daniel zajfman max-planck institute for nuclear physics heidelberg, germany and weizmann institute...

35
Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular Ions: The Heidelberg Cryogenic Storage Ring CSR Robert von Hahn Manfred Grieser Carsten Welsch Dmitry Orlov Joachim Ullrich Jose Crespo Claus Schroeter Holger Kreckel Andreas Wolf Dirk Schwalm Michael Rappaport Xavier Urbain (LLN)

Upload: peregrine-warren

Post on 06-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

Production of cold molecules and molecular ions Cooling Techniques:  Supersonic expansion.  Cold buffer gas collisions.  Trapping. Molecular ion production in standard ion sources: V(R) R V=0 AB V=0 V=1 V=2 AB + Vibrationally excited Typical time scales: 10 ms – 10’s seconds

TRANSCRIPT

Page 1: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Daniel ZajfmanMax-Planck Institute for Nuclear Physics

Heidelberg, Germanyand

Weizmann Institute of ScienceRehovot, Israel

Physics with Colder Molecular Ions:The Heidelberg Cryogenic Storage Ring

CSR

Robert von HahnManfred GrieserCarsten WelschDmitry Orlov

Joachim UllrichJose CrespoClaus SchroeterHolger Kreckel

Andreas WolfDirk SchwalmMichael RappaportXavier Urbain (LLN)

Page 2: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Characteristics of the Interstellar Medium and Many Body Quantum Dynamics

Crossing Barrier

Interstellar Conditions: Low temperature Low density

o Slow reaction rates are also important.o Sensitive to the initial quantum states of the reactants

Page 3: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Production of cold molecules and molecular ions

Cooling Techniques: Supersonic expansion.Cold buffer gas collisions.Trapping.

Molecular ion productionin standard ion sources:

V(R)

R

V=0

AB

V=0V=1V=2

AB+

)()( )( RRvP ABAB

Vibrationally excited

Typical time scales:10 ms – 10’s seconds

Page 4: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

The Heavy Ion Storage Ring-MPI-Heidelberg

AB+ (hot, from the ion source)

E=~ MeV

Laser

Coulomb Explosion ImagingAB+ +X ?

Laser spectroscopyAB++hv?

Electron-molecular ioninteractionAB+ + e ?

Page 5: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Vibrational cooling, the simplest case: HD+

(H2+ or D2

+ do not cool!)

0 0.5 1 1.5 2 2.5-0.5

0

0.5

1

1.5

2

R (A)

U(R

) [eV

]

D2+ (2g

+) v=0

v=2

v=4

v=6

Internuclear distance (Å)

How can we measure the vibrational population?

HD+ H2+, D2

+

Page 6: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Coulomb Explosion Imaging:A Direct Way of Measuring Molecular Structure

Preparation

• Ion source• Acceleration (MeV)• Initial quantum state?

E0

Micro-scale

Collapse

• Ion target effects• Electron stripping• Multiple scattering

t=1 s to few secs t <10-15 sec

60 A thick

Measurement

• Field free region• Charge state analysis• 3D imaging detector• Reconstruction

Macro-scale

t= few s

Velocities measurement

vd )vP(

Rd )R(Rd )RP(2

v

Storage ring!Z. Vager et al.

Page 7: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Coulomb Explosion Imaging for a

Diatomic Molecular Ion

Page 8: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Kinetic energy release (KER) forthe Coulomb Explosion Imaging ofHD+ after various storage time in thestorage ring.

v

2vvkk (R)a dR P(R)dE )P(E

Tim

e

Page 9: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

v

2v (R)a dR P(R) v

Distribution of the internuclear distance distribution of HD+

as a function of storage time.

Page 10: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Vibrational population as a function of storage time

Z. Amitay et al., Science, 281, 75 (1998).

Solid line:fit to the data,lifetimes as freeparameters

Page 11: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Lifetime of HD+

vibrational states

Page 12: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Physics with vibrationally cold molecular ions

•Basic quantum chemistry (theory-experiment)•Interesting platform for study of few particle quantum problem•Molecular dynamics on single and multi-dimensional surfaces•Benchmark for simple molecular systems•Relevant to Plasma Physics•Necessary for understanding the interstellar medium

Experiments on Storage Rings:

•Electron induced recombination•Electron induced dissociation•Electron induced excitation•Photon induced processes

Page 13: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Electron-cold molecular ion reaction: Dissociative Recombination

HD+ (2g+)

HD+ (2pu)

H(1s)+D(2l)D(1s)+H(2l)

e-

Direct processIndirect process

Interference

KineticEnergyRelease

HD+ + e- H(n) + D(n’) + KER

Rydberg state

Page 14: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Typical setup: Merging the molecular ion beam with the e--beam

1.5 m

AB+ + e- A + B

Ion beam

Page 15: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

1/22

ee

i2

ii

e

i

ecm ΔEv

v1ΔEmm

vv1ΔE

Merged Beam Kinematics

Electrons Ee,meIons Ei, mi

2

eii

e2cmecm EEm

mvm21E

Center of mass resolution:

~ meV resolution for zero relative kinetic energy!

Electron-cold molecular ion reaction: Dissociative Recombination

Page 16: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Dissociative recombination cross section for HD+ (hot)

No storage

Vibrationally excited HD+

Page 17: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Dissociative recombination cross section for HD+ (cold)

2 sec of storage,

Vibrationallyrelaxed

P. Forck et al., 1992

Page 18: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Cryogenic Photocathode Driven Electron Beam. T~500 μeV

Page 19: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

HD+ + e- H+D

Advance in electron beam resolution

June 2004

kTperp =500 μeV, kTpar=20 μeV

Trot=300 oK

D. Orlov, F. Sprenger, M. Lestinski, H. Buhr, L. Lammich, A. Wolf et al.

June 1992

P. Forck et al

Page 20: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

H2+ DR cross section for (v,J)=(0,0)

H2+ DR cross section for (v,J)=(0,1)

H. Takagi, J. Phys. B, 26, 4815 (1993)

Only one rotational quanta ofexcitation changes the wholespectra!!

Recombination cross section fora single quantum rotational stateof H2

+ (The simplest molecular ion!)

In fact, these resonances havenever been individually observed!

•Position•Depth•Shape teach everything about the dynamics taking place during the dissociation.

Rotationally cold molecular ions!

Page 21: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Rotational temperature of fast stored beam: Probing rotational population through photodissociation.

HChJvCH ,

Astrophysics relevance• Steady state models cannot reproduce CH+ abundance.• The reverse reaction is the main production process.

Photodissociation throughnon-adiabatic coupling.

Laser spectroscopy

Page 22: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Photodissociation Spectrum of CH+

U. Hechtfischer et al, PRL, 80, 2809 (1998)

T=500 oKC. WilliamsJCP, 85, 2699 (1986)

3Π metastable state

Page 23: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Time evolution of the rotational population and comparison to a radiative model.

Radiative transition (oscillator strength) can be extracted. “Easier” spectroscopy. New spectroscopic constants for CH+.

U. Hechtfischer et al., PRL, 80, 2809 (1998).

Asymptotic rotational temperature: T~300 (+50 -0) K.

However, some new evidences showsthat there are collisions (residual gas) induced processes which can internallyheat the beam.

Page 24: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

H3+ Dissociative recombination rate coefficient: 1947-2005

Experimental data

H(1s)H(1s)H(1s)

H(1s)(v)HeH 23

H3+ cannot be thermalized

in a storage ring.

Page 25: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Calculations

What happen to the rotational population when you store a hot H3+ in a ring?

Simulation of radiative rotationaltransitions for H3

+ starting from Trot= 0.23 eV, and calculating 245,000 transitions (J. Tennyson web-site).

L. Neale, et al., Astrophys. J., 464, 516, (1996)B. M. Dinelli, et al., J. Mol. Spectr. 181, 142 (1997)

Page 26: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Calculations

Long live states:States for which the axis of rotation is nearly parallel to the C3v symmetryaxis (K=J, K=(J-1))

Is the additional energy stored as rotational energy?

J: Angular momentumK: Projection of J onto themolecular symmetry axis

Simulation of radiative rotationaltransitions for H3

+ starting from Trot= 0.23 eV, and calculating 245,000 transitions (J. Tennyson web-site).

Page 27: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Production of rotationally cold H3+ at the TSR

H. Kreckel et al. (2004)

Pre-trapping for Pre-cooling

Page 28: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

TSR data (kTtrans=0.5 meV)

Cryring data (kTtrans=2 meV)

Theory (C. Green, kTtrans=10 meV )

Dissociative Recombination of H3+

Page 29: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Physics with rotationally cold molecular ions: “real” interstellar conditions

TSR “limits” the physics to vibrational states

To achieve rotational cooling, the ring needs to becooled to much lower temperature (~10 K)

The Cryogenic Storage Ring

Page 30: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Ultra cold electron beam

Merged neutralatomic beam

Page 31: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

CSR and Prototype: Under design and construction at the MPIK

Page 32: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Physics with colder (~ 2o K) molecular ions

Interstellar conditions Single quantum state physics Comparison with theoretical calculations

Molecular dynamics under controlled initial conditions

•Dissociative recombination (single Rydberg resonance)•Laser spectroscopy and transition strength •Cold collisions and atom exchange•State control and laser manipulation•Infrared emission spectroscopy•Biomolecules•Cluster physics• …

Highly charged ions (J. Ullrich)Antiproton physics (GSI)

Page 33: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Molecular Ion-Neutral Exchange Reactions

Merged beams

The rate is usually assumed to be based on Langevin model (polarization) mechanism: σ~1/√E, where E is the collision energy

Tosi et al, Phys. Rev. Lett., 67, 1254 (1991).Tosi et al, JCP, 99, 985 (1993).

~10 meV HWHM

Almost no experiments (cross sections)

with cold molecular ions!Model reaction:

HOHHOHOH

22

3

AB+ + C AC+ + B

Page 34: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

State control (state manipulation) with tunable infrared laser

Extremely difficult if the initial population is made of several rotational states

300 oK situation (TSR)

Boltzmanndistribution

~5%

~2.5%

v=0

v=1

10 oK situation (CSR)

~100%

~50%

v=0

v=1

Make all previously described experimentspossible with different initial quantum state!

Page 35: Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular

Infrared emission spectroscopy

Cerny-Turner monochromator

Single Photon Cryogenic Infrared Detector (Saykally, JPC A102, 1465 (1998))

The ultimate goal:Measuring the emission linesof mass selected stored (and cooled) PAH ions and ionic clusters.