daftar pustaka -...

17
149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological investigation for the prevention of biofouling. 1. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser., 123, 301–312. Abbott, A., Abel, P.D., Arnold, D.W., and Milne, A., 2000, Cost-benefit analysis of the use of TBT: The case for a treatment approach. Sci. Total Environ., 258, 5–19. Adán, C., Marugán, J., Sánchez, E., Pablos, C., and Van Grieken, R., 2016, Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim. Acta, 191, 521–529. Aizawa, M., 1991, FT-IR liquid attenuated total reflection study of TiO2-SiO2 sol- gel reaction. J. Non. Cryst. Solids, 128, 77–85. Al-Fori, M., Dobretsov, S., Myint, M.T.Z., and Dutta, J., 2014, Antifouling properties of zinc oxide nanorod coatings. Biofouling, 30, 871–882. Almeida, E., Diamantino, T.C., and de Sousa, O., 2007, Marine paints: The particular case of antifouling paints. Prog. Org. Coatings, 59, 2–20. Almquist, C.B. and Biswas, P., 2002, Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal., 212, 145–156. Amornpitoksuk, P., Suwanboon, S., and Sangkanu, S., 2012, Superlattices and Microstructures Morphology, photocatalytic and antibacterial activities of radial spherical ZnO nanorods controlled with a diblock copolymer. Superlattices Microstruct., 51, 103–113. Aoyama, Y., Oaki, Y., Ise, R., and Imai, H., 2012, Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst. Cryst. Eng. Comm, 14, 1405–1411. Arun Kumar, D., Merline Shyla, J., and Xavier, F.P., 2012, Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Appl. Nanosci., 2, 429–436. Baek, I.C., Vithal, M., Chang, J.A., Yum, J.-H., Nazeeruddin, M.K., Grätzel, M., Chung, Y-C., Seok, S.I., 2009, Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochem. commun., 11, 909–912. Banerjee, S., Dionysiou, D.D., and Pillai, S.C., 2015, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Elsevier B.V., 58, 1–76. Bartell, F.E. and Shepard, J.W., 1953, Surface Roughness as Related to Hysteresis of Contact Angles. I. The System Paraffin-Water-Air. J. Phys. Chem., 57, 211– 215. Barthlott, W. and Neinhuis, C., 1997, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8. SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHAN ANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri Swasono Universitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Upload: others

Post on 29-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

149

DAFTAR PUSTAKA

Abarzua, S. and Jakubowski, S., 1995, Biotechnological investigation for the

prevention of biofouling. 1. Biological and biochemical principles for the

prevention of biofouling. Mar. Ecol. Prog. Ser., 123, 301–312.

Abbott, A., Abel, P.D., Arnold, D.W., and Milne, A., 2000, Cost-benefit analysis

of the use of TBT: The case for a treatment approach. Sci. Total Environ., 258,

5–19.

Adán, C., Marugán, J., Sánchez, E., Pablos, C., and Van Grieken, R., 2016,

Understanding the effect of morphology on the photocatalytic activity of TiO2

nanotube array electrodes. Electrochim. Acta, 191, 521–529.

Aizawa, M., 1991, FT-IR liquid attenuated total reflection study of TiO2-SiO2 sol-

gel reaction. J. Non. Cryst. Solids, 128, 77–85.

Al-Fori, M., Dobretsov, S., Myint, M.T.Z., and Dutta, J., 2014, Antifouling

properties of zinc oxide nanorod coatings. Biofouling, 30, 871–882.

Almeida, E., Diamantino, T.C., and de Sousa, O., 2007, Marine paints: The

particular case of antifouling paints. Prog. Org. Coatings, 59, 2–20.

Almquist, C.B. and Biswas, P., 2002, Role of Synthesis Method and Particle Size

of Nanostructured TiO2 on Its Photoactivity. J. Catal., 212, 145–156.

Amornpitoksuk, P., Suwanboon, S., and Sangkanu, S., 2012, Superlattices and

Microstructures Morphology, photocatalytic and antibacterial activities of

radial spherical ZnO nanorods controlled with a diblock copolymer.

Superlattices Microstruct., 51, 103–113.

Aoyama, Y., Oaki, Y., Ise, R., and Imai, H., 2012, Mesocrystal nanosheet of rutile

TiO2 and its reaction selectivity as a photocatalyst. Cryst. Eng. Comm, 14,

1405–1411.

Arun Kumar, D., Merline Shyla, J., and Xavier, F.P., 2012, Synthesis and

characterization of TiO2/SiO2 nano composites for solar cell applications.

Appl. Nanosci., 2, 429–436.

Baek, I.C., Vithal, M., Chang, J.A., Yum, J.-H., Nazeeruddin, M.K., Grätzel, M.,

Chung, Y-C., Seok, S.I., 2009, Facile preparation of large aspect ratio

ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized

solar cell. Electrochem. commun., 11, 909–912.

Banerjee, S., Dionysiou, D.D., and Pillai, S.C., 2015, Self-cleaning applications of

TiO2 by photo-induced hydrophilicity and photocatalysis. Elsevier B.V., 58,

1–76.

Bartell, F.E. and Shepard, J.W., 1953, Surface Roughness as Related to Hysteresis

of Contact Angles. I. The System Paraffin-Water-Air. J. Phys. Chem., 57, 211–

215.

Barthlott, W. and Neinhuis, C., 1997, Purity of the sacred lotus, or escape from

contamination in biological surfaces. Planta, 202, 1–8.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 2: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

150

Baxter, S. and Cassie, A.B.D., 1945, 8—The water repellency of fabrics and a new

water repellency test. J. Text. Inst. Trans., 36, T67–T90.

Bellitto, V., 2012, Atomic Force Microscopy - Imaging, Measuring and

Manipulating Surfaces at the Atomic Scale, InTech, Croatia.

Berg, J.M., Eriksson, L.G.T., Claesson, P.M., and Børve, K.G.N., 1994, Three-

Component Langmuir-Blodgett Films with a Controllable Degree of Polarity.

Langmuir, 10, 1225–1234.

Berntsson, K.M., Andreasson, H., Tonsson, P.R., Larsson, L., Ring, K., Petronis,

S., and Gatenholm, P., 2000, Reduction of Barnacle Recruitment on Micro-

textured Surfaces : Analysis of Effective Topographic Characteristics and

Evaluation of Skin Friction. Biofouling, 16, 245–261.

Bhushan, B. and Jung, Y.C., 2006, Micro- and nanoscale characterization of

hydrophobic and hydrophilic leaf surfaces. Nanotechnology, 17, 2758–2772.

Bidsorkhi, H.C., Riazi, H., Emadzadeh, D., Ghanbari, M., Matsuura, T., Lau, W.J.,

and Ismail, A.F., 2016, Preparation and characterization of a novel highly

hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite

membrane. Nanotechnology, 27, 415706–415717.

Bikerman, J.J., 1958, Surface Chemistry: Theory and Applications, second edi.

Academic Press Inc., New York.

Biswas, M., Sinha Ray, S., and Liu, Y., 1999, Water dispersible conducting

nanocomposites of poly(N-vinylcarbazole), polypyrrole and polyaniline with

nanodimensional manganese (IV) oxide. Synth. Met., 105, 99–105.

Blossey, R., 2003, Self-cleaning surfaces - Virtual realities. Nat. Mater., 2,

301–306.

Bogush, G.H., Tracy, M.A., and Zukoski IV, C.., 1988, Preparation of

Monodisperse Silica Particles: Control of Size and Mass Fraction. J. Non.

Cryst. Solids, 104, 95–106.

Bogush, G.H. and Zukoski IV, C.F., 1991, Uniform silica particle precipitation: An

aggregative growth model. J. Colloid Interface Sci., 142, 19–34.

Brinker, C.J. and Scherer, G.W., 1990, Sol-Gel Science: The Physics and Chemistry

of Sol-Gel Processing, Academic Press, INC., Toronto.

Brunauer, S., Emmett, P.H., and Teller, E., 1938, Adsorption of Gases in

Multimolecular Layers. J. Am. Chem. Soc., 60, 309–319.

Callow, M.E. and Fletcher, R.L., 1994, The influence of low surface energy

materials on bioadhesion-a review. Int. Biodeterior. Biodegradation, 34,

333–348.

Cao, S., Wang, J.D., Chen, H.S., and Chen, D.R., 2011, Progress of marine

biofouling and antifouling technologies. Chinese Sci. Bull., 56, 598–612.

Caputo, G., Nobile, C., Buonsanti, R., Kipp, T., Manna, L., Cingolani, R., Cozzoli,

P.D., & Athanassiou, A., 2008, Determination of surface properties of various

substrates using TiO2 nanorod coatings with tunable characteristics.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 3: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

151

J. Mater. Sci., 43, 3474–3480.

Carja, G., Nakamura, R., Aida, T., and Niiyama, H., 2001, Textural properties of

layered double hydroxides: effect of magnesium substitution by copper or iron.

Microporous Mesoporous Mater., 47, 275–284.

Cassie, B.D., 1944, Wettability of Porous Surfaces. 546–551.

Castillo, R., Koch, B., Ruiz, P., and Delmon, B., 1994, Influence of Preparation

Methods on the Texture and Structure of Titania supported on Silica. J. Mater.

Chem., 4, 903–906.

Castillo, R., Koch, B., Ruiz, P., and Delmon, B., 1996, Influence of the Amount of

Titania on the Texture and Structure of Titania Supported on Silica. J. Catal.,

161, 525–529.

Chambers, L.D., Stokes, K.R., Walsh, F.C., and Wood, R.J.K., 2006, Modern

approaches to marine antifouling coatings. Surf. Coatings Technol., 201,

3642–3652.

Chemseddine, A. and Moritz, T., 1999, Nanostructuring Titania: Control over

Nanocrystal Structure, Size, Shape, and Organization. Eur. J. Inorg. Chem.,

1999, 235–245.

Chen, G.C., Kuo, C.Y., and Lu, S.Y., 2005, A general process for preparation of

core-shell particles of complete and smooth shells. J. Am. Ceram. Soc., 88,

277–283.

Chen, J.S., Chen, C., Liu, J., Xu, R., Qiao, S.Z., and Lou, X.W., 2011, Ellipsoidal

hollow nanostructures assembled from anatase TiO2 nanosheets as a

magnetically separable photocatalyst. Chem. Commun., 47, 2631–2633.

Chen, M., Qu, Y., Yang, L., and Gao, H., 2008, Structures and antifouling

properties of low surface energy non-toxic antifouling coatings modified by

nano-SiO2 powder. Sci. China, Ser. B Chem., 51, 848–852.

Chen, Y., Wang, K., and Lou, L., 2004, Photodegradation of dye pollutants on silica

gel supported TiO2 particles under visible light irradiation. J. Photochem.

Photobiol. A Chem., 163, 281–287.

Chen, Z., 2017, Antifouling enhancement of polysulfone/TiO2 nanocomposite

separation membrane by plasma etching. Joutnal Phys. Conf. Ser., 791,

012025–012029.

Cheng, H., Wang, J., Zhao, Y., and Han, X., 2014, Effect of phase composition,

morphology, and specific surface area on the photocatalytic activity of TiO2

nanomaterials. RSC Adv., 4, 47031–47038.

Cheng, P., Zheng, M., Jin, Y., Huang, Q., and Gu, M., 2003, Preparation and

characterization of silica-doped titania photocatalyst through sol-gel method.

Mater. Lett., 57, 2989–2994.

Cheng, Y., Huang, W., Zhang, Y., Zhu, L., Liu, Y., Fan, X., and Cao, X., 2010,

Preparation of TiO2 hollow nanofibers by electrospining combined with sol–

gel process. Cryst. Eng. Comm., 12, 2256–2260.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 4: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

152

Christy, P.D., Melikechi, N., Nirmala Jothi, N.S., Baby Suganthi, A.R., and

Sagayaraj, P., 2010, Synthesis of TiO2 nanorods by oriented attachment using

EDTA modifier: A novel approach towards 1D nanostructure development.

J. Nanoparticle Res., 12, 2875–2882.

Chu, D., Mo, J., Peng, Q., Zhang, Y., Wei, Y., Zhuang, Z., and Li, Y., 2011,

Enhanced photocatalytic properties of SnO2 nanocrystals with decreased size

for ppb-level acetaldehyde decomposition. Chem.Cat.Chem., 3, 371–377.

Cooney, J.J. and Tang, R.J., 1999, Quantifying effects of antifouling paints on

microbial biofilm formation. Methods Enzymol., 310, 637–644.

Cozzoli, P.D., Fanizza, E., Curri, M.L., Laub, D., and Agostiano, A., 2005, Low-

dimensional chainlike assemblies of TiO2 nanorod-stabilized Au

nanoparticles. Chem. Commun. (Camb). 942–944.

Cozzoli, P.D., Kornowski, A., and Weller, H., 2003, Low-Temperature Synthesis

of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods.

J. Am. Chem. Soc., 125, 14539–14548.

Daimon, T., Hirakawa, T., Kitazawa, M., Suetake, J., and Nosaka, Y., 2008,

Formation of singlet molecular oxygen associated with the formation of

superoxide radicals in aqueous suspensions of TiO2 photocatalysts.

Appl. Catal. A Gen., 340, 169–175.

Day, V.W., Eberspacher, T.A., Chen, Y., Hao, J., and Klemperer, W.G., 1995, Low-

nuclearity titanium oxoalkoxides: the trititanates [Ti3O](OPri)10 and

[Ti3O](OPri)9(OMe). Inorganica Chim. Acta, 229, 391–405.

Donohue, M.D. and Aranovich, G.L., 1998, Adsorption hysteresis in porous solids.

J. Colloid Interface Sci., 205, 121–130.

Erdural, B., Bolukbasi, U., and Karakas, G., 2014, Photocatalytic antibacterial

activity of TiO2-SiO2 thin films: The effect of composition on cell adhesion

and antibacterial activity. J. Photochem. Photobiol. A Chem., 283, 29–37.

Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., and Avcı, A., 2012, Applied

Catalysis B : Environmental Preparation of the new polyaniline/ZnO

nanocomposite and its photocatalytic activity for degradation of methylene

blue and malachite green dyes under UV and natural sun lights irradiations.

"Applied Catal. B, Environ., 119–120, 197–206.

Etacheri, V., Michlits, G., Seery, M.K., Hinder, S.J., and Pillai, S.C., 2013, A

Highly Efficient TiO2 − xCx Nano-heterojunction Photocatalyst for Visible

Light Induced Antibacterial Applications. Appl. Mater. Interfaces, 5,

1663–1672.

Etacheri, V., Roshan, R., and Kumar, V., 2012, Mg-Doped ZnO Nanoparticles for

Efficient Sunlight-Driven Photocatalysis. Appl. Mater. Interfaces, 4,

2717–2725.

Etacheri, V., Seery, M.K., Hinder, S.J., and Pillai, S.C., 2010, Highly Visible Light

Active TiO2-xNx Heterojunction Photocatalysts. Chem. Mater., 22,

3843–3853.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 5: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

153

Etacheri, V., Seery, M.K., Hinder, S.J., and Pillai, S.C., 2011, Oxygen Rich Titania :

A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase

Photocatalyst. Adv. Funct. Mater., 21, 3744–3752.

Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., and Pillai, S.C., 2015,

Visible-light activation of TiO2 photocatalysts: Advances in theory and

experiments. J. Photochem. Photobiol. C Photochem. Rev., 25, 1–29.

Fagan, R., McCormack, D.E., Dionysiou, D.D., and Pillai, S.C., 2016, A review of

solar and visible light active TiO2 photocatalysis for treating bacteria,

cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond.

Process., 42, 2–14.

Fan, C., Do, D.D., and Nicholson, D., 2013, Condensation and evaporation in

capillaries with nonuniform cross sections. Ind. Eng. Chem. Res., 52,

14304–14314.

Fang, W.Q., Zhou, J.Z., Liu, J., Chen, Z.G., Yang, C., Sun, C.H., Qian, G.R., Zou,

J., Qiao, S.Z., and Yang, H.G., 2011, Hierarchical structures of single-

crystalline anatase TiO2 nanosheets dominated by {001} facets. Chem. - A Eur.

J., 17, 1423–1427.

Feast, W.J., Tsibouklis, J., Pouwer, K.L., Groenendaal, L., and Meijer, E.W., 1996,

Synthesis, processing and material properties of conjugated polymers.

Polymer (Guildf)., 37, 5017–5047.

Feng, B.L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y., Liu, B., Jiang,

L., and Zhu, D., 2002, Super-hydrophobic surfaces: From natural to artificial.

Adv. Mater., 14, 1857–1860.

Feng, X., Zhai, J., and Jiang, L., 2005, The fabrication and switchable

superhydrophobicity of TiO2 nanorod films. Angew. Chemie - Int. Ed., 44,

5115–5118.

Ferrari, M., Ravera, F., Rao, S., and Liggieri, L., 2006, Surfactant adsorption at

superhydrophobic surfaces. Appl. Phys. Lett., 89, 2004–2007.

Flemming, H.C., Sriyutha Murthy, P., Venkatesan, R., and Cooksey, K., 2009,

Marine and Industrial Biofouling Springer Verlag-Berlin, Los Angeles, USA.

Fletcher, M. and Loeb, G.I., 1979, Influence of substratum characteristics on the

attachment of a marine pseudomonad to solid surfaces. Appl. Environ.

Microbiol., 37, 67–72.

Fu, G., Vary, P.S., and Lin, C.-T., 2005, Anatase TiO2 nanocomposites for

antimicrobial coatings. J. Phys. Chem. B, 109, 8889–8898.

Fujishima, A. and Zhang, X., 2006, Titanium dioxide photocatalysis: present

situation and future approaches. Comptes Rendus Chim., 9, 750–760.

Fujishima, A., Zhang, X., and Tryk, D.A., 2007, Heterogeneous photocatalysis:

From water photolysis to applications in environmental cleanup. Int. J.

Hydrogen Energy, 32, 2664–2672.

Galan-Fereres, M., Alemany, L.J., Mariscal, R., Banares, M.A., Anderson, J.A., and

Fierro, J.L.G., 1995, Surface Acidity and Properties of Titania-Silica

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 6: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

154

Catalysts. Chem. Mater., 7, 1342–1348.

Galán-Fereres, M., Mariscal, R., Alemany, L.J., Fierro, J.L.G., and Anderson, J.A.,

1994, Ternary V–Ti–Si catalysts and their behaviour in the CO + NO reaction.

J. Chem. Soc., Faraday Trans., 90, 3711–3718.

Gan, X., Gao, X., Qiu, J., He, P., Li, X., and Xiao, X., 2012, TiO2 nanorod-derived

synthesis of upstanding hexagonal kassite nanosheet arrays: An intermediate

route to novel nanoporous TiO2 nanosheet arrays. Cryst. Growth Des., 12,

289–296.

Gangopadhyay, R. and De, A., 2000, Conducting Polymer Nanocomposites: A

Brief Overview. Chem. Mater., 12, 2064–2064.

Gao, L. and McCarthy, T.J., 2007, Ionic liquids are useful contact angle probe

fluids. J. Am. Chem. Soc., 129, 3804–3805.

Gao, X., Bare, S.R., Fierro, J.L.G., Banares, M.A., and Wachs, I.E., 1998,

Preparation and in-Situ Spectroscopic Characterization of Molecularly

Dispersed Titanium Oxide on Silica. J. Phys. Chem. B, 102, 5653–5666.

Gao, X. and Wachs, I.E., 1999, Titania ± silica as catalysts : molecular structural

characteristics and physico-chemical properties. Catal. Today, 51, 233–254.

Genzer, J. and Efimenko, K., 2006, Recent developments in superhydrophobic

surfaces and their relevance to marine fouling: a review. Biofouling, 22,

339–360.

Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P., 1983,

Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy.

J. Non. Cryst. Solids, 55, 27–43.

Gu, Z.Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., and

Sato, O., 2003, Structural color and the lotus effect. Angew. Chemie - Int. Ed.,

42, 894–897.

Guo, Z., Zhou, F., Hao, J., and Liu, W., 2005, Stable biomimetic super-hydrophobic

engineering materials. J. Am. Chem. Soc., 127, 15670–15671.

Hanprasopwattana, A., Rieker, T., Sault, A.G.A., and Datye, A.K.A., 1997,

Morphology of titania coatings on silica gel. Catal. Letters, 45, 165–175.

Hanprasopwattana, A., Srinivasan, S., Sault, A.G., and Datye, A.K., 1996, Titania

coatings on monodisperse silica spheres (characterization using 2-propanol

dehydration and TEM). Langmuir, 12, 3173–3179.

Harbour, J.R. and Hair, M.L., 1979, Radical Intermediates in the Photosynthetic

Generation of H2O2 with aqueous ZnO dispersions. J. Phys. Chem., 83,

652–656.

Hargis, L.G., 1988, Analytical Chemistry: Principles and Techniques 1st ed.

Prentice Hall, Inc., New Jersey.

Harvey, D., 2000, Modren analytical chemistry, McGraw-Hill Higher Education,

Toronto.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 7: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

155

Hasegawa, G., Morisato, K., Kanamori, K., and Nakanishi, K., 2011, New

hierarchically porous titania monoliths for chromatographic separation media.

J. Sep. Sci., 34, 3004–3010.

Haukka, S., Lakomaa, E., and Roots, A., 1993, An IR and NMR Study of the

Chemisorption of TiCl4 on Silica. J. Phys. Chem., 97, 5085–5094.

He, Y.P., Zhang, Z.Y., and Zhao, Y.P., 2008, Optical and photocatalytic properties

of oblique angle deposited TiO2 nanorod array. J. Vac. Sci. Technol. B

Microelectron. Nanom. Struct., 26, 1350–1358.

Henry, M., Jolivet, J.P., and Livage, J., 1992, Aqueous chemistry of metal cations:

Hydrolysis, condensation and complexation. Chem. Spectrosc. Appl. Sol-Gel

Glas., 77, 153–206.

Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., 1995,

Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.,

95, 69–96.

Hoipkemeier-wilson, L., Schumacher, J.F., Carman, M.L., Gibson, A.L., Feinberg,

A.W., Callow, M.E., Brennan, A.B., 2004, Biofouling : The Journal of

Bioadhesion and Biofilm Antifouling Potential of Lubricious, Micro-

engineered, PDMS Elastomers against Zoospores of the Green Fouling Alga

Ulva ( Enteromorpha ) Antifouling Potential of Lubricious, Micro-engineered,

PDMS El. Biofouling, 20, 37–41.

Hosono, E., Fujihara, S., Honma, I., and Zhou, H., 2005, Superhydrophobic

perpendicular nanopin film by the bottom-up process. J. Am. Chem. Soc., 127,

13458–13459.

Hsien, Y., Chang, C., Chen, Y., and Cheng, S., 2001, Photodegradation of aromatic

pollutants in water over TiO2 supported on molecular sieves., 31, 241–249.

Huang, L.M., Chen, C.H., and Wen, T.C., 2006, Development and characterization

of flexible electrochromic devices based on polyaniline and poly(3,4-

ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochim. Acta, 51,

5858–5863.

Huang, X., Wang, G., Yang, M., Guo, W., and Gao, H., 2011, Synthesis of

polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their

photocatalytic application. Mater. Lett., 65, 2887–2890.

Hung, O.S., Thiyagarajan, V., Wu, R.S.S., and Qian, P.Y., 2005, Effect of

ultraviolet radiation on biofilms and subsequent larval settlement of Hydroides

elegans. Mar. Ecol. Prog. Ser., 304, 155–166.

Hutter, R., Mallat, T., and Baiker, A., 1995, Titania silica mixed oxides: II. Catalytic

behavior in olefin epoxidation. J. Catal., 153, 177–189.

Iler, 1979, The Chemistry of Silica., A Wiley Interscience Publication, Toronto.

Ilican, S., Caglar, Y., Caglar, M., and Demirci, B., 2008, Polycrystalline indium-

doped ZnO thin films: Preparation and characterization. J. Optoelectron. Adv.

Mater., 10, 2592–2598.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 8: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

156

Jańczyk, A., Krakowska, E., Stochel, G., and Macyk, W., 2006, Singlet oxygen

photogeneration at surface modified titanium dioxide. J. Am. Chem. Soc., 128,

15574–15575.

Johnson, R.E. and Dettre, R.H., 1964, Contact Angle Hysteresis. Adv. Chem. Ser.,

43, 112–135.

Jonsson, P.R., Berntsson, K.M., and Larsson, A.I., 2004, Linking larval supply to

recruitment: Flow-mediated control of initial adhesion of barnacle larvae.

Ecology, 85, 2850–2859.

Jun, Y.W., Casula, M.F., Sim, J.H., Kim, S.Y., Cheon, J., and Alivisatos, A.P.,

2003, Surfactant-Assisted Elimination of a High Energy Facet as a Means of

Controlling the Shapes of TiO2 Nanocrystals. J. Am. Chem. Soc., 125, 15981–

15985.

Kallio, T., Alajoki, S., Pore, V., Ritala, M., Laine, J., Leskelä, M., and Stenius, P.,

2006, Antifouling properties of TiO2: Photocatalytic decomposition and

adhesion of fatty and rosin acids, sterols and lipophilic wood extractives.

Colloids Surfaces A Physicochem. Eng. Asp., 291, 162–176.

Kamegawa, T., Shimizu, Y., and Yamashita, H., 2012, Superhydrophobic surfaces

with photocatalytic self-cleaning properties by nanocomposite coating of TiO2

and polytetrafluoroethylene. Adv. Mater., 24, 3697–3700.

Kang, E., 1998, Polyaniline: A polymer with many interesting intrinsic redox states.

Prog. Polym. Sci., 23, 277–324.

Khan, S.B., Hou, M., Shuang, S., and Zhang, Z., 2017, Morphological influence of

TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic

degradation of organic dyes. Appl. Surf. Sci., 400, 184–193.

Kim, B.H., Jung, J.H., Hong, S.H., Kim, J.W., Choi, H.J., and Joo, J., 2001, Physical

characterization of emulsion intercalated polyaniline-clay nanocomposite.

Curr. Appl. Phys., 1, 112–115.

Kim, B.S., Lee, K.T., Huh, P.H., Lee, D.H., Jo, N.J., and Lee, J.O., 2009, In situ

template polymerization of aniline on the surface of negatively charged TiO2

nanoparticles. Synth. Met., 159, 1369–1372.

Kim, C.-S., Moon, B.K., Park, J.-H., Choi, B.-C., and Seo, H.-J., 2003,

Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant.

J. Cryst. Growth, 257, 309–315.

Klabunde, K.J., Stark, J., Koper, O., Mohs, C., Park, D.G., Decker, S., Jiang, Y.,

Lagadic, I., and Zhang, D., 1996, Nanocrystals as stochiometric reagents with

unique surface chemistry. J. Phys. Chem., 100, 12142–12153.

Kočí, K., Obalová, L., and Lacný, Z., 2008, Photocatalytic reduction of CO2 over

TiO2 based catalysts. Chem. Pap., 62, 1–9.

Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K.,

Bandow, S., Iijima, S., 2008, Preparation, Photocatalytic Activities, and Dye-

Sensitized Solar-Cell Performance of Submicron-Scale TiO2 Hollow Spheres

Preparation, Photocatalytic Activities, and Dye-Sensitized Solar-Cell

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 9: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

157

Performance of Submicron-Scale TiO2 Hollow Spheres. Society 1572–1575.

Konstantinou, I., 2006, The Handbook of Environmental Chemistry., (ed) Springer-

Verlag Berlin Heidelberg, Leipzig-Germany.

Kraeutler, B. and Bard, A.J., 1978, Heterogeneous Photocatalytic Preparation of

Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other

Substrates. J. Am. Chem. Soc., 100, 4317–4318.

Krishnan, P., Liu, M., Itty, P.A., Liu, Z., Rheinheimer, V., Zhang, M.-H., Monteiro,

P.J.M., & Yu, L.E., 2017, Characterization of photocatalytic TiO2 powder

under varied environments using near ambient pressure X-ray photoelectron

spectroscopy. Sci. Rep., 7, 43298–43309.

Lai, C., Zhang, H.Z., Li, G.R., and Gao, X.P., 2011, Mesoporous polyaniline/TiO2

microspheres with core-shell structure as anode materials for lithium ion

battery. J. Power Sources, 196, 4735–4740.

Lau, S.C.K., Harder, T., and Qian, P.Y., 2003, Induction of larval settlement in the

serpulid polychaete Hydroides elegans (Haswell): Role of bacterial

extracellular polymers. Biofouling, 19, 197–204.

Lee, C.F., Tsai, H.H., Wang, L.Y., Chen, C.F., and Chiu, W.Y., 2005, Synthesis

and properties of silica/polystyrene/polyaniline conductive composite

particles. J. Polym. Sci. Part A Polym. Chem., 43, 342–354.

Li, J. and Xu, D., 2010, Tetragonal faceted-nanorods of anatase TiO2 single crystals

with a large percentage of active {100} facets. Chem. Commun., 46, 2301–

2303.

Li, X., Li, T., Wu, C., and Zhang, Z., 2007, at low temperature and their

photocatalytic performance. J. Nanopart. Res 1081–1086.

Li, X., Teng, W., Zhao, Q., and Wang, L., 2011, Efficient visible light-induced

photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized

TiO2 nanotube arrays. J. Nanoparticle Res., 13, 6813–6820.

Li, X., Wang, D., Cheng, G., Luo, Q., An, J., and Wang, Y., 2008, Preparation of

polyaniline-modified TiO2 nanoparticles and their photocatalytic activity

under visible light illumination. Appl. Catal. B Environ., 81, 267–273.

Li, Y., Guo, Y., and Liu, Y., 2005, Synthesis of high purity TiO2 nanoparticles from

Ti(SO4)2 in presence of EDTA as complexing agent. China Particuology, 3,

240–242.

Liu, B. and Aydil, E.S., 2009, Growth of Oriented Single-Crystalline Rutile TiO2

Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar

Cells Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on

Transparent Conducting Substrates for Dye-Sensitized Solar Cells.

J. Am. Chem. Soc., 131, 3985–3990.

Liu, B., Nakata, K., Sakai, M., Saito, H., Ochiai, T., Murakami, T., Takagi, K., and

Fujishima, A., 2011, Mesoporous TiO2 core-shell spheres composed of

nanocrystals with exposed high-energy facets: Facile synthesis and formation

mechanism. Langmuir, 27, 8500–8508.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 10: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

158

Liu, F., Liu, Z., Gu, Y., Chen, Z., and Fang, P., 2013, Synthesis and characterization

of a conducting polyaniline/TiO2 −SiO2 composites. J. Appl. Polym. Sci., 130,

2288–2295.

Liu, S., Yu, J., and Jaroniec, M., 2010, Tunable photocatalytic selectivity of hollow

TiO2 microspheres composed of anatase polyhedra with exposed {001} facets.

J. Am. Chem. Soc., 132, 11914–11916.

Liu, Z. and Davis, R.J., 1994, Investigation of the structure of microporous Ti-Si

mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies.

J. Phys. Chem., 98, 1253–1261.

Liu, Z., Miao, Y.E., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T., 2014,

Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced

visible-light photocatalytic degradation performance. J. Colloid Interface Sci.,

424, 49–55.

Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., and

Fujishima, A., 2008, Highly ordered TiO2 nanotube arrays with controllable

length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C, 112,

253–259.

Livage, J., Henry, M., and Sanchez, C., 1988, Sol-gel chemistry of transition metal

oxides. Prog. Solid State Chem., 18, 259–341.

Ma, M. and Hill, R.M., 2006, Superhydrophobic surfaces. Curr. Opin. Colloid

Interface Sci., 11, 193–202.

Ma, X. and Zhang, W., 2009, Effects of flower-like ZnO nanowhiskers on the

mechanical, thermal and antibacterial properties of waterborne polyurethane.

Polym. Degrad. Stab., 94, 1103–1109.

Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C., 2014, Titanium dioxide-

based nanomaterials for photocatalytic fuel generations. Chem. Rev., 114,

9987–10043.

Maki, J.S., Rittschof, D., Schmidt, A.R., Snyder, A.G., and Mitchell, R., 1989,

Factors Controlling Attachment of Bryozoan Larvae: A Comparison of

Bacterial Films and Unfilmed Surfaces. Biol Bull, 177, 295–302.

Mariscal, R., Palacios, J.M., Galan-Fereres, M., and Fierro, J.L.G., 1994,

Incorporation of titania into preshaped silica monolith structures. Appl. Catal.

A, Gen., 116, 205–219.

Marmur, A., 2004, The lotus effect: Superhydrophobicity and metastability.

Langmuir, 20, 3517–3519.

Marmur, A., 2003, Wetting on hydrophobic rough surfaces: To be heterogeneous

or not to be? Langmuir, 19, 8343–8348.

Mathiazhagan, A. and Joseph, R., 2011, Nanotechnology-A New Prospective in

Organic Coating - Review. Int. J. Chem. Eng. Appl., 2, 225–237.

Miao, L., Tanemura, S., Toh, S., Kaneko, K., and Tanemura, M., 2004, Heating-

sol-gel template process for the growth of TiO2 nanorods with rutile and

anatase structure. Appl. Surf. Sci., 238, 175–179.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 11: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

159

Miller, J.B., Johnston, S.T., and Ko, E.I., 1994, Effect of prehydrolysis on the

textural and catalytic properties of titania-silica aerogels. J. Catal., 150,

311–320.

Mirabedini, A., Mirabedini, S.M., Babalou, A.A., and Pazokifard, S., 2011,

Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2

nanocomposite in an aqueous solution and acrylic-based coatings. Prog. Org.

Coatings, 72, 453–460.

Moritz, T., Reiss, J., Diesner, K., Su, D., and Chemseddine, A., 1997,

Nanostructured Crystalline TiO2 through Growth Control and Stabilization of

Intermediate Structural Building Units. J. Phys. Chem., 101, 8052–8053.

Morrow, B.A. and McFarlan, A.J., 1990, Chemical reactions at silica surfaces.

J. Non. Cryst. Solids, 120, 61–71.

Mostafaei, A. and Nasirpouri, F., 2013, Preparation and characterization of a novel

conducting nanocomposite blended with epoxy coating for antifouling and

antibacterial applications. J. Coatings Technol. Res., 10, 679–694.

Nagappan, S. and Ha, C.S., 2014, Hydrophobic and Superhydrophobic Organic-

Inorganic Hybrids and their Applications. Austin J. Chem. Eng., 1, 1–9.

Nah, Y.-C., Paramasivam, I., and Schmuki, P., 2010, Doped TiO2 and TiO2

Nanotubes: Synthesis and Applications. ChemPhysChem, 11, 2698–2713.

Nakata, K. and Fujishima, A., 2012, TiO2 photocatalysis: Design and applications.

J. Photochem. Photobiol. C Photochem. Rev., 13, 169–189.

Nakata, K., Liu, B., Ishikawa, Y., Sakai, M., Saito, H., Ochiai, T., Sakai, H.,

Murakami, T., Abe, M., Takagi, K., and Fujishima, A., 2011, Fabrication and

Photocatalytic Properties of TiO2 Nanotube Arrays Modified with Phosphate.

Chem. Lett., 40, 1107–1109.

Nam, S. and Boo, J., 2013, Growth and surface treatment of TiO2 nanorods using

stearic acid solution. Thin Solid Films, 546, 746.

Nazar, Zhang, Z., and Zinkweg, D., 1992, Insertion of Poly(p-phenylenevinylene)

in Layered MoO3. J. Am. Chem. Soc., 114, 6239–6240.

Neinhuis, C. and Barthlott, W., 1997, Characterization and distribution of water-

repellent, self-cleaning plant surfaces. Ann. Bot., 79, 667–677.

Nosaka, Y., Daimon, T., Nosaka, A.Y., and Murakami, Y., 2004, Singlet oxygen

formation in photocatalytic TiO2 aqueous suspension. Phys. Chem. Chem.

Phys., 6, 2917–2918.

Olad, A. and Nosrati, R., 2012, Preparation, characterization, and photocatalytic

activity of polyaniline/ZnO nanocomposite. Res. Chem. Intermed., 38,

323–336.

Olad, A., Behboudi, S., and Entezami, A., 2012, Preparation, characterization and

photocatalytic activity of TiO2/polyaniline core-shell nanocomposite., 35,

801–809.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 12: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

160

Olsen, S.M., 2009, Controlled release of environmentally friendly antifouling

agents from marine coatings., Thesis, Technical University of Denmark.

Park, S.K., Kim, K. Do, and Kim, H.T., 2002, Preparation of silica nanoparticles:

Determination of the optimal synthesis conditions for small and uniform

particles. Colloids Surfaces A Physicochem. Eng. Asp., 197, 7–17.

Pazokifard, S., Esfandeh, M., and Mirabedini, S.M., 2014, Photocatalytic activity

of water-based acrylic coatings containing fluorosilane treated TiO2

nanoparticles. Prog. Org. Coatings, 77, 1325–1335.

Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G.,

Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H.,

Dionysiou, D.D., 2012, Applied Catalysis B : Environmental A review on the

visible light active titanium dioxide photocatalysts for environmental

applications ଝ. "Applied Catal. B, Environ., 125, 331–349.

Pişkin, S., Palantöken, A., and Yılmaz, M.S., 2013, Antimicrobial Activity of

Synthesized TiO2 Nanoparticles. Int. Conf. Emerg. Trends Eng. Technol.

91–94.

Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, U., Schlögl, R., and

Niederberger, M., 2005, Ligand functionality as a versatile tool to control the

assembly behavior of preformed titania nanocrystals. Chem. - A Eur. J., 11,

3541–3551.

Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M., 2004, Ligand-directed

assembly of preformed titania nanocrystals into highly anisotropic

nanostructures. Adv. Mater., 16, 436–439.

Quéré, D., 2005, Non-sticking drops. Reports Prog. Phys., 68, 2495–2532.

Radhakrishnan, S., Siju, C.R., Mahanta, D., Patil, S., and Madras, G., 2009,

Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant

coatings. Electrochim. Acta, 54, 1249–1254.

Rahman, I.A. and Padavettan, V., 2012, Synthesis of Silica nanoparticles by Sol-

Gel: Size-dependent properties, surface modification, and applications in

silica-polymer nanocompositesa review. J. Nanomater., 2012, 1–15.

Rahman, I.A., Vejayakumaran, P., Sipaut, C.S., Ismail, J., Bakar, M.A., Adnan, R.,

and Chee, C.K., 2007, An optimized sol-gel synthesis of stable primary

equivalent silica particles. Colloids Surfaces A Physicochem. Eng. Asp., 294,

102–110.

Rahmani, E., Ahmadpour, A., and Zebarjad, M., 2011, Enhancing the

photocatalytic activity of TiO2 nanocrystalline thin film by doping with SiO2.

Chem. Eng. J., 174, 709–713.

Ruffolo, S.A., Macchia, A., La Russa, M.F., Mazza, L., Urzì, C., De Leo, F.,

Barberio, M. and Ceisci, G.M., 2013, Marine Antifouling for Underwater

Archaeological Sites: TiO2 and Ag-Doped TiO2. Surf. Sci. Spect., 2013, 1–6.

Sadhu, S. and Poddar, P., 2014, Template-free fabrication of highly-oriented single-

crystalline 1D-rutile TiO2-MWCNT composite for enhanced

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 13: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

161

photoelectrochemical activity. J. Phys. Chem. C, 118, 19363–19373.

Sakai, H., Baba, R., Hashimoto, K., Fujishima, A., and Heller, A., 1995, Local

detection of photoelectrochemically produced H2O2 with a “wired”

horseradish peroxidase microsensor. J. Phys. Chem., 99, 11896–11900.

Salem, M.A., Al-Ghonemiy, A.F., and Zaki, A.B., 2009, Photocatalytic degradation

of Allura red and Quinoline yellow with Polyaniline/TiO2 nanocomposite.

Appl. Catal. B Environ., 91, 59–66.

Sapurina, I.Y. and Shishov, M.A., 2012, Oxidative Polymerization of Aniline:

Molecular Synthesis of Polyaniline and the Formation of Supramolecular

Structures. In, New Polymers for Special Applications. In Tech, pp. 251–312.

Sato, T., Masaki, O.K., Sato, K., and Fujishiro, Y., 1996, Photocatalytic Properties

of Layered Hydrous Titanium Oxide / CdS-ZnS Nanocomposites

Incorporating CdS-ZnS into the Interlayer. J. Chem. Tech. Biotechnol., 67,

339–344.

Shibuichi, S., Onda, T., Satoh, N., and Tsujii, K., 1996, Super water-repellent

surfaces resulting from fractal structure. J. Phys. Chem., 100, 19512–19517.

Silversmit, G., Doncker, G. De, and Gryse, R. De, 2003, A Mineral TiO2 „ 001 …

Anatase Crystal Examined by XPS., 9, 21–29.

Singh, A. and Vishwakarma, H.L., 2015, Study of structural, morphological, optical

and electroluminescent properties of undoped ZnO nanorods grown by a

simple chemical precipitation. Mater. Sci., 33, 751–759.

Sirimahachai, U., Ndiege, N., Chandrasekharan, R., Wongnawa, S., and Shannon,

M.A., 2010, Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2):

Synthesis and photocatalytic activities. J. Sol-Gel Sci. Technol., 56, 53–60.

Sirimahachai, U., Phongpaichit, S., and Wongnawa, S., 2009, Evaluation of

bactericidal activity of TiO2 photocatalysts: a comparative study of laboratory-

made and commercial TiO2 samples. Songklanakarin J sci technol, 31,

517–525.

Smitha, V.S., Manjumol, K.A., Baiju, K. V., Ghosh, S., Perumal, P., and Warrier,

K.G.K., 2010, Sol-gel route to synthesize titania-silica nano precursors for

photoactive particulates and coatings. J. Sol-Gel Sci. Technol., 54, 203–211.

Solís-Pomar, F., Martínez, E., Meléndrez, M.F., and Pérez-Tijerina, E., 2011,

Growth of vertically aligned ZnO nanorods using textured ZnO films.

Nanoscale Res. Lett., 6, 1–11.

Son, S., Hwang, S.H., Kim, C., Yun, J.Y., and Jang, J., 2013, Designed synthesis

of SiO2/TiO2 core/shell structure as light scattering material for highly

efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 5,

4815–4820.

Srinivasan, S., Datye, A.K., Hampden-Smith, M., Wachs, I.E., Deo, G., Jehng,

J.M., Turek, A.M., and Peden, C.H.F., 1991, The formation of titanium oxide

monolayer coatings on silica surfaces. J. Catal., 131, 260–275.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 14: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

162

Srinivasan, S., Datye, a K., Smith, M.H., and Peden, C.H.F., 1994, Interaction of

titanium isopropoxide with surface hydroxyls on silica. J. Catal., 145,

565–573.

Stakheev, A.Y., Shpiro, E.S., and Apijok, J., 1993, XPS and XAES Study of TiO2-

SiO2 Mixed Oxide System. J. Phys. Chem., 97, 5668–5672.

Stejskal, J., Sapurina, I., and Trchová, M., 2010, Polyaniline nanostructures and the

role of aniline oligomers in their formation. Prog. Polym. Sci., 35, 1420–1481.

Stöber, W., Fink, A., and Bohn, E., 1968, Controlled growth of monodisperse silica

spheres in the micron size range. J. Colloid Interface Sci., 26, 62–69.

Sun, C., Wang, N., Zhou, S., Hu, X., Zhou, S., and Chen, P., 2008, Preparation of

self-supporting hierarchical nanostructured anatase/rutile composite TiO2

film. Chem. Commun. (Camb). 3293–3295.

Tam, K.H., Djuri, A.B., Chan, C.M.N., Xi, Y.Y., Tse, C.W., Leung, Y.H., Chan,

W.K., Leung, F.C.C., Au, D.W.T., 2008, Antibacterial activity of ZnO

nanorods prepared by a hydrothermal method., 516, 6167–6174.

Tian, G., Chen, Y., Zhou, W., Pan, K., Tian, C., Huang, X., and Fu, H., 2011, 3D

hierarchical flower-like TiO2 nanostructure: morphology control and its

photocatalytic property. CrystEngComm, 13, 2994–3000.

Ullah, S., Ferreira-Neto, E.P., Pasa, A.A., Alcântara, C.C.J., Acuña, J.J.S., Bilmes,

S.A., et al., 2015, Enhanced photocatalytic properties of core@shell

SiO2@TiO2 nanoparticles. Appl. Catal. B Environ., 179, 333–343.

Vaez, M., Alijani, S., Omidkhah, M., and Zarringhalam Moghaddam, A., 2017,

Synthesis, characterization and optimization of N-TiO2/PANI nanocomposite

for photodegradation of acid dye under visible light. Polym. Compos. 1–12.

Virji, S., Huang, J., Kaner, R.B., and Weiler, B.H., 2004, Polyaniline Nanofiber

Gas Sensor: Examination of Reponse Mechanisms. Nano Lett., 4, 491–496.

Vogler, E.A., 1998, Structure and reactivity of water at biomaterial surfaces.

Adv. Colloid Interface Sci., 74, 69–117.

Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E.,

1979, Handbook of X Ray Photoelectron Spectroscopy_ A Reference Book of

Standard Spectra for Identification and Interpretation.pdf Perkin Elmer

Corporation, Minnesota.

Walt, D.R., Smulow, J.B., Turesky, S.S., and Hill, R.G., 1985, The effect of gravity

on initial microbial adhesion. J. Colloid Interface Sci., 107, 334–336.

Wan, M., 2009, Some issues related to polyaniline micro-/nanostructures.

Macromol. Rapid Commun., 30, 963–975.

Wang, C., Yin, L., Zhang, L., Qi, Y., Lun, N., and Liu, N., 2010, Large scale

synthesis and gas-sensing properties of anatase TiO2 Three-dimensional

hierarchical nanostructures. Langmuir, 26, 12841–12848.

Wang, D.P. and Zeng, H.C., 2009, Multifunctional roles of TiO2 nanoparticles for

architecture of complex core-shells and hollow spheres of SiO2-TiO2-

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 15: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

163

polyaniline system. Chem. Mater., 21, 4811–4823.

Wang, F., Min, S., Han, Y., and Feng, L., 2010, Visible-light-induced

photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2

composite photocatalysts. Superlattices Microstruct., 48, 170–180.

Wang, R. and Hashimoto, K., 1997, Full-Text. Nature, 388, 431–432.

Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A.,

Shimohigosh, M., and Watanabe, T., 1998, Photogeneration of Highly

Amphiphilic TiO2 Surfaces . Adv. Mater., 10, 135–138.

Wang, S., Song, Y., and Jiang, L., 2007, Photoresponsive surfaces with controllable

wettability. J. Photochem. Photobiol. C Photochem. Rev., 8, 18–29.

Wang, T.T., Liu, X.H., Guo, J.J., Cheng, Y.C., Xu, G.J., and Cui, P., 2013,

Synthesis and Electrorheological Properties of SiO2/Polyaniline

Nanocomposites Prepared by In Situ Polymerization. Adv. Mater. Res., 669,

131–137.

Wei, Y., Tang, X., Sun, Y., and Focke, W., 1989, A stady of the mechanism of

aniline polymerization, J. Polym. Sci., Part A: Polym. Chem. 27:2385-2396.

Wen, C.Z., Zhou, J.Z., Jiang, H.B., Hu, Q.H., Qiao, S.Z., and Yang, H.G., 2011,

Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with

high-energy {001} and {100} facets. Chem. Commun., 47, 4400–4402.

Wenzel, R.N., 1936, Resistance of solid surfaces to wetting by water. Ind. Eng.

Chem., 28, 988–994.

Wilhelm, P. and Stephan, D., 2006, On-line tracking of the coating of nanoscaled

silica with titania nanoparticles via zeta-potential measurements. J. Colloid

Interface Sci., 293, 88–92.

Wu, C. and Chen, J., 1997, Chemical Deposition of Ordered. Communications, 9,

526–529.

Wu, J.M., Zhang, T.W., Zeng, Y.W., Hayakawa, S., Tsuru, K., and Osaka, A., 2005,

Large-scale preparation of ordered titania nanorods with enhanced

photocatalytic activity. Langmuir, 21, 6995–7002.

Xia, H. and Wang, Q., 2002, Ultrasonic irradiation: A novel approach to prepare

conductive polyaniline/nanocrystalline titanium oxide composites. Chem.

Mater., 14, 2158–2165.

Xiang, Q., Yu, J., and Jaroniec, M., 2011, Tunable photocatalytic selectivity of TiO2

films consisted of flower-like microspheres with exposed {001} facets. Chem.

Commun., 47, 4532–4534.

Xu, B., Cai, Z., Wang, W., and Ge, F., 2010, Preparation of superhydrophobic

cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with

subsequent hydrophobic modification. Surf. Coatings Technol., 204, 1556–

1561.

Xu, C., Fang, L., Huang, Q., Yin, B., Ruan, H., and Li, D., 2013, Preparation and

surface wettability of TiO2 nanorod films modified with triethoxyoctylsilane.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 16: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

164

Thin Solid Films, 531, 255–260.

Xu, T. and Xie, C.S., 2003, Tetrapod-like nano-particle ZnO/acrylic resin

composite and its multi-function property. Prog. Org. Coatings, 46, 297–301.

Yang, F., Ma, L., Gan, M., Zhang, J., Yan, J., Huang, H., Yu, L., Li, Y., Ge, C., and

Hu, H., 2015, Polyaniline-functionalized TiO2–C supported Pt catalyst for

methanol electro-oxidation. Synth. Met., 205, 23–31.

Yang, S. and Gao, L., 2005, A Facile and One-pot Synthesis of High Aspect Ratio

Anatase Nanorods Based on Aqueous Solution. Chem. Lett., 34, 972–973.

Yang, X., Gan, C., Xiong, H., Huang, L., and Luo, X., 2016, Fabrication and

characterization of SiO2@TiO2@silicalite-1 catalyst and its application for

degradation of rhodamine B. RSC Adv., 6, 105737–105743.

Yavuz, A.G. and Gök, A., 2007, Preparation of TiO2/PANI composites in the

presence of surfactants and investigation of electrical properties. Synth. Met.,

157, 235–242.

Yebra, D.M., Kiil, S., and Dam-Johansen, K., 2004, Antifouling technology - Past,

present and future steps towards efficient and environmentally friendly

antifouling coatings. Prog. Org. Coatings, 50, 75–104.

Youngblood, W.J., Lee, S.-H.A., Maeda, K., and Mallouk, T.E., 2009, Visible light

water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res.,

42, 1966–1973.

Yu, J., Dai, G., and Cheng, B., 2010, Effect of crystallization methods on

morphology and photocatalytic activity of anodized TiO2 nanotube array

films. J. Phys. Chem. C, 114, 19378–19385.

Yu, J., Su, Y., and Cheng, B., 2007, Template-free fabrication and enhanced

photocatalytic activity of hierarchical macro-/mesoporous titania. Adv. Funct.

Mater., 17, 1984–1990.

Yun, H.J., Lee, H., Joo, J.B., Kim, W., and Yi, J., 2009, Influence of Aspect Ratio

of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid.

J. Phys. Chem. C, 113, 3050–3055.

Zengina, H. and Erkana, B., 2010, Synthesis and characterization of

polyaniline/silicon dioxide composites and preparation of conductive films.

Polym. Adv. Technol., 21, 216–223.

Zhan, S., Chen, D., Jiao, X., and Song, Y., 2007, Mesoporous TiO2/SiO2 composite

nanofibers with selective photocatalytic properties. Chem. Commun., 1,

2043–2045.

Zhang, D. and Wang, Y., 2006, Synthesis and applications of one-dimensional

nano-structured polyaniline: An overview. Mater. Sci. Eng. B Solid-State

Mater. Adv. Technol., 134, 9–19.

Zhang, H., Lamb, R., and Lewis, J., 2005, Engineering nanoscale roughness on

hydrophobic surface-preliminary assessment of fouling behaviour., Sci. Technol. Adv. Mater., 6, 236–239.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/

Page 17: DAFTAR PUSTAKA - etd.repository.ugm.ac.idetd.repository.ugm.ac.id/downloadfile/158068/potongan/S3-2018-351430... · 149 DAFTAR PUSTAKA Abarzua, S. and Jakubowski, S., 1995, Biotechnological

165

Zhang, H., Zong, R., Zhao, J., and Zhu, Y., 2008, Dramatic visible photocatalytic

degradation performances due to synergetic effect of TiO2 with PANI.

Environ. Sci. Technol., 42, 3803–3807.

Zhang, J., Liu, Z., Han, B., Li, Z., Yang, G., Li, J., and Chen, J., 2006, Preparation

of silica and TiO2-SiO2 core-shell nanoparticles in water-in-oil microemulsion

using compressed CO2 as reactant and antisolvent. J. Supercrit. Fluids, 36,

194–201.

Zhang, L. and Wan, M., 2003, Polyaniline / TiO2 Composite Nanotubes. J. Phys.

Chem. B, 107, 6748–6753.

Zhang, M., Shi, L., Yuan, S., Zhao, Y., and Fang, J., 2009, Synthesis and

photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol.

J. Colloid Interface Sci., 330, 113–118.

Zhang, R.-X., Braeken, L., Liu, T.-Y., Luis, P., Wang, X.-L., and Van der Bruggen,

B., 2017, Remarkable Anti-Fouling Performance of TiO2-Modified TFC

Membranes with Mussel-Inspired Polydopamine Binding. Appl. Sci., 7,

81–96.

Zhang, X., Guo, Y., Zhang, Z., and Zhang, P., 2013, Self-cleaning

superhydrophobic surface based on titanium dioxide nanowires combined with

polydimethylsiloxane. Appl. Surf. Sci., 284, 319–323.

Zhang, X., Shi, F., Niu, J., Jiang, Y., and Wang, Z., 2008, Superhydrophobic

surfaces: from structural control to functional application. J. Mater. Chem., 18,

621–633.

Zhao, T.Y., Liu, Z.Y., Nakata, K., Nishimoto, S., Murakami, T., Zhao, Y., Jiang,

L., and Fujishima, A., 2010, Multichannel TiO2 hollow fibers with enhanced

photocatalytic activity. J. Mater. Chem., 20, 5095–5099.

Zhou, S., Ding, X., and Wu, L., 2013, Fabrication of ambient-curable

superhydrophobic fluoropolysiloxane/TiO2 nanocomposite coatings with

good mechanical properties and durability. Prog. Org. Coatings, 76, 563–570.

Zuccheri, T., Colonna, M., Stefanini, I., Santini, C., and Di Gioia, D., 2013,

Bactericidal activity of aqueous acrylic paint dispersion for wooden substrates

based on TiO2 nanoparticles activated by fluorescent light. Materials (Basel).,

6, 3270–3283.

SINTESIS NANOKOMPOSIT TiO2 nanorod-SiO2-PANI SEBAGAI FOTOKATALIS DAN BAHANANTI-FOULING SRI WAHYUNI, Indriana Kartini; Eko Sri Kunarti; Respati Tri SwasonoUniversitas Gadjah Mada, 2018 | Diunduh dari http://etd.repository.ugm.ac.id/