darmon points for fields of mixed signature

40
Darmon points for fields of mixed signature Number Theory Seminar, Cambridge University Xavier Guitart 1 Marc Masdeu 2 Mehmet Haluk Sengun 3 1 Institut f ¨ ur Experimentelle Mathematik 2,3 University of Warwick May 13, 2014 Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 0 / 35

Upload: mmasdeu

Post on 18-Dec-2014

28 views

Category:

Science


1 download

DESCRIPTION

Number Theory Seminar, Cambridge University, May 2014

TRANSCRIPT

Page 1: Darmon Points for fields of mixed signature

Darmon points for fields of mixed signatureNumber Theory Seminar, Cambridge University

Xavier Guitart 1 Marc Masdeu 2 Mehmet Haluk Sengun 3

1Institut fur Experimentelle Mathematik

2,3University of Warwick

May 13, 2014

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 0 / 35

Page 2: Darmon Points for fields of mixed signature

The Hasse-Weil L-function

Let F be a number field.Let E/F be an elliptic curve of conductor N = NE .Let K/F be a quadratic extension of F .

I Assume that N is square-free, coprime to disc(K/F ).

Hasse-Weil L-function of the base change of E to K (<(s) >> 0)

L(E/K, s) =∏p|N

(1− ap|p|−s

)−1 ×∏p-N

(1

ap(E) = 1 + |p| −#E(Fp).

− ap|p|−s + |p|1−2s)−1.

Assume that E is modular =⇒I Analytic continuation of L(E/K, s) to C.I Functional equation relating s↔ 2− s.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 1 / 35

Page 3: Darmon Points for fields of mixed signature

The BSD conjecture

Bryan Birch Sir Peter Swinnerton-Dyer

Coarse version of BSD conjecture

ords=1 L(E/K, s) = rkZE(K).

So L(E/K, 1) = 0BSD=⇒ ∃PK ∈ E(K) of infinite order.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 2 / 35

Page 4: Darmon Points for fields of mixed signature

The main tool for BSD: Heegner points

Kurt Heegner

Exist for F totally real and K/F totally complex (CM extension).I recall the definition of Heegner points in the simplest setting:

I F = Q (and K/Q imaginary quadratic), andI Heegner hypothesis: ` | N =⇒ ` split in K.

F These ensure that ords=1 L(E/K, s) is odd (so ≥ 1).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 3 / 35

Page 5: Darmon Points for fields of mixed signature

Heegner Points (K/Q imaginary quadratic)

Attach to E a holomorphic 1-form on H = z ∈ C : =(z) > 0.

ΦE = 2πifE(z)dz = 2πi∑n≥1

ane2πinzdz ∈ H0(Γ0(N)

Γ0(N) = (a bc d

)∈ SL2(Z) : N | c

,Ω1H).

Given τ ∈ K ∩H, set Jτ =

∫ τ

i∞ΦE ∈ C.

Well-defined up to the lattice ΛE =∫

γ ΦE | γ ∈ H1

(Γ0(N)\H,Z

).

I There exists an isogeny (Weierstrass uniformization)

η : C/ΛE → E(C).

I Set Pτ = η(Jτ ) ∈ E(C).Fact: Pτ ∈ E(Hτ ), where Hτ/K is a ring class field attached to τ .

Theorem (Gross-Zagier)

PK = TrHτ/K(Pτ ) nontorsion ⇐⇒ L′(E/K, 1) 6= 0.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 4 / 35

Page 6: Darmon Points for fields of mixed signature

Heegner Points: revealing the trick

Why did this work?

1 The Riemann surface Γ0(N)\H has an algebraic model X0(N)/Q.

2 There is a morphism φ defined over Q:

φ : Jac(X0(N))→ E.

3 The CM point (τ)− (∞) ∈ Jac(X0(N))(Hτ ) gets mapped to:

φ((τ)− (∞)) = Pτ ∈ E(Hτ ).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 5 / 35

Page 7: Darmon Points for fields of mixed signature

Computing in practice: an example of Mark WatkinsLet E be the elliptic curve of conductor NE = 66157667:

E : y2 + y = x3 − 5115523309x− 140826120488927.

Watkins worked with 460 digits of precision and 600M terms of theL-series. Took less than a day (in 2006). The x-coordinate of the pointhas numerator:367770537186677506614005642341827170087932269492285584726218770061653546349271015805365134370326743061141306464500052886704651998399766478840791915307861741507273933802628157325092479708268760217101755385871816780548765478502284415627682847192752681899094962659937870630036760359293577021806237483971074931228416346507852381696883227650072039964481597215995993299744934117106289850389364006552497835877740257534533113775202882210048356163645919345794812074571029660897173224370337701056165735008590640297090298709121506266697266461993201825397369999550868142294312756322177410730532828064759604975369242350993568030726937049911607264109782746847951283794119298941214490794330902986582991229569401523519938742746376107190770204010513818349012786637889254711059455555173810904911927619899031855149292325338589831979737026402711049742594116000380601480839982975557506035851728035645241044229165029649347049289119188596869401159325131363345962579503132339847275422440094553824705189225653677459512863117911721838552934309124508134493366437408093924362039749911907416973504142322111757058584200725022632116164720164998641729522677460525999499077942125820428879526063735692685991018516862938796047597323986537154171248316943796373217191993996993714654629536884396057924790938647656663281596178145722116098216500930333824321806726937018190136190556573208807048355335567078793126656928657859036779350593274598717379730880724034301867739443749841809456715884193720328901461552659882628405842209756757167816662139945081864642108533595989975716259259240152834050940654479617147685922500856944449822045386092122409096978544817218847897640513477806598329177604246380812377739049184475550777341620985976570393037880282764967019552408400730754822676441481715385344001979832232652414888335865567377214360456003296961668177481944809066257442596772347829664126972931904101685281128944780074646796760942430959617022257479874089403564965038885379817866920048929814520268493677507059073765902671638087366488496702836326268574593123245107420348878101763123893347657020275591248824247800594270862052082185973393290009189867677259458080676065098703453539525576975639543700507625640729872340789406314394468400584455920683361976200121834430751233901473228497490561998078486251074993528871318797403348087370426900997556442577081254910572185107856605139877331015042842121106080690743578173268489400499056898312621953947967012358414547752897081097091795744203697684046066255663201242292760126759871266004516377432961917272040217147083563399987612420595275792033855676991823368254862159558450043808051481533297270035287382247038279293223946385070118082306958987268603396924054403103857444058848605587415400517670032631121206127732481340391088277796488544415738156553014768406246154666005139690428085145098272500791416214774673484501826722500527091164944262537169595848931680754096774712860490572746224094031187043204526107239201079603468297522895106598567437015083348797875364162797693968819804139548885751282687152237078260358705230284426203064493684250614282879918107733796207067250003823959412935677624093236047038637365577326399589008804507786011973155927731073034706536557461443806622707622411087809371872157210456836892493613836792026761820382217165481998924123604782787923229739171920575447007099501678380795077013113325989801385729993920818301654424251339564606876820121928372246213399859213282792511168043953443839793901139974194479300297566097664539199384651908436188732428818373302383046388859427937893841888014266685177616605644783704135794931830750265686335934066565240944049448213005591997128985560760260399214278635912634351586762354869354021530746189992899582554597632108309638569296964800046983072736238483149014714600896056552029642747991419063454749142059564274298254654925893866404955146903330024475746163543714996249652420171171054231726336493541586971431778944051481059633738399411418574323811770949729726843612672925000631355659834164200554441315451003433452466204707123811663623662837296862948061758759928631763661985185615801886205770721032006304144867787347058316392295671580091655872087209485913286930128858640442589125454268580397484571921012318872311624898317615607628176460097441336323549031828235965636277950827328087547939511112374216436584203379248450122647406094035171130740663723547675939885959363881135893035102018389444212746146250328348242610673524022378994978392020098814721974502062692815736689229759065822093942795318705345275598989426335235935505605311411301560321192269430861733743544402908586497305353600909431214933202522528717109214492959330016065810287623144179288466664888540622702346704213752456372574449563979215782406566937885352945871994541770838871930542220307771671498466518108722622109421676741544945695403509866953167277628280232464839215003474048896968037544660029755740065581270139083249903212572230417942249795467100700393944310325009677179182109970943346807335014446839612282508824324073679584122851208360459166315484891952299449340025896509298935939357721723543933108743241997387447018395925320167637640328407957069845439501381234605867495003402016724626400855369636521155009147176245904149069225438646928549072337653348704931901764847439772432025275648964681387210234070849306330191790380412396115446240832583481366372132300849060835262136832315311052903367503857437920508931305283143379423930601369154572530677278862066638884250221791647123563828956462530983567929499493346622977494903591722345188975062941907415400740881

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 6 / 35

Page 8: Darmon Points for fields of mixed signature

Darmon’s insight

Henri DarmonDrop hypothesis of K/F being CM.

I Simplest case: F = Q, K real quadratic.However:

I There are no points on Jac(X0(N)) attached to such K.I In general there is no morphism φ : Jac(X0(N))→ E.I When F is not totally real, even the curve X0(N) is missing!

Nevertheless, Darmon constructed local points in such cases. . .I . . . and hoped that they were global.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 7 / 35

Page 9: Darmon Points for fields of mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 8 / 35

Page 10: Darmon Points for fields of mixed signature

Basic notation

Consider an infinite place v | ∞F of F .I If v is real, then:

1 It may extend to two real places of K (splits), or2 It may extend to one complex place of K (ramifies).

I If v is complex, then it extends to two complex places of K (splits).

n = #v | ∞F : v splits in K.

K/F is CM ⇐⇒ n = 0.I If n = 1 we call K/F quasi-CM.

S(E,K) =v | N∞F : v not split in K

, s = #S(E,K).

Sign of functional equation for L(E/K, s) should be (−1)#S(E,K).I From now on, we assume that s is odd.

Fix a place ν ∈ S(E,K).1 If ν = p is finite =⇒ non-archimedean case.2 If ν is infinite =⇒ archimedean case.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 9 / 35

Page 11: Darmon Points for fields of mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 10 / 35

Page 12: Darmon Points for fields of mixed signature

Non-archimedean History

These constructions are also known as Stark-Heegner points.

H. Darmon (1999): F = Q, quasi-CM, s = 1.I Darmon-Green (2001): special cases, used Riemann products.I Darmon-Pollack (2002): same cases, overconvergent methods.I Guitart-M. (2012): all cases, overconvergent methods.

M. Trifkovic (2006): F imag. quadratic ( =⇒ quasi-CM)), s = 1.I Trifkovic (2006): F euclidean, E of prime conductor.I Guitart-M. (2013): F arbitrary, E arbitrary.

M. Greenberg (2008): F totally real, arbitrary ramification, s ≥ 1.I Guitart-M. (2013): F = Q, quasi-CM case, s ≥ 1.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 11 / 35

Page 13: Darmon Points for fields of mixed signature

Archimedean History

Initially called Almost Totally Real (ATR) points.I But this name only makes sense in the original setting of Darmon.

H. Darmon (2000): F totally real, s = 1.I Darmon-Logan (2003): F quadratic norm-euclidean, NE trivial.I Guitart-M. (2011): F quadratic and arbitrary, NE trivial.I Guitart-M. (2012): F quadratic and arbitrary, NE arbitrary.

J. Gartner (2010): F totally real, s ≥ 1.I ?

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 12 / 35

Page 14: Darmon Points for fields of mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 13 / 35

Page 15: Darmon Points for fields of mixed signature

Our construction

Xavier Guitart M. Haluk Sengun

Available for arbitrary base number fields F (mixed signature).Comes in both archimedean and non-archimedean flavors.All of the previous constructions become particular cases.We can provide genuinely new numerical evidence.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 14 / 35

Page 16: Darmon Points for fields of mixed signature

Overview of the construction

We define a quaternion algebra B/F and a group Γ ⊂ SL2(Fν).I The group Γ acts (non-discretely in general) on Hν .

We attach to E a cohomology class

ΦE ∈ Hn(Γ,Ω1

Hν).

We attach to each embedding ψ : K → B a homology class

Θψ ∈ Hn

(Γ,Div0Hν

).

I Well defined up to the image of Hn+1(Γ,Z)δ→ Hn(Γ,Div0Hν).

Cap-product and integration on the coefficients yield an element:

Jψ = 〈Θψ,ΦE〉 ∈ K×ν .

Jψ is well-defined up to a multiplicative lattice

L =〈δ(θ),ΦE〉 : θ ∈ Hn+1(Γ,Z)

.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 15 / 35

Page 17: Darmon Points for fields of mixed signature

Conjectures

Jψ = 〈Θψ,ΦE〉 ∈ K×ν /L.

Conjecture 1 (Oda, Yoshida, Greenberg, Guitart-M-Sengun)There is an isogeny β : K×ν /L→ E(Kν).

Dasgupta–Greenberg, Rotger–Longo–Vigni: some non-arch. cases.Completely open in the archimedean case.

The Darmon point attached to E and ψ : K → B is:

Pψ = β(Jψ) ∈ E(Kν).

Conjecture 2 (Darmon, Greenberg, Trifkovic, Gartner, G-M-S)1 The local point Pψ is global, and belongs to E(Kab).2 Pψ is nontorsion if and only if L′(E/K, 1) 6= 0.

We predict also the exact number field over which Pψ is defined.Include a Shimura reciprocity law like that of Heegner points.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 16 / 35

Page 18: Darmon Points for fields of mixed signature

Aside: an interesting by-product

Let Φ ∈ Hn(Γ,Ω1

Hν)

be an eigenclass with integer eigenvalues.In favorable situations Φ “comes from” an elliptic curve E over F .No systematic construction of such curves for non totally real F .We can compute the lattice

L =〈δ(θ),Φ〉 : θ ∈ Hn+1(Γ,Z)

unram. quadratic ext. of Fν .

⊂ F×ν2.

Suppose that Conjecture 1 is true.From L one can find a Weierstrass equation Eν(Fν2) ∼= F×

ν2/L.

I Hopefully the equation can be descended to F .

A similar technique (in the archimedean case) used by L. Dembeleto compute equations for elliptic curves with everywhere goodreduction.Stay tuned!

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 17 / 35

Page 19: Darmon Points for fields of mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 18 / 35

Page 20: Darmon Points for fields of mixed signature

The group Γ

Let B/F = quaternion algebra with Ram(B) = S(E,K) r ν.I B = M2(F ) (split case) ⇐⇒ s = 1.I Otherwise, we are in the quaternionic case.

E and K determine a certain ν-arithmetic subgroup Γ ⊂ SL2(Fν):I Let m =

∏l|N, split in K l.

I Let RD0 (m) be an Eichler order of level m inside B.

I Fix an embedding ιν : RD0 (m) →M2(ZF,ν).

Γ = ιν

(RD

0 (m)[1/ν]×1

)⊂ SL2(Fν).

I e.g. S(E,K) = p and ν = p give Γ ⊆ SL2

(OF [ 1p ]

).

I e.g. S(E,K) = ∞ and ν =∞ give Γ ⊆ SL2 (OF ).

Remark: We also write ΓD0 (m) = RD

0 (m)×1 .

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 19 / 35

Page 21: Darmon Points for fields of mixed signature

Path integrals: archimedean setting

H = (P1(C) r P1(R))+ has a complex-analytic structure.SL2(R) acts on H through fractional linear transformations:

(a bc d

)· z =

az + b

cz + d, z ∈ H.

We consider holomorphic 1-forms ω ∈ Ω1H.

Given two points τ1 and τ2 in H, define:∫ τ2

τ1

ω = usual path integral.

Compatibility with the action of SL2(R) on H:∫ γτ2

γτ1

ω =

∫ τ2

τ1

γ∗ω.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 20 / 35

Page 22: Darmon Points for fields of mixed signature

Path integrals: non-archimedean setting

Hp = P1(Kp) r P1(Fp) has a rigid-analytic structure.SL2(Fp) acts on Hp through fractional linear transformations:(

a bc d

)· z =

az + b

cz + d, z ∈ Hp.

We consider rigid-analytic 1-forms ω ∈ Ω1Hp

.Given two points τ1 and τ2 in Hp, define:∫ τ2

τ1

ω = Coleman integral.

Compatibility with the action of SL2(Fp) on Hp:∫ γτ2

γτ1

ω =

∫ Q

Pγ∗ω.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 21 / 35

Page 23: Darmon Points for fields of mixed signature

Coleman Integration

Coleman integration on Hp can be defined as:∫ τ2

τ1

ω =

∫P1(Fp)

logp

(t− τ2

t− τ1

)dµω(t) = lim−→

U

∑U∈U

logp

(tU − τ2

tU − τ1

)resA(U)(ω).

Bruhat-Tits tree of GL2(Fp), |p| = 2.Hp having the Bruhat-Tits as retract.Annuli A(U) for a covering of size |p|−3.tU is any point in U ⊂ P1(Fp).

P1(Fp)

U ⊂ P1(Fp)

If resA(U)(ω) ∈ Z for all U , then have a multiplicative refinement:

×∫ τ2

τ1

ω = lim−→U

∏U∈U

(tU − τ2

tU − τ1

)resA(U)(ω)

∈ K×p .

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 22 / 35

Page 24: Darmon Points for fields of mixed signature

Cohomology

Recall that S(E,K) and ν determine:

Γ = ιν

(RD

0 (m)[1/ν]×1

)⊂ SL2(Fν).

Choose “signs at infinity” ε1, . . . , εn ∈ ±1.

Theorem (Darmon, Greenberg, Trifkovic, Gartner, G.–M.–S.)There exists a unique (up to sign) class

ΦE ∈ Hn(Γ,Ω1

Hν)

such that:

1 TqΦE = aqΦE for all q - N.2 UqΦE = aqΦE for all q | N.3 WσiΦE = εiΦE for all embeddings σi : F → R which split in K.4 ΦE is “integrally valued”.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 23 / 35

Page 25: Darmon Points for fields of mixed signature

Homology

Let ψ : O → RD0 (m) be an embedding of an order O of K.

I Which is optimal: ψ(O) = RD0 (m) ∩ ψ(K).

Consider the group O×1 = u ∈ O× : NmK/F (u) = 1.I rank(O×1 ) = rank(O×)− rank(O×F ) = n.

Choose a basis u1, . . . , un ∈ O×1 for the non-torsion units.I ; ∆ψ = ψ(u1) · · ·ψ(un) ∈ Hn(Γ,Z).

K× acts on Hν through K×ψ→ B×

ιν→ GL2(Fν).

I Let τψ be the (unique) fixed point of K× on Hν .Have the exact sequence

Hn+1(Γ,Z)δ // Hn(Γ,Div0Hν) // Hn(Γ,DivHν)

deg // Hn(Γ,Z)

Θψ ? // [∆ψ ⊗ τψ] // [∆ψ]

Fact: [∆ψ] is torsion.I Can pull back a multiple of [∆ψ ⊗ τψ] to Θψ ∈ Hn(Γ,Div0Hν).I Well defined up to δ(Hn+1(Γ,Z)).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 24 / 35

Page 26: Darmon Points for fields of mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 25 / 35

Page 27: Darmon Points for fields of mixed signature

Cycle Decomposition

Goal

H2(Γ,Z)δ // H1(Γ,Div0Hp) // H1(Γ,DivHp)

deg // H1(Γ,Z)

Θψ ? // [γψ ⊗ τψ] // [γψ]

Theorem (word problem)Given a presentation F Γ giving

Γ = 〈g1, . . . , gs | r1, . . . , rt〉,

There is an algorithm to write γ ∈ Γ as a word in the gi’s.

Effective version for quaternionic groups: John Voight, Aurel Page.γ ∈ [Γ,Γ] =⇒ γ has word representation W , with W ∈ [F, F ].We use gh⊗D ≡ g ⊗D + h⊗g−1D (modulo 1-boundaries).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 26 / 35

Page 28: Darmon Points for fields of mixed signature

Cycle Decomposition: example

G = R×1 , R maximal order on B = B6.

F = 〈X,Y 〉 G = 〈x, y | x2 = y3 = 1〉.

Goal: write g ⊗ τ as∑gi ⊗Di, with Di of degree 0.

Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3.First, trivialize in Fab: g = yxyxyx−2y−3.To simplify γ ⊗ τ0 in H1(Γ,DivHp), use:

1 gh⊗D ≡ g ⊗D + h⊗g−1D.2 g−1 ⊗D ≡ −g ⊗gD.

g ⊗ τ0

= yxyxyx−2y−3 ⊗ τ0

= y ⊗ τ0

+ xyxyx−2y−3 ⊗y−1τ0 = y ⊗ τ0

+ xyxyx−2y−3 ⊗ τ1 = y ⊗ τ0 + x⊗ τ1

+ yxyx−2y−3 ⊗x−1τ1 = y ⊗ τ0 + x⊗ τ1

+ yxyx−2y−3 ⊗ τ2 = y ⊗ τ0 + x⊗ τ1

+ y ⊗ τ2 + xyx−2y−3 ⊗y−1τ2 = y ⊗ (τ0 + τ2) + x⊗ τ1

+ xyx−2y−3 ⊗ τ3 = y ⊗ (τ0 + τ2) + x⊗ τ1

+ x⊗ τ3 + yx−2y−3 ⊗x−1τ3 = y ⊗ (τ0 + τ2) + x⊗ (τ1 + τ3)

+ yx−2y−3 ⊗ τ4 = y ⊗ (τ0 + τ2) + x⊗ (τ1 + τ3)

+ y ⊗ τ4 + x−2y−3 ⊗y−1τ4 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

+ x−2y−3 ⊗ τ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

+ x−1 ⊗ τ5 + x−1y−3 ⊗xτ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

− x⊗xτ5 + x−1y−3 ⊗xτ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

− x⊗ τ6 + x−1y−3 ⊗ τ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

+ x−1 ⊗ τ6 + y−3 ⊗xτ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

− x⊗xτ6 + y−3 ⊗xτ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

− x⊗ τ7 + y−3 ⊗ τ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−3 ⊗ τ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ7 + y−2 ⊗yτ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ7 + y−2 ⊗yτ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ8 + y−2 ⊗ τ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−2 ⊗ τ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ8 + y−1 ⊗yτ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ8 + y−1 ⊗yτ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ9 + y−1 ⊗ τ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ10 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9 − τ10) + x⊗ (τ1 + τ3 − τ6 − τ7)

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 27 / 35

Page 29: Darmon Points for fields of mixed signature

Overconvergent Method (I) (F = Q, p = fixed prime)

We have attached to E a cohomology class Φ ∈ H1(Γ,Ω1Hp).

Goal: to compute integrals∫ τ2τ1

Φγ , for γ ∈ Γ.Recall that ∫ τ2

τ1

Φγ =

∫P1(Qp)

logp

(t− τ1

t− τ2

)dµγ(t).

Expand the integrand into power series and change variables.I We are reduced to calculating the moments:∫

Zp

tidµγ(t) for all γ ∈ Γ.

Note: Γ ⊇ ΓD0 (m) ⊇ ΓD

0 (pm).Technical lemma: All these integrals can be recovered from∫

Zptidµγ(t) : γ ∈ ΓD

0 (pm)

.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 28 / 35

Page 30: Darmon Points for fields of mixed signature

Overconvergent Method (II)

D = locally analytic Zp-valued distributions on Zp.I ϕ ∈ D maps a locally-analytic function h on Zp to ϕ(h) ∈ Zp.I D is naturally a ΓD

0 (pm)-module.The map ϕ 7→ ϕ(1Zp) induces a projection:

ρ : H1(ΓD0 (pm),D)→ H1(ΓD

0 (pm),Zp).

Shapiro’s lemma allows to associate ϕE ∈ H1(ΓD0 (pm),Zp) to ΦE :

ϕE(γ) =

∫Zpµγ(t).

Theorem (Pollack-Stevens, Pollack-Pollack)

There exists a unique Up-eigenclass Φ lifting ϕE .

Moreover, Φ is explicitly computable by iterating the Up-operator.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 29 / 35

Page 31: Darmon Points for fields of mixed signature

Overconvergent Method (III)

But we wanted to compute the moments of a system of measures. . .

PropositionConsider the map Ψ: ΓD

0 (pm)→ D:

γ 7→[h(t) 7→

∫Zph(t)dµγ(t)

].

1 Ψ belongs to H1(ΓD0 (pm),D).

2 Ψ is a lift of µ.3 Ψ is a Up-eigenclass.

Corollary

The explicitly computed Φ knows the above integrals.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 30 / 35

Page 32: Darmon Points for fields of mixed signature

Examples

Where arethe examples ??

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 30 / 35

Page 33: Darmon Points for fields of mixed signature

Non-archimedean cubic Darmon point (I)

F = Q(r), with r3 − r2 − r + 2 = 0.F has signature (1, 1) and discriminant −59.Consider the elliptic curve E/F given by the equation:

E/F : y2 + (−r − 1)xy + (−r − 1) y = x3 − rx2 + (−r − 1)x.

E has conductor NE =(r2 + 2

)= p17q2, where

p17 =(−r2 + 2r + 1

), q2 = (r) .

Consider K = F (α), where α =√−3r2 + 9r − 6.

The quaternion algebra B/F has discriminant D = q2:

B = F 〈i, j, k〉, i2 = −1, j2 = r, ij = −ji = k.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 31 / 35

Page 34: Darmon Points for fields of mixed signature

Non-archimedean cubic Darmon point (II)

The maximal order of K is generated by wK , a root of the polynomial

x2 + (r + 1)x+7r2 − r + 10

16.

One can embed OK in the Eichler order of level p17 by:

wK 7→ (−r2 + r)i+ (−r + 2)j + rk.

We obtain γψ = 6r2−72 + 2r+3

2 i+ 2r2+3r2 j + 5r2−7

2 k, and

τψ = (12g+8)+(7g+13)17+(12g+10)172+(2g+9)173+(4g+2)174+· · ·

After integrating we obtain:

Jψ = 16+9·17+15·172+16·173+12·174+2·175+· · ·+5·1720+O(1721),

which corresponds to:

Pψ = −3

2× 72×

(r − 1,

α+ r2 + r

2

)∈ E(K).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 32 / 35

Page 35: Darmon Points for fields of mixed signature

Archimedean cubic Darmon point (I)

Let F = Q(r) with r3 − r2 + 1 = 0.F has discriminant −23, and is of signature (1, 1).Consider the elliptic curve E/F given by the equation:

E/F : y2 + (r − 1)xy +(r2 − r

)y = x3 +

(−r2 − 1

)x2 + r2x.

E has prime conductor NE =(r2 + 4

)of norm 89.

K = F (w), with w2 + (r + 1)w + 2r2 − 3r + 3 = 0.I K has class number 1, thus we expect the point to be defined over K.I The computer tells us that rkZE(K) = 1

S(E,K) = σ, where σ : F → R is the real embedding of F .I Therefore the quaternion algebra B is just M2(F ).

The arithmetic group to consider is

Γ = Γ0(NE) ⊂ SL2(OF ).

Γ acts naturally on the symmetric space H

Hyperbolic 3-space

×H3:

H×H3 = (z, x, y) : z ∈ H, x ∈ C, y ∈ R>0.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 33 / 35

Page 36: Darmon Points for fields of mixed signature

Archimedean cubic Darmon point (II)

E ; ωE , an automorphic form with Fourier-Bessel expansion:

ωE(z, x, y) =∑

α∈δ−1OFα0>0

a(δα)(E)e−2πi(α0z+α1x+α2x)yH (α1y) ·(−dx∧dzdy∧dzdx∧dz

)

H(t) =

(− i

2eiθK1(4πρ),K0(4πρ),

i

2e−iθK1(4πρ)

)t = ρeiθ.

I K0 and K1 are hyperbolic Bessel functions of the second kind:

K0(x) =

∫ ∞0

e−x cosh(t)dt, K1(x) =

∫ ∞0

e−x cosh(t) cosh(t)dt.

ωE is a 2-form on Γ\ (H×H3).The cocycle ΦE is defined as (γ ∈ Γ):

ΦE(γ) =

∫ γ·O

OωE(z, x, y) ∈ Ω1

H with O = (0, 1) ∈ H3.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 34 / 35

Page 37: Darmon Points for fields of mixed signature

Archimedean cubic Darmon point (III)

Consider the embedding ψ : K →M2(F ) given by:

w 7→(−2r2 + 3r r − 3

r2 + 4 2r2 − 4r − 1

)Let γψ = ψ(u), where u is a fundamental norm-one unit of OK .γψ fixes τψ = −0.7181328459824 + 0.55312763561813i ∈ H.

I Construct Θ′ψ = [γψ ⊗ τψ] ∈ H1(Γ,DivH).Θ′ψ is equivalent to a cycle

∑γi ⊗ (si − ri) taking values in Div0

H.

Jψ =∑i

∫ si

ri

ΦE(γi) =∑i

∫ γi·O

O

∫ si

ri

ωE(z, x, y).

We obtain, summing over all ideals (α) of norm up to 400, 000:

Jψ = 0.0005281284234 + 0.0013607546066i; Pψ ∈ E(C).

Numerically (up to 32 decimal digits) we obtain:

Pψ?= −10×

(r − 1, w − r2 + 2r

)∈ E(K).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 35 / 35

Page 38: Darmon Points for fields of mixed signature

Thank you !

Bibliography, code and slides at:http://www.warwick.ac.uk/mmasdeu/

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 35 / 35

Page 39: Darmon Points for fields of mixed signature

BibliographyH. Darmon and A. Logan. Periods of Hilbert modular forms and rational points on elliptic curves.Int. Math. Res. Not. (2003), no. 40, 2153–2180.

H. Darmon and P. Green. Elliptic curves and class fields of real quadratic fields: Algorithms and evidence.Exp. Math., 11, No. 1, 37-55, 2002.

H. Darmon and R. Pollack. Efficient calculation of Stark-Heegner points via overconvergent modular symbols.Israel J. Math., 153:319–354, 2006.

J. Gartner. Darmon points and quaternionic Shimura varieties.Canad. J. Math. 64 (2012), no. 6.

X. Guitart and M. Masdeu. Elementary matrix Decomposition and the computation of Darmon points with higher conductor.Math. Comp. (arXiv.org, 1209.4614), 2013.

X. Guitart and M. Masdeu. Computation of ATR Darmon points on non-geometrically modular elliptic curves.Exp. Math., 2012.

X. Guitart and M. Masdeu. Computation of quaternionic p-adic Darmon points.(arXiv.org, 1307.2556), 2013.

X. Guitart, M. Masdeu and M.H. Sengun. Darmon points on elliptic curves over number fields of arbitrary signature.(arXiv.org, 1404.6650), 2014.

M. Greenberg. Stark-Heegner points and the cohomology of quaternionic Shimura varieties.Duke Math. J., 147(3):541–575, 2009.

D. Pollack and R. Pollack. A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z).Canad. J. Math., 61(3):674–690, 2009.

M. Trifkovic. Stark-Heegner points on elliptic curves defined over imaginary quadratic fields.Duke Math. J., 135, No. 3, 415-453, 2006.

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 35 / 35

Page 40: Darmon Points for fields of mixed signature

Available Code

SAGE code for non-archimedean Darmon points when n = 1.

https://github.com/mmasdeu/darmonpoints

I Compute with “quaternionic modular symbols”.F Need presentation for units of orders in B (J. Voight, A. Page).

I Implemented overconvergent method for arbitrary B.I We obtain a method to find algebraic points.

SAGE code for archimedean Darmon points (in restricted cases).

https://github.com/mmasdeu/atrpoints

I Only for the split (B = M2(F )) cases, and:1 F real quadratic, and K/F ATR (Hilbert modular forms)2 F cubic (1, 1), and K/F totally complex (cubic automorphic forms).

Marc Masdeu Darmon points for fields of mixed signature May 13, 2014 1 / 1