cyclotron rf systems€¦ · · resonator tuning · power coupling · power generation · rf...

24
sb/CAS201505/1 cyclotron RF systems sb/CAS201505/2 outline · cyclotron basics · resonator design techniques · transmission line · 3D finite element · resonator tuning · power coupling · power generation · RF control · some specific examples

Upload: others

Post on 19-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/1

cyclotron

RF

systems

sb/CAS201505/2

outline· cyclotron basics

· resonator design techniques· transmission line· 3D finite element

· resonator tuning

· power coupling

· power generation

· RF control

· some specific examples

Page 2: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/4

cyclotron basics· original observation: homogeneous magnetic field isochronous

(Lawrence & Livingston 1931)2mv

RqvB= orb

mv BqRBq 2 m

= n =p

· accelerate with RF electric field with nRF = h norb (h integer)

· drift tube linac “rolled up” in a magnetic field

Dee

sb/CAS201505/5

why it should not work

· transverse optics· homogeneous field: fieldindex n = 0

· Qz, nz= 0; no vertical stabilityè linear growth of vertical beamsize· Qr, nr= 1; resonanceè no stable orbit due to imperfections

· longitudinal optics· isochronous: no longitudinal stability· relativistic mass increaseè loss of synchronisation with accelerating voltage

Page 3: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/6

why it works after all to some extent

· fringe field effects: fieldindex n = e > 0· Qz, nz > 0; marginal vertical stability

è large beamsize è bad transmission· Qr, nr < 1; no resonance· “weak” focussing

· loss of synchronisation with accelerating voltage gradualè acceleration possible over limited number of turns· maximum energy dependent on acceleration voltage

50 keV acceleration voltage: 12 MeV protonsBethe and Rose, Phys. Rev. 52 (1937) 1254–1255

sb/CAS201505/7

how to get it really working· radially decreasing field + modulation RF frequency

è vertical and phase stabilityE. MacMillan, Phys. Rev. 68 (1945) 144V. Veksler, Phys. Rev. 69 (1946) 244

· synchro-cyclotron è synchrotron è storage ringworkhorse high energy physics

· radially increasing field + azimuthal field modulation· vertical stability and isochronism· Thomas, Phys. Rev. 54 (1938) 580 and 588· fixed RF frequency· isochronous cyclotron

workhorse nuclear physics

Page 4: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/8

· l/2 transmission line with capacitive load on both ends

· frequency variation by variation of CR

· capacitance rotating in vacuum (RotCo)

· acceleration electrode CDee

· operational parameters· acceleration voltage ~20 kV· RF power 10 – 100 kW· rep rate 100 - 400 Hz· self-oscillating· frequency swing ~20 %

synchrocyclotron

CDeeCR

600 MeV synchrocyclotron CERN

sb/CAS201505/9

· l/2 transmission line with capacitive load on both ends

· frequency variation by variation of CR

· capacitance rotating in vacuum (RotCo)

· acceleration electrode CDee

· operational parameters· acceleration voltage ~20 kV· RF power 10 – 100 kW· rep rate 100 - 400 Hz· self-oscillating· frequency swing ~20 %

Orsay 19 – 24 MHz

synchrocyclotron

200 MeV synchrocyclotron Orsay

CDeeCR

Page 5: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/10

· l/2 transmission line with capacitive load on both ends

· frequency variation by variation of CR

· capacitance rotating in vacuum (RotCO)

· acceleration electrode CDee

· operational parameters· acceleration voltage ~20 kV· RF power 10 – 100 kW· rep rate 100 - 400 Hz· self-oscillating· frequency swing ~20 %

Orsay 19 – 24 MHz

synchrocyclotron

synchrocyclotron Liverpool

CDeeCR

sb/CAS201505/11

· orbital frequency (non-relativistic)average magnetic field along orbit [T]

Q/A charge-to-mass ratio ion

· typical values· compact RT cyclotrons 1 – 15 MHz· superconducting cyclotrons 6 – 35 MHz· separated sector cyclotrons 1 – 10 MHz· research machines

· multi-particle· multi-energyè large orbital frequency range· typical example SC AGOR-cyclotron @ KVI

· particles protons – Pb· energy 190 – 5 MeV/nucleon· orbital frequency 31 - 5.5 MHz

operational parameters

orbQ15.2 B [MHz]A

n =

B

Page 6: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/12

· orbital and resonator frequency ranges incompatibleè use different harmonic modes (example AGOR)

different phasing of resonators

operational parameters

Q/A0.0 0.2 0.4 0.6 0.8 1.0 1.2

E/A

[MeV

]

10

100

h = 4

h = 3

h = 2

sb/CAS201505/13

· orbital and resonator frequency ranges incompatibleè use different harmonic modes

· harmonic mode· geometry acceleration electrode è possible values· typical h = 1 – 6, max. 10

· acceleration voltage· typical V = 50 – 100 kV; max. 1000 kV

· RF power· typical P = 10 – 100 kW; max 400 kW (excl. beamloading)

operational parameters

Page 7: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/14

resonator types· transmission line (l/4 or l/2)

· capacitively loaded by acceleration electrode(s)· TEM-mode· most common solution

courtesy Philips

l/4 coaxialtransmission line

180° accelerationelectrode (Dee)2 gaps per turn

shorting platefrequencyadjustment/tuning

sb/CAS201505/15

shape acceleration electrode vs. harmonic· highest acceleration: particle passes symmetry axis for j = p

· not all harmonic modes possiblee.g. a = 60° è no acceleration for h = 6

( ) ( )DE QV sin h 2 sinD = - a j

Page 8: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/16

resonator types· single gap resonator

· separated sector cyclotrons· used at PSI, RCNP and RIKEN· TE110 mode

sb/CAS1005617

resonator types· single gap resonator

· separated sector cyclotrons· used at PSI, RCNP and RIKEN SRC· TE110 mode

Page 9: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/18

resonator design: transmission line model· traditional approach (used until ~15 years ago)

· validation on scale models

0c 0 0

0

mZ Z ;Z 377n

m= = = W

e

sb/CAS201505/19

resonator design: transmission line model· design AGOR cavities

· transmission line model· model measurements· results

· D frequency < 1 MHzrange 22 – 62 MHz

· D loop height < 5 mmrange 100 mm

· D Q-factor/power < 10 %

· design accuracy sufficient forconstruction

Q-fa

ctor

580060006200640066006800

loop

heig

ht[m

m]

20

40

60

80

100

frequency [MHz]30 40 50 60

shor

tpos

ition

[m]

0

1

2

Page 10: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/20

resonator design: 3D simulations· recent trend; facilitated by computer and ICT revolution

· advantages· calculation of more complex resonator shapes· coupling with CAD-packages: input detailed geometry· detailed insight in current and voltage distribution

èbetter optimization of· cooling· peak fields (breakdown probability)

· detailed maps RF-field for trajectory calculations· higher accuracy resonance parameters· coupling with thermal and mechanical simulations (deformation)· better insight in higher order modes

· disadvantages· less insight in critical parameters· initial stages design significantly slower· large computing power required

sb/CAS201505/21

resonator design: 3D simulations· optimization electric fields AGOR central region

· reduce breakdown rate

courtesyVarian

PT

18 MV/m

0

inflector housing

acceleration electrode100 kV

Page 11: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/22

resonator design: 3D simulations· 75 MHz resonator for 400 MeV/nucleon 12C cyclotron IBA

· 4 parallel transmission line cavities· optimized voltage distribution· suppression higher order modes along Dee· mechanical stiffness

courtesyIBA,JIN

R

sb/CAS201505/23

resonator design: 3D simulations· 75 MHz resonator for 400 MeV/nucleon 12C cyclotron IBA

courtesyIBA,JIN

R

Page 12: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

RF system IBA S2C2 synchrocyclotron

sb/CAS201505/24source: IBA

sb/CAS201505/25

frequency tuning transmission line resonator

· resonance condition ZD = -ZL

· transmission line resonators· length transmission line

èmobile short· characteristic impedance transmission line

èmobile panel, plunger· capacitance acceleration electrode

èmobile panel· combination of techniques for coarse and fine tuning

DDZ

Ci-

=w 0L

LZZ i tgc

wæ ö= ç ÷è ø

lCD

L0Z ,l

Page 13: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS1005626

frequency tuning: VARIAN PT cyclotron· frequency adjustment and tuning with sliding shorts

· move both to retain symmetry· move under power

è high performance contacts· silver plated CuBe spring· carbon-silver contact grain· 50 A per contact at 60 MHz· development GANIL/AGOR

sb/CAS201505/27

frequency tuning: GANIL injector cyclotron· change characteristic impedance transmission line

Page 14: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/28

frequency tuning: RIKEN ring cyclotron· change of characteristic impedance at different location

· no high current density contacts on stem· box to median plane: more capitance è lower frequency· box to outside: less inductance è higher frequency

· resonator characteristics· 18 – 45 MHz· 300 kV @ 45 MHz· 150 kW @ 45 MHz

sb/CAS1005629

frequency tuning: GANIL main cyclotron

· change capacitanceacceleration electrode

Page 15: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS1005630

frequency tuning: GANIL main cyclotron

· change capacitanceacceleration electrode

sb/CAS201505/31

frequency tuning: single gap resonator· basically two options

· gap capacitance· chamber inductance

beam

L

C

RIKEN SRCflapping panel

Page 16: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/32

frequency tuning: single gap resonator· basically two options

· gap capacitance· chamber inductance

PSI ring cyclotron

beam

L

C

sb/CAS201505/33

frequency tuning: single gap resonator· basically two options

· gap capacitance· chamber inductance

beam

L

C

RCNP ring cyclotron

Page 17: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/34

power coupling: capacitive4 simple mechanics

4 also fine tuning control

8 high voltage8 insulator8discharge

matching

LNS, Catania

Dee

ssb/CAS201505/35

power coupling: inductive4 low voltage è insulator no problem8 multipactor8 variable frequency resonator:

complex mechanics8 high current rotating/sliding contact

RF power coax

coaxialtransmissionline resonator

matching

tuning

r = 210

AGOR, Groningen

Page 18: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

power generation· synchrocyclotron: oscillator

· resonator determines resonance frequency

· isochronous cyclotron: amplifier· (broadband) solid state preamplifier· narrowband tube endstage (one or two stages)

· tuned to required frequency· impedance matching (50 W line or directly to load)

sb/CAS201505/36

resonator

· modular parallel solid state amplifier4 redundancy è reliable4hot swappable8complex8 low efficiency8 reflected power (circulator)

power generation: new development

sb/CAS201505/37SOLEIL RF power amplifiers 45 kW

Page 19: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/38

RF controls· controlled parameters

· amplitude acceleration voltage· phase acceleration voltage

· required when using several independentresonators

· resonator tuning· high intensity: possibly matching (beam loading)

· measured parameters· amplitude acceleration voltage· phase acceleration voltage· phase incident wave – acceleration voltage· reflected power

sb/CAS201505/39

RF controls: design issues· pick-up probes

· mechanical stability

· pick-up electronics· large amplitude and frequency range

· feedback loops· high gain for phase and amplitude stability· compensation resonator response

· grounds loop via RF circuitry

Page 20: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/40

RF controls: overview

courtesy Peter Sigg, PSI

sb/CAS201505/41

RF controls: amplitude

courtesy Peter Sigg, PSI

· power pulse at start-up to pass through multipactor region

· amplitude stability <10-4

Page 21: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/42

RF controls: phase

courtesy Peter Sigg, PSI

· essential for multi-resonator system

· phase stability <0.1°

sb/CAS201505/43

RF controls: tuning

courtesy Peter Sigg, PSI

· bandwidth typ. 1 Hz

Page 22: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/44

example: VARIAN PT cyclotron· 250 MeV protons

· 4 coupled l/2 resonators driven via one power coupler· 4 Eigenmodes; only three can be excited· push-pull mode

· complex tuning control· control parameters: 4 positions sliding short· error signals

· phase drive power – resonator 1· 3 voltage ratios resonator 1 – resonator 2; 3 and 4

· 4 x 4 transfer matrix not diagonalè no independent servo loops

sb/CAS201505/45

example: VARIAN PT cyclotron· 250 MeV protons

· 4 coupled l/2 resonators; 1 amplifier

capacitive andinductive couplingbetween resonators

courtesy Varian PT

Page 23: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/46

example: VARIAN PT cyclotron· 250 MeV protons

· 4 coupled l/2 resonators driven via one power coupler· 4 Eigenmodes; only three can be excited· push-pull mode

j = p

j = p

j = 0

j = 0

courtesyVarian

PT

sb/CAS201505/47

example: PET isotope production cyclotron· 2 MHz l/4 resonators; p-mode for protons, 0-mode for

deuterons

courtesyG

E

Page 24: cyclotron RF systems€¦ · · resonator tuning · power coupling · power generation · RF control · some specific examples. sb/CAS201505/4 cyclotron basics · original observation:

sb/CAS201505/48

acknowledgement· Claude Bieth, GANIL

for introducing me in the RF wonderland

· Yuri Bylinski, TRIUMFAntonio Caruso, LNSMarco di Giacomo, GANILPeter Sigg, PSIJohn Vincent, NSCLIBAVARIAN PTfor providing a lot of information