daniel bienstock and alexander michalkadano/talks/mit13.pdf · new results on nonconvex...

119
New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock, Michalka Columbia Convex obj non-convex domain

Upload: others

Post on 19-Sep-2020

20 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

New results on nonconvex optimization

Daniel Bienstock and Alexander Michalka

Columbia University

ORC 2013

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 2: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Three problems

1. The “SUV” problem

given full-dimensional polyhedra P1, . . . ,PK in Rd ,

find a point closest to the origin not contained inside any ofthe Ph.

min ‖x‖2

s.t. x ∈ Rd −K⋃

h=1

int(Ph),

(application: X-ray lythography)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 3: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Three problems

1. The “SUV” problem

given full-dimensional polyhedra P1, . . . ,PK in Rd ,

find a point closest to the origin not contained inside any ofthe Ph.

min ‖x‖2

s.t. x ∈ Rd −K⋃

h=1

int(Ph),

(application: X-ray lythography)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 4: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Three problems

1. The “SUV” problem

given full-dimensional polyhedra P1, . . . ,PK in Rd ,

find a point closest to the origin not contained inside any ofthe Ph.

min ‖x‖2

s.t. x ∈ Rd −K⋃

h=1

int(Ph),

(application: X-ray lythography)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 5: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Typical values for d (dimension): less than 20; usually evensmallerTypical values for K (number of polyhedra): possiblyhundreds, but often less than 50Very hard problem

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 6: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Typical values for d (dimension): less than 20; usually evensmallerTypical values for K (number of polyhedra): possiblyhundreds, but often less than 50Very hard problem

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 7: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

2.

Cardinality constrained, convex quadratic programming.

min xTQx + cT x

s.t. Ax ≤ b

x ≥ 0, ‖x‖0 ≤ k

‖x‖0 = number of nonzero entries in x .

Q � 0

x ∈ Rn for n possibly large

k relatively small, e.g. k = 100 for n = 10000

VERY hard problem – just getting good bounds is tough

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 8: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

2b.

Sparse vector in column space (Spielwan, Wang, Wright ’12)

Given a vector y ∈ Rn (n large)

min ‖y − Ax‖2

s.t. A ∈ Rn×n, x ∈ Rn

‖x‖0 ≤ k

Both A and x are variables

Usual “convexification” approach may not work

Again, looks VERY hard

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 9: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

2b.

Sparse vector in column space (Spielwan, Wang, Wright ’12)

Given a vector y ∈ Rn (n large)

min ‖y − Ax‖2

s.t. A ∈ Rn×n, x ∈ Rn

‖x‖0 ≤ k

Both A and x are variables

Usual “convexification” approach may not work

Again, looks VERY hard

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 10: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as tominimize a convex objective

min vTAv

s.t. Lk ≤ vTFkv ≤ Uk , k = 1, . . . ,K

v ∈ R2n, (n = number of nodes)

voltages are complex numbers; v is the vector of voltages inrectangular coordinates (real and imaginary parts)

A � 0

n could be in the tens of thousands, or more

the Fk are very sparse (neighborhood structure for every node)

Problem HARD when grid under distress and Lk ≈ Uk .

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 11: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

3. AC-OPF problem in rectangular coordinates

Given a power grid, determine voltages at every node so as tominimize a convex objective

min vTAv

s.t. Lk ≤ vTFkv ≤ Uk , k = 1, . . . ,K

v ∈ R2n, (n = number of nodes)

voltages are complex numbers; v is the vector of voltages inrectangular coordinates (real and imaginary parts)

A � 0

n could be in the tens of thousands, or more

the Fk are very sparse (neighborhood structure for every node)

Problem HARD when grid under distress and Lk ≈ Uk .

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 12: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 13: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 14: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 15: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Why are these problems so hard

Generic problem: min Q(x), s.t. x ∈ F ,

Q(x) (strongly) convex, especially: positive-definite quadratic

F nonconvex

F

F

F

F

x*

x∗ solves min{

Q(x), : x ∈ F̂}

where F ⊂ F̂ and F̂ convex

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 16: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lattice-free cuts for linear integer programming

Generic problem: min cT x , s.t. Ax ≤ b, z ∈ Zn

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 17: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lattice-free cuts for linear integer programming

Generic problem: min cT x , s.t. Ax ≤ b, z ∈ Zn

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 18: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lattice-free cuts for linear integer programming

Generic problem: min cT x , s.t. Ax ≤ b, z ∈ Zn

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 19: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lattice-free cuts for linear integer programming

Generic problem: min cT x , s.t. Ax ≤ b, z ∈ Zn

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 20: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

An old trick

Don’t solve

min Q(x), over x ∈ F

Do solve

min z , over conv {(x , z) : z ≥ Q(x), x ∈ F}

Optimal solution at extreme point (x∗, z∗) ofconv {(x , z) : z ≥ Q(x), x ∈ F}

So x∗ ∈ F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 21: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

An old trick

Don’t solve

min Q(x), over x ∈ F

Do solve

min z , over conv {(x , z) : z ≥ Q(x), x ∈ F}

Optimal solution at extreme point (x∗, z∗) ofconv {(x , z) : z ≥ Q(x), x ∈ F}

So x∗ ∈ F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 22: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

An old trick

Don’t solve

min Q(x), over x ∈ F

Do solve

min z , over conv {(x , z) : z ≥ Q(x), x ∈ F}

Optimal solution at extreme point (x∗, z∗) ofconv {(x , z) : z ≥ Q(x), x ∈ F}

So x∗ ∈ F

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 23: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Exclude-and-cut

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 24: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Exclude-and-cut

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 25: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Exclude-and-cut

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 26: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Exclude-and-cut

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 27: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 28: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x − y) + Q(y)

is valid EVERYWHERE – does not cut-off any points

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 29: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x − y) + Q(y)

is valid EVERYWHERE

– does not cut-off any points

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 30: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y in boundary of S

First order inequality:

z ≥ [∇Q(y)]T (x − y) + Q(y)

is valid EVERYWHERE – does not cut-off any points

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 31: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 32: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 33: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 34: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄

(α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 35: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

– want RHS ≤ Q(x) in S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 36: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

α safe

excluded region: RHS > Q(x)

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

Want RHS ≤ Q(x) for x ∈ S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 37: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for { (x , z) : x ∈ S , z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α too large

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

Want RHS ≤ Q(x) for x ∈ S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 38: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

S

S =Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α just right

Lifted first order inequality, for α ≥ 0:

z ≥ [∇Q(y)]T (x − y) + Q(y)| {z }first-order term≈ Q(x)

+ αvT (x − y)| {z }lifting

NOT valid EVERYWHERE: RHS > Q(x) for α > 0, vT (x − y) > 0 and x ≈ y .

Want RHS ≤ Q(x) for x ∈ S̄ (α = 0 always OK)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 39: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Given y ∈ ∂S , let

α∗.

= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x−y)+Q(y)+αvT (x−y) }

valid for F . Note: α∗ = α∗(v , y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀yQ(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

∀v and y ∈ ∂S .

(abridged)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 40: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Given y ∈ ∂S , let

α∗.

= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x−y)+Q(y)+αvT (x−y) }

valid for F .

Note: α∗ = α∗(v , y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀yQ(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

∀v and y ∈ ∂S .

(abridged)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 41: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Given y ∈ ∂S , let

α∗.

= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x−y)+Q(y)+αvT (x−y) }

valid for F . Note: α∗ = α∗(v , y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀yQ(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

∀v and y ∈ ∂S .

(abridged)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 42: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Given y ∈ ∂S , let

α∗.

= sup {α ≥ 0 : Q(x) ≥ [∇Q(y)]T (x−y)+Q(y)+αvT (x−y) }

valid for F . Note: α∗ = α∗(v , y)

Theorem. If Q is convex and differentiable, then conv(F) is given by

Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀yQ(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

∀v and y ∈ ∂S .

(abridged)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 43: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Separation

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y

(lifted first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y) ∀v and y ∈ ∂S.

Given (x∗, z∗) ∈ Rn × R, how do we separate it from conv(F)?

Convexity ⇒ strongest first-order inequality at x∗ is

Q(x) ≥ [∇Q(x∗)]T (x − x∗) + Q(x∗)

As a result, poly time separation from conv(F) is equivalent to polytime separation of lifted first-order inequalities.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 44: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Separation

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y

(lifted first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y) ∀v and y ∈ ∂S.

Given (x∗, z∗) ∈ Rn × R, how do we separate it from conv(F)?

Convexity ⇒ strongest first-order inequality at x∗ is

Q(x) ≥ [∇Q(x∗)]T (x − x∗) + Q(x∗)

As a result, poly time separation from conv(F) is equivalent to polytime separation of lifted first-order inequalities.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 45: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Separation

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y

(lifted first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y) ∀v and y ∈ ∂S.

Given (x∗, z∗) ∈ Rn × R, how do we separate it from conv(F)?

Convexity ⇒ strongest first-order inequality at x∗ is

Q(x) ≥ [∇Q(x∗)]T (x − x∗) + Q(x∗)

As a result, poly time separation from conv(F) is equivalent to polytime separation of lifted first-order inequalities.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 46: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Separation

Valid linear inequalities for F .= { (x , z) ∈ Rn × R : x ∈ S , z ≥ Q(x) }.

Theorem. If Q is convex and differentiable, then conv(F) is given by

(first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) ∀y

(lifted first-order ineqs) Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y) ∀v and y ∈ ∂S.

Given (x∗, z∗) ∈ Rn × R, how do we separate it from conv(F)?

Convexity ⇒ strongest first-order inequality at x∗ is

Q(x) ≥ [∇Q(x∗)]T (x − x∗) + Q(x∗)

As a result, poly time separation from conv(F) is equivalent to polytime separation of lifted first-order inequalities.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 47: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2

⇒ α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 48: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2 ⇒

α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 49: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2 ⇒ α∗ = e−1.

Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 50: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2 ⇒ α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 51: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2 ⇒ α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 52: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : −x21 ≤ x2 ≤ 1 + e−x1}, and Q(x) = x2 + e−x2 − 1.

x 2

S

S

x10

(0,1)

(0,2)

With v = (0, 1)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x2 ⇒ α∗ = e−1. Why?

Because when x2 = 1, x2 + e−x2 − 1 = e−1 = e−1x2, but any larger value for α∗ will result with

x2 + e−x2 − 1 < α∗x2 for some x2 > 1

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 53: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : x1 ≥ 1}∪{x ∈ R2 : 0 ≤ x1 ≤ 1 and |x2| ≤ (2x1− x21 )1/2 + x1}, and Q(x) = ‖x‖2

x 2

x1

S

0(−1,0)

(1,2)

(1,−2)

With v = (1, 0)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x1 ⇒ α∗ = 2. Why?

Because for α∗ = 2R, Q(x) ≤ α∗x1 iff |x2| ≤ (2Rx1 − x21 )1/2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 54: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : x1 ≥ 1}∪{x ∈ R2 : 0 ≤ x1 ≤ 1 and |x2| ≤ (2x1− x21 )1/2 + x1}, and Q(x) = ‖x‖2

x 2

x1

S

0(−1,0)

(1,2)

(1,−2)

With v = (1, 0)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x1 ⇒ α∗ = 2. Why?

Because for α∗ = 2R, Q(x) ≤ α∗x1 iff |x2| ≤ (2Rx1 − x21 )1/2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 55: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : x1 ≥ 1}∪{x ∈ R2 : 0 ≤ x1 ≤ 1 and |x2| ≤ (2x1− x21 )1/2 + x1}, and Q(x) = ‖x‖2

x 2

S

x10(−1,0)

(1,2)

(1,−2)

With v = (1, 0)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x1 ⇒ α∗ = 2. Why?

Because for α∗ = 2R, Q(x) ≤ α∗x1 iff |x2| ≤ (2Rx1 − x21 )1/2

≤ (2x1 − x21 )1/2 + x1 : true for R ≤ 1.

But fails to hold for R > 1 and x1 ≈ 0!

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 56: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : x1 ≥ 1}∪{x ∈ R2 : 0 ≤ x1 ≤ 1 and |x2| ≤ (2x1− x21 )1/2 + x1}, and Q(x) = ‖x‖2

x 2

S

x10(−1,0)

(1,2)

(1,−2)

With v = (1, 0)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x1 ⇒ α∗ = 2. Why?

Because for α∗ = 2R, Q(x) ≤ α∗x1 iff |x2| ≤ (2Rx1 − x21 )1/2 ≤ (2x1 − x2

1 )1/2 + x1 : true for R ≤ 1.

But fails to hold for R > 1 and x1 ≈ 0!

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 57: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Suppose S = {x ∈ R2 : x1 ≥ 1}∪{x ∈ R2 : 0 ≤ x1 ≤ 1 and |x2| ≤ (2x1− x21 )1/2 + x1}, and Q(x) = ‖x‖2

x 2

S

x10(−1,0)

(1,2)

(1,−2)

With v = (1, 0)T , the lifted first-order inequality at (0, 0) is z ≥ α∗x1 ⇒ α∗ = 2. Why?

Because for α∗ = 2R, Q(x) ≤ α∗x1 iff |x2| ≤ (2Rx1 − x21 )1/2 ≤ (2x1 − x2

1 )1/2 + x1 : true for R ≤ 1.

But fails to hold for R > 1 and x1 ≈ 0!

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 58: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lifted first-order inequality at y ∈ ∂S , in the direction of v : Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

S

S =Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α just right

Theorem. If

Q(x) grows faster than linearly in every direction, and

There is a ball with interior in the infeasible region, but containing y at its boundary

then the quantity α∗ is a “max” and not just a “sup”, i.e. the lifted inequality is tight at some point other than y

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 59: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Lifted first-order inequality at y ∈ ∂S , in the direction of v : Q(x) ≥ [∇Q(y)]T (x − y) + Q(y) + α∗vT (x − y)

S

S =Feasible region

y

v, unit norm

in boundary of S

excluded region: RHS > Q(x)

α just right

Theorem. If

Q(x) grows faster than linearly in every direction, and

There is a ball with interior in the infeasible region, but containing y at its boundary

then the quantity α∗ is a “max” and not just a “sup”, i.e. the lifted inequality is tight at some point other than y

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 60: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic.

Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 61: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 62: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization:

x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 63: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 64: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S,

‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 65: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ.

So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 66: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2,

a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 67: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 68: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics

Valid linear inequalities for F = { (x, z) : x ∈ S, z ≥ Q(x) }.

Special case Q(x) a positive definite quadratic. Change of coordinates → Q(x) = ‖x‖2.

Geometric characterization: x ∈ S̄ iff

ρ

µS

x

for each ball B(µ,√ρ) ⊆ S, ‖x − µ‖2 ≥ ρ. So, z ≥ 2µT x + ρ− ‖µ‖2, a ball inequality.

Theorem: the undominated ball inequalities, and the lifted first-order inequalities, are the same.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 69: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 70: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 71: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 72: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 73: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 74: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 75: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 76: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 77: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 78: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 79: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 80: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 81: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 82: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 83: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 84: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 85: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 86: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 87: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 88: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Quadratics in action

Lifted first-order inequalities for F = { (x , z) : x ∈ S , z ≥ ‖x‖2 }.

Separation problem. Given (x∗, z∗) ∈ Rn × R, find a lifted-first orderinequality maximally violated by (x∗, z∗) (if any)

Theorem: We can separate in polynomial time when:

S̄ (or S) is a union of polyhedra

S is a convex ellipsoid or paraboloid (many cases)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 89: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 90: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 91: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 92: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 93: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

Special case: complement of an ellipsoid

Lifted first-order inequalities for F = { (x, z) : xT Ax − 2bT x + c ≥ 0, z ≥ ‖x‖2 }. Here, A � 0.

Let λ = largest eigenvalue of A. Then:

Theorem. The strongest lifted first-order inequality at x̄ ∈ Rn is:

z ≥ 2[ (I − λ−1A)x̄ + λ−1b ]T (x − x̄) + x̄(I − λ−1A)x̄ + 2λ−1bT x̄ − λ−1c

The right-hand side is the first-order (tangent), at x̄ , for the convex quadratic

x(I − λ−1A)x + 2λ−1bT x − λ−1c.

Corollary: conv(F) = {(x, z) : z ≥ x(I − λ−1A)x + 2λ−1bT x − λ−1c, z ≥ ‖x‖2}.

Also obtained by J.P. Vielma (2013)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 94: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

But ... Exclude-and-cut, again

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 95: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

But ... Exclude-and-cut, again

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 96: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

But ... Exclude-and-cut, again

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 97: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

But ... Exclude-and-cut, again

min z , s.t. z ≥ Q(x), x ∈ F

0. F̂ : a convex relaxation of conv {(x , z) : z ≥ Q(x), x ∈ F}

1. Let (x∗, z∗) = argmin{ z : (x , z) ∈ F̂}

2. Find an open set S s.t. x∗ ∈ S and S ∩ F = ∅.Examples: lattice-free sets, geometry

3. Add to the formulation an inequality az + αTx ≥ α0

valid for{ (x , z) : x ∈ S , z ≥ Q(x) }

but violated by (x∗, z∗).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 98: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 99: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 100: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 101: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable!

e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 102: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 103: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 104: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

x ∈ Rn

A a general quadratic

many applications in nonlinear programming

Polynomial-time solvable! e.g. S-Lemma ∗

Sturm and Zhang (2000): two extensions are polynomially solvable:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

‖x − x0‖2 ≤ r

(one additional ball inequality), and

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

cT x ≤ c0

(one added linear inequality).

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 105: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 106: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 107: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 108: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if

no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 109: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 110: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 111: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A classical problem: the trust-region subproblem Ye and Zhang (2003): two parallel linear inequalities are added:

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

d0 ≤ cT x ≤ c0

→ Adding a system Ax ≤ b makes the problem NP-hard

Anstreicher and Burer (2012): the Ye-Zhang case can be formulated as a convex program

Burer and Yang (2013)

min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

can be solved in polynomial time if no two linear constraints intersect within the unit ball

∀i 6= j, {x : aTi x = bi} ∩ {x : aT

j x = bj} ∩ {x : ‖x‖2 ≤ 1} = ∅

Note: Results leave open the general case with m = 2

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 112: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A generalization

(TLIN): min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F∗ = 3.

Burer-Yang case: F∗ = m + 1

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F∗.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 113: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A generalization

(TLIN): min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F∗ = 3.

Burer-Yang case: F∗ = m + 1

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F∗.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 114: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A generalization

(TLIN): min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F∗ = 3.

Burer-Yang case: F∗ = m + 1

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F∗.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 115: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A generalization

(TLIN): min xT Ax + bT x + c

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersect the unit ball

Ye-Zhang (or Anstreicher-Burer) case: F∗ = 3.

Burer-Yang case: F∗ = m + 1

Theorem: Problem TLIN can be solved in time polynomial in the problem size and F∗.

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 116: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A stronger generalization

(TGEN): min xT Ax + bT x + c

s.t. ‖x − xk‖2 ≤ fk k = 1, . . . , Lk

‖x − yk‖2 ≥ gk k = 1, . . . ,Mk

‖x − zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersectT

k{x : ‖x − xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN can be solved in time polynomial in theproblem size and F∗.

(SODA 2014)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 117: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A stronger generalization

(TGEN): min xT Ax + bT x + c

s.t. ‖x − xk‖2 ≤ fk k = 1, . . . , Lk

‖x − yk‖2 ≥ gk k = 1, . . . ,Mk

‖x − zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersectT

k{x : ‖x − xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN can be solved in time polynomial in theproblem size and F∗.

(SODA 2014)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 118: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A stronger generalization

(TGEN): min xT Ax + bT x + c

s.t. ‖x − xk‖2 ≤ fk k = 1, . . . , Lk

‖x − yk‖2 ≥ gk k = 1, . . . ,Mk

‖x − zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersectT

k{x : ‖x − xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN can be solved in time polynomial in theproblem size and F∗.

(SODA 2014)

Bienstock, Michalka Columbia

Convex obj non-convex domain

Page 119: Daniel Bienstock and Alexander Michalkadano/talks/mit13.pdf · New results on nonconvex optimization Daniel Bienstock and Alexander Michalka Columbia University ORC 2013 Bienstock,

A stronger generalization

(TGEN): min xT Ax + bT x + c

s.t. ‖x − xk‖2 ≤ fk k = 1, . . . , Lk

‖x − yk‖2 ≥ gk k = 1, . . . ,Mk

‖x − zk‖2 = hk k = 1, . . . , Ek

aTi x ≤ bi i = 1, . . . ,m

x ∈ Rn.

P = {x : aTi x ≤ bi i = 1, . . . ,m}

F∗ = the number of faces of P that intersectT

k{x : ‖x − xk‖ ≤ fk}.

Theorem: For every fixed Lk ≥ 1,Mk ≥ 0, Ek ≥ 0, problem TGEN can be solved in time polynomial in theproblem size and F∗.

(SODA 2014)

Bienstock, Michalka Columbia

Convex obj non-convex domain