data sheet - docs-europe.electrocomponents.comdocs-europe.electrocomponents.com/webdocs/0db7/... ·...

24
ACPL-333J 2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (V CE ) Desaturation Detection, UVLO Fault Status Feedback, Active Miller Clamp and Auto-Fault Reset Data Sheet Features 2.5 A maximum peak output current 2.0 A minimum peak output current 250 ns maximum propagation delay over temperature range 1.7A Active Miller Clamp.Clamp pin short to V EE if not used Desaturation Detection Under Voltage Lock-Out Protection (UVLO) with Hysteresis Open Collector Isolated fault feedback “Soft” IGBT Turn-off Automatic Fault Reset after fixed mute time , typical 26ms Available in SO-16 package 100 ns maximum pulse width distortion (PWD) 15 kV/µs minimum common mode rejection (CMR) at V CM = 1500 V I CC(max) < 5 mA maximum supply current Wide V CC operating range: 15 V to 30 V over temperature range Wide operating temperature range: –40°C to 105°C Safety approvals: UL approval, 3750 V RMS for 1 minute, CSA approval, IEC/EN/DIN-EN 60747-5-2 approval V IORM = 891 V PEAK Applications Isolated IGBT/Power MOSFET gate drive AC and brushless DC motor drives Industrial inverters and Uninterruptible Power Supply (UPS) Description The ACPL-333J is an advanced 2.5 A output current, easy- to-use, intelligent gate drivers which make IGBT V CE fault protection compact, affordable, and easy-to implement. Features such as integrated V CE detection, under voltage lockout (UVLO), “soft” IGBT turn-off, isolated open collector fault feedback, active Miller clamping and Auto- fault reset provide maximum design flexibility and circuit protection. The ACPL-333J contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. ACPL-333J are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V and 150 A. For IGBTs with higher ratings, the ACPL-333J can be used to drive a discrete power stage which drives the IGBT gate. The ACPL-333J have an insula- tion voltage of V IORM = 891 V PEAK . Block Diagram SHIELD SHIELD D R I V E R V E DESAT V CC2 V OUT V CLAMP V EE V CC1 V S FAULT ANODE CATHODE V CLAMP V LED 6, 7 5, 8 2 3 1, 4 13 11 14 9, 12 10 16 15 DESAT UVLO LED1 LED2 SHIELD SHIELD D R I V E R V E DESAT V CC2 V OUT V CLAMP V EE V CC1 V S FAULT ANODE CATHODE V CLAMP V LED 6, 7 5, 8 2 3 1, 4 13 11 14 9, 12 10 16 15 DESAT UVLO LED1 LED2 CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Upload: trantuong

Post on 08-May-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

ACPL-333J2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (VCE) Desaturation Detection, UVLO Fault Status Feedback, Active Miller Clamp and Auto-Fault Reset

Data Sheet

Features

• 2.5Amaximumpeakoutputcurrent

• 2.0Aminimumpeakoutputcurrent

• 250nsmaximumpropagationdelayovertemperaturerange

• 1.7AActiveMillerClamp.ClamppinshorttoVEEifnotused

• DesaturationDetection

• UnderVoltageLock-OutProtection(UVLO)withHysteresis

• OpenCollectorIsolatedfaultfeedback

• “Soft”IGBTTurn-off

• Automatic Fault Reset after fixed mute time , typical26ms

• AvailableinSO-16package

• 100nsmaximumpulsewidthdistortion(PWD)

• 15kV/µsminimumcommonmoderejection(CMR)atVCM=1500V

• ICC(max)<5mAmaximumsupplycurrent

• WideVCCoperatingrange:15Vto30Vovertemperaturerange

• Wideoperatingtemperaturerange:–40°Cto105°C

• Safetyapprovals:ULapproval,3750VRMSfor1minute,CSAapproval,IEC/EN/DIN-EN60747-5-2approvalVIORM=891VPEAK

Applications

• IsolatedIGBT/PowerMOSFETgatedrive

• ACandbrushlessDCmotordrives

• IndustrialinvertersandUninterruptiblePowerSupply(UPS)

Description

TheACPL-333Jisanadvanced2.5Aoutputcurrent,easy-to-use,intelligentgatedriverswhichmakeIGBTVCEfaultprotection compact, affordable, and easy-to implement.FeaturessuchasintegratedVCEdetection,undervoltagelockout (UVLO), “soft” IGBT turn-off, isolated opencollectorfaultfeedback,activeMillerclampingandAuto-faultresetprovidemaximumdesignflexibilityandcircuitprotection.

TheACPL-333JcontainsaGaAsPLED.TheLEDisopticallycoupledtoanintegratedcircuitwithapoweroutputstage.ACPL-333J are ideally suited for driving power IGBTs andMOSFETsused inmotorcontrol inverterapplications.Thevoltageandcurrentsuppliedbytheseoptocouplersmakethem ideally suited for directly driving IGBTs with ratingsupto1200Vand150A.ForIGBTswithhigherratings,theACPL-333J can be used to drive a discrete power stagewhichdrivestheIGBTgate.TheACPL-333Jhaveaninsula-tionvoltageofVIORM=891VPEAK.

Block Diagram

SHIELD

SHIELD

DRIVER

VE

DESAT

VCC2

VOUT

VCLAMP

VEE

VCC1

VS

FAULT

ANODE

CATHODE

VCLAMP

VLED

6, 7

5, 8

2

3

1, 4

13

11

14

9, 12

10

16

15

DESAT

UVLO

LED1

LED2

SHIELD

SHIELD

DRIVER

VE

DESAT

VCC2

VOUT

VCLAMP

VEE

VCC1

VS

FAULT

ANODE

CATHODE

VCLAMP

VLED

6, 7

5, 8

2

3

1, 4

13

11

14

9, 12

10

16

15

DESAT

UVLO

LED1

LED2

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Lead (Pb) FreeRoHS 6 fullycompliant

RoHS 6 fully compliant options available;-xxxE denotes a lead-free product

2

Pin Description

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

Pin Symbol Description1 VS InputGround

2 VCC1 Positiveinputsupplyvoltage.(4.5Vto5.5V)

3 FAULT Faultoutput.FAULTchangesfromahighimpedancestatetoalogiclowoutputwithin5µsofthevoltageontheDESATpinexceedinganinternalreferencevoltageof6.5V.FAULToutputisanopencollectorwhichallowstheFAULToutputsfromallACPL-333Jinacircuittobeconnectedtogetherina“wiredOR”formingasinglefaultbusforinter-facingdirectlytothemicro-controller.

4 VS InputGround

5 CATHODE Cathode

6 ANODE Anode

7 ANODE Anode

8 CATHODE Cathode

9 VEE Outputsupplyvoltage.

10 VCLAMP Millerclamp

11 VOUT Gatedrivevoltageoutput

12 VEE Outputsupplyvoltage.

13 VCC2 Positiveoutputsupplyvoltage

14 DESAT Desaturationvoltageinput.WhenthevoltageonDESATexceedsaninternalreferencevoltageof6.5VwhiletheIGBTison,FAULToutputischangedfromahighimpedancestatetoalogiclowstatewithin5µs.

15 VLED LEDanode.Thispinmustbeleftunconnectedforguaran-teeddatasheetperformance.(Foropticalcouplingtestingonly)

16 VE Common(IGBTemitter)outputsupplyvoltage.

Ordering Information

ACPL-333JisULRecognizedwith3750Vrmsfor1minuteperUL1577.

Part number

Option

PackageSurface Mount Tape& Reel

IEC/EN/DIN EN 60747-5-2 QuantityRoHS Compliant

ACPL-333J -000E SO-16 X X 45pertube

-500E X X X 850perreel

Toorder,chooseapartnumberfromthepartnumbercolumnandcombinewiththedesiredoptionfromtheoptioncolumntoformanorderentry.

Example1:

ACPL-333J-500EtoorderproductofSO-16SurfaceMountpackageinTapeandReelpackagingwithIEC/EN/DINEN60747-5-2SafetyApprovalinRoHScompliant.

Example2:

ACPL-333J-000EtoorderproductofSO-16SurfaceMountpackageintubepackagingwithIEC/EN/DINEN60747-5-2SafetyApprovalandRoHScompliant.

Optiondatasheetsareavailable.ContactyourAvagosalesrepresentativeorauthorizeddistributorforinformation.

Remarks:Thenotation‘#XXX’ isused forexistingproducts,while (new)products launchedsince15thJuly2001andRoHScompliantoptionwilluse‘-XXXE‘.

Package Outline Drawings

ACPL-333J 6-Lea Surface Mount Package6-Lea Surface Mount Package

Dimensionsininches(millimeters)Notes:InitialandcontinuedvariationinthecoloroftheACPL-333J’swhitemoldcompoundisnormalanddoesnoteaffectdeviceperformanceorreliability.FloatingLeadProtrusionis0.25mm(10mils)max.

9

0.295 ± 0.010(7.493 ± 0.254)

10111213141516

87654321

0.018(0.457)

0.138 ± 0.005(3.505 ± 0.127)

0.406 ± 0.10(10.312 ± 0.254)

0.408 ± 0.010(10.363 ± 0.254)

0.025 MIN.0.008 ± 0.003

(0.203 ± 0.076)STANDOFF

0.345 ± 0.010(8.763 ± 0.254)

0- 8°

0.018(0.457)

0.050(1.270)

ALL LEADSTO BECOPLANAR± 0.002

A 333JYYWW

TYPE NUMBERDATE CODE

0.458 (11.63)

0.085 (2.16)

0.025 (0.64)

LAND PATTERN RECOMMENDATION

Solder Reflow Thermal Profile

Recommended Pb-Free IR Profile

Note:Non-halidefluxshouldbeused.

0

TIME (SECONDS)

TEMP

ERAT

URE

(°C) 200

100

50 150100 200 250

300

0

30SEC.

50 SEC.

30SEC.

160 °C

140 °C150 °C

PEAKTEMP.245 °C

PEAKTEMP.240 °C

PEAKTEMP.230 °C

SOLDERINGTIME200 °C

PREHEATING TIME150 °C, 90 + 30 SEC.

2.5 °C ± 0.5 °C/SEC.

3°C + 1 °C/ - 0.5 °C

TIGHTTYPICALLOOSEROOM

TEMPERATURE

PREHEATING RATE 3 °C + 1 °C/ - 0.5 ° C/SEC.REFLOW HEATING RATE 2.5 °C ± 0.5 ° C/SEC.

217 °C

RAMP-DOWN6 °C/SEC. MAX.

RAMP-UP3 °C/SEC. MAX.

150 - 200 °C

260 +0/-5 °C

t 25 °C to PEAK

60 to 150 SEC.

20-40 SEC.

TIME WITHIN 5°C of ACTUALPEAK TEMPERATURE

tp

tsPREHEAT

60 to 180 SEC.

tL

TL

TsmaxTsmin

25

Tp

TIME

TEMP

ERAT

URE

NO TES:THE TIME FROM 25°C to PEAK TEMPERATURE = 8 MINUTES MAX.Tsmax = 200 °C, Tsmin = 150 °C

Note:Non-halidefluxshouldbeused.

5

Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*

Description Symbol Characteristic UnitInstallationclassificationperDINVDE0110/1.89,Table1forratedmainsvoltage≤150Vrmsforratedmainsvoltage≤300Vrmsforratedmainsvoltage≤600Vrms

I–IVI–IVI–III

ClimaticClassification 55/100/21

PollutionDegree(DINVDE0110/1.89) 2

MaximumWorkingInsulationVoltage VIORM 891 Vpeak

InputtoOutputTestVoltage,Methodb**,VIORMx1.875=VPR,100%ProductionTestwithtm=1sec,Partialdischarge<5pC

VPR 1670 Vpeak

InputtoOutputTestVoltage,Methoda**,VIORMx1.5=VPR,TypeandSampleTest,tm=60sec,Partialdischarge<5pC

VPR 1336 Vpeak

HighestAllowableOvervoltage(TransientOvervoltagetini=10sec) VIOTM 6000 Vpeak

Safety-limitingvalues–maximumvaluesallowedintheeventofafailure.

CaseTemperature TS 175 °C

InputCurrent IS,INPUT 400 mA

OutputPower PS,OUTPUT 1200 mW

InsulationResistanceatTS,VIO=500V RS >109 W

* Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.SurfacemountclassificationisclassAinaccordancewithCECCOO802.

** RefertotheoptocouplersectionoftheIsolationandControlComponentsDesigner’sCatalog,underProductSafetyRegulationssectionIEC/EN/DINEN60747-5-2,foradetaileddescriptionofMethodaandMethodbpartialdischargetestprofiles.

DependenceofSafetyLimitingValuesonTemperature.(takefromDSAV01-0579ENPg.7)

Regulatory Information

TheACPL-333Jisapprovedbythefollowingorganizations:

IEC/EN/DIN EN 60747-5-2Approvalunder:IEC60747-5-2:1997+A1:2002EN60747-5-2:2001+A1:2002DINEN60747-5-2(VDE0884Teil2):2003-01

ULApprovalunderUL1577,componentrecognitionprogramuptoVISO=3750VRMS.FileE55361.

CSAApproval under CSA Component Acceptance Notice #5,FileCA88324.

Table 2. Insulation and Safety Related Specifications

Parameter Symbol ACPL-333J Units ConitionsMinimumExternalAirGap(Clearance)

L(101) 8.3 Mm Measuredfrominputterminalstooutputterminals,shortestdistancethroughair.

MinimumExternalTracking(Creepage)

L(102) 8.3 Mm Measuredfrominputterminalstooutputterminals,shortestdistancepathalongbody.

MinimumInternalPlasticGap(InternalClearance)

0.5 Mm Throughinsulationdistanceconductortoconductor,usuallythestraightlinedistancethicknessbetweentheemitteranddetector.

TrackingResistance(ComparativeTrackingIndex)

CTI >175 V DINIEC112/VDE0303Part1

IsolationGroup IIIa MaterialGroup(DINVDE0110,1/89,Table1)

Table 3. Absolute Maximum Ratings

Parameter Symbol Min. Max. Units NoteStorageTemperature TS -55 125 °C

OperatingTemperature TA -40 105 °C 2

OutputICJunctionTemperature TJ 125 °C 2

AverageInputCurrent IF(AVG) 25 mA 1

PeakTransientInputCurrent,(<1µspulsewidth,300pps)

IF(TRAN) 1.0 A

ReverseInputVoltage VR 5 V

“High”PeakOutputCurrent IOH(PEAK) 2.5 A 3

“Low”PeakOutputCurrent IOL(PEAK) 2.5 A 3

PositiveInputSupplyVoltage VCC1 -0.5 5.5 V

FAULTOutputCurrent IFAULT 8.0 mA

FAULTPinVoltage VFAULT -0.5 VCC1 V

TotalOutputSupplyVoltage (VCC2-VEE) -0.5 33 V

NegativeOutputSupplyVoltage (VE-VEE) -0.5 15 V 6

PositiveOutputSupplyVoltage (VCC2-VE) -0.5 33-(VE-VEE) V

GateDriveOutputVoltage VO(PEAK) -0.5 VCC2 V

PeakClampingSinkingCurrent IClamp 1.7 A

MillerClampingPinVoltage VClamp -0.5 VCC2 V

DESATVoltage VDESAT VE VE+10 V

OutputICPowerDissipation PO 600 mW 2

InputICPowerDissipation PI 150 mW 2

SolderReflowTemperatureProfile SeePackageOutlineDrawingssection

Table 4. Recommended Operating Conditions

Parameter Symbol Min. Max. Units NoteOperatingTemperature TA -40 105 °C 2

TotalOutputSupplyVoltage (VCC2-VEE) 15 30 V 7

NegativeOutputSupplyVoltage (VE-VEE) 0 15 V 4

PositiveOutputSupplyVoltage (VCC2-VE) 15 30-(VE-VEE) V

InputCurrent(ON) IF(ON) 8 12 mA

InputVoltage(OFF) VF(OFF) -3.6 0.8 V

Table 5. Electrical Specifications (DC)

Unlessotherwisenoted,alltypicalvaluesatTA=25°C,VCC2-VEE=30V,VE-VEE=0V;allMinimum/MaximumspecificationsareatRecommendedOperatingConditions.PositiveSupplyVoltageused.

Parameter Symbol Min. Typ. Max. Units Test Conitions Fig. NoteFAULTLogicLowOutputVoltage

VFAULTL 0.1 0.4 V IFAULT=1.1mA,VCC1=5.5V

0.1 0.4 V IFAULT=1.1mA,VCC1=3.3V

FAULTLogicHighOutputCurrent

IFAULTH 0.02 0.5 µA VFAULT=5.5V,VCC1=5.5V

0.002 0.3 µA VFAULT=3.3V,VCC1=3.3V

HighLevelOutputCurrent IOH -0.5 -1.5 A VO=VCC2-4 2,6,21

5

-2.0 A VO=VCC2–15 3

LowLevelOutputCurrent IOL 0.5 1.5 A VO=VEE+2.5 3,7,22

5

2.0 A VO=VEE+15 3

LowLevelOutputCurrentDuringFaultCondition

IOLF 140 mA VOUT-VEE=14V 6

HighLevelOutputVoltage VOH VCC-2.9 VCC-2.0 V IO=-650µA 4,23

7,8,923

LowLevelOutputVoltage VOL 0.17 0.5 V IO=100mA 5,24

ClampPinThresholdVoltage

VtClamp 2.0 V

ClampLowLevelSinkingCurrent

ICL 0.35 1.1 A VO=VEE+2.5 8

HighLevelSupplyCurrent ICC2H 2.5 5 mA IO=0mA 9,10,25,26

9

LowLevelSupplyCurrent ICC2L 2.5 5 mA IO=0mA

BlankingCapacitorChargingCurrent

ICHG -0.13 -0.24 -0.33 mA VDESAT=2V 11,27 9,10

BlankingCapacitorDischargeCurrent

IDSCHG 10 30 mA VDESAT=7.0V 28

DESATThreshold VDESAT 6 6.5 7.5 V VCC2-VE>VUVLO- 12 9

UVLOThreshold VUVLO+ 10.5 11.6 12.5 V VO>5V 7,9,11

VUVLO- 9.2 10.3 11.1 V VO<5V 7,9,12

UVLOHysteresis (VUVLO+-VUVLO-)

0.4 1.3 V

ThresholdInputCurrentLowtoHigh

IFLH 2.0 8 mA IO=0mA,VO>5V

ThresholdInputVoltageHightoLow

VFHL 0.8 V

InputForwardVoltage VF 1.2 1.6 1.95 V IF=10mA

TemperatureCoefficientofInputForwardVoltage

DVF/DTA -1.3 mV/°C

InputReverseBreakdownVoltage

BVR 5 V IR=10mA

InputCapacitance CIN 70 pF f=1MHz,VF=0V

Table 6. Switching Specifications (AC)

Unlessotherwisenoted,alltypicalvaluesatTA=25°C,VCC2-VEE=30V,VE-VEE=0V;allMinimum/MaximumspecificationsareatRecommendedOperatingConditions.OnlyPositiveSupplyVoltageused.

Parameter Symbol Min. Typ. Max. Units Test Conitions Fig. NotePropagationDelayTimetoHighOutputLevel

tPLH 100 180 250 ns Rg=10W,Cg=10nF,f=10kHz,DutyCycle=50%,IF=10mA,VCC2=30V

1,13,14,15,16,29

13,15

PropagationDelayTimetoLowOutputLevel

tPHL 100 180 250 ns 1,13,14,15,16,29

PulseWidthDistortion PWD -100 20 100 ns 14,17

PropagationDelayDifferenceBetweenAnyTwoPartsorChannels

(tPHL-tPLH)PDD

-350 350 ns 17,16

RiseTime tR 50 ns

FallTime tF 50 ns

DESATSenseto90%VODelay

tDESAT(90%) 0.15 0.5 µs CDESAT=100pF,Rg=10W,Cg=10nF,VCC2=30V

17,30 19

DESATSenseto10%VODelay

tDESAT(10%) 2 3 µs CDESAT=100pF,Rg=10W,Cg=10nF,VCC2=30V

18,19,20,30

DESATSensetoLowLevelFAULTSignalDelay

tDESAT(FAULT) 0.25 0.5 µs CDESAT=100pF,RF=2.1kW,Rg=10W,Cg=10nF,VCC2=30V

30 18

DESATSensetoDESATLowPropagationDelay

tDESAT(LOW) 0.25 µs CDESAT=100pF,RF=2.1kW,Rg=10W,Cg=10nF,VCC2=30V

30 19

DESATInputMute tDESAT(MUTE) 15 26 40 µs CDESAT=100pF,RF=2.1kW,Rg=10W,Cg=10nF,VCC1=5.5V,VCC2=30V

20

OutputHighLevelCommonModeTransientImmunity

|CMH| 15 25 kV/µs TA=25°C,IF=10mAVCM=1500V,VCC2=30V

31,32,33,34

21

OutputLowLevelCommonModeTransientImmunity

|CML| 15 25 kV/µs TA=25°C,VF=0VVCM=1500V,VCC2=30V

31,32,33,34

22

Table 7. Package Characteristics

Parameter Symbol Min. Typ. Max. Units Test Conitions Fig. NoteInput-OutputMomentaryWithstandVoltage

VISO 3750 Vrms RH<50%,t=1min.,TA=25°C 6,7

Input-OutputResistance RI-O >109 W VI-O=500V 7

Input-OutputCapacitance CI-O 1.3 pF freq=1MHz

OutputIC-to-Pins9&10ThermalResistance

q09-10 30 °C/W TA=25°C

Notes:1. Deratelinearlyabove70°Cfreeairtemperatureatarateof0.3mA/°C.2. Inordertoachievetheabsolutemaximumpowerdissipationspecified,pins4,9,and10requiregroundplaneconnectionsandmayrequire

airflow.SeetheThermalModelsectionintheapplicationnotesattheendofthisdatasheetfordetailsonhowtoestimatejunctiontemperatureandpowerdissipation.InmostcasestheabsolutemaximumoutputICjunctiontemperatureisthelimitingfactor.Theactualpowerdissipationachievablewilldependontheapplicationenvironment(PCBLayout,airflow,partplacement,etc.).SeetheRecommendedPCBLayoutsectionin the application notes for layout considerations. Output IC power dissipation is derated linearly at 10 mW/°C above 90°C. Input IC powerdissipationdoesnotrequirederating.

3. Maximum pulse width = 10 µs.This value is intended to allow for component tolerances for designs with IO peak minimum = 2.0 A. Deratelinearlyfrom3.0Aat+25°Cto2.5Aat+105°C.ThiscompensatesforincreasedIOPEAKduetochangesinVOLovertemperature.

4. Thissupplyisoptional.Requiredonlywhennegativegatedriveisimplemented.5. Maximumpulsewidth=50µs.6. SeetheSlowIGBTGateDischargeDuringFaultConditionsectionintheapplicationsnotesattheendofthisdatasheetforfurtherdetails.7. 15Vistherecommendedminimumoperatingpositivesupplyvoltage(VCC2-VE)toensureadequatemargininexcessofthemaximumVUVLO+

threshold of 12.5V. For High Level OutputVoltage testing,VOH is measured with a dc load current.When driving capacitive loads,VOH willapproachVCCasIOHapproacheszerounits.

8. Maximumpulsewidth=1.0ms.9. OnceVOoftheACPL-333Jisallowedtogohigh(VCC2-VE>VUVLO),theDESATdetectionfeatureoftheACPL-333Jwillbetheprimarysourceof

IGBTprotection.UVLOisneededtoensureDESATisfunctional.OnceVUVLO+>12.5V,DESATwillremainfunctionaluntilVUVLO-<9.2V.Thus,theDESATdetectionandUVLOfeaturesoftheACPL-333JworkinconjunctiontoensureconstantIGBTprotection.

10. SeetheDESATfaultdetectionblankingtimesectionintheapplicationsnotesattheendofthisdatasheetforfurtherdetails.11. Thisisthe“increasing”(i.e.turn-onor“positivegoing”direction)ofVCC2-VE12. Thisisthe“decreasing”(i.e.turn-offor“negativegoing”direction)ofVCC2-VE13. Thisloadconditionapproximatesthegateloadofa1200V/150AIGBT.14. PulseWidthDistortion(PWD)isdefinedas|tPHL-tPLH|foranygivenunit.15. AsmeasuredfromIFtoVO.16. ThedifferencebetweentPHLandtPLHbetweenanytwoACPL-333Jpartsunderthesametestconditions.17. AsmeasuredfromANODE,CATHODEofLEDtoVOUT18. ThisistheamountoftimefromwhentheDESATthresholdisexceeded,untiltheFAULToutputgoeslow.19. ThisistheamountoftimetheDESATthresholdmustbeexceededbeforeVOUTbeginstogolow,andtheFAULToutputtogolow.Thisissupply

voltagedependent.20. FaultReset:This is theamountof timewhenVOUTwillbeasserted lowafterDESAT threshold isexceeded.See theDescriptionofOperation

(FaultReset)topicintheapplicationinformationsection.21. Commonmodetransient immunity inthehighstate is themaximumtolerabledVCM/dtofthecommonmodepulse,VCM,toassurethatthe

outputwillremaininthehighstate(i.e.,VO>15VorFAULT>2V).A100pFanda2.1kΩpull-upresistorisneededinfaultdetectionmode.22. Common mode transient immunity in the low state is the maximum tolerable dVCM/dt of the common mode pulse,VCM, to assure that the

outputwillremaininalowstate(i.e.,VO<1.0VorFAULT<0.8V).23. ToclamptheoutputvoltageatVCC-3VBE,apull-downresistorbetweentheoutputandVEEisrecommendedtosinkastaticcurrentof650µA

whiletheoutputishigh.SeetheOutputPull-DownResistorsectionintheapplicationnotesattheendofthisdatasheetifanoutputpull-downresistorisnotused.

10

Figure 2. IOH vs. temperature Figure 3. IOL vs. temperature

Figure 4. VOH vs. temperature Figure 5. VOL vs. temperature

1.0

1.5

2.0

2.5

3.0

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - oC

I OH

-OUT

PUT

HIGH

CURR

ENT

-A

0

1

2

3

4

5

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - o C

I OL

-OUT

PUT

LOW

CURR

ENT

-----VOUT =VEE +15V___VOUT =VEE +2.5V

0

0.05

0.1

0.15

0.2

0.25

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - o C

V OL

-OUT

PUT

LOW

VOLT

AGE

-V

Figure . VOUT propagation elay waveforms

IF

V OUT

tPHLtPLH

t ft r

10%

50%

90%

T A - TEMPERATURE - o C

(VOH

-VCC

)-HI

GHOU

TPUT

VOLT

AGE

DROP

-V

-2.5

-2

-1.5

-1

-0.5

0

-40 -20 0 20 40 60 80 100

____I OUT = -650uA

11

Figure 8. ICL vs. temperature

0

1

2

3

4

-40 -20 0 20 40 60 80 105

TA -TEMPERATURE- o C

I CL-C

LAMP

LOW

LEVE

NSI

NKIN

GCU

RREN

T

15 20 25 302.25

2.35

2.45

2.55

2.65

VCC2 - OUTPUR SUPPLY VOLTAGE - V

I CC2 -

OUT

PUT S

UPPL

Y CU

RREN

T - m

A

---------I Cc 2H_________ICC2L

2.00

2.25

2.50

2.75

3.00

3.25

3.50

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - oC

I CC2

-OUT

PUTS

UPPL

YCU

RREN

T-mA - ---- ----I CC2 H

_________ICC2L

-0.35

-0.30

-0.25

-0.20

-40 -20 0 20 40 60 80 105

TA - TEMPERATURE - o C

I CH-B

LANK

ING

CAPA

CITO

RCH

ARGI

NGCU

RREN

T-m

A

Figure 9. ICC2 vs. temperature

Figure 0. ICC2 vs. VCC2 Figure . ICHG vs. temperature

28.0

28.5

29.0

29.5

30.0

0 0.2 0.4 0.6 0.8 1

IOH - OUTPUT HIGH CURRENT - A

V OH -

HIG

H OU

TPUT

VOL

TAGE

DRO

P - V

_ _ _ _ 100 oC______ 25 oC--------- -40 oC

Figure 6. VOH vs. IOH Figure 7. VOL vs. IOL

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5IoL - OUTPUT LOW CURRENT - A

V OL -

LOW

OUT

PUT

VOLT

AGE

DROP

- V

_ _ _ _ 100 o C______ 25 o C--------- -40 o C

12

Figure 4. Propagation elay vs. supply voltage

100

150

200

250

300

15 20 25 30Vcc - SUPPLY VOLTAGE - V

T P -

PROP

AGAT

ION

DELA

Y - n

s

----------t PLH_______t PHL

100

150

200

250

300

0 10 20 30 40 50LOAD RESISTANCE - ohm

T P -

PROP

AGAT

ION

DELA

Y - m

s ----------t PLH_______t PHL

Figure 5. Propagation elay vs. loa resistance

Figure 6. Propagation elay vs. loa capacitance

0

100

200

300

0 10 20 30 40 50LOAD CAPACITANCE - nF

----------t PLH_______t PHL

T P -

PROP

AGAT

ION

DELA

Y - m

s

Figure 2. DESAT threshol vs. temperature Figure 3. Propagation elay vs. temperature

6.0

6.5

7.0

7.5

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - o C

V DES

AT-D

ESAT

THRE

SHOL

D-V

100

150

200

250

300

-40 -20 0 20 40 60 80 105TA - TEMPERATURE - o C

T P-P

ROPA

GATI

ONDE

LAY

-ns

----------t PLH_______t PHL

1

Figure 8. DESAT sense to 0% VOUT elay vs. temperature

1.0

1.5

2.0

2.5

3.0

-40 -20 0 20 40 60 80 105

T A - TEMPERATURE - o C

TDESA

T-D

ESAT

Sens

eto1

0%Vo

Delay

-us

-------Vcc2 =15V_____Vcc2 =30V

Figure 9. DESAT sense to 0% VOUT elay vs. loa resistance

0.0

1.0

2.0

3.0

4.0

10 20 30 40 50

LOAD RESISTANCE - ohm

-------Vcc2 =15V_____V cc2 =30V

TDESA

T10%

- DE

SAT

Sens

e to 1

0% V

o Dela

y - us

0.000

0.004

0.008

0.012

0 10 20 30 40 50

LOAD CAPACITANCE - nF

-------V cc2 =15V_____V cc2 =30V

TDESA

T10%

- DE

SAT

Sens

e to 1

0% V

o Dela

y - m

s

Figure 20. DESAT sense to 0% VOUT elay vs. loa capacitance

100

150

200

250

300

-40 -20 0 20 40 60 80 105

TA - TEMPERATURE - o C

TDESA

T90%

-DES

ATSe

nset

o90%

VoDe

lay-n

s

Figure 7. DESAT sense to 90% VOUT elay vs. temperature

1

Figure 2. IOH Pulse test circuit

Figure 22. IOL Pulse test circuit

Figure 23. VOH Pulse test circuit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_10mA

+_

0.1µF

0.1µF

15V Pulsed

IOUT

30V

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

VS

CATHODE

ANODE

ANODE

CATHODE

+_10mA

+_

0.1µF0.1µF

0.1µF0.1µF

15V Pulsed

IOUT

30V

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_+_

0.1µF

0.1µF

15V Pulsed

IOUT

30V+_

0.1µF

0.1µF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

VOUT

30V

10mA

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

10mA10mA 650µA

15

Figure 24. VOL Pulse test circuit

Figure 25. ICC2H test circuit

Figure 26. ICC2L test circuit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

ICC2

30V

10mA

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF0.1µF

0.1µF0.1µF

ICC2

30V

10mA10mA

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF30V

I CC2

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF0.1µF

0.1µF0.1µF30V

I CC2

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

VOUT

30V

0.1µFF

0.1µF

100mA

1

Figure 27. ICHG Pulse test circuit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

ICHG

30V

10mA

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

ICHG

30V

10mA10mA

Figure 28. IDSCHG test circuit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

7V

30V

+_

IDSCHG

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

7V

30V

+_

IDSCHG

Figure 29. tPLH, tPHL, tf, tr, test circuit

10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

0.1µF

0.1µF

VOUT

30V10Ω

10mA, 10kHz, 50% Duty Cycle

10nF10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_0.1µF0.1µF

VOUT

30V

10mA, 10kHz, 50% Duty Cycle

1

VCM

10

10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF

SCOPE

30V

430Ω

2.1kΩ

0.1µF

15pF

5V

VCM

10Ω

10nF10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF0.1µF

SCOPE

30V

0.1µF0.1µF

15pF15pF

5V5V

VCM

10Ω

10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF

SCOPE

30V

430Ω

2.1kΩ

0.1µF

15pF

5V

VCM

10nF10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF0.1µF

SCOPE

30V

0.1µF0.1µF

15pF15pF

5V5V

Figure 30. tDESAT fault test circuit

10nF

+_

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

5V

0.1µF

0.1µF

VOUT

30V10Ω

VIN

2.1kΩVFAULT

10mA 10nF

+_

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

VS

CATHODE

ANODE

ANODE

CATHODE

+_

5V

0.1µF0.1µF

0.1µF0.1µF

VOUT

30V

VIN

VFAULT

10mA10mA

Figure 3. CMR Test circuit LED2 off

Figure 32. CMR Test Circuit LED2 on

1

Figure 33. CMR Test circuit LED off

10

10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF

SCOPE

30V

VCM

430Ω

2.1kΩ

0.1µF

15pF

5V

1010Ω

10nF10nF

0.1µF0.1µF

SCOPE

30V

Figure 34. CMR Test Circuit LED on

VCM

10

10nF

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

0.1µF

SCOPE

30V

430

2.1k

0.1µF

15pF

5V

SCOPE

2.1kΩ

0.1µF

15pF

5V

Ω

Ω

1

Application Information

Product Overview Description

The ACPL-333J are highly integrated power controldevices that incorporate all the necessary componentsforacomplete,isolatedIGBT/MOSFETgatedrivecircuitwith fault protection and feedback into one SO-16package.ActiveMillerclampfunctioneliminatestheneedofnegativegatedriveinmostapplicationandallowstheuse of simple bootstrap supply for high side driver. Anoptically isolated power output stage drives IGBTs withpower ratings of up to 150 A and 1200V. A high speedinternal optical link minimizes the propagation delaysbetweenthemicrocontrollerandtheIGBTwhileallowingthetwosystemstooperateatverylargecommonmodevoltagedifferencesthatarecommonin industrialmotordrivesandotherpowerswitchingapplications.AnoutputIC provides local protection for the IGBT to preventdamage during over current, and a second optical linkprovides a fully isolated fault status feedback signal forthe microcontroller. A built in“watchdog” circuit, UVLOmonitorsthepowerstagesupplyvoltagetopreventIGBTcausedbyinsufficientgatedrivevoltages.ThisintegratedIGBTgatedriverisdesignedtoincreasetheperformanceandreliabilityofamotordrivewithoutthecost,size,andcomplexityofadiscretedesign.

Two light emitting diodes and two integrated circuitshoused in the same SO-16 package provide the inputcontrolcircuitry,theoutputpowerstage,andtwoopticalchannels. The output Detector IC is designed manufac-tured on a high voltage BiCMOS/Power DMOS process.The forward optical signal path, as indicated by LED1,transmitsthegatecontrolsignal.Thereturnopticalsignalpath, as indicated by LED2, transmits the fault statusfeedbacksignal.

Figure 35. Block Diagram of ACPL-333J

SHIELD

SHIELD

DRIVER

VE

DESAT

VCC2

VOUT

VCLAMP

VEE

VCC1

VS

FAULT

ANODE

CATHODE

VCLAMP

VLED

6, 7

5, 8

2

3

1, 4

13

11

14

9, 12

10

16

15

DESAT

UVLO

LED1

LED2

SHIELD

SHIELD

DRIVER

VE

DESAT

VCC2

VOUT

VCLAMP

VEE

VCC1

VS

FAULT

ANODE

CATHODE

VCLAMP

VLED

6, 7

5, 8

2

3

1, 4

13

11

14

9, 12

10

16

15

DESAT

UVLO

LED1

LED2

Under normal operation, the LED1 directly controls theIGBT gate through the isolated output detector IC, andLED2 remains off. When an IGBT fault is detected, theoutputdetectorICimmediatelybeginsa“soft”shutdownsequence, reducing the IGBT current to zero in a con-trolled manner to avoid potential IGBT damage frominductiveover voltages.Simultaneously, this fault statusistransmittedbacktotheinputviaLED2,wherethefaultlatch disables the gate control input and the active lowfaultoutputalertsthemicrocontroller.

During power-up, the Under Voltage Lockout (UVLO)feature prevents the application of insufficient gatevoltage to the IGBT, by forcing the ACPL-333J ’s outputlow.Oncetheoutputisinthehighstate,theDESAT(VCE)detection feature of the ACPL-333J provides IGBT pro-tection. Thus, UVLO and DESAT work in conjunction toprovideconstantIGBTprotection.

Recommended Application Circuit

The ACPL-333J have an LED input gate control, and anopen collector fault output suitable for wired‘OR’ appli-cations. The recommended application circuit shown inFigure36(page21)illustratesatypicalgatedriveimple-mentationusingtheACPL-333J.The followingdescribesabout driving IGBT. However, it is also applicable toMOSFET. Depending upon the MOSFET or IGBT gatethreshold requirements, designers may want to adjusttheVCC supply voltage (RecommendedVCC = 17.5V forIGBTand12.5VforMOSFET).

The two supply bypass capacitors (0.1 µF) provide thelarge transient currents necessary during a switchingtransition.Becauseofthetransientnatureofthechargingcurrents,a lowcurrent (5mA)powersupplysuffices.ThedesaturationdiodeDDESAT600V/1200Vfastrecoverytype,trr below 75ns (e.g. ERA34-10) and capacitor CBLANK arenecessary external components for the fault detectioncircuitry.ThegateresistorRGservesto limitgatechargecurrent and controls the IGBT collector voltage riseand fall times. The open collector fault output has apassivepull-upresistorRF(2.1kW)anda330pFfilteringcapacitor, CF. A 47 kW pull down resistor RPULL-DOWN onVOUT provides a predictable high level output voltage(VOH). In this application, the IGBT gate driver will shutdown when a fault is detected and fault reset by nextcycleofIGBTturnon.Applicationnotesarementionedattheendofthisdatasheet.

20

Description of Operation

Normal Operation

During normal operation,VOUT of the ACPL-333J is con-trolled by input LED current IF (pins 5, 6, 7 and 8), withthe IGBT collector-to-emitter voltage being monitoredthroughDDESAT.TheFAULToutputishigh.SeeFigure37.

Fault Condition

TheDESATpinmonitors the IGBTVcevoltage.WhenthevoltageontheDESATpinexceeds6.5VwhiletheIGBTison,VOUTisslowlybroughtlowinorderto“softly”turn-offthe IGBT and prevent large di/dt induced voltages. Alsoactivated is an internal feedback channel which bringsthe FAULT output low for the purpose of notifying themicro-controllerofthefaultcondition.

Figure 36. Recommene application circuit (Single Supply) with esaturation etection an active Miller Clamp

+_

+_

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_RG

100 Ω

CBLANK

DDESAT

Q1

Q2

+VCE-

RF

RRPULL-DOWN

+ HVDC

- HVDC

3-PHASEAC

+VCE-

0.1µF 0.1µF

0.1µF

CF

7

+_

-

Fault Reset

Oncefaultisdetected,theoutputwillbesoft-shutdownto low. All input LED signals will be ignored during thefault period to allow the driver to completely soft shut-down the IGBT. For ACPL-333J, the driver will automati-callyresettheFAULTpinafterafixedmutetimeof25ms(typical).SeeFigure37.

Figure 37. Fault Timing iagram (ACPL-333J)

IF

V DESAT

V OUT

FAULT

6.5V

tDESAT(LOW)

10%

tDESAT(10%)

90%

tDESAT(90%)

50%tDESAT(FAULT)

tDESAT(MUTE)

Automatic Reset aftermute time

50%

tBLANK

21

Output Control

Theoutputs(VOUTandFAULT)oftheACPL-333Jarecon-trolled by the combination of IF, UVLO and a detectedIGBTDesatcondition.OnceUVLOisnotactive(VCC2-VE>VUVLO),VOUTisallowedtogohigh,andtheDESAT(pin14)detectionfeatureoftheACPL-333Jwillbetheprimarysource of IGBT protection. UVLO is needed to ensureDESAT is functional. Once VUVLO+ > 10.5 V, DESAT willremain functional untilVUVLO- < 11.1V.Thus, the DESATdetection and UVLO features of the ACPL-333J work inconjunctiontoensureconstantIGBTprotection.

Desaturation Detection and High Current Protection

TheACPL-333Jsatisfiesthesecriteriabycombiningahighspeed, high output current driver, high voltage opticalisolation between the input and output, local IGBT de-saturation detection and shut down, and an opticallyisolated fault status feedback signal into a single 16-pinsurfacemountpackage.

The fault detection method, which is adopted in theACPL-333J, is to monitor the saturation (collector)voltageoftheIGBTandtotriggeralocalfaultshutdownsequence if the collector voltage exceeds a predeter-mined threshold. A small gate discharge device slowlyreduces the high short circuit IGBT current to preventdamaging voltage spikes. Before the dissipated energycan reach destructive levels, the IGBT is shut off. DuringtheoffstateoftheIGBT,thefaultdetectcircuitryissimplydisabledtopreventfalse‘fault’signals.

The alternative protection scheme of measuring IGBTcurrent to prevent desaturation is effective if the shortcircuit capability of the power device is known, butthis method will fail if the gate drive voltage decreasesenough to only partially turn on the IGBT. By directlymeasuringthecollectorvoltage,theACPL-333JlimitsthepowerdissipationintheIGBTevenwithinsufficientgatedrivevoltage.Anothermoresubtleadvantageofthede-saturationdetectionmethodisthatpowerdissipationinthe IGBT is monitored, while the current sense methodrelies on a preset current threshold to predict the safelimitofoperation.Therefore,anoverlyconservativeovercurrentthresholdisnotneededtoprotecttheIGBT.

IF UVLO (VCC2 – VE) Desat Conition Detecte on Pin 4 Pin 3 (FAULT) Output VOUT

X Active X X Low

X X Yes Low Low

OFF X X X Low

ON NotActive No High High

Slow IGBT Gate Discharge during Fault Condition

Whenadesaturationfaultisdetected,aweakpull-downdevice in the ACPL-333J output drive stage will turn onto‘softly’turnofftheIGBT.Thisdeviceslowlydischargesthe IGBT gate to prevent fast changes in drain currentthat could cause damaging voltage spikes due to leadandwire inductance.Duringtheslowturnoff, the largeoutput pull-down device remains off until the outputvoltagefallsbelowVEE+2Volts,atwhichtimethelargepulldowndeviceclampstheIGBTgatetoVEE.

DESAT Fault Detection Blanking Time

TheDESATfaultdetectioncircuitrymustremaindisabledforashorttimeperiodfollowingtheturn-onoftheIGBTto allow the collector voltage to fall below the DESATthreshold. This time period, called the DESAT blankingtime is controlled by the internal DESAT charge current,the DESAT voltage threshold, and the external DESATcapacitor.

The nominal blanking time is calculated in terms ofexternal capacitance (CBLANK), FAULT threshold voltage(VDESAT), and DESAT charge current (ICHG) as tBLANK =CBLANK xVDESAT / ICHG.The nominal blanking time withtherecommended100pFcapacitoris100pF*6.5V/240µA=2.7µsec.

Thecapacitancevaluecanbescaledslightlytoadjusttheblankingtime,thoughavaluesmallerthan100pFisnotrecommended. This nominal blanking time representsthelongesttimeitwilltakefortheACPL-333JtorespondtoaDESATfaultcondition.IftheIGBTisturnedonwhilethe collector and emitter are shorted to the supply rails(switching into a short), the soft shut-down sequencewillbeginafterapproximately3µsec.IftheIGBTcollectorandemitterareshortedtothesupplyrailsaftertheIGBTisalreadyon,theresponsetimewillbemuchquickerdueto theparasiticparallelcapacitanceof theDESATdiode.The recommended 100pF capacitor should provideadequate blanking as well as fault response times formostapplications.

22

Under Voltage Lockout

The ACPL-333J UnderVoltage Lockout (UVLO) feature isdesigned to prevent the application of insufficient gatevoltage to the IGBT by forcing the ACPL-333J outputlow during power-up. IGBTs typically require gatevoltages of 15 V to achieve their rated VCE(ON) voltage.Atgatevoltagesbelow13Vtypically,theVCE(ON)voltageincreases dramatically, especially at higher currents. Atverylowgatevoltages(below10V),theIGBTmayoperatein the linear region and quickly overheat. The UVLOfunctioncausestheoutputtobeclampedwhenever in-sufficient operating supply (VCC2) is applied. Once VCC2exceedsVUVLO+(thepositive-goingUVLOthreshold),theUVLOclampisreleasedtoallowthedeviceoutputtoturnoninresponsetoinputsignals.AsVCC2isincreasedfrom0V(atsomelevelbelowVUVLO+),firsttheDESATprotec-tioncircuitrybecomesactive.AsVCC2isfurtherincreased(above VUVLO+), the UVLO clamp is released. Before thetime the UVLO clamp is released, the DESAT protectionis already active. Therefore, the UVLO and DESAT Faultdetectionfeatureworktogethertoprovideseamlesspro-tectionregardlessofsupplyvoltage(VCC2).

Active Miller Clamp

A Miller clamp allows the control of the Miller currentduringahighdV/dtsituationandcaneliminate theuseofanegativesupplyvoltageinmostoftheapplications.During turn-off, the gate voltage is monitored and theclampoutputisactivatedwhengatevoltagegoesbelow2V (relative to VEE). The clamp voltage is VOL+2.5V typforaMillercurrentupto1100mA.TheclampisdisabledwhentheLEDinputistriggeredagain.

Other Recommended Components

The application circuit in Figure 36 includes an outputpull-down resistor, a DESAT pin protection resistor, aFAULTpincapacitor,andaFAULTpinpullupresistorandActiveMillerClampconnection.

Output Pull-Down Resistor

During the output high transition, the output voltagerapidlyrisestowithin3diodedropsofVCC2.Iftheoutputcurrent then drops to zero due to a capacitive load, theoutput voltage will slowly rise from roughlyVCC2-3(VBE)toVCC2withinaperiodofseveralmicroseconds.To limitthe output voltage to VCC2-3(VBE), a pull-down resistor,RPULL-DOWNbetweentheoutputandVEEisrecommendedtosinkastaticcurrentofseveral650µAwhiletheoutputis high. Pull-down resistor values are dependent on theamountofpositivesupplyandcanbeadjustedaccordingtotheformula,Rpull-down=[VCC2-3*(VBE)]/650µA.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

RG

RPULL-DOWN

VCC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

RG

RPULL-DOWN

VCC

DESAT Pin Protection Resistor

The freewheeling of flyback diodes connected acrossthe IGBTs can have large instantaneous forward voltagetransients which greatly exceed the nominal forwardvoltageof thediode.Thismayresult ina largenegativevoltagespikeontheDESATpinwhichwilldrawsubstan-tialcurrentoutofthedriver ifprotection isnotused.TolimitthiscurrenttolevelsthatwillnotdamagethedriverIC, a 100 ohm resistor should be inserted in series withtheDESATdiode.TheaddedresistancewillnotaltertheDESATthresholdortheDESATblankingtime.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

RG

VCC

100 Ω

100pFDDESAT

Figure 39. DESAT pin protection.

Figure 38. Output pull-own resistor.

2

Figure 4. Large IGBT rive with negative gate rive, external booster. VCLAMP control seconary ischarge path for higher power application.

Figure 40. IGBT rive with negative gate rive, external booster an esaturation etection (VCLAMP shoul be connecte to VEE when it is not use) VCLAMP is use as seconary gate ischarge path. * inicates component require for negative gate rive topology

Pull-up Resistor on FAULT Pin

TheFAULTpinisanopencollectoroutputandthereforerequires a pull-up resistor to provide a high-level signal.Also the FAULT output can be wire‘OR’ed together withother types of protection (e.g. over-temperature, over-voltage,over-current)toalertthemicrocontroller.

Other Possible Application Circuit (Output Stage)

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

+_

RG

Q1

Q2

+VCE

-

RPULL-DOWN

+ HVDC

- HVDC

3-PHASEAC

+VCE

-

0.1µF 0.1µF

0.1µF

Optional R1

Optional R2

RGOptional R1

Optional R2

*

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

VE

VLED

DESAT

VCC2

VEE

VOUT

VCLAMP

VEE

VS

VCC1

FAULT

VS

CATHODE

ANODE

ANODE

CATHODE

+_

+_

RG

Q1

Q2

+VCE

-

RPULL-DOWN

+ HVDC

- HVDC

3-PHASEAC

+VCE

-

0.1µF 0.1µF

0.1µF

Optional R1

Optional R2

R3

9

RGOptional R1

Optional R2

R3

*

Capacitor on FAULT Pin for High CMR

Rapid common mode transients can affect the fault pinvoltagewhilethefaultoutputis inthehighstate.A330pFcapacitorshouldbeconnectedbetweenthefaultpinandgroundtoachieveadequateCMOSnoisemarginsatthe specified CMR value of 15 kV/µs.The added capaci-tance does not increase the fault output delay when adesaturationconditionisdetected.

Related Application Notes

AN5314–ActiveMillerClamp

AN5315–“Soft”Turn-offFeature

AN1087–ThermalDataforOptocouplers

AN1043–Common-ModeNoise:SourcesandSolutions

AV02-0310EN-PlasticOptocouplersProductESDandMoistureSensitivity

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.Data subject to change. Copyright © 2005-200 Avago Technologies. All rights reserved. Obsoletes AV02-02ENAV02-10EN - August 21, 200