data science‐based farming support system for ... · back‐end servers big data collection &...

13
India‐Japan Joint Research Laboratory Programme SICORP Collaborative Hub for International Research Program between Japan and India Data Science‐based Farming Support System for Sustainable Crop Production under Climatic Change PI The University of Tokyo Seishi Ninomiya Indian Institute of Technology Hyderabad Uday Desai 1 Food demand increases Science 327, 2010 2

Upload: others

Post on 27-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

India‐Japan Joint Research Laboratory ProgrammeSICORP Collaborative Hub for International Research Program between Japan and India

Data Science‐based Farming Support System for Sustainable Crop Production under Climatic Change

PI

The University of Tokyo    Seishi Ninomiya

Indian Institute of Technology Hyderabad Uday Desai

1

Food demand increases

Science 327, 2010 2

Page 2: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Diet transition along with economic growth 

3

Production efficiency of animal product is much lower than staple food

Calorie dependency on staple food Calorie dependency on animal products

Japan

KoreaChina

Taiwan

Japan

KoreaChina

Taiwan

Per capita GDP (PPP)Per capita GDP (PPP)

「循環型社会に向けた食遷移への挑戦」小林和彦, 東京大学農学生命科学研究科「弥生」 春号(2009)http://www.a.u-tokyo.ac.jp/pr-yayoi/48.pdf

Productivity

Quality/Safety/Healthy life

Farmers’ benefits

Food loss/waste

Minimum emission

Limited resources/water/land/energy

Ecosystem/Biodiversity

Food distribution

Diet transition

Climatic change/disaster

SecurityFood 

Security

Toward sustainable and sufficient rich food production

4

Page 3: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Background of the Project

• Drastic increase of food demand by growing population and increase of middle class people in India

• 80% of Indian arable land is in semi‐arid area

o Total arable land is the 2nd largest in the world

o Vulnerable under climatic change and risk for stable productivity is 

increasing

o 50 million tons of grain yield reduction took place in India by drought. The 

amount is equivalent to 20% of total annual grain trade in the world

o Chronic water shortage and pests/diseases

o 50% of the population are farmers and improvement of their benefits is an 

urgent and critical issue

5

Current issues in semi‐arid farming

o Decision support information for optimal and effective 

crop managements is very poor

• chemical applications and water usage

o Breeding for climatic change is delayed

• Drought tolerance, pest tolerance, high yield, high quality

o Knowledge transfer to each farmer is rather poor

• Personalized information is needed

• Monitoring each farmer is necessary

6

Page 4: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Research objectives

• Improvements of cropping in semiarid area accelerated by information sciences and technologies

o To provide IOT based decision support systems particularly for better crop managements in semi‐arid area such as efficient water use

o To accelerate  crop breeding based on data science for semi‐arid area under climatic change

o To provide a method for efficient and effective personalized knowledge transfer to agricultural stakeholders

• We expect that the project will also contribute to agriculture in Japan

7

IT platform for Big Data based Smart Farming Supports

Agricultural Applications for Farmer & Agriculture Stakeholder

Data Science‐based Farming Support System for Sustainable Crop Production under Climatic Change

• Data modeling                        JP

• Data integration platforms   IN,JP

• Utilization of DIAS                  JP

• API design                               IN,JP

Database for Big Data

• Big data analytics                 IN,JP

• Deep Learning                       IN,JP

• Image/video analysis           JP, IN

• Data fusion                            IN

• Decision support engines    JP,IN

AI/Deep Learning

• IoT based field sensor node 

development                             IN,JP

• Crowd sensing                           IN

• Drone sensing using IoT JP,IN

• IoT Backhaul                              IN

IoT/ Field Sensors

• High‐throughput phenotyping JP,IN

• Genomic selection model         JP,IN

• G X E X M modelling                  JP

High Performance Breeding

• Water management                  IN,JP

• Pest & disease management    IN

• Weather‐based crop management

IN

Optimal  Crop  Management

• Mobile based systems JP,IN

• Personalized knowledge transfer IN

• Diagnostic knowledge‐bases    JP,IN

• Next generation farm KIOSK         IN

Efficient Knowledge Transfer

Establishment of bilateral Joint Laboratory for research to support sufficient and environmentally friendly production of safe and quality crops under climatic change

Farmers & agriculture stakeholders

Page 5: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Research Group

• The University of Tokyoo Graduate School f Agriculture and Life  Scienceso Graduate School of Information Science and Technologyo Institute of Industrial Science

• Indian Institute of Technology  Hyderabad

• Indian Institute of Technology Bombay (IITB)

• Proferssor Jayashankar Telangana State Agricultural University (PJTSAU)

• International Institute of Information Technology Hyderabad (IIITH)

9

Bilateral research project Geo‐ICT and Sensor Network based Decision Support Systems in Agriculture and Environment Assessment (2008~2011)

o Strategic Japanese‐Indian Cooperative Programme on “Multidisciplinary Research Field, which combines Information and Communications Technology with Other Fields supported by JST and DST

o Team• National Agriculture and Food Research Organization (NARO) and UT

• IITB and ANGRAU

10

Page 6: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Interaction with farmers

Key factors in the project under synergy of information sciences and agricultural sciences 

• Element technologieso Development of field sensors usable under severe environmental condition in semi‐arid India

o Monitoring of environments

o High throughput phenotyping

o Crowd sensing

o Big data and database technologies

o Models for prediction and optimization, artificial intelligence

• Optimal water usage in croppingo Crop status monitoring  and crop modeling

• Acceleration of breedingo From empirical  breeding to designed breeding

o Prediction of crop performance by G X E modeling

• Identification of individual farmers’ issues and efficient and appropriate personalized knowledge transfer to each farmer

o Mobile tools12

Page 7: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Big data in Cloud

Back‐end servers

Big Data collection & utilization for crop production by multi-layer IOT

Satellites

Drones

GroundsensorsGround sensors

Machinery

Machinery

CrowdsensingCrowd sensing

Legacydata

Legacy data

National statistics

SDIAS

Low cost fully autonomous soil moisture sensors

• Data taken by SenSprout pro is uploaded to cloud server

14

Server(Cloud)

zigbee

Uploads data to servers

User

sensor

Datauploader

Test in India

Page 8: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Camera Position

15

#3D reconstruction of fields by drone images

16

Estimation of canopy coverage of paddy rice

Time and date

Plant Coverage Ratio

Days after transplanting

Page 9: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

17

Estimation of canopy coverage of paddy rice

Time and date

Plant Coverage Ratio

Days after transplanting

Detection of heading of sorghum by drone images

Unpublished, Collaborated with CSIRO, Australia 18

Page 10: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

From crop canopy image, we can estimate

• Crop coverageo RGB (weed). Rededge, NIR, LiDAR

• Emergence rateo RGB, Rededge

• Canopy heighto 3D reconstruction by SfM+RGB, LiDAR

• Lodging rateo 3D reconstruction by SfM+RGB, LiDAR

• Heading detection and head countingo RGB

• Canopy structure (light perception efficiency)o 3D reconstruction by SfM+RGB, LiDAR

• N contentso NDVI

• Grain moistureo NDVI

• Canopy temperatureo Thermal image

IT platform for Big Data based Smart Farming Supports

Agricultural Applications for Farmer & Agriculture Stakeholder

Data Science‐based Farming Support System for Sustainable Crop Production under Climatic Change

• Data modeling                        JP

• Data integration platforms   IN,JP

• Utilization of DIAS                  JP

• API design                               IN,JP

Database for Big Data

• Big data analytics                 IN,JP

• Deep Learning                       IN,JP

• Image/video analysis           JP, IN

• Data fusion                            IN

• Decision support engines    JP,IN

AI/Deep Learning

• IoT based field sensor node 

development                             IN,JP

• Crowd sensing                           IN

• Drone sensing using IoT JP,IN

• IoT Backhaul                              IN

IoT/ Field Sensors

• High‐throughput phenotyping JP,IN

• Genomic selection model         JP,IN

• G X E X M modelling                  JP

High Performance Breeding

• Water management                  IN,JP

• Pest & disease management    IN

• Weather‐based crop management

IN

Optimal  Crop  Management

• Mobile based systems JP,IN

• Personalized knowledge transfer IN

• Diagnostic knowledge‐bases    JP,IN

• Next generation farm KIOSK         IN

Efficient Knowledge Transfer

Establishment of bilateral Joint Laboratory for research to support sufficient and environmentally friendly production of safe and quality crops under climatic change

Farmers & agriculture stakeholders

Page 11: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Acceleration of breeding by genomic selection

Watanabe et al. (2005)Ann Bot. 95:1131

Selection by observations

Field tests

?yi f (xi1, xi2 ,..., xiN )

Prediction by DNA information + assumed environmental condition

Selection by predictions

Next Generation Sequencer(NGS)

Selection without cultivation

1st Stage (2016-2021) JLResearch & development Practical test bedsTraining and education

2nd Stage (2021-2026) JL.Research & developmentSocietal implementationTraining and education

Japan Side/JST• University of Tokyo Grad. Schl. Agric. Life

Sci. Grad. Schl. Engineering Grad. Schl. Info. Sci.

Tech. Inst. Industrial Sci.India Side/DST• IIT Hyderabad• IIT Bombay• IIIT Hyderabad• PJTSAU

Japan Side/JST• University of Tokyo, NARO,

Nagoya U., Chubu U., Kyoto U., Hokkaido U., AIST, NII, etc

India Side/DST• IITH, IITB, IIITH, PJTSAU,

ICRISAT, ICAR,

Societal Implementations• DOA/MAFF, Extension services• TCS, INFOSYS, WIPRO, ITC, • Fujitsu, Kubota, NEC, NTT, KDDI,

Soft Bank, etc.

Social Impacts• Stable crop supply• Higher productivity• Efficient water usage• Low environmental impact• Safety food• Farmers' benefits

Tight collaboration among academia, governments and private sectors

1st stage to 2nd stage

Scientific Impacts• Acceleration of bilateral

multi-disciplinary research and education

• IOT technology for farming

• Analytics on crop related data

• Designed cultivation• Designed breeding• Efficient use and

enrichment of DIAS

Social Impacts• Stable food supply• Higher productivity• Better water usage

efficiency• Quality and safety• Low environmental

impact• Higher income of farmers

Page 12: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

Expected impacts of the project

• Exchange of young students/scientist of two countrieso To understand each end and to promote the next generation international

collaboration

• Scientific Impactso Acceleration of bilateral multi-disciplinary research and educationo IOT technology for farmingo Analytics on crop related datao Designed cultivation and cultivation controlo Designed breedingo Efficient use and enrichment of DIAS

• Social Impactso Stable food supplyo Higher productivityo Better water usage efficiencyo Quality and safetyo Low environmental impacto Higher income of farmers

23

24

Kick‐off Meeting at IITH in December 2016

Page 13: Data Science‐based Farming Support System for ... · Back‐end servers Big Data collection & utilization for crop production by multi-layer IOT Satellites Drones Ground sensors

25

Thank you very much

For a fruitful project