damping lab 1

Upload: robert-lau-yik-siang

Post on 06-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 damping lab 1

    1/60

     

    1)Nomenclature

    Table 1 Nomenclature

    Symbol Meanings Unitω Angular velocity ran

    meq Equivalent mass kg

    ζ  Damping ratio rad/s

    q Damping coefficient kg/s

    f  Frequency Hz

     I 0 Inertia of beam about pivot O kgm

    !

    m "ass of load kg

    ms "ass of spring kg

    f  N   #atural frequency Hz

    T  $eriod s

    V  %elocity m/s

  • 8/17/2019 damping lab 1

    2/60

    2)Introduction:

    In mec&anical vibration natural frequency and stiffness of materials in generatingvibration ' ( %ibration can be divide into t&ree group )

    a( natural vibration

    • natural motion generated from ob*ect containing some internal

    energy suc& as teacup+ t&e energy come generated due to flickering

    of t&e finger b( forced vibration

    • %ibration due to forced vibration on a system E,ample+ unbalance

    -&eel -ill cause ve&icle to vibrate equal to rotational speed of t&e

    -&eelc( unstable vibration

    • %ibration due to vibration motion -it&out e,ternal e,citation as t&e

    ob*ect produce it o-n vibration force maintaining t&e motion

    E,ample of unstable vibration is aerodynamic flutter

    .&erefore+ understanding mec&anical vibration is vital to study t&e properties+ impact and

    ability to govern t&e vibration in t&e design and operation of t&e mec&anical plant

    .&e ob*ective of t&is e,periment -as to learn &o- spring stiffness+ natural frequency 

    and damping effect on system -it& single degree of freedom. this lab report are subdivided into four parts which are parts A, B, C and D. Part A is to measure

    the spring stiness. Besides, for part B, the aim is to determine the

    natural frequency of oscillation with and without lumped mass

    correction. Furthermore in part C, the experiment is conducted on

    iscous damping and its consequence to the natural frequency. !astly

    part D, determine error analysis.

  • 8/17/2019 damping lab 1

    3/60

    3)Objectives:.&e aim of t&is one degree of freedom system e,periment are

    a .o appro,imate t&e natural frequency of system equivalent to lumped parameter 

    system by using t&e formulaf  N =

      1

    2 π √  k 

    m+ms3

    =  1

    2π  √  k 

    meq

     'Formula for lumped0parameter system frequency+ f lump=  1

    2π  √ k m ('1niversity !23!(

     b Attest t&eory of damping ratio '   ζ  (+ derived from t&e equation

    (   f f  N  )2

    +ζ 2=1+ -&ic& states t&at small damping ratio -ill result in damped

    natural oscillation frequency value is nearly t&e same as t&e undammed natural

    oscillation frequency

      c .o acquire t&e stiffness of a &elical spring

      d .o analyze t&e uncertainties measurement t&at caused by error analysis

    4)ApparatusApparatus -&ic& are used to conduct t&is e,periment are .ecquipment universal

    vibration+ digital stop -atc&es+ accurate balance+ and ruler

  • 8/17/2019 damping lab 1

    4/60

    5)Part A: Measurin t!e sti"ness o# a sprin

    5.1. Introduction

    $art A is to resolve t&e spring stiffness of t&e spring -&ic& -as used during t&e e,periment-&ic& is used in t&e calculation of ot&er calculation .&e t&eory of Hooke4s la-+ mass added to

    t&e spring s&ould not e,ceed t&e proportional limit

    5.. !b"ectives

    • .o determine t&e stiffness of t&e spring e,ert by different mass

    • Evaluate value t&roug& calculation and t&e spring stiffness obtained from t&e grap&

    5.#. Theory $ac%ground

    5$3$1$ %oo&e's (a

    Hooke4s 5a- states t&at t&e deforming force applied is directly proportional to t&e size

    of deformation or elongation as long as do not e,ceed elastic limit

    '&ttps//---3umnedu/s&ips/modules/p&ys/&ooke/&ooke&tm( Hooke4s 5a- can be

    define mat&ematically as

     F =kδ   &quation 1

    6&ere F 7 applied load or force '#(δ   7 deflection or deformation 'm(

    k 7 spring stiffness '#/m(

    8rap& of force against deflection %9 t&e stiffness plotted is essential in identifying t&e gradient

    of t&e grap&

    :;! 'east Squares method

  • 8/17/2019 damping lab 1

    5/60

    utilised t&e coordinates on a scatter plot s&o-n in &quation . Therefore( it -as used to

    determine t&e gradient+ m and t&e spring stiffness+1

    m

     https)**+++.utdallas.edu*,herve*-bdi'eastSquares/0pretty.pdf 

    m=∑  xy−(∑ x ) (∑  y )

    n

    ∑ x2−(∑ x )

    2

    n

      &quation

    5.. 2rocedure

    "# $he hanger and spring is attached to the tecquipment uniersal i%ration

    apparatus and at end of the spring.

    $he initial length of the spring is measured using ruler and recorded.

    '# A "() weight is slotted to onto the hanger and the elongation of the

    length of the spring is measured and recorded.

    *# +tep ' is repeated for loads of !2#+ ;2#+ and =2#.

    # -raph of force ersus deection is plotted to conclude t&e spring stiffness.

    5.1. 3esult and calculations

  • 8/17/2019 damping lab 1

    6/60

    Table 2art - &4perimental 3esult

    i .otal suspended

    mass+ mi 'kg(

    .otal

    force+ Fi 7

    mig '#(

    9cale

    >eading+ ?i 

    Deflection+

    ?i @ ?o

    Increment in

    deflection 'mm(

    'mm

    (

    'm( 'mm

    (

    'm( 'mm( 'm(

    2 2 2 B 22B 2 2 2 2

    3 323C 32 22 B 222

    B

    B 222B

    ! !2;C !2 B= 22B= 3 223

    B 222B

    ; ;2:B ;2 C! 22C! != 22!

    =

    B 222B

    = =2 =2 CB 22CB ;2 22;

    2

    222

    Assuming gravitational force+ g 7CB3 m/s!

    ( "( " &( & '( ' *( *

    (

    (.("

    (.("

    (.(&

    (.(&

    (.('

    (.('

    (.(*

    (oad *+$ ,e-ection

     .orce/ N

    ,e-ection/ m

    Error >eference source not found

    Table # alculation of graph equation using the method of least squares(

    i Deflection+ ?i @ ?o .otal force+ Fi 7 mig '#(   F i2 '?i  @ ?o

    ¿ ¿ F i

    2 2 2 2 2

  • 8/17/2019 damping lab 1

    7/60

    3 222B 32 322 22B

    ! 223 !2 =22 2;!

    ; 22!= ;2 C22 2!

    = 22;2 =2 322 3!

    total∑ ¿

    ∑ ¿22B 322 ;222 !;!

    According to t&e general formula for linear equation+

     y=mx+c

    8radient+ m

     xn

    ∑ ¿¿¿

    n .∑ xn2−¿

    m=n .∑ xn y n−∑ xn∑  yn

    ¿

    m=5 (2.32 )−(100)(0.078)

    5 (3000 )−(100)2

    ¿7.6×10−4

    y0intercept+ c

     x

     xn

    ∑ ¿¿¿

    n .∑ x n2−¿(¿¿ n)2−¿∑ xn y n.∑ xn

    ¿∑ y n∑ ¿

    c=¿

  • 8/17/2019 damping lab 1

    8/60

    c=0.078 (3000 )−2.32(100)

    5 (3000 )−10000

    a=0.0004

    .&erefore equation of slope

     y=0.00076 x+0.0004

    6&ere t&e spring stiffness+ k

    k =  1

    0.00076

    ¿1315.79 N / m

    ¿1.315kN /m

    1.1. 6iscussion

     eference source not found+ proof t&at deflection

    of t&e spring is proportional to t&e applied force

  • 8/17/2019 damping lab 1

    9/60

    Furt&ermore+ random error cause by inappropriate met&od obtaining t&e measurement -ill lead

    to error in t&e reading E,ample of suc& an error are taking t&e reading -&en t&e spring moving

    slig&tly -&ic& -ill c&ange t&e lengt& of t&e spring ommon error suc& as paralla, error is also

    common -&en no effort is taken into taking t&e measurement .&ese problem can be abstain by

     practicing greater care in taking measurement -it&out contact -it& t&e spring and assign a

     person to take t&e reading so t&at same reference point is used in taking t&e measurement /t is

    also %etter to attach a 0xed measurement tool %eside the spring so that

    reading readings can %e o%tain without haing to hold the ruler

    .o obtain &ig&er accuracy in reading several reading must be taken to minimise t&e c&ances of

    error to t&e minimal

     part b

  • 8/17/2019 damping lab 1

    10/60

    5.5. Introduction

    In section < of t&e e,periment+ t&e natural frequency of t&e spring oscillation -as obtain

     by applying varies load to t&e spring .&e e,perimental data -as obtained and recorded

    .&eoretical value -it& and -it&out lumped mass ad*ustment -ere identified and compare

    5.0. !b"ectives• .o study and identify t&e natural frequency of oscillation of a spring -it& and

    -it&out lumped mass ad*ustment

    • ompare t&e grap& obtained t&eoretical and e,perimental result+ associated -it&

     period of oscillations and varies load on t&e &anger

    • .o verify t&e correctness of t&e e,perimental result ontained

    5.7. Theoretical $ac%ground

    5$0$1$ Natural .reuenc #atural frequency is t&e frequency of a system oscillate in t&e none,istence of any

    damping -&ic& is also kno-n as simple &armonic motion+ -&ic& is a sinusodial motion

    &ttp//---mat&psuedu/tseng/class/"at&!:3/#otes0"ec&%pdf 

     Figure 1: Free Body Diagra of spring mass system.

    Figure 3 s&o-s a spring mass system oscillate in t&e direction of gravitational force in y

    a,is of moment + -&ic& is categorise as one degree of freedom

    $oint A in t&e Figure 3 s&o- actual lengt& of t&e spring -&ere no force is e,ert on it

    6&en t&e mass applied + it -ill lengt&en to static equilibrium position at point

  • 8/17/2019 damping lab 1

    11/60

    Different load applied on t&e spring -ill results different position of point

  • 8/17/2019 damping lab 1

    12/60

    5$0$2$ (umped Mass +stem

    5umped mass systems are systems t&at -it& restricted number of freedom

    Allo-ed for t&e mass of spring an energy met&od to determine t&e natural frequency of 

    t&e system >ayleig&4s Energy is adopted in t&is case -&ic& assumes

    • motion is simple &armonic and vibration mode

    • "a,imum kinetic energy is equal to ma,imum strain energy

    • .&e mode s&ape4 is assumed

    '1niversity !23!(

    >eferring to figure bello-

    8igure 1 System +ith 1 d.o.f.

     #ote t&at+

    c7 t&e free lengt& of t&e spring

    m7 mass of ob*ectv7 velocity at c

    %7 velocity at c G dc

    ms7mass of spring

    6e can assume +

  • 8/17/2019 damping lab 1

    13/60

    inetic energy of t&e body+ m+ !

    1=

    1

    2m V 

    2

    inetic energy of t&e dc element of spring+ ms+

    "c

    ms¿ $¿

     !2=

    1

    2¿

    For t&e identical triangle 'mode s&ape(+$

    c=

    #   +$2=( cV #  )

    2

    5astly + t&e kinetic energy for t&e -&ole spring+ ms+

     !=1

    2

    ms

    V 2

    # 2∫0

    c2

    "c

    &quation

    ¿1

    2

    ms

    3  V 

    2

     

  • 8/17/2019 damping lab 1

    14/60

    f s=  1

    2π √  k 

    m+ms3

  • 8/17/2019 damping lab 1

    15/60

    5.9. 2rocedure

    8igure 6amped rotational system +ith single d.o.f.

    i# 1ass of the spring and hanger are measured and recorded.

    ii# $he spring is attached to the tecquipment uniersal i%ration

    apparatus with hanger hanged at the end of the spring.iii# 2ertical oscillations with "(mm of amplitude is exert and '(

    num%er of cycles is timed using digital stopwatch are measured

    and recorded.

    i# +tep iii is repeated for (, "() , &() ,'() and *().

    # $hen graph of experimental and theoretical period are plotted

    against arious masses.

    1.1. 3esult and calculations

    "ass of t&e spring+ms=0.034kg

    "ass of t&e &anger+m%=0.01kg

    Induced amplitude+  & '10mm=0.01m

    Table 2art $ e4perimental data

    .otal mass of 

    -eig&ts on

    &anger+mi

     #umber 

    of cycles+

     N 

    "ean time of 

     N 

    oscillations+

    $eriod of  

    oscillation+√ mi +m%

    √mi+m%+ms3

     +

    ms

    mi

  • 8/17/2019 damping lab 1

    16/60

    t́ 

    'sec(

    (1 sec

    T =  t́  N   

    'sec(

    (kg )1

    (kg )1

    2

    ( N ) (kg)

    2 2 ;2 2 2 23222 23=3 2

    32 323C= ;2 ;=;; 2!33= 323= 32!23

    22;;=

    !2 !2;B ;2 ==22 2!=B2 3=;3; 3=;:;

    223

    ;2 ;2:B3 ;2 C=!2 2;3=3 3:3 3:=B

    22333

    =2 =2: ;2 32B!22 2;2 !2!3 !2!=

    222B;

    note that gravity 7CB3 m /s2

  • 8/17/2019 damping lab 1

    17/60

    Table 5 Theoretical relationship based on formulaT =( 2π √ k  )√  )   

    9quare root of totalmass -it&out spring+

    √ mi+m%   'kg(

    9quare root of total mass

    -it& spring+

    √mi+m%+ms3

      'kg($eriod '-it&out spring

    mass(+.3 'sec(

    $eriod '-it& spring

    mass(+.! 'sec(

    23222 23=3 223;!3 22!:;2

    323= 32!23 23:== 23C

    3=;3; 3=;:; 2!=C!; 2!=B3

    3:3 3:=B 2;2;=2= 2;2;C:B

    !2!3 !2!= 2;:23BC 2;:2C!

     #ote"3 7

    mi+m%

    "! 7mi+m%+

    ms

    3

    (.3 " ".& ".* ".4 ".3 & &.&

    (

    (.(

    (."

    (."

    (.&

    (.&

    (.'

    (.'

    (.*

    5xperimental data

    assuming spring is

    massless

     $heoretical data assuming

    spring is massless

    !inear 6$heoretical data

    assuming spring is

    massless#

    Mass &)

    Period

    8igure # omparison bet+een theoretical data and e4perimental data :assuming spring is massless;

  • 8/17/2019 damping lab 1

    18/60

    (.3 " ".& ".* ".4 ".3 & &.&

    (

    (.(

    (."

    (."

    (.&

    (.&

    (.'

    (.'

    (.*

     $heoretical dataconsidering spring with

    mass

    !inear 6$heoretical data

    considering spring with

    mass#

    5xperimental data with

    spring mass consideration

    Mass &)

    Period

    8igure 5 omparison bet+een theoretical data and e4perimental data :assuming spring is have mass;

    1.1. 6iscussion

     Figure ; omparison bet-een t&eoretical data and e,perimental data 'assuming spring is

    massless( in figure C and figure 32 proof t&e difference bet-een t&e value obtain bet-een

    e,perimental data and t&e t&eoretical .&e common bet-een t&ese t-o grap& s&o-ed t&at is t&e

    spring is elastic limits p&ase

  • 8/17/2019 damping lab 1

    19/60

    From t&e grap&s plotted + t&e e,perimental data c&anges in small degree and does not line up in

    a straig&t line .&e cause is due to paralla, error t&is can be e,plain due to fast oscillation of t&e

    spring and time keeper of t&e stop-atc& .&us+ indirectly cause t&e period of oscillation in

    e,periment is &as &ig&er value as compare to t&eoretical value -&ic& are clearly s&o-n on t&e

    grap&s plotted to avoid suc& an error laser oscillator counter s&ould be used

    furt&ermore condition of t&e string s&ould also take into consideration t&is because induced

    e,tension of t&e spring at t&e initial mig&t varies from t&e recommended e,tension In addition

    mass attac& to t&e &anger must be firm to abstain certain affect on t&e oscillation Ot&er t&an

    t&at+ t&e spring mig&t not be in a good condition since it is not a ne- spring

    In nuts&ell+ obtaining mean value in t&e e,periment are vital to minimise error in t&e

    e,periment

  • 8/17/2019 damping lab 1

    20/60

     part c

    5.ao

    !22=(

    .&e mat&ematical model of viscous damping can be e,press belo-+&quation 0

     F =−q ´ x

    &quation 7

    T =−q* *́

    .o study t&e effects of viscous damping+ -e apply #e-ton4s 9econd la- to t&e follo-ing

    system+

  • 8/17/2019 damping lab 1

    21/60

    8igure 0 6amped 1 d.o.f. system

    8igure 7 8ree body diagram

    Applying #e-ton II +

    ∑ F  x=m ´ x

    −kx−q ´ x=m ´ x

    &quation 9

    ´ x+ q

    m ´ x +

     k 

    m x=0

    .&e resultant equation is a linear+ second order+ &omogeneous+ constant coefficient+ ordinary

    differential equation 9uc& equations can be tackled by assuming a solution in t&e form of a

    comple, e,ponential '1niversity !23!( Hence+ letJs assume t&at

    &quation <

     x (t )= + est 

    9ince bot& K and s can be comple, 9ubstituting  x (t )= + est 

     and´ x+

     q

    m ´ x+

     k 

    m x=0

    and simplify yields t&e c&aracteristic equation+

    &quation 1/

    s2+

    q

    m s+

     k 

    m=0

    And roots of t&is equation -ill be+

    &quation 11

  • 8/17/2019 damping lab 1

    22/60

    s1

    s2

    }=−q2m [1(√1−4 mk q2 ]

  • 8/17/2019 damping lab 1

    23/60

    Ho-ever+ in t&is e,periment in $art for t&e e,perimental setup as belo-+

    8igure 9 Schematic diagram of damped rotational system +ith single d.o.f.

    .&e #e-ton 9econd 5a- can -ritten as+

    &quation 1

    *́+q a

    2

     I 0*́+

    k c2

     I 0*=0

    6&ere

    *́ 7angular acceleration

    *́ 7 angular velocity

     *

    7 angle c&ange

    q 7 damping coefficient

    7 spring stiffnessa 7 distance from pivot to damper 

    c 7 distance from pivot to &elical spring

     I 0 7 moment of inertial of t&e arm along t&e pivot O+

  • 8/17/2019 damping lab 1

    24/60

    ecalling t&at t&e logarit&mic decrement

    &quation 15

    33

    !

    !

    !ln

    3

    !

    2

    −=  

     

      

     =

    ζ 

    π δ 

    n y

     y

    n

    -&ic&+ if solved for

    ζ 

    and t&en replaced -it& t&e e,pression for

    !ζ 

    above fives t&e

    damping co0efficient

    &quation 10

    3(!/!ln'

    !

    !!!

    +

    =

    no

    o

     y y

    n

    kI 

    a

    cq

    π 

     

  • 8/17/2019 damping lab 1

    25/60

    6&ere

    y2 7 t&e amplitude of t&e vibration at t&e beginning

    yn 7 t&e amplitude of t&e vibration at n cycle of oscillation

    n 7 oscillation number

    If t&e das&pot is drained of its oil+ it -ill gives out q72 and so t&en Equation 3= becomes

    &quation 17

    k  f  

    c I 

     I 

    k c f  

     N 

    o

    o

     N 

    !

    !      

      

     =⇒=

    π π 

     

    Substitution of &quation 17 into &quation 10 gives(

    &quation 19

    3

    (!/!ln'

    !!

    !

    +

       

      

    =

    no

     N 

     y y

    n

    a

    c

     f  

    q

    π 

    π 

     

    As long t&ere is natural frequency of oscillation andn

    o

     y

     y

     e,ist+ Equation 3B can be

    evaluated to determined t&e damping coefficient

  • 8/17/2019 damping lab 1

    26/60

    5.11. 2rocedure

    8igure < Schematic diagram of damped rotational system +ith single d.o.f.

    3 .&e apparatus -as set up as s&o-n above

    ! A empty das&pot -as fi,ed at a distance a from t&e pivot O and t&e &elical spring used in

    $art A and $art < -as fi,ed at a distance of c from t&e pivot O

    ;

  • 8/17/2019 damping lab 1

    27/60

    1.1. 3esult and alculations

     

    8igure 1/) Typical time history of viscously damped oscillation

    "easurements of Apparatus '>efer to Figure ! Damped rotational system -it& single dof(

    a=150mm

    c=600mm

    Table 0 &4perimental data for 2art

    ategory Das&pot -it&out oil

    'undamped(

    Das&pot -it& oil 'damped(

    .otal number of full cycle

    oscillations+ n

    : =!

    .ime taken for n4

    oscillation 's(

    B=3 B=

    $eriod 'n

    s ( +. 's(23:2 23;

    Frequency 'Hz( :C 3=22 y

    0  'mm(;3 !

    2 y n  'mm( ! !

    Initial deflection angle+

    *0  'rad(

    ;! !

    alculation)

    LLL#ote .&e value spring stiffness k  + is taken from part A calculation

  • 8/17/2019 damping lab 1

    28/60

    Moment of inertia of arm about !(  I 0 (

    .&e data from t&e e,periment -it&out oil in das&pot 'undamped( is used Equation

     I 0=(   c2π f  N  )

    2

    k  + is used

    6&ere+

    f  N =6.659 ,-

    k =1315.79 N /m

    c=0.6 m

     I 0=(   0.62π ×6.659 )

    2

    (1315.79 )

     I 0=0.2706 Nm s2

    6amping oefficient( q :using &quation 10;

    q=2×0.60

    0.152

    √1315.79×0.2706

    [ 2 π (15)

    ln( 3.12.6 ) ]2

    +1

    q=1.878kg / s

  • 8/17/2019 damping lab 1

    29/60

    &4perimental damped freeoscillation(

    f q=6.659 ,-

    Theoretical damped freeoscillation :using &quation 1;(

    f "ampe"=  1

    2π √  1315.79×0.62

    0.2706   (1−   1.8782×0.15

    4

    4×1315.79×0.2706×0.62 )

    f q=f "ampe"=6.659 ,-

    omparison bet+een e4perimental and theoreticalf q  is equivalent to e,perimental

    f q

    ':CHz(

    alculating e4perimental

    f q

    f  N  ∧ζ   :using &quation 17 and &quation 19;(

    f q

    f  N =

    6.659

    6.659

  • 8/17/2019 damping lab 1

    30/60

    f q

    f  N =1

    +

    ζ =

    √1−

    ( f q

    f  N 

    )

    2

    ζ =√ 1−(1 )2

    ζ =0  + -&ic& is ζ   M 3

    alculating theoretical result of 

    f q

    f  N ∧ζ 

     :using &quation 17 and&quation 19;(

    f q

    f  N =

    6.140

    6.659

    f q

    f  N =0.90899

     + -&ic& is very close to 3

    ζ =√1−( f q

    f  N )2

    ζ =√ 1−(0.922 )2

    ζ =0.387  + -&ic& is   ζ   M 3

  • 8/17/2019 damping lab 1

    31/60

    1.. 6iscussion

  • 8/17/2019 damping lab 1

    32/60

    2$ Part ,: rror Analsis

    Introduction

    .&e purpose of t&e error analysis is to determine t&e accuracy of t&e value -e obtain during t&e

    e,periment %alue of t&e parameter can be ac&ieved by substitute t&e measured value obtain

    from t&e lab+ -&ic& is e,posed to certain error . This will lead to measured uantities and

    function of algebraic might be the cause of the error in new parameter. .&ere are t-o

    types of uncertainties -&ic& are syst=ematic errors and random uncertainties

    Theory

  • 8/17/2019 damping lab 1

    33/60

     =√∑i=1 N 

    ( x i− x )2

     N −1

    In general case+ t&e magnitude of a parameter is determined by t&e substitution of measured

    quantities+ eac& sub*ect to error+ in an algebraic e,pression 9o t&e error in t&e ne- parameter can

     be some function of t&e algebraic e,pression+ t&e measured quantities and t&eir respective

    uncertainties

    .&e absolute error can be defined in quantity , as d, -&ile t&e fractional error can be defined in

    quantity as

    δx x

     = "x x

    5.1. 2art 6)

    5$12$1$ rror Analsis

    .&e evaluation of data gained from e,periment al-ays carries a certain level of 

    uncertainties .&e -ill to reduce t&e uncertainties must be balanced -it& t&e

    necessity to ac&ieve ma,imum efficiency of information collected and

    e,perimental yield -it& t&e resources available'1niversity !23!(

    .o determine t&e uncertainty of a function t&at is made up of several parameters

    t&e formula belo- is used

    For function  /=f  ( w 0 x 0 y 1 ) + its uncertainty can be defined as+

    &quation 1<

    +∂∂

    +∂∂

    +∂∂

    ±=   dy y

    dx x

    dww

    d   β β β 

    β 

    In t&is e,periment+ t&e uncertainty of t&e damping coefficient q+ is to be

    determined From

  • 8/17/2019 damping lab 1

    34/60

    3(!/!ln'

    !!

    !

    +

       

      

    =

    no

     N 

     y y

    n

    a

    c

     f  

    q

    π 

    π 

    .&erefore+ t&e uncertainty of q for damped spring can be defined as+

    &quation /

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

  • 8/17/2019 damping lab 1

    35/60

    5.1#. 2art ) =iscous damping and its effects on natural frequency

    5.1. 2art 6) &rror -nalysis

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

    .o determine t&e

    uncertainty of t&e damping coefficient q + Equation !! is used

    .o solve t&is long equation at ease it -as broken into smaller parts for solving and later

    combined toget&er to determine t&e final result

     #ote t&e calculation is only conducted for t&e damped system as t&e undamped system is

    assumed t&at no damping took place

    5$14$1$ 6ncertaint o# 7a8

     

    2 y0

    2 y n¿2+1

    ¿¿ ¿2πn

    ¿√ ¿

    −2

    π f n (# 

    2

    a3 )

    ¿2 q

    2 a 2 a=¿

  • 8/17/2019 damping lab 1

    36/60

    3.1

    2.6¿2+1

    ¿¿¿

    2π (15 )¿

    √ ¿

    −2

    1315.79

    π 6.659 (   0.62

    0.153 )

    ¿2 q

    2 a 2 a=¿

    722!:2=3

    5$14$2$ 6ncertaint o# 7c8

    2232

    3((A!/3;ln'

    3:!'

    3:2A:CA

    A2DC3;3:

    !

    3((!!ln'

    !

    '

    !

    !

    !

    !

    !

    ×+

    ××××

    =∂∂

    +

       

      

    =∂∂

    π 

    π 

    π 

    π 

    dcc

    q

    dc

     y y

    n

    a

    c

     f  

    dcc

    q

    no

     N 

  • 8/17/2019 damping lab 1

    37/60

    2%

    2 c "c=6.259 x103

    5$14$3$ 6ncertaint o# 7o8

    ( )

    ( ) ( )

    2232

    3(!/!ln'

    !(!/!ln'

    =

    2232

    3(!/!ln'

    !

    (!/!ln'!(!('

    !

    3'

    22323(!/!ln'

    !

    3((!!ln'

    !'

    !

    ;!

    ;

    !!

    !

    ;!

    3!!

    !

    !

    3!!

    !

    !

    ×

       

     

     

     +

    ××

       

      

    =∂∂

    ×

      

     

     

     

     +  

     

      

        ×××

    ×−−×   

      =

    ∂∂

    ×  

     

     

     

     +  

     

      

        ××   

      =

    ∂∂

    +

       

      

    =∂∂

    −−

    noono

     N o

    o

    no

    o

    no

     N 

    o

    o

    no N 

    o

    o

    o

    no

     N o

    o

     y y

    n y y y

    a

    c

     f  

    nk 

    dy y

    q

     y y

    n y

     y yn

    a

    c

     f  

    k dy

     y

    q

     y y

    n

    a

    c

     f  

    k dy

     y

    q

    ody

     y y

    n

    a

    c

     f  

    dy y

    q

    π 

    π 

    π 

    π π 

    π 

    π 

    π 

    π 

  • 8/17/2019 damping lab 1

    38/60

    ( ) ( )

    ( ) ( )

    2232

    3(2!A2/2;32ln'

    3:!

    !/;322=;2(2!A2/2;32ln'

    3:2

    A22

    A:CA

    3:DC3;3:=

    !

    ;

    !

    ;

    !!

    ×

       

     

     

     

    +   

      

        ××−

       

      

    =∂∂

    π 

    π 

     x

    dy y

    qo

    o

    2%

    2 y0" y

    0=6.8887 x103

    5$14$4$ 6ncertaint o# n 

    ( )

    ( ) ( )

    2232

    3((!/!ln'

    !'(!/!ln'

    =

    2232

    3(!/!ln'

    !

    (!/!ln'!(!('

    !

    3'

    22323(!/!ln'

    !

    3((!!ln'

    !'

    !

    ;

    !;

    !!

    !

    ;!

    3!!

    !

    !

    3

    !!

    !

    !

    ×

       

      

      +××

       

      

    =

    ×

      

     

     

     

     +  

     

      

        ×××

    ×−−×   

      =

    ∂∂

    ×  

     

     

     

     +  

     

      

        ××   

      =

    ∂∂

    +

       

      

    =∂∂

    −−

    no

    nno

     N 

    o

    o

    no

    o

    no

     N 

    o

    o

    no N 

    o

    o

    o

    no

     N 

    o

    o

     y y

    n y y y

    a

    c

     f  

    nk 

    dy

     y

    q

     y y

    n y

     y yn

    a

    c

     f  

    k dy

     y

    q

     y y

    n

    a

    c

     f  

    k dy

     y

    q

    ody

     y y

    n

    a

    c

     f  

    dy y

    q

    π 

    π 

    π 

    π π 

    π 

    π 

    π 

    π 

  • 8/17/2019 damping lab 1

    39/60

    ( ) ( )

    ( )

    2232

    3(2!A2/2;32ln'

    3:!

    (!/;32A!'(2!A2/2;32ln'

    3:2

    A22

    A:CA

    3:=C3;3:=

    !

    ;

    !

    ;

    !!

    ×

       

     

     

     

    +   

      

        ××−

       

      

    =∂∂

    π 

    π 

     x

    dy y

    qo

    o

    2%

    2 yn" y n=1.0883

    5$14$5$ 6ncertaint o# 7   f n 8

    2 q

    2 f  N " f  N =|

    −  k 

    π f  N 2 ( ca )

    2

    √(2 (n ) π 

    ¿( y0 yn ))2

    .1|

    |−1315.79

    π 6.6592 (   0.60.15 )

    2

    √(2 (15 ) π 

    ¿( 3.12.6 ) )2

    +1

    .1|72!B!2;C

  • 8/17/2019 damping lab 1

    40/60

    5$14$9$ 6ncertaint o# "k  /

    1sing Equation !!+ -e can formulateEquation !!+

    compliancek dqq

    dqq

    k dk    σ !

    !

    3±=±=

    ∂∂

    ±=

    6&ere+

     ( )!! ∑∑   −

    =ii

     ycomplience

     x xn

    nσ σ 

    And +

    ( )∑      

      

     −

    −=

    !

    3

    !

    3 x

    k  y

    n  ii yσ 

  • 8/17/2019 damping lab 1

    41/60

    .o determine "k  + -e need to first find  y  follo-ed by

     compliance

    No .otal force+

     x

     3eflection0

     y−[1

    k  ] x−b   b > /   (

     y−[ 1

    k ] x−b)

    2

    3 ( 2 ( 2! 32 222B 2222=2222; 3222!E02

    ; !2 223 2222B2222 =223E02

    = ;2 22!= 2223!2222C 3==22!E02

    : =2 22; 02222;CCCBB 3:CCCE02

    9um 322 22B 222!2222; !=222!E02

    k =1315.79 N /m 

  • 8/17/2019 damping lab 1

    42/60

      y=0.89443×10−3

     

    ( ) ( ) !322;222:

    :

    −=   ycomplience   σ σ 

    7!B!B=,   10−5

  • 8/17/2019 damping lab 1

    43/60

    ::CD2

    B=3;3

    3((2332/2=;2ln'

    (;3'!'

    3:2

    ::2

    (2::D'

    3

    !

    !

    =∂∂

    ×+

       

      

    =∂∂

    undamped dk k 

    q

    dk k 

    q

    π 

    π 

    5$14$0$ 6ncertaint o# q /

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

    { }::CD2B2!=2;DD:22CAA22!2A22D::2   +++++±=dq

    C;!;3±=dq

    9),iscussions

    0.1. 2art -) Measuring the stiffness of the spring

  • 8/17/2019 damping lab 1

    44/60

    0..2art $) Natural frequency of oscillation :+ith and +ithout lumped mass

    correction;

    0.#. 2art

    0.. 2art 6

    .&e value of damping coefficient+ q  calculated is   5 .6613(1.9323 Ns/m + -&ere t&e

    uncertainty is ;=3;N of t&e damping coefficient .&e result s&o-s t&at t&e uncertainty is

    very &ig& and improvement mig&t need to carryout to improve t&e accuracy of t&e result

    Ho-ever+ since t&at t&e damping coefficient is a function of ot&er parameters taken from

    t&e e,periment+ t&e accuracy of t&e parameters must be improved to determine a more

    accurate damping coefficient

  • 8/17/2019 damping lab 1

    45/60

    0)onclusion$art A

    In conclusion+ t&e value of spring stiffness determined '3!:2 #/m( -it& appro,imate !N erroris consider acceptable Due to t&e difference in t&eoretical and e,perimental data+ t&e t&eoretical

    value 3;;;;; #/m is used in t&e follo-ing e,periments

    $art

  • 8/17/2019 damping lab 1

    46/60

  • 8/17/2019 damping lab 1

    47/60

  • 8/17/2019 damping lab 1

    48/60

    .1. 2art 6)

    2$1$1$ rror Analsis

    .&e evaluation of data gained from e,periment al-ays carries a certain level of 

    uncertainties .&e -ill to reduce t&e uncertainties must be balanced -it& t&enecessity to ac&ieve ma,imum efficiency of information collected and

    e,perimental yield -it& t&e resources available'1niversity !23!(

    .o determine t&e uncertainty of a function t&at is made up of several parameters

    t&e formula belo- is used

    For function  /=f  ( w 0 x 0 y 1) + its uncertainty can be defined as+

    &quation 1

    +∂

    ∂+∂∂+

    ∂∂±=   dy

     ydx

     xdw

    wd    β β β β 

    In t&is e,periment+ t&e uncertainty of t&e damping coefficient q+ is to be

    determined From Equation 3B+

    3(!/!ln'

    !!

    !

    +

     

     

     

     

     

    =

    no

     N 

     y y

    na

    c

     f  

    qπ 

    π 

     

    .&erefore+ t&e uncertainty of q for damped spring can be defined as+

    &quation

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

  • 8/17/2019 damping lab 1

    49/60

    .. 2art ) =iscous damping and its effects on natural frequency

    .#. 2art 6) &rror -nalysis

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

    .o determine t&e

    uncertainty of t&e damping coefficient q + Equation !! is used

    .o solve t&is long equation at ease it -as broken into smaller parts for solving and later

    combined toget&er to determine t&e final result

     #ote t&e calculation is only conducted for t&e damped system as t&e undamped system is

    assumed t&at no damping took place

    2$3$1$ 6ncertaint o# 7a8

    2!:2=32

    2232

    3((A!/3;ln'

    3:!'

    3:2A:CA

    A2DC3;3:

    !

    3((!!ln'

    !'

    !

    !

    ;

    !

    !

    ;

    !

    =∂∂

    ×+

    ××××

    −=∂∂

    +

        

      

    −=∂∂

    daa

    q

    daa

    q

    da

     y y

    n

    a

    c

     f  

    daa

    q

    no

     N 

    π 

    π 

    π 

    π 

     

  • 8/17/2019 damping lab 1

    50/60

    2$3$2$ 6ncertaint o# 7c8

    !;;

    10−3

    ;32!:CA

    2232

    3((2!A2/2;32ln'

    3:!'

    3:22::D

    A2DC3;3:

    !

    3((!!ln'

    !'

    !

    !

    !

    !

    !

    −=∂∂

    ×+

    ×××=

    ∂∂

    +

       

      

    =∂∂

     xdcc

    q

     x

    dcc

    q

    dc

     y y

    n

    a

    c

     f  

    dcc

    q

    no

     N 

    π 

    π 

    π 

    π 

  • 8/17/2019 damping lab 1

    51/60

    2$3$4$

    ( )

    ( ) ( )

    2232

    3(

    (!/!ln'

    !'(!/!ln'

    =

    2232

    3(!/!ln'

    !

    (!/!ln'!(!('

    !

    3'

    22323(!/!ln'

    !

    3((!!ln'

    !'

    !

    ;

    !;

    !!

    !

    ;!

    3!!

    !

    !

    3!!

    !

    !

    ×

     

     

     

     

     

     +××

       

      

    =∂∂

    ×

      

     

     

     

     +  

     

      

        ×××

    ×−−×   

      =

    ∂∂

    ×  

     

     

     

     +  

     

      

        ××   

      =

    ∂∂

    +

       

      

    =∂∂

    −−

    no

    ono

     N 

    o

    o

    no

    o

    no

     N 

    o

    o

    no N 

    o

    o

    o

    no

     N 

    o

    o

     y y

    n y y y

    a

    c

     f  

    nk 

    dy y

    q

     y y

    n y

     y yn

    a

    c

     f  

    k dy

     y

    q

     y y

    n

    a

    c

     f  

    k dy

     y

    q

    ody

     y y

    n

    ac

     f  k 

    dy y

    q

    π 

    π 

    π 

    π π 

    π 

    π 

    π 

    π 

    6ncertai

    nt o# 7o8

  • 8/17/2019 damping lab 1

    52/60

    ( ) ( )

    ( )

    ;32BBDA

    2232

    3(A!/3;ln'

    3:!

    !

    ;323;

    (2!A2/2;32ln'

    3:2

    A2

    A:CA

    3:DC3;3:=

    !

    ;

    !

    ;

    !!

    −=∂∂

    ×

       

     

     

     

    +   

      

        ××   

         −

       

      

    =∂∂

     xdy y

    q

     x

    dy y

    q

    o

    o

    o

    o

    π 

    π 

    dfd

    2$3$5$

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ;DD=:2

    2232

    3(2332/2=;2ln'

    ;3!2332(2332/2=;2ln'

    3:2

    ::2

    2::D

    ;3;;3;;;=

    2232

    3(!/!ln'

    !(!/!ln'

    =

    3((!!ln'

    !'

    !

    ;!

    ;

    !!

    !

    ;!

    ;

    !!

    !

    !

    =∂∂

    ×

      

     

     

     

     +  

     

      

        ××−

       

      

    =∂∂

    ×

       

      

     +

    ××

       

      

    =∂∂

    +

       

      

    =∂

    n

    n

    n

    n

    no

    ono

     N n

    n

    o

    no

     N n

    n

    dy y

    q

    dy y

    q

     y y

    n y y y

    a

    c

     f  

    nk 

    dy y

    q

    dy

     y yn

    a

    c

     f  

    dy

     y

    q

    π 

    π 

    π 

    π 

    π 

    π 

    6ncertaint o# n 

  • 8/17/2019 damping lab 1

    53/60

    2$3$9$ 6ncertaint o# 7  f n 8

    B2!=2

    (3'

    3((23322=;2ln'

    (;3'!'

    3:2

    ::2

    (2::D'

    ;;3;;;

    3((!!ln'

    !'

    !

    !

    !

    !

    !

    !

    =∂∂

    +

       

      

    −=

    ∂∂

    +

         −=∂∂

     N 

     N 

     N 

     N 

     N 

    no

     N  N 

     N 

    df   f  

    q

    df   f  

    q

    df  

     y y

    n

    ac

     f  k 

    df   f  

    q

    π 

    π 

    π 

    π 

    2$3$0$ 6ncertaint o# "k  /

    1sing Equation !!+ -e can formulateEquation !!+

    compliancek dqq

    dqq

    k dk    σ !

    !

    3±=±=

    ∂∂

    ±=

  • 8/17/2019 damping lab 1

    54/60

    6&ere+

     

    ( )!! ∑∑   −=

    ii

     ycomplience

     x xn

    nσ σ 

    And +

    ( )∑      

      

     −

    −=

    !

    3

    !

    3 x

    k  y

    n  ii yσ 

  • 8/17/2019 damping lab 1

    55/60

    .o determine "k  + -e need to first find  y  follo-ed by

     compliance

    From page Error >eference source not found+

    i .otal suspended

    mass+ mi 'kg(

    .otal

    force+ Fi 7

    mig '#(

    9cale

    >eading+ ?i 

    Deflection+

    ?i @ ?o

    Increment in

    deflection 'mm(

    'mm

    (

    'm( 'mm

    (

    'm( 'mm( 'm(

    2 2 2 2 222 2 2 2

    3 323C 32 : 22: : 222

    :

    : 222:

    ! !2;C !2 B; 2B;2 3; 223

    ;

    B 222B

    ; ;2:B ;2 C2 22C2 !2 22!

    2

    32 2232

    = =2 =2 322 2322 ;2 22;

    2

    32 2232

    k =1333.33 N /m  

  • 8/17/2019 damping lab 1

    56/60

    ;2223

    ! =∑=i

    i x

      y=2.345×10−3

     

    ( ) ( )  ( )   N m ycomplience /32=3AD2;3A!232;=:!

    322;222:

    : :;!

    −− ×=×=−

    = σ σ 

  • 8/17/2019 damping lab 1

    57/60

    ::CD2

    B=3;3

    3((2332/2=;2ln'

    (;3'!'

    3:2

    ::2

    (2::D'

    3

    !

    !

    =∂∂

    ×+

       

      

    =∂∂

    undamped dk k 

    q

    dk k 

    q

    π 

    π 

    2$3$;$ 6ncertaint o# q /

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    +∂∂

    ±=   dk k 

    qdf  

     f  

    qdy

     y

    qdy

     y

    qdc

    c

    qda

    a

    qdq  N 

     N 

    n

    n

    o

    o

    { }::CD2B2!=2;DD:22CAA22!2A22D::2   +++++±=dq

    C;!;3±=dq

  • 8/17/2019 damping lab 1

    58/60

    3$ ,iscussions

    #.1. 2art -) Measuring the stiffness of the spring

    #.. 2art $) Natural frequency of oscillation :+ith and +ithout lumped masscorrection;

    #.#. 2art

    #.. 2art 6

    .&e value of damping coefficient+ q  calculated is   5 .6613(1.9323 Ns/m + -&ere t&e

    uncertainty is ;=3;N of t&e damping coefficient .&e result s&o-s t&at t&e uncertainty is

    very &ig& and improvement mig&t need to carryout to improve t&e accuracy of t&e result

    Ho-ever+ since t&at t&e damping coefficient is a function of ot&er parameters taken from

    t&e e,periment+ t&e accuracy of t&e parameters must be improved to determine a more

    accurate damping coefficient

  • 8/17/2019 damping lab 1

    59/60

    4$ onclusion$art A

    In conclusion+ t&e value of spring stiffness determined '3!:2 #/m( -it& appro,imate !N erroris consider acceptable Due to t&e difference in t&eoretical and e,perimental data+ t&e t&eoretical

    value 3;;;;; #/m is used in t&e follo-ing e,periments

    $art

  • 8/17/2019 damping lab 1

    60/60