c.w. linac options

31
Muon Collider Design Workshop, BNL Dec-09 1 12/01/20 09 C.W. Linac Options (talk not much different from talk at High Intensity Proton Accelerator Application Workshop, FNAL October-09) Milorad Popovic FNAL

Upload: jenis

Post on 07-Feb-2016

38 views

Category:

Documents


1 download

DESCRIPTION

C.W. Linac Options (talk not much different from talk at High Intensity Proton Accelerator Application Workshop, FNAL October-09 ). Milorad Popovic FNAL. Outline of Talk. Past, Ideas, Credits Present Near Future - Cost Dream. Just One Man’s Opinion, mostly Fermi centric view. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 112/01/2009

C.W. Linac Options(talk not much different from talk at High Intensity Proton

Accelerator Application Workshop, FNAL October-09)

Milorad PopovicFNAL

Page 2: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 212/01/2009

Outline of Talk

•Past, Ideas, Credits •Present•Near Future - Cost•Dream

Just One Man’s Opinion, mostly Fermi centric view

Page 3: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 312/01/2009

Past, Ideas, Credits •Tesla demonstration of pulsed SC Structure, ~1998, •SNS Design based on SC Technology, late 1999, Y. Cho•Los Alamos ATW, APT, ~1998, D. Chan•Foster Proton Driver, 2002•CEBAF CW Upgrade … •Muon Collider People contributions Nufact05, CW Proton Linac

Linac 2000

Page 4: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 412/01/2009

Current Thinking (almost)

Page 5: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 512/01/2009

Front End

•Small Energy Spread -> DC Injector ~1MeV•Poor Capture -> DC 3mA to get out 1mA•Isochronous -> short bunch•~54MHz ~325/6MHz•Single turn Extraction H-, ~100MeV•1T magnetic Field, no problem with H- Striping•Cheap, Compact, Very Efficient ~80%•Working example PSI

Cyclotron Front End

Page 6: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 612/01/2009

Conventional Front End•Ion Source, H- , DC, < 1mA•LEBT, ~30-50 kV, short•RFQ, 162MHz , < 2.2MeV, DC, warm•MEBT, probably very short

“Low” Energy Linac•Single Spoke, ~10MeV•Double Spoke ~100MeV•Triple Spoke ~400MeV•Beta=0.81 ~1.2GeV•Beta=1, ~2.xGeV•FODO, quads

(Almost) Copy of ICD-2, Nagaitsev, Solyak, Yakovlev, et al

Copy of ICD-1, (Almost) Ostroumov, et al

Page 7: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 712/01/2009

“High” Energy Linac

•There is ~40m long warm section at 2.x GeV •Kink, ~3 degree between “Low” and “High” Energy Linacs•High Energy Linac directed ~toward DUSEL•Injection at MI10, 5GeV< Injection energy ≤ 8GeV•0.125mA < H- Current < 1mA•-5 Degree <Synchronous Phase < -2 Degree•9 Cell, 9 cavities per Cryo Module•FODO, quads outside

16MV/m < Eacc < 18MV/m

Page 8: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 812/01/2009

1MW@8GeV example, Cost from 2 to 8GeV•125MeV/Cryo module, 12 meters long•H- 0.125mA -> 16kW/Cryo Module of RF•Cryo Power at 2K 22.5W/cavity ->200W/Cryo module

ICD-2 Cost $M/unit 2-8GeV total $M#of Units

CryoModule 2.3 48 110.4IOT 0.6 48 28.8Tunel(meter) 0.03 576 17.28CryoPlant 11.2 7.5 84This is cost of 800MeV, 0.2 of 56M$ 240.48 TOTAL

Page 9: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 912/01/2009

Transition at 2.x GeV to High Energy Linac

•There is kink, about 3 degree, and warm transfer line•A Double-Bend Achromat!?( Dipole 2meter, 0.25T)•RF switching for 2.x GeV Experiments, Additional kick from middle quadrupole•Injection of H- to High Energy Linac, (may be line should be isochronous, Buncher?!)•Injection of Muons for NuFactory and Muon Collider

Page 10: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1012/01/2009

High Energy Linac, PARMILA

Page 11: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1112/01/2009

Injection & Accumulation125uA current , 1MW@8GeV -> 7.8x1014 , Main Injector can take 1.5x1014 -> total injection time in Recycler ~200msecTo ease Injection, AC Dipole scheme is envisioned, (motivated by misunderstanding Chuck, Muons Inc )

Every 20msec, circulating beam spends 4 msec on foil with H- injected beam

Page 12: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1212/01/2009

DESY data (last test) - status March 2009

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

3.5E+10

0 10 20 30 40

gradient [MV/m]

Q0

Z88 Z93 Z97 Z100 Z101 Z104 Z106 Z107 Z108 Z109 AC115 AC117 Z130 Z131

Z137 AC122 AC124 AC125 AC126 AC127 AC149 AC150 Z132 Z139 Z143

cavity type

F [MHz]

Eacc

[MV/m]

Leff, mm

Ep/Eacc Bp/Eacc mT/(MV/m)

R/Q Ω

G Ω

Q0,2K

109

Q0,4K

109

P2K

[W] P4K [W]

11-cell, β=0.81

1300 16.4 1028 2.41 5 750 228 12.7 n/a 29.92 n/a

9-cell, ILC

1300 18 1038 2 4.26 1036 270 15.0 n/a 22.46 n/a

Room (Hope) for Improvement

Qo (residual resistance) is main cost driverPoorly understood but under active investigation

Page 13: C.W. Linac Options

Slide 13

Example: Dependence on Accelerating Field Gradient (B. Rimmer)

10 15 20 25 300

0.5

1

1.5total cost

no

rmal

ized

co

st

field gradient [MV/m]

capitaloperationtotal

10 15 20 25 300

0.2

0.4

0.6

0.8capital cost

no

rmal

ized

co

st

field gradient [MV/m]

tunnellinacRFcryo

10 15 20 25 300

0.1

0.2

0.3

0.410 Yr operating cost

no

rmal

ized

co

st

field gradient [MV/m]

RFcryo

10 15 20 25 300

500

1000

1500tunnel length

len

gth

[m

]

field gradient [MV/m]10 15 20 25 30

200

400

600

800number of cavities

#

field gradient [MV/m]10 15 20 25 30

109

1010

1011

cavity Q0

Q0

field gradient [MV/m]

10 15 20 25 300

5

10

15

20IOT peak power

po

wer

[kW

]

field gradient [MV/m]10 15 20 25 300

5

10

15cryo AC power

po

wer

[M

W]

field gradient [MV/m]10 15 20 25 300

5

10cryo power fractions

po

wer

[M

W]

field gradient [MV/m]

cav. dyn.HOMinput Cstatic

Matthias Liepe, ERL 2009Cornell University, Ithaca New York

Page 14: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1412/01/2009

•Large scale CW SRF is viable•HEP is not alone, ADS, ERLs and FELs have very similar demands•Cost “optimization” Crucial -

Full multi-variable optimization absolute must, --1.3GHz??

•Why Now-Today?

Conclusions

Page 15: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1512/01/2009

Frequency Scaling of Cavity Parameters

2~ fRs

fPloss ~

resT

T

s ReKT

GHzfxR

c

8.12

5

)(

)(109

For superconducting Niobium

For superconducting case

Page 16: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1612/01/2009

H- Source•Triumf has few mA DC source, since 1997•Muons Inc. (Dudnikov) has new Penning Source•Long ~100ns notches,

LEBT

“Low” Energy & Chopping

Single solenoid, two valves, two trims, two laser ports, 60cm long, sharp notching

Page 17: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1712/01/2009

Ion Source Pulsed Extractor

Doug Moehs

61 mA

0 mA

Beam off

Beam deflection plates are part of a 50 Ohm transmission line.

75% beam extinction in 750 keV line

~2.2 microseconds between notches

Page 18: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1812/01/2009

Ion Source Pulsed Extractor

Doug Moehs

There is also aprox. 400 ns of beam recovery after the notch is turn off. Tomorrow I will look at T2 which is just before the buncher. Over night the

notch will be turned off. - D. Moehs  

Page 19: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 1912/01/2009

R Tolmin

Laser Striping

750keV H-beamMirror

Switch-Mirror

Laser-Mirror

Light guide, 6x360ns

Linac

Page 20: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 2012/01/2009

RFQ•Injection Energy can be low, ~20keV (peak current is low)•Final Energy < 2.2MeV (bellow neutron production)•RF 162MHz•Holes for Laser Beam•Warm, Q< few 1000, to have fast Amplitude/Phase Control•Fast Phase change for π/4 as way of chopping

0

2

Q

NO MEBT (Almost) Assumption is that all chopping can be done at extraction from source and usingLaser(s) H- neutralization and RFQ phase shifting.

Page 21: C.W. Linac Options

Jan-08 21 Ankenbrandt and Popovic, Fermilab 21

->eg-2

Test Facility

Booster-era Beam Transfer Scheme

Rare Kaon Decays

New 200-kW target station that can be upgraded to >2 MW

Page 22: C.W. Linac Options

Jan-08 22 Ankenbrandt and Popovic, Fermilab 22

Beam Path to 200kW target station in Project X Era

Page 23: C.W. Linac Options

23

Sitting of mu2e, g-2, Kaons, test area, 4GeV Factory

mu2e

g-2

test area factory

Rare Ks

Nufact09-IIT 2307/24/2009

Page 24: C.W. Linac Options

Jan-08 24 Ankenbrandt and Popovic, Fermilab 24

Path of Beams to 4 GeV Factory in Project XLR8 Era

Page 25: C.W. Linac Options

Neutrino Factory as 1st Step Toward Muon Collider

1GeV H- Linac <1 Structure

7GeV H- Linac =1 Structure

Proton Accumulation,Bunching Ring, 10 bunches

5x14GeV Linac =1, 50Hz

1 GeV ,200MHz Linac

4 GeV ,400MHz DogBone Linac

2-4MW-Target

Capture/Bunching/Cooling

Proton Driver 2-4MW, 5Hz

Page 26: C.W. Linac Options

8GeV H- Beam

H-Striping&ProtonAccumulation

BunchingTargeting

CuptureBunchingCoolingAcceleration

DUSEL

4 or 40GeV -Fact

Page 27: C.W. Linac Options

BunchMergingLinac

80GeVLinac

80GeVLinac

ColliderRing

Muon Collider Stage

Page 28: C.W. Linac Options
Page 29: C.W. Linac Options

WG-2, High Intensity Proton Accelerator Application Workshop, FNAL October-09 2912/01/2009

Page 30: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 3012/01/2009

The Carbon foil is 200ugr/cm^2, beam spot is 0.3 cm radius, 1.5x10^14, 5Hz, Linac Current CW125uAmp, 430turns per injection

Page 31: C.W. Linac Options

Muon Collider Design Workshop, BNL Dec-09 3112/01/2009