‘ž2 = π‘ž the form is

    𝑐0(π‘₯) = 𝑐𝐴(π‘žπ‘₯+ 1) . (3.44)

    According to Eq. (3.22), function 𝑇0(π‘₯) is equal to

    𝑇0(π‘₯) = 𝑇𝐴 (π‘žπ‘₯+ 1)2 , (3.45)

    where

    𝑇𝐴 =𝑐2𝐴κ𝑅

    . (3.46)

    Using expressions (2.36) the dimensionless form of temperature-inhomogeneous re-gion 𝑇0 (see e.g. [4])

    Ξ(𝜎) = 𝑇0(𝜎)𝑇𝐴

    = (π‘žπΏπœŽ + 1)2 . (3.47)

    By choosing different values of constant π‘ž and letting 𝐿 = 1 m, it is possible to seeexemplary solutions for temperature Ξ among many instances.

    12

  • 3.2 Analytical solutions for unknown temperature functions

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    𝜎

    Ξ

    π‘ž = 1 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    𝜎

    Ξ

    π‘ž = βˆ’ 0.5 mβˆ’1

    Fig. 3 Dimensionless temperature function Ξ(𝜎) for different coefficients of Eq. (3.47).

    To solve Eq. (3.42) let us substitute the expression of sound velocity (3.44). ThenEq. (3.42) takes the form

    d2𝑃dπœ‚2 + π‘π΄π‘ž

    d𝑃dπœ‚ + πœ”

    2𝑃 = 0 . (3.48)

    The solution of the above equation can be found through the characteristic equationof an appropriate equation.

    πœ†2 + π‘π΄π‘žπœ†+ πœ”2 = 0 . (3.49)

    The discriminant of Eq. (3.49) is

    Ξ” = 𝑐2π΄π‘ž2 βˆ’ 4πœ”2 . (3.50)

    There are different possible solutions according to the sign of the discriminant. Thesolutions are represented below in the table, where 𝐢1 and 𝐢2 are constants.

    Ξ” > 0 Ξ” = 0 Ξ” < 0

    πœ†1,2 = βˆ’π‘π΄π‘žΒ±βˆš

    Ξ”2 πœ†1 = πœ†2 = βˆ’

    12π‘π΄π‘ž πœ†1,2 =

    βˆ’π‘π΄π‘žΒ±i√

    Ξ”2

    𝑃 (πœ‚) = 𝐢1𝑒(βˆ’12 π‘π΄π‘ž+

    12

    βˆšΞ”)πœ‚

    +𝐢2𝑒(βˆ’12 π‘π΄π‘žβˆ’

    12

    βˆšΞ”)πœ‚

    𝑃 (πœ‚) = π‘’βˆ’12 π‘π΄π‘žπœ‚

    Γ— [𝐢1 + 𝐢2πœ‚]𝑃 (πœ‚) = π‘’βˆ’

    12 π‘π΄π‘žπœ‚

    [︁𝐢1 cos

    (︁12√

    Ξ”πœ‚)︁

    + 𝐢2 sin(︁

    12√

    Ξ”πœ‚)︁]︁

    Tab. 1 The solution of Eq. (3.48).

    According to Eqs. (3.3) and (3.44) the variable πœ‚ can be written as

    πœ‚ =∫︁ π‘₯

    0

    1𝑐0(π‘₯1)

    dπ‘₯1 =∫︁ π‘₯

    0

    1𝑐𝐴(π‘žπ‘₯1 + 1)

    dπ‘₯1 . (3.51)

    Notice that π‘₯1 cannot be equal to βˆ’1/π‘ž.After integration the variable πœ‚ can be written as

    πœ‚ = ln (π‘žπ‘₯1 + 1)π‘π΄π‘ž

    βƒ’βƒ’βƒ’βƒ’π‘₯0

    = 1π‘π΄π‘ž

    ln (π‘žπ‘₯+ 1) . (3.52)

    Now it is possible to write the solution of Eq. (2.30) according to the discriminantof Eq. (3.49)

    13

  • 3 Exact analytical solutions for various temperature functions

    βˆ™ If Ξ” > 0, an evanescent wave is not considered.βˆ™ If Ξ” = 0,

    𝑃 (π‘₯) = 1βˆšπ‘žπ‘₯+ 1 [𝐢1 + 𝐢2 ln(π‘žπ‘₯+ 1)] , (3.53)

    where 𝐢1 and 𝐢2 are integration constants. According to Eqs. (2.36) and (3.21)the dimensionless form of the pressure is (see e.g. [4])

    Ξ¦(𝜎) = 1βˆšπ‘žπΏπœŽ + 1

    [𝐢1 + 𝐢2 ln(π‘žπΏπœŽ + 1)] , (3.54)

    where 𝐢1 and 𝐢2 are new constants.βˆ™ If Ξ” < 0,

    𝑃 (π‘₯) = 1βˆšπ‘žπ‘₯+ 1

    [︃𝐢1 cos

    (οΈƒβˆšοΈƒ14 βˆ’

    πœ”2

    𝑐2π΄π‘ž2 ln(π‘žπ‘₯+ 1)

    )οΈƒ

    +𝐢2 sin(οΈƒβˆšοΈƒ

    14 βˆ’

    πœ”2

    𝑐2π΄π‘ž2 ln(π‘žπ‘₯+ 1)

    )οΈƒ]οΈƒ, (3.55)

    where 𝐢1 and 𝐢2 are integration constants. The dimensionless form of this solutionis (see e.g. [4])

    Ξ¦(𝜎) = 1βˆšπ‘žπΏπœŽ + 1

    [︃𝐢1 cos

    (οΈƒβˆšοΈƒ14 βˆ’

    πœ”2

    𝑐2π΄π‘ž2 ln (π‘žπΏπœŽ + 1)

    )οΈƒ

    +𝐢2 sin(οΈƒβˆšοΈƒ

    14 βˆ’

    πœ”2

    𝑐2π΄π‘ž2 ln (π‘žπΏπœŽ + 1)

    )οΈƒ]οΈƒ, (3.56)

    where 𝐢1 and 𝐢2 are new constants.

    3.2.3 Third method of finding an analytical solutionThere is one more possible way to solve Eq. (2.28). Let us start with multiplying thisequation by 𝑐20

    πœ•2𝑝′

    πœ•π‘‘2βˆ’ 𝑐

    20𝑇0

    d𝑇0dπ‘₯

    πœ•π‘β€²

    πœ•π‘₯βˆ’ 𝑐20

    πœ•2𝑝′

    πœ•π‘₯2= 0 . (3.57)

    With reference to the following expression

    𝑐20𝑇0

    πœ•

    πœ•π‘₯

    (︂𝑇0πœ•π‘β€²

    πœ•π‘₯

    )οΈ‚= 𝑐

    20𝑇0

    d𝑇0dπ‘₯

    πœ•π‘β€²

    πœ•π‘₯+ 𝑐20

    πœ•2𝑝′

    πœ•π‘₯2, (3.58)

    Eq. (3.57) can be written as (see e.g. [6])

    πœ•2𝑝′

    πœ•π‘‘2βˆ’ 𝑐

    20𝑇0

    πœ•

    πœ•π‘₯

    (︂𝑇0πœ•π‘β€²

    πœ•π‘₯

    )οΈ‚= 0 . (3.59)

    Now let us substitute a new function 𝐹 (π‘₯, 𝑑) instead of the pressure

    𝑝′(π‘₯, 𝑑) = 𝐹 (π‘₯, 𝑑)/βˆšοΈπ‘‡0(π‘₯) . (3.60)

    Equation (3.59) takes the form

    πœ•2(︀𝐹/

    βˆšπ‘‡0)οΈ€

    πœ•π‘‘2βˆ’ 𝑐

    20𝑇0

    πœ•

    πœ•π‘₯

    (︃𝑇0πœ•(︀𝐹/

    βˆšπ‘‡0)οΈ€

    πœ•π‘₯

    )οΈƒ= 0 . (3.61)

    14

  • 3.3 Finding analytical solutions for known temperature distributions

    Applying all simplifications, the above equation takes the form

    πœ•2𝐹

    πœ•π‘₯2βˆ’ 1𝑐20

    πœ•2𝐹

    πœ•π‘‘2= 1√

    𝑇0

    d2βˆšπ‘‡0

    dπ‘₯2 𝐹 . (3.62)

    Let us remove from Eq. (3.62) derivatives dependent on t. The function F canbe represented as 𝐹 = 𝐹 (π‘₯, 𝑑) = 𝐹 (π‘₯)π‘’βˆ’jπœ”π‘‘ for this purpose. After substitution andrearranging the resulting equation is

    d2𝐹dπ‘₯2 =

    (οΈƒ1βˆšπ‘‡0

    d2βˆšπ‘‡0

    dπ‘₯2 βˆ’πœ”2

    𝑐20

    )︃𝐹 . (3.63)

    Concerning Eq. (3.22) and the right part in brackets of the equation above, which isa constant 𝑑, it is possible to derive the following equation

    1𝑐0

    d2𝑐0dπ‘₯2 βˆ’

    πœ”2

    𝑐20= 𝑑 . (3.64)

    This is a nonlinear second-order ordinary differential equation, that can be solvedby an appropriate numerical method, but unfortunately its analytical solution is notknown and for this reason Eq. (2.28) cannot be solved analytically.

    3.3 Finding analytical solutions for known temperaturedistributions

    Let us write Eq. (3.37) once more

    d2𝑃dπ‘₯2 +

    1𝑇0

    d𝑇0dπ‘₯

    d𝑃dπ‘₯ +

    πœ”2

    𝑐20𝑃 = 0 . (3.65)

    According to the transformations (3.1) and (3.7) it is possible to express the followingderivatives

    d𝑃dπ‘₯ =

    d𝑃d𝑇0

    d𝑇0dπ‘₯ , (3.66)

    d2𝑃dπ‘₯2 =

    (οΈ‚d𝑇0dπ‘₯

    )οΈ‚2 d2𝑃d𝑇 20

    + d2𝑇0

    dπ‘₯2d𝑃d𝑇0

    . (3.67)

    Substituting expressions (3.66) and (3.67) into Eq. (3.65), using the equality 𝑐20 =κ𝑅𝑇0 and rearranging the terms leads to the equation(οΈ‚d𝑇0

    dπ‘₯

    )οΈ‚2 d2𝑃d𝑇 20

    +[οΈƒ

    1𝑇0

    (οΈ‚d𝑇0dπ‘₯

    )οΈ‚2+ d

    2𝑇0dπ‘₯2

    ]οΈƒd𝑃d𝑇0

    + πœ”2

    κ𝑅𝑃

    𝑇0= 0 . (3.68)

    Keeping in mind the equality

    ddπ‘₯

    (︂𝑇0

    d𝑇0dπ‘₯

    )οΈ‚= d𝑇0dπ‘₯

    d𝑇0dπ‘₯ + 𝑇0

    d2𝑇0dπ‘₯2 =

    (οΈ‚d𝑇0dπ‘₯

    )οΈ‚2+ 𝑇0

    d2𝑇0dπ‘₯2 , (3.69)

    Eq. (3.68) can be written as (see e.g. [3])(οΈ‚d𝑇0dπ‘₯

    )οΈ‚2 d2𝑃d𝑇 20

    + 1𝑇0

    ddπ‘₯

    (︂𝑇0

    d𝑇0dπ‘₯

    )οΈ‚ d𝑃d𝑇0

    + πœ”2

    κ𝑅𝑃

    𝑇0= 0 . (3.70)

    15

  • 3 Exact analytical solutions for various temperature functions

    3.3.1 Linear temperature distributionIn this section an acoustic pressure of a duct with a linear temperature distribution isstudied. The linear temperature distribution can be given by the expression (see e.g.[3])

    𝑇0(π‘₯) = 𝑇𝐴(𝐴π‘₯+ 1) , (3.71)where 𝐴 is constant.

    The dimensionless form of a temperature function Ξ is according to Eq. (2.36) (seee.g. [4])

    Ξ(𝜎) = 𝑇0(𝜎)𝑇𝐴

    = 𝐴𝐿𝜎 + 1 . (3.72)

    Some dimensionless linear temperature distributions are made possible by choosingdifferent values of constant 𝐴 and letting 𝐿 = 1 m are shown in Fig. 4.

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    𝜎

    Ξ

    𝐴 = 1 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    𝜎

    Ξ

    𝐴 = βˆ’ 0.5 mβˆ’1

    Fig. 4 Some possible linear dimensionless temperature distributions Ξ.

    As derivatives of the temperature function (3.71) are

    d𝑇0dπ‘₯ = 𝑇𝐴𝐴 and

    ddπ‘₯

    (︂𝑇0

    d𝑇0dπ‘₯

    )οΈ‚= ddπ‘₯

    (︁𝑇 2𝐴𝐴

    2π‘₯+ 𝑇 2𝐴𝐴)︁

    = 𝑇 2𝐴𝐴2 , (3.73)

    then multiplying Eq. (3.70) by 1/𝑇 2𝐴𝐴2 and substituting the above derivatives into thisequation obtains the following equation (see e.g. [3])

    d2𝑃d𝑇 20

    + 1𝑇0

    d𝑃d𝑇0

    + πœ”2/(︀𝑇 2𝐴𝐴

    2)︀κ𝑅

    𝑃

    𝑇0= 0 . (3.74)

    To simplify Eq. (3.74) a new independent variable 𝑠 is introduced

    𝑠2 = π‘Žπ‘‡0 , (3.75)

    where the constant π‘Ž is given by

    π‘Ž = 4πœ”2

    𝑇 2𝐴𝐴2κ𝑅

    . (3.76)

    It is necessary to know the first and the second derivatives of a new variable 𝑠 withrespect to 𝑇0

    2𝑠d𝑠 = π‘Žd𝑇0 β‡’d𝑠d𝑇0

    = π‘Ž2𝑠 , (3.77)

    16

  • 3.3 Finding analytical solutions for known temperature distributions

    2(οΈ‚ d𝑠

    d𝑇0

    )οΈ‚2+ 2𝑠 d

    2𝑠

    d𝑇 20= 0 β‡’ d

    2𝑠

    d𝑇 20= βˆ’ π‘Ž

    2

    4𝑠3 . (3.78)

    According to transformation of derivatives the derivatives of Eq. (3.74) then

    d𝑃d𝑇0

    = d𝑃d𝑇0d𝑠d𝑇0

    = π‘Ž2𝑠d𝑃d𝑇0

    , (3.79)

    d2𝑃d𝑇 20

    =(οΈ‚ d𝑠

    d𝑇0

    )οΈ‚2 d2𝑃d𝑠2 +

    d2𝑠d𝑇 20

    d𝑃d𝑠 =

    π‘Ž2

    4𝑠2d2𝑃d𝑠2 βˆ’

    π‘Ž2

    4𝑠3d𝑃d𝑠 , (3.80)

    and Eq. (3.74) transforms to Eq. (3.83). Some steps of transforming are included

    π‘Ž2

    4𝑠2d2𝑃d𝑠2 βˆ’

    (οΈƒπ‘Ž2

    4𝑠3 βˆ’π‘Ž2

    2𝑠3

    )οΈƒd𝑃d𝑠 +

    π‘Ž2

    4𝑠2𝑃 = 0 , (3.81)

    π‘Ž2

    4𝑠2d2𝑃d𝑠2 +

    π‘Ž2

    4𝑠3d𝑃d𝑠 +

    π‘Ž2

    4𝑠2𝑃 = 0 . (3.82)

    By multiplying Eq. (3.82) by 4𝑠2/π‘Ž2 the final equation after the transformation is

    d2𝑃d𝑠2 +

    1𝑠

    d𝑃d𝑠 + 𝑃 = 0 . (3.83)

    Equation (3.83) is the zeroth order Bessel equation. The solution to the equation iswell known and given by

    𝑃 (𝑠) = 𝐢1J0(𝑠) + 𝐢2Y0(𝑠) , (3.84)

    where 𝐢1 and 𝐢2 are complex integration constants, J0 and Y0 are the Bessel andNeumann functions of the order zero.

    Let us express variable 𝑠

    𝑠 =βˆšοΈ€π‘Žπ‘‡0 =

    βˆšοΈƒ4πœ”2

    𝑇 2𝐴𝐴2κ𝑅

    βˆšοΈ€π‘‡0 =

    πœ”

    𝑏

    βˆšοΈ€π‘‡0 , (3.85)

    where𝑏 = 𝑇𝐴|𝐴|2

    βˆšΞΊπ‘… . (3.86)

    Then acoustic pressure can be rewritten as

    𝑃 (𝑇0) = 𝐢1J0(οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡0

    )οΈ‚+ 𝐢2Y0

    (οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡0

    )οΈ‚. (3.87)

    Let us substitute temperature distribution (3.71)

    𝑃 (π‘₯) = 𝐢1J0(οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴π‘₯+ 1)

    )οΈ‚+ 𝐢2Y0

    (οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴π‘₯+ 1)

    )οΈ‚. (3.88)

    The dimensionless form of the pressure is (see e.g. [4])

    Φ(𝜎) = 𝐢1J0(︁𝐡

    √𝐴𝐿𝜎 + 1

    )︁+ 𝐢2Y0

    (︁𝐡

    √𝐴𝐿𝜎 + 1

    )︁, (3.89)

    where 𝐢1, 𝐢2 are new constants, 𝐡 =(οΈ€πœ”

    βˆšπ‘‡π΄)οΈ€/𝑏.

    17

  • 3 Exact analytical solutions for various temperature functions

    3.3.2 Exponential temperature distributionThis section investigates the acoustic pressure of a duct with an exponential tempera-ture distribution that is given by the expression (see e.g. [3])

    𝑇0(π‘₯) = π‘‡π΄π‘’βˆ’π›Ύπ‘₯ , (3.90)

    where 𝑇𝐴 and 𝛾 are constants.The dimensionless form Ξ of the temperature-inhomogeneous region 𝑇0 is (see e.g.

    [4])

    Ξ(𝜎) = 𝑇0(𝜎)𝑇𝐴

    = π‘’βˆ’π›ΎπΏπœŽ . (3.91)

    Some dimensionless exponential temperature distributions made possible by choosingdifferent values of constant 𝛾 and letting 𝐿 = 1 m are shown in Fig. 5.

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    3

    𝜎

    Ξ

    𝛾 = βˆ’ ln 3 mβˆ’1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    𝜎

    Ξ

    𝛾 = βˆ’ ln 0.5 mβˆ’1

    Fig. 5 Some possible exponential dimensionless temperature distributions Ξ.

    Let us find derivatives to substitute into Eq. (3.70)

    d𝑇0dπ‘₯ = βˆ’π‘‡π΄π›Ύπ‘’

    βˆ’π›Ύπ‘₯ and ddπ‘₯

    (︂𝑇0

    d𝑇0dπ‘₯

    )οΈ‚= ddπ‘₯

    (οΈβˆ’π‘‡ 2π΄π›Ύπ‘’βˆ’2𝛾π‘₯

    )︁= 2𝑇 2𝐴𝛾2π‘’βˆ’2𝛾π‘₯ .

    (3.92)Substituting into Eq. (3.70) and reducing gives the equation

    (π‘‡π΄π›Ύπ‘’βˆ’π›Ύπ‘₯)2d2𝑃d𝑇 20

    + 2𝑇𝐴𝛾2π‘’βˆ’π›Ύπ‘₯d𝑃d𝑇0

    + πœ”2

    κ𝑅𝑃

    π‘‡π΄π‘’βˆ’π›Ύπ‘₯= 0 . (3.93)

    Multiplying Eq. (3.93) by 1/𝛾2

    (π‘‡π΄π‘’βˆ’π›Ύπ‘₯)2d2𝑃d𝑇 20

    + 2π‘‡π΄π‘’βˆ’π›Ύπ‘₯d𝑃d𝑇0

    + πœ”2

    κ𝑅𝛾2𝑃

    π‘‡π΄π‘’βˆ’π›Ύπ‘₯= 0 (3.94)

    and using backward substitition π‘‡π΄π‘’βˆ’π›Ύπ‘₯ = 𝑇0 leads to the equation (see e.g. [3])

    𝑇 20d2𝑃d𝑇 20

    + 2𝑇0d𝑃d𝑇0

    + πœ”2

    κ𝑅𝛾2𝑃

    𝑇0= 0 . (3.95)

    To simplify the previous equation two new variables 𝑀 and 𝑧 are introduced

    𝑀 = π‘ƒβˆšοΈ€π‘‡0 and 𝑧2 = πœ›

    1𝑇0

    , (3.96)

    18

  • 3.3 Finding analytical solutions for known temperature distributions

    where constant πœ› isπœ› = 4πœ”

    2

    κ𝑅𝛾2. (3.97)

    1. Let us start to work with variable 𝑀 in the following three steps:βˆ™ expressing the derivatives to substitute into Eq. (3.95)

    d𝑃d𝑇0

    = dd𝑇0

    (︃𝑀

    𝑇1/20

    )οΈƒ= 1𝑇

    1/20

    d𝑀d𝑇0

    βˆ’ 12𝑀

    𝑇3/20

    . (3.98)

    d2𝑃d𝑇 20

    = βˆ’121

    𝑇3/20

    d𝑀d𝑇0

    + 1𝑇

    1/20

    d2𝑀d𝑇 20

    βˆ’ 12

    [︃𝑇

    3/20 d𝑀/d𝑇0 βˆ’ 3/2𝑀𝑇

    1/20

    𝑇 30

    ]οΈƒ

    = βˆ’ 1𝑇

    3/20

    d𝑀d𝑇0

    + 1𝑇

    1/20

    d2𝑀d𝑇 20

    + 34𝑀

    𝑇5/20

    . (3.99)

    βˆ™ substitution into Eq. (3.95)

    𝑇 20

    [οΈƒβˆ’ 1𝑇

    3/20

    d𝑀d𝑇0

    + 1𝑇

    1/20

    d2𝑀d𝑇 20

    + 34𝑀

    𝑇5/20

    ]οΈƒ+ 2𝑇0

    [οΈƒ1

    𝑇1/20

    d𝑀d𝑇0

    βˆ’ 12𝑀

    𝑇3/20

    ]οΈƒ

    + πœ”2

    κ𝑅𝛾2𝑀

    𝑇3/20

    = 0 . (3.100)

    βˆ™ multiplying and rearranging terms in the previous equation gives the equationbelow

    𝑇3/20

    d2𝑀d𝑇 20

    + 𝑇 1/20d𝑀d𝑇0

    βˆ’ 14𝑀

    𝑇1/20

    + πœ”2

    κ𝑅𝛾2𝑀

    𝑇3/20

    = 0 . (3.101)

    2. Now let us work with the second variable 𝑧:βˆ™ finding the first and the second derivatives of a new variable 𝑧 with respect

    to the temperature 𝑇0

    2𝑧d𝑧 = βˆ’πœ› 1𝑇 20

    d𝑇0 β‡’d𝑧d𝑇0

    = βˆ’πœ›2𝑧1𝑇 20

    , (3.102)

    d2𝑧d𝑇 20

    = βˆ’πœ›2

    (οΈ‚βˆ’ 1𝑧2

    1𝑇 20

    d𝑧d𝑇0

    βˆ’ 2 1𝑇 30

    1𝑧

    )οΈ‚= πœ›2

    (οΈ‚21𝑧

    1𝑇 30

    βˆ’ πœ›2𝑧31𝑇 40

    )οΈ‚= πœ›

    𝑧

    1𝑇 30

    βˆ’ πœ›2

    4𝑧31𝑇 40

    d𝑧d𝑇0

    . (3.103)

    βˆ™ according to the transformation of derivatives the derivatives of Eq. (3.101)then

    d𝑀d𝑇0

    = d𝑀d𝑧d𝑧d𝑇0

    = βˆ’πœ›2𝑧1𝑇 20

    d𝑀d𝑧 , (3.104)

    d2𝑀d𝑇 20

    =(οΈ‚ d𝑧

    d𝑇0

    )οΈ‚2 d2𝑀d𝑧2 +

    d2𝑧d𝑇 20

    d𝑀d𝑧 =

    πœ›2

    4𝑧21𝑇 40

    d2𝑀d𝑧2 +

    (οΈƒπœ›

    𝑧

    1𝑇 30

    βˆ’ πœ›2

    4𝑧31𝑇 40

    )οΈƒd𝑀d𝑧 .

    (3.105)

    19

  • 3 Exact analytical solutions for various temperature functions

    βˆ™ substituting the above derivatives into Eq. (3.101)

    𝑇3/20

    [οΈƒπœ›2

    4𝑧21𝑇 40

    d2𝑀d𝑧2 +

    (οΈƒπœ›

    𝑧

    1𝑇 30

    βˆ’ πœ›2

    4𝑧31𝑇 40

    )οΈƒd𝑀d𝑧

    ]οΈƒβˆ’ 𝑇 1/20

    πœ›

    2𝑧1𝑇 20

    d𝑀d𝑧 βˆ’

    14

    𝑀

    𝑇1/20

    + πœ›4𝑀

    𝑇3/20

    = 0 . (3.106)

    βˆ™ reducing and rearranging of terms

    πœ›2

    4𝑧21

    𝑇5/20

    d2𝑀d𝑧2 +

    (οΈƒπœ›

    2𝑧1

    𝑇3/20

    βˆ’ πœ›2

    4𝑧31

    𝑇5/20

    )οΈƒd𝑀d𝑧 βˆ’

    14

    𝑀

    𝑇1/20

    + πœ›4𝑀

    𝑇3/20

    = 0 . (3.107)

    βˆ™ from Eqs. (3.96) it follows that 𝑇0 = πœ›/𝑧2, substitution of this equality intoEq. (3.107)

    πœ›2

    4𝑧2𝑧5

    πœ›5/2d2𝑀d𝑧2 +

    (οΈƒπœ›

    2𝑧𝑧3

    πœ›3/2βˆ’ πœ›

    2

    4𝑧3𝑧5

    πœ›5/2

    )οΈƒd𝑀d𝑧 βˆ’

    14𝑀𝑧

    πœ›1/2+πœ›4

    𝑀𝑧3

    πœ›3/2= 0 . (3.108)

    βˆ™ after some reductions and rearranging some terms𝑧3

    4πœ›1/2d2𝑀d𝑧2 +

    14𝑧2

    πœ›1/2d𝑀d𝑧 βˆ’

    14𝑀𝑧

    πœ›1/2+ 14

    𝑀𝑧3

    πœ›1/2= 0 . (3.109)

    βˆ™ multiplying the above equation by 4πœ›1/2/𝑧3

    d2𝑀d𝑧2 +

    1𝑧

    d𝑀d𝑧 +

    (οΈ‚1 βˆ’ 1

    𝑧2

    )︂𝑀 = 0 . (3.110)

    Equation (3.110) is the first order Bessel differential equation. The solution is givenas

    𝑀(𝑧) = 𝐢1J1(𝑧) + 𝐢2Y1(𝑧) , (3.111)

    where 𝐢1 and 𝐢2 are integration complex constants and J1 and Y1 are the Bessel andNeumann functions of the first order. Let us express variable 𝑧

    𝑧 =βˆšοΈ‚πœ›

    𝑇0=βˆšοΈƒ

    4πœ”2κ𝑅𝛾2

    βˆšοΈƒ1𝑇0

    = πœ”πœ‘ 1βˆšπ‘‡0

    , (3.112)

    whereπœ‘ = 2βˆšοΈ€

    κ𝑅𝛾2. (3.113)

    So, the solution of Eq. (3.110) can be written in the form

    𝑀(𝑇0) = 𝐢1J1(οΈ‚πœ”πœ‘

    1βˆšπ‘‡0

    )οΈ‚+ 𝐢2Y1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡0

    )οΈ‚. (3.114)

    According to Eqs. (3.96) the acoustic pressure then is

    𝑃 (𝑇0) =𝑀(𝑇0)βˆšπ‘‡0

    = 1βˆšπ‘‡0

    [︂𝐢1J1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡0

    )οΈ‚+ 𝐢2Y1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡0

    )οΈ‚]οΈ‚. (3.115)

    Let us substitute temperature distribution (3.90)

    𝑃 (π‘₯) = 1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    [︂𝐢1J1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    )οΈ‚+ 𝐢2Y1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    )οΈ‚]οΈ‚. (3.116)

    The dimensionless form of the pressure is (see e.g. [4])

    Ξ¦(𝜎) =βˆšπ‘’π›ΎπΏπœŽ

    [︁𝐢1J1

    (︁𝐡

    βˆšπ‘’π›ΎπΏπœŽ

    )︁+ 𝐢2Y1

    (︁𝐡

    βˆšπ‘’π›ΎπΏπœŽ

    )︁]︁, (3.117)

    where 𝐢1, 𝐢2 are new constants, 𝐡 = (πœ”πœ‘)/βˆšπ‘‡π΄ .

    20

  • 4 Transmission and reflection coefficients

    This chapter deals with the calculation of transmission and reflection coefficients forexact analytical solutions derived in the previous chapter.

    4.1 Sound velocity

    The first exact analytical solution was derived for an acoustic velocity. Consider thereflection and transmission problem through the temperature-inhomogeneous regionfor an incident plane wave sketched in Fig. 6. The wave is partly reflected and partlytransmitted (see e.g. [2]).

    Region A

    𝑉𝑖

    π‘‰π‘Ÿ

    𝑇𝐴

    𝑉𝐴(π‘₯)

    Region B

    𝑉𝑑

    𝑇𝐡

    𝑉𝐡(π‘₯)

    Temperature –inhomogeneous region

    𝑉 (π‘₯)

    0 π‘₯𝐿

    Fig. 6 Reflection and transmission of a sound velocity in a waveguide (see e.g. [2]).

    It is essential to know the amplitudes π‘‰π‘Ÿ and 𝑉𝑑 of the reflected and transmittedwaves respectively and their integral constants.

    In the region A can be written

    𝑉𝐴 = 𝑉𝑖𝑒jπ‘˜π΄π‘₯ + π‘‰π‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯ , (4.1)

    where the quantities 𝑉𝑖 and π‘‰π‘Ÿ are the complex velocity amplitudes of the incidentand reflected waves, and

    π‘˜π΄ =πœ”

    𝑐𝐴. (4.2)

    In the temperature-inhomogeneous region the velocity amplitude is given by Eq.(3.34). Let us write it once more

    𝑉 (π‘₯) =βˆšοΈπ‘0(π‘₯)𝐹 (π‘₯) =

    βŽ―βŽΈβŽΈβŽ·π‘π΄[οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯2 + 2𝐴π‘₯+ 1

    ]οΈƒ

    Γ—[︂𝐢1 cos

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚βˆ’ 𝐢2 sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(π‘₯)

    )οΈ‚]οΈ‚, (4.3)

    21

  • 4 Transmission and reflection coefficients

    where

    𝜈(π‘₯) = tanh-1[︃𝑐𝐴|π‘Ÿ|

    (︃𝐴+

    (︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )οΈƒπ‘₯

    )οΈƒ]οΈƒβˆ’ tanh-1

    (︂𝑐𝐴|π‘Ÿ|𝐴

    )οΈ‚, πœ‰2 = πœ”2 βˆ’ π‘Ÿ2 . (4.4)

    In the region B can be written

    𝑉𝐡 = 𝑉𝑑𝑒jπ‘˜π΅(π‘₯βˆ’πΏ) , (4.5)

    where 𝑉𝑑 is the complex acoustic velocity amplitude of the transmitted wave and

    𝑐𝐡 =βˆšοΈ€ΞΊπ‘…π‘‡π΅ , (4.6a) π‘˜π΅ =

    πœ”

    𝑐𝐡. (4.6b)

    The acoustic velocities must be the same on the interface of temperature-homogeneousand temperature-inhomogeneous regions. This is true for the both interfaces that havecoordinates π‘₯ = 0 and π‘₯ = 𝐿. Consequently, there are two conditions in the waveguide

    1. condition𝑉𝐴(0) = 𝑉 (0) , (4.7)

    2. condition𝑉𝐡(𝐿) = 𝑉 (𝐿) . (4.8)

    But these conditions contain four unknown variables π‘‰π‘Ÿ, 𝑉𝑑, 𝐢1 and 𝐢2. So, it isnecessary to impose two more conditions.

    From the equation of continuity (2.20) and Eq. (2.27) the following equation can bewritten

    πœ•π‘β€²

    πœ•π‘‘+ 𝜌0𝑐20

    πœ•π‘£

    πœ•π‘₯= 0 . (4.9)

    Substitution of the equalities (2.29) and (2.32) into Eq. (4.9)

    𝑃 (π‘₯) = 𝜌0𝑐20

    jπœ”d𝑉dπ‘₯ . (4.10)

    Let us distinguish densities and velocities in temperature-homogeneous regions 𝐴 and𝐡

    𝜌0(π‘₯ = 0) = 𝜌𝐴 , 𝑐0(π‘₯ = 0) =βˆšοΈ€ΞΊπ‘…π‘‡π΄ = 𝑐𝐴 , (4.11)

    𝜌0(π‘₯ = 𝐿) = 𝜌𝐡 , 𝑐0(π‘₯ = 𝐿) =βˆšοΈ€ΞΊπ‘…π‘‡π΅ = 𝑐𝐡 . (4.12)

    From Eqs. (4.1), (4.5), (4.10), (4.11), (4.12) the acoustic pressures in regions A andB are

    𝑃𝐴 =πœŒπ΄π‘

    2𝐴

    jπœ” jπ‘˜π΄(︁𝑉𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘‰π‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁, (4.13)

    𝑃𝐡 =πœŒπ΅π‘

    2𝐡

    jπœ” jπ‘˜π΅π‘‰π‘‘π‘’jπ‘˜π΅(π‘₯βˆ’πΏ) . (4.14)

    The pressures also must be the same on the interface of temperature-homogeneousand temperature-inhomogeneous regions. For the interface at coordinate π‘₯ = 0 thefollowing steps are introduced

    𝑃𝐴|π‘₯=0 = 𝑃 (π‘₯)|π‘₯=0 , (4.15)

    22

  • 4.1 Sound velocity

    πœŒπ΄π‘2𝐴

    jπœ” jπ‘˜π΄(︁𝑉𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘‰π‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁⃒⃒⃒⃒⃒

    π‘₯=0= πœŒπ΄π‘

    2𝐴

    jπœ”d𝑉dπ‘₯

    βƒ’βƒ’βƒ’βƒ’βƒ’π‘₯=0

    . (4.16)

    After reducing the term πœŒπ΄π‘2𝐴/jπœ” in Eq. (4.16) the left part jπ‘˜π΄(︁𝑉𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘‰π‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁

    then is the acoustic velocity derivative d𝑉𝐴/dπ‘₯. So,d𝑉𝐴dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    = jπ‘˜π΄ (𝑉𝑖 βˆ’ π‘‰π‘Ÿ) =d𝑉dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    . (4.17)

    Similarly, the acoustic velocity derivative at coordinate π‘₯ = 𝐿 isd𝑉𝐡dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    = jπ‘˜π΅π‘‰π‘‘ =d𝑉dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    . (4.18)

    As a consequence, the acoustic velocity derivatives must be the same on the inter-face of temperature-homogeneous and temperature-inhomogeneous regions. For bothinterfaces at coordinates π‘₯ = 0 and π‘₯ = 𝐿 the two following boundary conditions aredefined

    3. conditiond𝑉𝐴dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    = d𝑉dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    , (4.19)

    4. conditiond𝑉𝐡dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    = d𝑉dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    . (4.20)

    Substituting Eqs. (4.1), (4.3), (4.5) into the four derived boundary conditions (4.7),(4.8), (4.19), (4.20) produces the following system of equations

    𝑉𝑖 + π‘‰π‘Ÿ = 𝐢1𝐺1 , (4.21)𝑉𝑑 = 𝐢1𝐻1 + 𝐢2𝐻2 , (4.22)

    jπ‘˜π΄ (𝑉𝑖 βˆ’ π‘‰π‘Ÿ) = 𝐢1𝑀1 + 𝐢2𝑀2 , (4.23)jπ‘˜π΅π‘‰π‘‘ = 𝐢1𝑁1 + 𝐢2𝑁2 , (4.24)

    where

    𝐺1 =βˆšπ‘π΄ , πœ“(𝐿) = 𝐴+

    (︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )︃𝐿 , πœ‰ =

    βˆšοΈ€πœ”2 βˆ’ π‘Ÿ2 , (4.25)

    πœ’(𝐿) =

    βŽ―βŽΈβŽΈβŽ·π‘π΄[οΈƒ(︃𝐴2 βˆ’ π‘Ÿ

    2

    𝑐2𝐴

    )︃𝐿2 + 2𝐴𝐿+ 1

    ]οΈƒ, (4.26)

    𝜈(𝐿) = tanh-1[︂𝑐𝐴|π‘Ÿ|πœ“(𝐿)

    ]οΈ‚βˆ’ tanh-1

    (︂𝑐𝐴|π‘Ÿ|𝐴

    )οΈ‚, (4.27)

    𝐻1 = πœ’(𝐿) cos(οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚, 𝐻2 = βˆ’πœ’(𝐿) sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚, (4.28)

    𝑀1 =βˆšπ‘π΄π΄ , 𝑀2 =

    πœ‰βˆšπ‘π΄

    , (4.29)

    𝜚(𝐿) =πœ‰π‘π΄

    (︂𝐴2 βˆ’ π‘Ÿ2

    𝑐2𝐴

    )οΈ‚πœ’(𝐿)

    𝑐2π΄πœ“2(𝐿) βˆ’ π‘Ÿ2

    , π‘˜(𝐿) = π‘π΄πœ“(𝐿)πœ’(𝐿) , (4.30)

    𝑁1 = 𝜚(𝐿) sin(οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚+ π‘˜(𝐿) cos

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚, (4.31)

    𝑁2 = 𝜚(𝐿) cos(οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚βˆ’ π‘˜(𝐿) sin

    (οΈ‚πœ‰

    |π‘Ÿ|𝜈(𝐿)

    )οΈ‚. (4.32)

    23

  • 4 Transmission and reflection coefficients

    Solving the system of Eqs. (4.21)–(4.24) obtains

    𝐢1 =2π‘˜π΄ (π‘˜π΅π»2 + j𝑁2)𝑉𝑖

    π‘˜π΄π‘˜π΅πΊ1𝐻2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄πΊ1𝑁2 + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)], (4.33)

    𝐢2 = βˆ’2π‘˜π΄ (π‘˜π΅π»1 + j𝑁1)𝑉𝑖

    π‘˜π΄π‘˜π΅πΊ1𝐻2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄πΊ1𝑁2 + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)], (4.34)

    π‘‰π‘Ÿ =(π‘˜π΄π‘˜π΅πΊ1𝐻2 βˆ’π‘€1𝑁2 +𝑀2𝑁1 + j [π‘˜π΄πΊ1𝑁2 βˆ’ π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)])π‘‰π‘–π‘˜π΄π‘˜π΅πΊ1𝐻2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄πΊ1𝑁2 + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]

    , (4.35)

    𝑉𝑑 =j2π‘˜π΄ (𝐻1𝑁2 βˆ’π»2𝑁1)𝑉𝑖

    π‘˜π΄π‘˜π΅πΊ1𝐻2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄πΊ1𝑁2 + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]. (4.36)

    As 𝑉𝑖 is optional, the reflection coefficient 𝑅(𝑣) and transmission coefficient π‘‡π‘Ÿ(𝑣) canbe calculated on the basis of solutions of the system equations. The coefficients (seee.g. [2], [4]) are defined by

    𝑅(𝑣) = π‘‰π‘Ÿπ‘‰π‘–

    (4.37)

    and

    π‘‡π‘Ÿ(𝑣) = 𝑉𝑑𝑉𝑖. (4.38)

    By supposing values of air constants as ΞΊ = 7/5 and 𝑅 = 287.058 Jkgβˆ’1Kβˆ’1, settingthe characteristic length 𝐿 to 1 m and choosing different values of constants 𝐴, π‘Ÿ andvelocity 𝑐𝐴 it is possible to see a frequency dependence of the wave reflection andtransmission coefficients of the exact analytical solutions given by Eq. (4.3). Hereattention must be paid to one serious condition

    πœ‰2 = πœ”2 βˆ’ π‘Ÿ2 β‰₯ 0 . (4.39)

    That is why the graphs start at point πœ” = |π‘Ÿ|.

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    πœ” (rad/s)

    |R(v

    ) |(-

    )

    Reflection coefficient

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    πœ” (rad/s)

    |Tr(v

    ) |(-

    )

    Transmission coefficient

    Fig. 7 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 msβˆ’1,|π‘Ÿ| = 597.558 sβˆ’1, 𝐴 = 1 mβˆ’1 in Eq. (4.3) on angular frequency.

    24

  • 4.1 Sound velocity

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    πœ” (rad/s)

    |R(v

    ) |(-

    )

    Reflection coefficient

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.84

    0.85

    0.85

    0.85

    0.85

    0.85

    0.86

    0.86

    0.86

    πœ” (rad/s)

    |Tr(v

    ) |(-

    )

    Transmission coefficient

    Fig. 8 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 msβˆ’1,|π‘Ÿ| = 172.5 sβˆ’1, 𝐴 = βˆ’0.008 mβˆ’1 in Eq. (4.3) on angular frequency.

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    πœ” (rad/s)

    |R(v

    ) |(-

    )

    Reflection coefficient

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0001.34

    1.36

    1.38

    1.4

    1.42

    1.44

    1.46

    πœ” (rad/s)

    |Tr(v

    ) |(-

    )Transmission coefficient

    Fig. 9 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 msβˆ’1,|π‘Ÿ| = 301.39 sβˆ’1, 𝐴 = βˆ’0.662 mβˆ’1 in Eq. (4.3) on angular frequency.

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    πœ” (rad/s)

    |R(v

    ) |(-

    )

    Reflection coefficient

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0001.27

    1.28

    1.29

    1.3

    1.31

    1.32

    1.33

    1.34

    1.35

    1.36

    πœ” (rad/s)

    |Tr(v

    ) |(-

    )

    Transmission coefficient

    Fig. 10 Dependence of modulii of reflection and transmission coefficients for 𝑐𝐴 = 345 msβˆ’1,|π‘Ÿ| = 0.97 sβˆ’1, 𝐴 = 0.328 mβˆ’1 in Eq. (4.3) on angular frequency.

    25

  • 4 Transmission and reflection coefficients

    4.2 Sound pressure

    The following exact analytical solutions are derived for sound pressure.Consider the reflection and transmission problem through the temperature-inhomoge-

    neous region for an incident plane wave sketched in Fig. 11. The wave is partly reflectedand partly transmitted as it was for sound velocity, but now the object of interest issound pressure (see e.g. [2], [4]).

    Region A

    𝑃𝑖

    π‘ƒπ‘Ÿ

    𝑇𝐴

    𝑃𝐴(π‘₯)

    Region B

    𝑃𝑑

    𝑇𝐡

    𝑃𝐡(π‘₯)

    Temperature –inhomogeneous region

    𝑃 (π‘₯)

    0 π‘₯𝐿

    Fig. 11 Reflection and transmission of a sound pressure in a waveguide (see e.g. [2], [4]).

    Now, it is necessary to know the amplitudes π‘ƒπ‘Ÿ and 𝑃𝑑 of reflected and transmittedwaves respectively and also their integral constants.

    In the region A can be written

    𝑃𝐴 = 𝑃𝑖𝑒jπ‘˜π΄π‘₯ + π‘ƒπ‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯ , (4.40)

    where the quantities 𝑃𝑖 and π‘ƒπ‘Ÿ are the complex velocity amplitudes of the incidentand reflected waves, and the same Eq. (4.2) is applied.

    In the region B can be written

    𝑃𝐡 = 𝑃𝑑𝑒jπ‘˜π΅(π‘₯βˆ’πΏ) , (4.41)

    where 𝑉𝑑 is the complex velocity amplitude of the transmitted wave, and Eqs. (4.6)are true.

    In the temperature-inhomogeneous region pressure amplitude is given by appropriateequalities, derived in the previous chapter, and all of these equalities are discussedbelow.

    To calculate π‘ƒπ‘Ÿ, 𝑃𝑑, 𝐢1 and 𝐢2 it is necessary to deduce boundary conditions. Theseconditions can be imposed in a similar manner to boundary conditions of sound velocity.

    From the linear form of the Euler equation (2.22) it follows that

    πœ•π‘£

    πœ•π‘‘= βˆ’ 1

    𝜌0

    πœ•π‘β€²

    πœ•π‘₯. (4.42)

    After substitution of equalities (2.29) and (2.32) into Eq. (4.42)

    πœ•

    πœ•π‘‘

    (︁𝑉 (π‘₯)π‘’βˆ’jπœ”π‘‘

    )︁= βˆ’ 1

    𝜌0

    πœ•

    πœ•π‘₯

    (︁𝑃 (π‘₯)π‘’βˆ’jπœ”π‘‘

    )︁(4.43)

    26

  • 4.2 Sound pressure

    the amplitude of sound velocity then is

    𝑉 (π‘₯) = 1j𝜌0πœ”d𝑃dπ‘₯ . (4.44)

    From Eqs. (4.11), (4.12), (4.40), (4.41), (4.44) the acoustic velocities at regions Aand B are

    𝑉𝐴 =jπ‘˜π΄

    jπœŒπ΄πœ”(︁𝑃𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁, (4.45)

    𝑉𝐡 =jπ‘˜π΅

    jπœŒπ΅πœ”π‘ƒπ‘‘π‘’

    jπ‘˜π΅(π‘₯βˆ’πΏ) . (4.46)

    The velocities also must be the same on the interface of temperature-homogeneousand temperature-inhomogeneous regions. For an interface at coordinate π‘₯ = 0 thefollowing steps are introduced

    𝑉𝐴|π‘₯=0 = 𝑉 (π‘₯)|π‘₯=0 , (4.47)

    jπ‘˜π΄jπœŒπ΄πœ”

    (︁𝑃𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁⃒⃒⃒⃒

    π‘₯=0= 1jπœŒπ΄πœ”

    d𝑃dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    . (4.48)

    After reducing the term 1/jπœŒπ΄πœ” in Eq. (4.48) the left part jπ‘˜π΄(︁𝑃𝑖𝑒

    jπ‘˜π΄π‘₯ βˆ’ π‘ƒπ‘Ÿπ‘’βˆ’jπ‘˜π΄π‘₯)︁

    isthen an acoustic pressure derivative d𝑃𝐴/dπ‘₯. So

    d𝑃𝐴dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    = jπ‘˜π΄ (𝑃𝑖 βˆ’ π‘ƒπ‘Ÿ) =d𝑃dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    . (4.49)

    Similarly, the acoustic pressure derivative at coordinate π‘₯ = 𝐿 isd𝑃𝐡dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    = jπ‘˜π΅π‘ƒπ‘‘ =d𝑃dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    . (4.50)

    Finally, the four boundary conditions for the rest analytical solutions can be intro-duced

    1. condition𝑃𝐴(0) = 𝑃 (0) , (4.51)

    2. condition𝑃𝐡(𝐿) = 𝑃 (𝐿) , (4.52)

    3. conditiond𝑃𝐴dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    = d𝑃dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=0

    , (4.53)

    4. conditiond𝑃𝐡dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    = d𝑃dπ‘₯

    βƒ’βƒ’βƒ’βƒ’π‘₯=𝐿

    . (4.54)

    4.2.1 Second exact analytical solutionIn the temperature-inhomogeneous region the pressure amplitude is given by Eqs. (3.53)and (3.55).

    βˆ™ Ξ” = 𝑐2π΄π‘ž2 βˆ’ 4πœ”2 = 0Let us write Eq. (3.53) once more

    𝑃 (π‘₯) = 1βˆšπ‘žπ‘₯+ 1 [𝐢1 + 𝐢2 ln(π‘žπ‘₯+ 1)] . (4.55)

    For this solution only one frequency can be found, that is why we are not interestedin this solution.

    27

  • 4 Transmission and reflection coefficients

    βˆ™ Ξ” = 𝑐2π΄π‘ž2 βˆ’ 4πœ”2 < 0According to Eq. (4.2) the exact analytical solution (3.55) can be rewritten as

    𝑃 (π‘₯) = 1βˆšπ‘žπ‘₯+ 1

    ⎑⎣𝐢1 cosβŽ›βŽβˆšοΈƒ1

    4 βˆ’π‘˜2π΄π‘ž2

    ln(π‘žπ‘₯+ 1)

    ⎞⎠+𝐢2 sin

    βŽ›βŽβˆšοΈƒ14 βˆ’

    π‘˜2π΄π‘ž2

    ln(π‘žπ‘₯+ 1)

    ⎞⎠⎀⎦ . (4.56)According to the system of Eqs. (4.51)–(4.54), the system of equations for theexact analytical solution (4.56) is then

    𝑃𝑖 + π‘ƒπ‘Ÿ = 𝐢1 , (4.57)𝑃𝑑 = 𝐢1𝐻1 + 𝐢2𝐻2 , (4.58)

    jπ‘˜π΄ (𝑃𝑖 βˆ’ π‘ƒπ‘Ÿ) = 𝐢1𝑀1 + 𝐢2𝑀2 , (4.59)jπ‘˜π΅π‘ƒπ‘‘ = 𝐢1𝑁1 + 𝐢2𝑁2 , (4.60)

    where

    πœ’(𝐿) =

    βˆšοΈƒ14 βˆ’

    π‘˜2π΄π‘ž2

    ln(π‘žπΏ+ 1) , (4.61)

    𝐻1 =1√

    π‘žπΏ+ 1cos (πœ’(𝐿)) , 𝐻2 =

    1βˆšπ‘žπΏ+ 1

    sin (πœ’(𝐿)) , (4.62)

    𝑀1 = βˆ’12π‘ž , 𝑀2 = π‘ž

    βˆšοΈƒ14 βˆ’

    π‘˜2π΄π‘ž2

    , (4.63)

    𝑁1 = βˆ’π‘ž(π‘žπΏ+ 1)βˆ’32

    ⎑⎣12 cos (πœ’(𝐿)) +

    βˆšοΈƒ14 βˆ’

    π‘˜2π΄π‘ž2

    sin (πœ’(𝐿))

    ⎀⎦ , (4.64)𝑁2 = βˆ’π‘ž(π‘žπΏ+ 1)βˆ’

    32

    ⎑⎣12 sin (πœ’(𝐿)) βˆ’

    βˆšοΈƒ14 βˆ’

    π‘˜2π΄π‘ž2

    cos (πœ’(𝐿))

    ⎀⎦ . (4.65)The solution of the system of Eqs. (4.57)–(4.60) is

    𝐢1 =2π‘˜π΄ (π‘˜π΅π»2 + j𝑁2)𝑃𝑖

    π‘˜π΄π‘˜π΅π»2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄π‘2 βˆ’ π‘˜π΅ (𝐻2𝑀1 βˆ’π»1𝑀2)], (4.66)

    𝐢2 = βˆ’2π‘˜π΄ (π‘˜π΅π»1 + j𝑁1)𝑃𝑖

    π‘˜π΄π‘˜π΅π»2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄π‘2 βˆ’ π‘˜π΅ (𝐻2𝑀1 βˆ’π»1𝑀2)], (4.67)

    π‘ƒπ‘Ÿ =(π‘˜π΄π‘˜π΅π»2 βˆ’π‘€1𝑁2 +𝑀2𝑁1 + j [π‘˜π΄π‘2 + π‘˜π΅ (𝐻2𝑀1 βˆ’π»1𝑀2)])π‘ƒπ‘–π‘˜π΄π‘˜π΅π»2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄π‘2 βˆ’ π‘˜π΅ (𝐻2𝑀1 βˆ’π»1𝑀2)]

    , (4.68)

    𝑃𝑑 =j2π‘˜π΄ (𝐻1𝑁2 βˆ’π»2𝑁1)𝑃𝑖

    π‘˜π΄π‘˜π΅π»2 +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄π‘2 βˆ’ π‘˜π΅ (𝐻2𝑀1 βˆ’π»1𝑀2)]. (4.69)

    The calculation of reflection and transmission coefficients (𝑃𝑖 is optional) is thesame as for sound velocity (see e.g. [2], [4])

    𝑅(𝑃 ) = π‘ƒπ‘Ÿπ‘ƒπ‘–

    (4.70)

    andπ‘‡π‘Ÿ(𝑃 ) = 𝑃𝑑

    𝑃𝑖. (4.71)

    28

  • 4.2 Sound pressure

    By supposing values of air constants as ΞΊ = 7/5 and 𝑅 = 287.058 Jkgβˆ’1Kβˆ’1, settingthe characteristic length 𝐿 to 1 m and choosing different values of constants π‘ž, 𝑇𝐴it is possible to see a frequency dependence of the wave reflection and transmissioncoefficients of the exact analytical solutions given by Eq. (4.56). Ξ” = 𝑐2π΄π‘ž2 βˆ’ 4πœ”2 < 0,𝑐𝐴 > 0 and from Eq. (4.56) it can be concluded that πœ” > βˆ’1/π‘ž, then only π‘ž > 0 canbe examined. Let us choose 𝑇𝐴 = 296 K and some different values of π‘ž to see thesefrequency dependencies.

    0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,0000.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    πœ” (rad/s)

    |R(p

    ) |(-

    )

    Reflection coefficient

    π‘ž = 1 mβˆ’1π‘ž = 2 mβˆ’1π‘ž = 3 mβˆ’1

    0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,0000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    πœ” (rad/s)

    |Tr(p

    ) |(-

    )

    Transmission coefficient

    π‘ž = 1 mβˆ’1π‘ž = 2 mβˆ’1π‘ž = 3 mβˆ’1

    Fig. 12 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K anddifferent values of π‘ž in Eq. (4.56) on angular frequency.

    4.2.2 Exact analytical solution for a linear temperature distributionThe exact analytical solution for a linear temperature distribution from Chapter 3 is

    𝑃 (π‘₯) = 𝐢1J0(οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴π‘₯+ 1)

    )οΈ‚+ 𝐢2Y0

    (οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴π‘₯+ 1)

    )οΈ‚, (4.72)

    where 𝑏 = 𝑇𝐴|𝐴|βˆšΞΊπ‘…/2 .

    After all calculations according to the system of Eqs. (4.51)–(4.54) the followingsystem of equations is produced

    𝑃𝑖 + π‘ƒπ‘Ÿ = 𝐢1𝐺1 + 𝐢2𝐺2 , (4.73)𝑃𝑑 = 𝐢1𝐻1 + 𝐢2𝐻2 , (4.74)

    jπ‘˜π΄ (𝑃𝑖 βˆ’ π‘ƒπ‘Ÿ) = 𝐢1𝑀1 + 𝐢2𝑀2 , (4.75)jπ‘˜π΅π‘ƒπ‘‘ = 𝐢1𝑁1 + 𝐢2𝑁2 , (4.76)

    where

    𝐺1 = J0(οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡π΄

    )οΈ‚, 𝐺2 = Y0

    (οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡π΄

    )οΈ‚, (4.77)

    𝐻1 = J0(οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴𝐿+ 1)

    )οΈ‚, 𝐻2 = Y0

    (οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴𝐿+ 1)

    )οΈ‚, (4.78)

    𝑀1 = βˆ’πœ”π΄

    2π‘βˆšοΈ€π‘‡π΄J1

    (οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡π΄

    )οΈ‚, 𝑀2 = βˆ’

    πœ”π΄

    2π‘βˆšοΈ€π‘‡π΄Y1

    (οΈ‚πœ”

    𝑏

    βˆšοΈ€π‘‡π΄

    )οΈ‚, (4.79)

    𝑁1 = βˆ’πœ”π΄

    2𝑏

    βˆšοΈƒπ‘‡π΄

    𝐴𝐿+ 1J1(οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴𝐿+ 1)

    )οΈ‚, (4.80)

    𝑁2 = βˆ’πœ”π΄

    2𝑏

    βˆšοΈƒπ‘‡π΄

    𝐴𝐿+ 1Y1(οΈ‚πœ”

    𝑏

    βˆšοΈπ‘‡π΄(𝐴𝐿+ 1)

    )οΈ‚. (4.81)

    29

  • 4 Transmission and reflection coefficients

    Solution of the system of Eqs. (4.73)–(4.76) is

    𝐢1 =2π‘˜π΄ (π‘˜π΅π»2 + j𝑁2)𝑃𝑖

    π‘˜π΄π‘˜π΅ (𝐺1𝐻2 βˆ’πΊ2𝐻1) +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄ (𝐺1𝑁2 βˆ’πΊ2𝑁1) + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)],

    (4.82)𝐢2 = βˆ’1Γ—

    2π‘˜π΄ (π‘˜π΅π»1 + j𝑁1)π‘ƒπ‘–π‘˜π΄π‘˜π΅ (𝐺1𝐻2 βˆ’πΊ2𝐻1) +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄ (𝐺1𝑁2 βˆ’πΊ2𝑁1) + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]

    ,

    (4.83)π‘ƒπ‘Ÿ = π‘ƒπ‘–Γ—π‘˜π΄π‘˜π΅ (𝐺1𝐻2 βˆ’πΊ2𝐻1) βˆ’π‘€1𝑁2 +𝑀2𝑁1 + j [π‘˜π΄ (𝐺1𝑁2 βˆ’πΊ2𝑁1) βˆ’ π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]π‘˜π΄π‘˜π΅ (𝐺1𝐻2 βˆ’πΊ2𝐻1) +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄ (𝐺1𝑁2 βˆ’πΊ2𝑁1) + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]

    ,

    (4.84)𝑃𝑑 = 𝑃𝑖×

    j2π‘˜π΄ (𝐻1𝑁2 βˆ’π»2𝑁1)π‘˜π΄π‘˜π΅ (𝐺1𝐻2 βˆ’πΊ2𝐻1) +𝑀1𝑁2 βˆ’π‘€2𝑁1 + j [π‘˜π΄ (𝐺1𝑁2 βˆ’πΊ2𝑁1) + π‘˜π΅ (𝐻1𝑀2 βˆ’π»2𝑀1)]

    .

    (4.85)

    The reflection and transmission coefficients can be calculated according to Eqs.(4.70), (4.71) (see e.g. [2], [4]).

    By supposing values of constants for air as ΞΊ = 7/5 and 𝑅 = 287.058 Jkgβˆ’1Kβˆ’1,setting the characteristic length 𝐿 to 1 m and choosing different values of constants 𝐴,𝑇𝐴 it is possible to see a frequency dependence of the wave reflection and transmissioncoefficients of the exact analytical solution given by Eq. (4.72). Let us choose 𝑇𝐴 = 296K for a positive temperature gradient, 𝑇𝐴 = 752 K for a negative temperature gradientand some different values of 𝐴 to see these frequency dependencies.

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.05

    0.1

    0.15

    0.2

    0.25

    πœ” (rad/s)

    |R(p

    ) |(-

    )

    Reflection coefficient

    𝐴 = 456/𝑇𝐴 mβˆ’1𝐴 = 238/𝑇𝐴 mβˆ’1𝐴 = 110/𝑇𝐴 mβˆ’1

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.76

    0.78

    0.8

    0.82

    0.84

    0.86

    0.88

    0.9

    0.92

    0.94

    πœ” (rad/s)

    |Tr(p

    ) |(-

    )

    Transmission coefficient

    𝐴 = 456/𝑇𝐴 mβˆ’1𝐴 = 238/𝑇𝐴 mβˆ’1𝐴 = 110/𝑇𝐴 mβˆ’1

    Fig. 13 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K anddifferent values of 𝐴 (positive gradient) in Eq. (4.72) on angular frequency.

    30

  • 4.2 Sound pressure

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000

    0.05

    0.1

    0.15

    0.2

    0.25

    πœ” (rad/s)

    |R(p

    ) |(-

    )

    Reflection coefficient

    𝐴 = βˆ’218/𝑇𝐴 mβˆ’1𝐴 = βˆ’346/𝑇𝐴 mβˆ’1𝐴 = βˆ’456/𝑇𝐴 mβˆ’1

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    πœ” (rad/s)

    |Tr(p

    ) |(-

    )

    Transmission coefficient

    𝐴 = βˆ’218/𝑇𝐴 mβˆ’1𝐴 = βˆ’346/𝑇𝐴 mβˆ’1𝐴 = βˆ’456/𝑇𝐴 mβˆ’1

    Fig. 14 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 752 K anddifferent values of 𝐴 (negative gradient) in Eq. (4.72) on angular frequency.

    4.2.3 Exact analytical solution for an exponential temperature distribution

    The exact analytical solution for an exponential temperature distribution was derivedin the previous chapter

    𝑃 (π‘₯) = 1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    [︂𝐢1J1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    )οΈ‚+ 𝐢2Y1

    (οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄π‘’βˆ’π›Ύπ‘₯

    )οΈ‚]οΈ‚, (4.86)

    where πœ‘ = 2/βˆšοΈ€ΞΊπ‘…π›Ύ2 .

    According to the system of Eqs. (4.51)–(4.54), the system of equations for an exactanalytical solution (4.86) is the same as the system of Eqs. (4.73)–(4.76), therefore thesolution has the form of Eqs. (4.82)–(4.85), but notations 𝐺1, 𝐺2, 𝐻1, 𝐻2, 𝑀1, 𝑀2, 𝑁1and 𝑁2 have different meanings

    𝐺1 =1βˆšπ‘‡π΄

    J1(οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄

    )οΈ‚, 𝐺2 =

    1βˆšπ‘‡π΄

    Y1(οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄

    )οΈ‚, (4.87)

    𝐻1 =1βˆšοΈ€

    π‘‡π΄π‘’βˆ’π›ΎπΏJ1

    (οΈƒπœ”πœ‘

    1βˆšοΈ€π‘‡π΄π‘’βˆ’π›ΎπΏ

    )οΈƒ, 𝐻2 =

    1βˆšοΈ€π‘‡π΄π‘’βˆ’π›ΎπΏ

    Y1

    (οΈƒπœ”πœ‘

    1βˆšοΈ€π‘‡π΄π‘’βˆ’π›ΎπΏ

    )οΈƒ, (4.88)

    𝑀1 =π›Ύπœ”πœ‘

    2𝑇𝐴J0(οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄

    )οΈ‚, 𝑀2 =

    π›Ύπœ”πœ‘

    2𝑇𝐴Y0(οΈ‚πœ”πœ‘

    1βˆšπ‘‡π΄

    )οΈ‚, (4.89)

    𝑁1 =π›Ύπœ”πœ‘

    2π‘‡π΄π‘’βˆ’π›ΎπΏJ0

    (οΈƒπœ”πœ‘

    1βˆšοΈ€π‘‡π΄π‘’βˆ’π›ΎπΏ

    )οΈƒ, 𝑁2 =

    π›Ύπœ”πœ‘

    2π‘‡π΄π‘’βˆ’π›ΎπΏY0

    (οΈƒπœ”πœ‘

    1βˆšοΈ€π‘‡π΄π‘’βˆ’π›ΎπΏ

    )οΈƒ. (4.90)

    Reflection and transmission coefficients can be calculated according to Eqs. (4.70),(4.71) (see e.g. [2], [4]).

    By supposing values of air constants as ΞΊ = 7/5 and 𝑅 = 287.058 Jkgβˆ’1Kβˆ’1, settingthe characteristic length 𝐿 to 1 m and choosing different values of constants 𝛾, 𝑇𝐴it is possible to see a frequency dependence of the wave reflection and transmissioncoefficients of the exact analytical solution given by Eq. (4.86). Let us choose 𝑇𝐴 = 296K for both positive and negative temperature gradients and some different values of 𝛾to see frequency dependencies.

    31

  • 4 Transmission and reflection coefficients

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.98

    πœ” (rad/s)

    |R(p

    ) |(-

    )Reflection coefficient

    𝛾 = βˆ’ ln 1.1 mβˆ’1𝛾 = βˆ’ ln 2.0 mβˆ’1𝛾 = βˆ’ ln 3.0 mβˆ’1

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0001.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    πœ” (rad/s)

    |Tr(p

    ) |(-

    )

    Transmission coefficient

    𝛾 = βˆ’ ln 1.1 mβˆ’1𝛾 = βˆ’ ln 2.0 mβˆ’1𝛾 = βˆ’ ln 3.0 mβˆ’1

    Fig. 15 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K anddifferent values of 𝛾 (positive gradient) in Eq. (4.86) on angular frequency.

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0000.65

    0.7

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    πœ” (rad/s)

    |R(p

    ) |(-

    )

    Reflection coefficient

    𝛾 = βˆ’ ln 0.8 mβˆ’1𝛾 = βˆ’ ln 0.5 mβˆ’1𝛾 = βˆ’ ln 0.1 mβˆ’1

    0 1,000 2,000 3,000 4,000 5,000 6,000 7,0001.5

    2

    2.5

    3

    3.5

    4

    πœ” (rad/s)

    |Tr(p

    ) |(-

    )Transmission coefficient

    𝛾 = βˆ’ ln 0.8 mβˆ’1𝛾 = βˆ’ ln 0.5 mβˆ’1𝛾 = βˆ’ ln 0.1 mβˆ’1

    Fig. 16 Dependence of modulii of reflection and transmission coefficients for 𝑇𝐴 = 296 K anddifferent values of 𝛾 (negative gradient) in Eq. (4.86) on angular frequency.

    32

  • 5 Derivation of the Burgers-type equationfor temperature-inhomogeneous fluids

    In this section the Burgers-type equation for nonlinear acoustic waves in the temperature-inhomogeneous fluids and its dimensionless form is derivated. The classical Burgersequation is the most widely used model equation for studying the combined effects ofdissipation and nonlinearity on progressive plane waves (see e.g. [7]).

    5.1 Westervelt equationLet us begin with the nonlinear acoustic wave equation for progressive waves, which iscalled the Westervelt equation (see e.g. [1], [8], [9])

    οΏ½2𝑝′ = βˆ’ π›ΌπœŒ0𝑐40

    πœ•3𝑝′

    πœ•π‘‘3βˆ’ π›½πœŒ0𝑐40

    πœ•2𝑝′2

    πœ•π‘‘2, (5.1)

    where 𝛽 is the nonlinearity coefficient, 𝛼 is the sound diffusivity andοΏ½2 is the d’Alembertionoperator for plane waves. These notations mean

    𝛽 = ΞΊ + 12 ,(5.2a)

    οΏ½2(Β·) = πœ•2(Β·)πœ•π‘₯2

    βˆ’ 1𝑐20

    πœ•(Β·)πœ•π‘‘

    ,

    (5.2b)

    𝛼 = 43πœ–+ 𝜁 + πœ…(οΈƒ

    1𝑐𝑉

    βˆ’ 1𝑐𝑝

    )οΈƒβˆΌ πœ‡ ,

    (5.2c)where 𝑐𝑉 and 𝑐𝑝 are specific heats at constant volume and pressure respectively andπœ‡ < 1 a small dimensionless parameter.

    The left hand side of Eq. (5.1) represents the canonical wave equation for acousticwaves in homogeneous fluids. For temperature-inhomogeneous media it was derived thewave equation (2.24) which can be expressed as

    οΏ½2𝑖 𝑝′ = 0 , (5.3)

    where οΏ½2𝑖 (Β·) =πœ•2(Β·)πœ•π‘₯2 βˆ’

    1𝜌0

    d𝜌0dπ‘₯

    πœ•(Β·)πœ•π‘₯ βˆ’

    1𝑐20

    πœ•2(Β·)πœ•π‘‘2 is the d’Alembertion operator for plane waves

    in temperature-inhomogeneous media. On the basis of this operator the Westerveltequation (5.1) can be modified for a temperature inhomogeneous media

    οΏ½2𝑖 𝑝′ = βˆ’ 𝛼

    𝜌0𝑐40

    πœ•3𝑝′

    πœ•π‘‘3βˆ’ π›½πœŒ0𝑐40

    πœ•2𝑝′2

    πœ•π‘‘2. (5.4)

    The validity of this equation is restricted to regions with low temperature gradients.

    5.2 Burgers-type equationGiven that the spatial variation of a plane progressive acoustic wave is small enoughin proportion to one wavelength it is possible to apply the multiple-scale method tosimplify Eq. (5.4). The retarded time 𝜏 = π‘‘βˆ’ π‘₯/𝑐𝐴 is introduced.

    33

  • 5 Derivation of the Burgers-type equation for temperature-inhomogeneous fluids

    Let us find the solution of Eq. (5.4) in the form (see e.g. [7])

    𝑝 = 𝑝(π‘₯1, 𝜏) , (5.5)

    where

    π‘₯1 = πœ‡π‘₯ , (5.6a) 𝜏 = π‘‘βˆ’π‘₯

    𝑐𝐴. (5.6b)

    In the retarded time frame (i.e., for an observer in a reference frame that movesat speed 𝑐𝐴), nonlinearity and absorption separately produce only slow variations asfunctions of distance. Moreover, the relative order of the variations due to each effectis the same, i.e., it is 𝑂(πœ‡). Thus, it can be anticipated that the combined effects ofnonlinearity and absorbtion will introduce variations of the same order. The coordinateπ‘₯1 is referred to as the slow scale corresponding to the retarded time frame 𝜏 .

    To derive a simplified progressive-wave equation that accounts for both absorptionand nonlinearity, let us first rewrite Eq. (5.4) in the new coordinate system (π‘₯1, 𝜏).Transformations of the partial derivatives are

    πœ•(Β·)πœ•π‘₯

    = πœ‡πœ•(Β·)πœ•π‘₯1

    βˆ’ 1𝑐𝐴

    πœ•(Β·)πœ•πœ

    , (5.7)

    πœ•2(Β·)πœ•π‘₯2

    = βˆ’πœ‡ 2𝑐𝐴

    πœ•2(Β·)πœ•πœπœ•π‘₯1

    + 1𝑐2𝐴

    πœ•2(Β·)πœ•πœ2

    , (5.8)

    πœ•(Β·)πœ•π‘‘

    = πœ•(Β·)πœ•πœ

    ,πœ•2(Β·)πœ•π‘‘2

    = πœ•2(Β·)πœ•πœ2

    ,πœ•3(Β·)πœ•π‘‘3

    = πœ•3(Β·)πœ•πœ3

    , (5.9)

    applying the introduced notations

    πœ•2𝑝′

    πœ•π‘₯2= βˆ’πœ‡ 2

    𝑐𝐴

    πœ•2𝑝′

    πœ•πœπœ•π‘₯1+ 1𝑐2𝐴

    πœ•2𝑝′

    πœ•πœ2,

    d𝜌0dπ‘₯ = πœ‡

    d𝜌0dπ‘₯1

    ,πœ•π‘β€²

    πœ•π‘₯= πœ‡ πœ•π‘

    β€²

    πœ•π‘₯1βˆ’ 1𝑐𝐴

    πœ•π‘β€²

    πœ•πœ,

    πœ•2𝑝′

    πœ•π‘‘2= πœ•

    2𝑝′

    πœ•πœ2,

    πœ•3𝑝′

    πœ•π‘‘3= πœ•

    3𝑝′

    πœ•πœ3.

    (5.10)

    Substitution of derivatives (5.10) into Eq. (5.4) gives

    βˆ’πœ‡ 2𝑐𝐴

    πœ•2𝑝′

    πœ•πœπœ•π‘₯1+ 1𝑐2𝐴

    πœ•2𝑝′

    πœ•πœ2βˆ’πœ‡

    2

    𝜌0

    d𝜌0dπ‘₯1

    πœ•π‘β€²

    πœ•π‘₯1+ πœ‡πœŒ0𝑐𝐴

    d𝜌0dπ‘₯1

    πœ•π‘β€²

    πœ•πœβˆ’ 1𝑐20

    πœ•2𝑝′

    πœ•πœ2= βˆ’ 𝛼

    𝜌0𝑐40

    πœ•3𝑝′

    πœ•πœ3βˆ’ 2π›½πœŒ0𝑐40

    π‘β€²πœ•2𝑝′

    πœ•πœ2.

    (5.11)We are interested in the second approximation of the above equation. The third term

    in Eq. (5.11) is 𝑂(πœ‡3) and is therefore discarded. After that and small rearranging Eq.(5.11) can be written as

    βˆ’πœ‡ 2𝑐𝐴

    πœ•2𝑝′

    πœ•πœπœ•π‘₯1+(οΈƒ

    1𝑐2𝐴

    βˆ’ 1𝑐20

    )οΈƒπœ•2𝑝′

    πœ•πœ2+ πœ‡πœŒ0𝑐𝐴

    d𝜌0dπ‘₯1

    πœ•π‘β€²

    πœ•πœ= βˆ’ 𝛼

    𝜌0𝑐40

    πœ•3𝑝′

    πœ•πœ3βˆ’ 2π›½πœŒ0𝑐40

    π‘β€²πœ•2𝑝′

    πœ•πœ2. (5.12)

    Integration of Eq. (5.12) with respect to 𝜏 , multiplication of the resulting equationby βˆ’π‘π΄/2 and having noted

    βˆ’π‘π΄2

    (οΈƒ1𝑐2𝐴

    βˆ’ 1𝑐20

    )οΈƒ= 12𝑐𝐴

    𝑐2𝐴 βˆ’ 𝑐20𝑐20

    = 12𝑐𝐴𝑇𝐴 βˆ’ 𝑇0𝑇0

    = 1 βˆ’ Ξ (𝜎)2π‘π΄Ξž (𝜎)(5.13)

    34

  • 5.3 Dimensionless Burgers-type equation

    leads to equation

    πœ‡πœ•π‘β€²

    πœ•π‘₯1+ 1 βˆ’ Ξ (𝜎)2π‘π΄Ξž (𝜎)

    πœ•π‘β€²

    πœ•πœβˆ’ πœ‡2𝜌0

    d𝜌0dπ‘₯1

    𝑝′ = 𝛼𝑐𝐴2𝜌0𝑐40

    πœ•2𝑝′

    πœ•πœ2+ π›½π‘π΄πœŒ0𝑐40

    π‘β€²πœ•π‘β€²

    πœ•πœ. (5.14)

    Applying Eq. (2.26) and returning to the physical coordinate π‘₯ in place of π‘₯1 theabove equation can be written as

    πœ•π‘β€²

    πœ•π‘₯+ 1 βˆ’ Ξ (𝜎)2π‘π΄Ξž (𝜎)

    πœ•π‘β€²

    πœ•πœ+ 12𝑇0

    d𝑇0dπ‘₯ 𝑝

    β€² βˆ’ 𝛼𝑐𝐴2𝜌0𝑐40

    πœ•2𝑝′

    πœ•πœ2βˆ’ π›½π‘π΄πœŒ0𝑐40

    π‘β€²πœ•π‘β€²

    πœ•πœ= 0 , (5.15)

    and this is the Burgers-type equation for a temperature-inhomogeneous fluid.

    5.3 Dimensionless Burgers-type equationUsing expressions (2.36) the Burgers-type equation (5.15) can be written as

    πœ•Ξ πœ•πœŽ

    + [1 βˆ’ Ξ (𝜎)]πœ”πΏ2π‘π΄Ξž (𝜎)πœ•Ξ πœ•πœƒ

    + 12Ξ (𝜎)dΞ (𝜎)

    d𝜎 Ξ  βˆ’π›Όπœ”2𝐿

    2Ξ (𝜎) πœŒπ΄π‘3π΄πœ•2Ξ πœ•πœƒ2

    βˆ’ π›½πœ”πΏΞž (𝜎) π‘π΄Ξ πœ•Ξ πœ•πœƒ

    = 0 .

    (5.16)Introducing new constants

    𝑄 = πœ”πΏ2𝑐𝐴, 𝐺 = π›Όπœ”

    2𝐿

    2πœŒπ΄π‘3𝐴, 𝑁 = π›½πœ”πΏ

    𝑐𝐴(5.17)

    and remembering

    𝜎 = π‘₯𝐿, πœƒ = πœ”πœ , (5.18)

    the Burgers-type equation (5.16) can be rewritten into the form

    πœ•Ξ πœ•πœŽ

    + 1 βˆ’ Ξ(𝜎)Ξ(𝜎) π‘„πœ•Ξ πœ•πœƒ

    + 12Ξ(𝜎)ΠdΞ(𝜎)

    d𝜎 βˆ’πΊ

    Ξ(𝜎)πœ•2Ξ πœ•πœƒ2

    βˆ’ π‘Ξž(𝜎)Ξ πœ•Ξ πœ•πœƒ

    = 0 . (5.19)

    Equation (5.19) is the dimensionless Burgers-type equation for plane progressive non-linear waves in temperature-inhomogeneous fluids.

    35

  • 6 N