david catling & tyler robinson univ. of washington · 2013. 7. 8. · atmospheric chemistry and...

38
Atmospheric Chemistry and Radia3on in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler Robinson Univ. of Washington (+ Kevin Zahnle @ NASA Ames) E‐mail: dcatling@uw.edu

Upload: others

Post on 17-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

AtmosphericChemistryandRadia3onintheSolarSystemasGuidestoExoplanetAtmospheres

DavidCatling&TylerRobinson

Univ.ofWashington(+KevinZahnle@NASAAmes)

E‐mail:[email protected]

Page 2: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Myhomeworkassignment

“…overviewtalkon“Composi?on/chemistry/aerosols/radia?on”…toiden?fycri?calprocessesthatarecommontotheEarth,otherplanetsinoursolarsystem,andexoplanets,andtodiscusstheirinterac?ons…”

From: [email protected]: February5,20132:03:37PMPST

Page 3: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Outline

COMPOSITION

RADIATION

(structure)

AerosolsLIFE

Earth(s)

Chemistry

1)  Atmosphericcomposi?on:

‐Whyatmospheresexist(zero‐orderques?onofescapeand

reten?on)

‐Thetaxonomyofatmospheric

composi?on

‐Earthasbio‐atmosphericchemistry

2)Radia?onandstructure:

Chemistry‐radia?onconnec?on

1stordercommonali?esinstratospheres,tropospheres

3)Conclusions

Page 4: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Part 1: Atmospheric composition

Page 5: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Theexistenceofatmospheres

Nature(vola?le‐richorigin)vs.nurture(evolu?on)?Nurturemustul?matelyrulebecause

atmospheresmustbestableagainstoblitera?onby:

1)  Impacterosion–lossfromlargebodyimpacts

2)  Irradia?on‐drivenhydrodynamicescape(thermalescapeend‐member)

Page 6: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Good versus bad neighborhoods

no atmosphere

Ref: Catling & Zahnle (2013), 44th Lunar Planet. Sci. Conf., 2665

Page 7: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Transiting exoplanets

prediction: no atmosphere

Kepler 70c Kepler 70c

Kepler 70b

Some Super-Earths

Ref: Catling & Zahnle (2013), 44th Lunar Planet. Sci. Conf., 2665

Page 8: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

10-6

10-4

10-2

100

102

104

0.1 1 10 100

Re

lative S

tella

r H

eatin

g

Escape Velocity [km/s]

Earth

Mercury

Mars

Venus

CallistoGanymede

Moon

IoEuropa

Triton

Titan

Pluto

Rhea

Iapetus

Gliese 876d

Jupiter

Saturn

Uranus

Neptune

GJ436b

Quaoar Eris

Ceres

Hektor

Vesta

Pallas

More Asteroids

transitingextrasolarplanets

Charon 2003EL61

Sedna2005FY9

COROT7

Thermal (hydrodynamic escape) stability

b

From Zahnle & Catling (2013), The cosmic shoreline, 44th Lunar Planet. Sci. Conf., 2787

Page 9: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

So,atmosphereswillnotexistif:1) Bad impact regime ( has received little attention ) 2) Bad thermal regime ( prone to hydrodynamic escape )

•  Pre-main sequence luminosity is under-appreciated •  e.g., a 1/3M M-star is ~10x more luminous during first ~4 Myr than on the main

sequence, when planets have formed

•  rocky planets in M-star habitable zone are vulnerable

•  e.g. Earth @ 1/9AU from 1/3M vimpact/vesc ~3 => problem for complex life? Mars in same HZ, vimpact/vesc ~6 => I predict airless

•  M-star planets form 105-106 yrs => migration is an unlikely savior; disk

dissipation takes ~106-7 yr from observations, so planet will be in its final orbit while impact regime is bad (Lissauer, 2007, Ap. J.).

•  Lucky ones? Frozen volatiles on night-side; late slow, volatile-rich impactors

Page 10: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Taxonomyofatmosphericcomposi?ons

Fundamentally,twotypes:(aSolarSystemperspec?ve)

Atmospheres

1.Reducing

2.Oxidizing

Titangiants

Post‐2.4GaEarthVenus(atal?tude)

Pre‐2.4GaEarthPre‐4.3Ga?Mars

I’mignoring‐verytenuousN2(CH4)ice‐vaporequilibriaairofKBOs(e.g.,Triton,Pluto)

Mars

Page 11: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Fateofhydrogeninreducingatmospheresakeydifferenceinsmallvs.largebodies

Titan

giants

Reducing

photochemicalhaze

photochemicalhaze

nitriles,

Note:SformspolysulfurFrom:Catling&Kas?ng(2014)AtmosphericEvolu1ononInhabitedandLifelessWorlds,CambridgeUniv.Press.

Page 12: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Snapshotoftaxa:GJ1214b‐typeatmospheresElem

entalabu

ndance,H

hydrocarbonifO‐poor

C‐oxideifO‐poor

ElementalC/Ora?o

Specified:0.014AU,Mstar470Ktop800K@1barFixedC‐H‐O

CO2

FromR.Hu(2013),44thLPSC,1428

solar

Page 13: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Sulfurinoxidizingatmospheresdifferencesindryvs.wetworlds,coldvs.hot

Oxidizing

Earth

Venus(>30km)

Mars

oxidizedSinoceanicSO4(aq)H2SO4haze(Jungelayer@20‐25km)

volcanoes:~1%of~30%albedo

SulfurinairgivenhotsurfaceSO2,3rdalerCO2,N2abundancesH2SO4thickhaze,importantinIR,dominates76%visiblealbedo

oxidizedSinsoil,sedimentarySO4(s)H2SO4hazeearlyMars,adds≥10%albedo(Tianetal.,2010)

Page 14: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Earth:uniquelywetandO2‐rich…•  2 key consequences for chemistry: (1) a strong control on

trace gases via the hydroxyl radical OH (2) rainfall 1)   CLEARS OUT THE MUCK BY OXIDATION; PLUS RAIN OUT O3absorp?on<340nmgeneratesO(1D)

H2O+O(1D)OH+OH Oxidizes H2S,COS,DMStosulfate(NH3toNH3‐sulfateintroposphere)whichrainsout.Oxidizes CO,CH4andotherhydrocarbonstoCO2andH2O

=> air transparent to visible => sunniest planet in Solar System with an atmosphere

2) IF THERE WERE A LACK of ‘OH’ => HAZE WOULD BUILD UP e.g.,ArcheanEarth: CH4andassociatedhydrocarbons+haze

Page 15: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

ThicksulfateaerosolhazeIndicates a dry, volcanic planet Sort of anti-biosignature. Venus: nailing H2SO4 required polarized reflected light as a function of phase angle (Young, 1973; Hansen & Hovenis, 1974). Exoplanets: ~45 micron sulfate feature, MIR OCS, SO2 proxies. (Conversely, S8 absorption edge@300-400 nm)

Page 16: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Part2:Radia?on,structure

•  Chemistry‐radia?onconnec?on•  1stordercommonali?esanddifferencesinstratospheres,tropospheres,tropopauses

Page 17: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

World StratosphericHea3ng StratosphericCooling

Venus CO2 CO2

Earth ozone(UV) CO2

Jupiter aerosols(UV/vis);methane(NIR)

acetylene(C2H2)13.7μmethane(C2H6)12.2μm

Saturn aerosols(UV/vis);methane(NIR)

acetylene(C2H2);ethane(C2H6)

Titan haze;methane(NIR) acetylene(C2H2);ethane(C2H6);haze

Uranus aerosols(UV/vis);methane(NIR)

acetylene(C2H2);ethane(C2H6)

Neptune aerosols(UV/vis);methane(NIR)

acetylene(C2H2);ethane(C2H6)

STRATOSPHERES:ACHEMISTRY‐‐‐STRUCTURECONNECTION

Page 18: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

World Keygreenhouse Coolingfactors Comment

Venus CO2(15μm)

hugeSO4hazealbedo

Earth H2O(con?nuum)‐CO2(15μm)

(CH4,O3N2O)

H2Ocloudalbedo,smallSO4haze

minorCO2controlofgreenhouse

Jupiter H2‐H2,H2‐HeCIA;NH3,CH4

cloud,hazealbedo Giants:H2‐H2/‐HenearPlanckpeak

Saturn H2‐H2,H2‐HeCIA;PH3,CH4

cloud,hazealbedo

Titan N2‐N2,N2‐CH4,N2‐H2,CH4‐CH4CIA

haze‘an?‐greenhouse’absorbssolarinIRop?callythinregion

minorH2affectswindow(16.5‐25μm)+greenhouse

Uranus H2‐H2,H2‐HeCIA;CH4

cloud,hazealbedo

Neptune H2‐H2,H2‐HeCIA;CH4

cloud,hazealbedo

TROPOSPHERES:ACHEMISTRY‐‐‐STRUCTURECONNECTION

Page 19: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

PH3

Absorp?on,oxidizedgas:CO2(+H2O+O3forEarth)+bandcenteremission(stratosphere)

Absorp?on,reducinggas:•  H2ongiants•  NH3,onallgiants

(1400‐1800cm‐1);PH3onSaturn

•  CH4,H2opera?ngwithN2onTitan

Emission:C2H2(729=13.7μm)C2H6(820=12.2μm),CH4

Reducing

Oxidizing

Page 20: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Commonalities in atmospheric structure

Page 21: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

convec?veprofile

tropopause

BacktobasicsRadia?ve‐convec?veboundary

AnoteonterminologyI’musing

gray

Page 22: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Earth

troposphere

stratosphere

tropopauseminimumradia?ve‐convec?veboundary

1)  temperatureminimum‘tropopause’2)Shockingly:let’scalltheradia?ve‐convec?veboundary…the“radia?ve‐convec?veboundary”

Commonalities in structure: Terminology

Page 23: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

McClatchey+(1972);Lindal+(1983);Moroz&Zasova(1997);Moses+(2005)

~0.1barwithinfactorof2

Globalmeantropopauseminima@~0.1bar

Page 24: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Yes,dynamicsmodulatesthe

tropopausepressureonEarthby±x2andisimportantforla?tudinal

differencesonVenus

HereI’mconcernedwitha1storderglobalmeanstatesetbyradia?ve‐

convec?veequilibrium

I know, I know…

Page 25: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Why~0.1bartropopauses?First,somewronganswers:

1) where the IR absorption by gas changes from pressure to Doppler broadening?

2) Where IR optical depth drops below ~1? (National Academy atmos. physicist) (but on the right track)

Page 26: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

meanmoistadiabat

Pressure

Temperature

Strato:

Infrared(IR) {Solarflux

radia?ve‐convec?veboundary

1.WithTandfluxcon?nuity,solveforIRop?caldepthτIRat(i)radia?ve‐convec?veboundary(ii)1bar

2.Relateop?caldepthtopressuretogetprofile

Fstrato

!e!kstrato" IR

Tropo: Ftropo!e!ktropo" IR

+

(internalheat)

Analy?cradia?ve‐convec?ve:Robinson&Catling(2012)Ap.J.757,104

Page 27: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Howmolecularabsorp?onofIRcomesin

! = ! 0pp0

!"#

$%&

n 1barreferencepressure

IRop?caldepthatp0

n=2inTROPOSPHERES&LOWERSTRATOSPHERES:pressurebroadening(moleculesgainorloseenergyduringcollisionssoabsorp?onoverawiderrangeofphotonenergies)orcollision‐inducedbroadening(collision‐induceddipolesallownon‐polarmoleculestobegreenhousegases;alsodimersorsymmetry‐breakingforforbiddentransi?ons)

n=1inUPPERSTRATOSPHERES(Dopplerbroadening)

Page 28: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

SimplemodelisdecentmatchtotropospheresandlowerstratospheresofTitan,Venus,Earth+4giants

Titan

Unselfishcoopera?oninresearch:IDLsourceonline

Ref:Robinson&Catling(2012)Ananaly?cradia?ve‐convec?vemodelforplanetaryatmospheres,Ap.J.757,104

Page 29: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Pres

sure

Temperature

radiative-conv. boundary @ DτIR ~1 (or more

e.g. Titan)

tropopause @ DτIR ≈ 0.08±0.03, p~0.1 bar

@ p0 = 1 bar, τIR =8±5

Schematic: Solar System average

Disdiffusivityfactor

Ref:fromRobinson&Catling(2013)Explana?onofacommon0.1bartropopauseinthickatmospheresofplanetsandlargemoons.,NatureGeosci.,inrevision.

Page 30: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

So,whythe~0.1bartropopause?

ptropo

(p0 = 1 bar)!

" tropo ~ 0.05

" 0 ~ a few to several

#$%

&'(

1/2

is always ~ 0.1 bar

1.  minima in T occur at τIR ≈ 0.05 (enough IR transparency for shortwave heating to start dominance)

2.  pressure broadening and/or collision-induced

absorption relate optical depth to pressure τ ~ p2 => p ~ τ1/2

3. atmospheres are IR-optically thick at 1 bar

Ref:fromRobinson&Catling(2013)Explana?onofacommon0.1bartropopauseinthickatmospheresofplanetsandlargemoons.,NatureGeosci.,inrevision.

Page 31: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Grayop?caldepthsat1bararealways~2‐10forhypothe?calTitan‐like,Earth‐like,andJupiter‐likeworlds

From:Robinson&Catling(2013),NatureGeosci.,inrevision

Page 32: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Aside:HotJupitersarefarfromthenorm

0.5‐1%ofallplanets(Howard,2013,Science)

So,Ichoosetofocusontheotherones.

OCCUPYTHESOLARSYSTEM:Favorthe99%notthe1%!

Page 33: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

What’sthecondi?onforastratosphericinversiontoexist?It’sanaly?c

A tropopause minimum: differentiate and set to 0, gives:

! tp "1

kstratoln

Fstrato!

Ftropo!

+ Fi

kstrato2

D2

#1$%&

'()

*

+,,

-

.//

Only has a physical solution if kstrato>D ~1.7, usu. ~102 Hence no global mean stratospheric inversion on Venus

wherekstrato=shortwave optical depth

infrared optical depthofstratosphere

~1/100 ~1/10 ~103

~5

≈0.05

fluxabovefluxbelow

Page 34: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

THEUSERMANUAL:

this“0.1bar”tropopauseminimumruledoesnotapplywhenthere’snominimum,

i.e.,whenthecondi?onforastratosphericinversionfails

Page 35: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

e.g.,pumpupCO2onEarth;makemoiststratosphere

Stratosphericinversionandtropopauseminimumvanish,consistentwiththeory:At64xCO2,~10xH2Oinstratospherekstrato=goesfrom~90to<2,thevalueneededforatropopauseminimum.Henceno0.1bartropopauseminimumathighCO2becauseTHEREISNOMINIMUM

Hansenetal.(2013,submi~ed)

shortwave optical depth

infrared optical depth

Page 36: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Extendtoexoplanets?~0.1 bar tropopause minima of Earth, Titan, giants from (1)  a common IR transparency requirement and (2)  a common pressure dependence on the IR opacity

A ~0.1 bar tropopause minimum is an emergent “rule” arising from common physics that will apply to many exoplanets and exomoons with thick atmospheres

TESTABLE HYPOTHESIS:

From:Robinson&Catling(2013)Explana?onofacommon0.1bartropopauseinthickatmospheresofplanetsandlargemoons.,NatureGeosci.,inrevision.

Page 37: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

Conclusions•  Atmospheresmaynotexistinbadimpacterosionorthermalescaperegimes

‐  e.g.,doublewhammyforM‐dwarfplanets

•  NoSuper‐EarthexamplesinourSolarSystem(notablypresentasexoplanets),butthebodies/modelsatleastprovidepointsofreferenceforexoplanetatmospheres.

•  Atmospheresweknoware:(1)reducingwithorganichazes+/‐poly‐S,poly‐P,or(2)oxidizingwithsulfatehazesofvariableradia?vesignificancethatcanbehighvis.albedo‐  Reasonabletoexpecttosuchhazesonsimilarexoplanets–canweseesulfateorS8?‐  Reasonabletoexpectcorrespondingabsorp?on/emissionfeaturesofcommon

reducingoroxidizinggassuites•  Structure:

  Reducingatmospheresweknowhavestratosphericinversionsfrommethane+hazes  Oxidizingatmospheresweknowdo(Earth)ordon’t(Venus)havestrat.inversions

•  StratosphericinversionsrequireIR‐op?callythinstratospheresandabsorbersstronginSWrela?vetoIR.Combinedwithpressure‐broadeningorCIA=>common~0.1barlevelfortropopauseminima.Testablehypothesis:Plausiblytrueinmanyexoplanetatmospheres

•  Didn’ttalkaboutevolu?on.ButobservingrunawayVenuses(futureEarths)stateson

exoplanetswouldclearlybeanextremelyvaluableconfirma?onoftheories.

Page 38: David Catling & Tyler Robinson Univ. of Washington · 2013. 7. 8. · Atmospheric Chemistry and Radiaon in the Solar System as Guides to Exoplanet Atmospheres David Catling & Tyler

ReferencesONIMPACTEROSIONANDHYDRODYNAMICESCAPEOFATMOSPHERES:•  D.C.Catling&K.J.Zahnle(2013)Animpacterosionstabilitylimitcontrollingthe

existenceofplanetaryatmospheresonexoplanetsandsolarsystembodies,44thLunarPlanet.Sci.Conf.,2665

•  K.J.Zahnle&D.C.Catling(2013)Thecosmicshoreline44thLunarPlanet.Sci.Conf.,2787.

OVERVIEWOFTHECHEMISTRY,RADIATIONANDEVOLUTIONOFATMOSPHERES:•  D.C.Catling&J.F.Kas?ng(2014)AtmosphericEvolu1ononInhabitedandLifelessWorlds,

CambridgeUniv.Press.RADIATION,ATMOSPHERICSTRUCTURE,andCOMMONTROPOPAUSEMINIMUMLEVEL:•  T.D.Robinson&D.C.Catling(2012)Ananaly?cradia?ve‐convec?vemodelforplanetary

atmospheres,Astrophys.J.757,104.

•  T.D.Robinson&D.C.Catling(2013)Explana?onofacommon0.1bartropopauseinthickatmospheresofplanetsandlargemoons.,NatureGeosci.,inrevision.