d. kozlov , v. golovanov , v. raetsky, g. shevlyakov, v. lichadeev , m. tikhonchev

13
Investigation of 15kh2NMFAA steel and weld after irradiation in the “Korpus” facility on the RBT-6 reactor D. Kozlov, V. Golovanov, V. Raetsky, G. Shevlyakov, V. Lichadeev, M. Tikhonchev

Upload: von

Post on 05-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

Investigation of 15kh2NMFAA steel and weld after irradiation in the “Korpus” facility on the RBT-6 reactor. D. Kozlov , V. Golovanov , V. Raetsky, G. Shevlyakov, V. Lichadeev , M. Tikhonchev. Object : - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

Investigation of 15kh2NMFAA steel and weld after irradiation in the

“Korpus” facility on the RBT-6 reactor

D. Kozlov, V. Golovanov, V. Raetsky, G. Shevlyakov, V. Lichadeev, M. Tikhonchev

Page 2: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

Object:

-Determination of radiation embrittlement for weld and base metal through the wall thickness of WWER-1000;

- Evaluation of radiation condition influence on the damage and mechanical properties of vessel steel

Page 3: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

Materials: Weld, Base metal, Heat Affected Zone, Vessel of WWER-1000/320, the shells after complete treatment. Experimental shell 15kh2NMFAA steel (class 0) with low nickel content (0,75%Ni)

Irradiation condition: The specimens irradiation was carry out in the “Korpus” facility on the RBT-6 reactor.

Fluence - up to 11×1019cm-2

Irradiation temperature - 290±15 0C

Page 4: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

Chemical composition C Si Mn Cr Ni Mo V Cu S P Co Sb Sn As

15kh2nmfa

class 10.17 0.24 0.50 1.93 1.28 0.52 0.08 0.05 .012

.009

.002 .002 .002 .002

15kh2nmfa

class 10.17 0.30 0.46 2.21 1.26 0.5 0.10 0.05 .012

0.01

.006 .003 .003 .002

15kh2nmfa

class 0

0.17 0.27 0.37 2.96 0.75 0.67 0.28 0.07 .008 .007

.025 .003 .003 .003

Weld metal 0.34 0.69 1.90 1.52 0.69 - 0.07 0.014 0.0

1 - - - -

Page 5: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

22 23 24 25 26

Core

Location of capsule in the facility and specimens in the capsule

Level

Core Central Plane

I

II

III

V

IV

VI

Specimens

100-130 Charpy specimens on the third and fourth level

Thickness of the specimens block 60 or 70 mm

Page 6: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

0

50

100

150

200

-160 -120 -80 -40 0 40 80 120 160 200 240

Energy ( J)

Temperature (0C)

deviation

changes TF

Analysis results after irradiation of capsule with rotation

Page 7: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

-40

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30 35

Расстояние от центра ампулы, мм

Отк

ло

не

ни

я п

огл

ощ

ен

но

й

эн

ер

гии

, Д

ж

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30 35

Расстояние от центра ампулы, мм

Отк

лон

ения

пог

лощ

енно

й эн

ерги

и, Д

ж

Deviations of Charpy tests results from fitting curve. Dependence from irradiation place.

а) For Base metal and HAZ

b) For weld

а)

b)

Deviation ( J)

Deviation ( J)

Distance from capsule center, mm

Distance from capsule center, mm

Page 8: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

-40

-30

-20

-10

0

10

20

30

40

50

280 285 290 295

Расстояние от центра ампулы, мм

Отк

ло

не

ни

я п

огл

ощ

ен

но

й

эн

ер

гии

, Д

ж

-40

-30

-20

-10

0

10

20

30

40

280,0 285,0 290,0 295,0Температура, 0С

Отк

лон

ения

пог

лощ

енно

й эн

ерги

и, Д

ж

а)

b)

Deviations of Charpy tests results from fitting curve. Dependence from irradiation temperature.

а) For Base metal and HAZ

b) For weldDeviation ( J)

Deviation ( J)

Irr. Temperature (0C)

Irr. Temperature (0C)

Page 9: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

-10

0

10

20

30

40

0 2 4 6 8 10 12

Флюенс нейтронов, 1019 см-2 (E>0,5 МэВ)

T

F, о

С

Dependence TF from neutron fluence for 15kh2NMFAA steel

after irradiation of “thick” assemblies :

class 0 (○); class 1 (■); class 1 (×); TF= Af (F/F0)

1/3 with Af=9 оС ( );

Base metal

Fluence

Page 10: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

0

20

40

60

80

100

0 2 4 6 8 10 12

AF=20

AF=16.5

AF=11.5

Fluence ×1019 см-2 (Е>0.5 МeV)

ΔT

F,

0C

Dependence TF from neutron fluence for weld metal after irradiation of “thick”

assemblies

Weld metal

Page 11: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

Figure 3 – Role of Mn in embrittlement of high Ni welds(VVER-1000 surveillance data)

Page 12: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

-40 -20 0 20 40Толщина, мм

Ра

ди

ац

ио

нн

ое

э

не

рго

вы

де

ле

ни

е, В

т/г

0

1E+12

2E+12

3E+12

4E+12

-35 -25 -15 -5 5 15 25 35

Расстояние от центра ампулы, мм

Пл

отн

ос

ть п

ото

ка

теп

л. н

ей

тро

но

в, с

м-2Radiation energy release (а) and flux of thermal neutrons (b) through the specimens block thickness under irradiation with rotation

Irr. Heating(W/g)

Distance from capsule center, mm

Distance from capsule center, mm

Thermal neutron flux(1/cm2 c)

Page 13: D. Kozlov ,  V. Golovanov ,  V. Raetsky, G. Shevlyakov, V. Lichadeev ,  M. Tikhonchev

1. Irradiation of the WWER-1000 vessel materials was carried out using the capabilities of the KORPUS facility. Irradiation of the reactor wall was simulated in the experiment including changes of neutron flux and spectrum.

2. TF for base metal does not exceed 30-40 0С, for weld metal - 70-80 0С at fluence

corresponding to 50-60 years of the WWER-1000 operation.

3. The dependences of radiation embrittlement obtained under the radiation flux attenuation do not correspond to the normative dependence, where TF depends on

neutron fluence with energy more than 0,5 MeV. For base metal there is difference from the surveillance data. The change of the radiation flux characteristics effects the embrittlement degree.

4. One of the possible causes of the embrittlement degree change under irradiation of the “thick” assemblies is the change of thermal neutron flux. However, the determination of the quantitative contribution of each type of ionizing radiation requires additional experiments.

Conclusions