dan irvine mcmaster university

16
A Study of the 30 P(p,) 31 S Reaction via the 32 S(d,t) 31 S Reaction and its Astrophysical Relevance Dan Irvine McMaster University CAWONAPS 2010 Dec. 9- 10

Upload: alina

Post on 13-Jan-2016

43 views

Category:

Documents


0 download

DESCRIPTION

A Study of the 30 P(p, g ) 31 S Reaction via the 32 S(d,t) 31 S Reaction and its Astrophysical Relevance. Dan Irvine McMaster University. CAWONAPS 2010. Dec. 9-10. ( p , g ) Reaction on Phosphorus Isotope 30 P. 30 P( p , g ) 31 S plays an important role in stellar nucleosynthesis : - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dan Irvine McMaster University

A Study of the 30P(p,)31S Reaction via the 32S(d,t)31S Reaction and its

Astrophysical Relevance

Dan Irvine

McMaster University

CAWONAPS 2010 Dec. 9-10

Page 2: Dan Irvine McMaster University

(p) Reaction on Phosphorus Isotope 30P

30P(p)31S plays an important role in stellar nucleosynthesis:

At nova temperatures between 0.1 – 0.4 GK:

• Influences the dominant nova nucleosynthetic path connected to the Si isotopic abundance ratios in presolar grains of nova origin

• Influences the abundances of nova nucleosynthesis in the 30 ≤ A ≤ 40 region

At X-ray burst temperatures between 0.4 – 1.5 GK:

• Has a strong impact on the reaction flow and nucleosynthesis in the burst

J. José et al., Ap. J. 612(2004)414

J. José et al., Ap. J. 560(2001)897

J . José et al, Ap. J. Supp. 189 (2010)204

Page 3: Dan Irvine McMaster University

Classical Novae

Stellar explosions in close binary systems consisting of a White dwarf and a low mass Main sequence star

Powered by thermonuclearrunaway on the surface of WD

Explosion:• energy released ~ 1045 ergs• Temperature 0.1 – 0.4 GK• 10-5 – 10-4 Msun of material ejected

http://pntpm3.ulb.ac.be/Trento/talks/pdf/jjose.pdf

Page 4: Dan Irvine McMaster University

Presolar Grains

Dust grains condensed in stellar atmospheres:“frozen” samples of the stellar nucleosynthesis

Possible sources:

Nittler et al. Ap.J. 601(2005)L89

Amari et al. Ap.J. 551(2001)1065

Properties:

José et al. Meteoritics & Planetary Sciences 42(2007)1135

• Red Giants• AGB Stars• Supernovae• Classical Novae

• Higher than solar 30Si/28Si ratio• Lower than solar 29Si/28Si ratio

Nittler, Earth and Planetary Science Letts. 209(2003) 259)

Page 5: Dan Irvine McMaster University

SiC Presolar Grains

30Si/28Si & 29Si/28Si abundance ratio in presolar grains of nova origin

Dominant nova nucleosynthetic path

Structure of WD and peak temperatures during the nova outburst

J. José et al. Ap.J. 612(2004)414

Page 6: Dan Irvine McMaster University

29S 30S 31S 32S

28P 29P 30P 31P

27Si 28Si 29Si 30Si

187 ms

270.3 ms

1.178 s

4.142 s

2.572 s2.498 m

(p

(p

(

1st path: Increases the 30Si abundancethrough 30P(β+)30Si (beta decay)

30P(p,) 31S in Novae

2nd path: Bypasses the production of30Si

The 30P(p,)31S reaction determines what happens in nova nucleosynthesis beyond A 30

Page 7: Dan Irvine McMaster University

Represents a quantitative measure for the nuclear

reaction probabilities.

Reaction: 30P(p31S (Q-value = 6133.0 ± 1.5 keV)

Resonant rate = 1.54*1011 (μT9)-3/2 Σi (ω)i exp(-11.605*Ei/T9)

ω = strength = a*b, where:

a = (2Jf +1) / [(2Jp +1)(2Jt +1)]

b = Γp Γ / Γtotal for (p,) reaction

Reaction Rate

Page 8: Dan Irvine McMaster University

30P(p,)31S Reaction Rate

30P+p states in 31S up to about Ex 7 MeV contribute strongly to the 30P(p,)31S rate

Some of the known states lack firm spin-parity assignments The existence of unobserved states cannot yet be precluded

The 30P(p)31S reaction rate is thus uncertain over the temperature range of astrophysical interest: 0.1 – 1.5 GK

Need to study the 30P+p states in 31S

 

30P+p

Q = 6133

0.1

GK

<=

T <

= 0

.4 G

K

31S

Page 9: Dan Irvine McMaster University

Reaction Importance beam available Indirect approach

30P(p,)31Snucleosynthesis in novae beyond A ~ 30

NO32S(d,t)31S (Irvine et al.)

30P(p,)31S via 32S(d,t)31S

• 30P is unstable; currently no radioactive beam available

• different transfer reactions are complementary

Page 10: Dan Irvine McMaster University
Page 11: Dan Irvine McMaster University

Maier-Leibnitz-Laboratorium (MLL)

13 MV tandem

Page 12: Dan Irvine McMaster University

The Q3D Spectrometer

Ω ~ 14 msr (acceptance) ΔE/E ~ 2 x 10-4 (resolution)

Δρ ~ 6 cm (dispersion)

Maier-Leibnitz-Laboratorium (MLL) in Munich

Page 13: Dan Irvine McMaster University

32S(d,t)31S Experiment by the Q3D Spectrometer

Maier-Leibnitz-Laboratorium (MLL) in Munich, Germany

Ω ~ 14 msr (acceptance) ΔE/E ~ 2 x 10-4 (resolution)

Δρ ~ 6 cm (dispersion)The Q3D spectrometer

24 MeV 0.5 – 1 eA 2H beam

3H

Target: 10.5 g/cm2 32S implanted into 55.9 g/cm2 99.9% enriched 12C

Detected in the multi-wire proportional counter (MWPC) and the scintillator

Dipole 1

Dipole 2

Dipole 3

Page 14: Dan Irvine McMaster University

32S(d,t)31S with the Q3D

Beam: 1 A of 24 MeV deuterons Target: 32S implanted into isotopically pure 12C foil Energy resolution: 4 keV 4 days of beamtime (so far) 10, 15, 20 and 25

Q3D = 20(preliminary)

[Ex(31S) ~ 7 MeV] [Ex(31S) ~ 6 MeV]

Co

nta

min

ant

Co

nta

min

ant

6.63

68 M

eV

6.74

90 M

eV

Page 15: Dan Irvine McMaster University

Future Work

Perform the final 32S(d,t) 31S experiment at MLL (Munich) in February 2011 to:

• Try a non-contaminated target to remove contaminant peaks

• Obtain the cross sections at a few more angles

• Obtain the spins and parities of the 31S states

• Re-evaluate the 30P(p,)31S reaction rate

Page 16: Dan Irvine McMaster University

Alan A. ChenKiana Setoodehnia

Jun Chen

Ralf Hertenberger Hans-Friedrich Wirth

Reiner KrückenThomas Faestermann

Shawn BishopAnuj Parikh

Clemens HerlitziusVinzenz BildsteinKatrin Eppinger

Olga LepyoshkinaPeter Maierbeck