david&sontag,&kevyncollinsthompson,&...

27
Probabilis)c Models for Personalizing Web Search (WSDM ‘12) David Sontag, Kevyn CollinsThompson, Paul N. Benne=, Ryen W. White, Susan Dumais, Bodo Billerbeck

Upload: vudieu

Post on 10-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Probabilis)c  Models  for  Personalizing  Web  Search  (WSDM  ‘12)  

David  Sontag,  Kevyn  Collins-­‐Thompson,  Paul  N.  Benne=,  Ryen  W.  White,  Susan  Dumais,  

Bodo  Billerbeck  

Personalizing  web  search  Query  “Michael  Jordan”  

Results   Pr(relevance)  

en.wikipedia.org/wiki/Michael_Jordan   .9  

www.nba.com/playerfile/�michael_�jordan   .7  

www.nba.com/history/players/�jordan_�summary.html   .6  

…   …  www.eecs.berkeley.edu/Faculty/Homepages/�jordan.html  

.0001  

Personalized  results   Pr(relevance  to  me)  

www.eecs.berkeley.edu/Faculty/Homepages/�jordan.html   .8  

…   …  en.wikipedia.org/wiki/Michael_Jordan   .1  

www.nba.com/playerfile/�michael_�jordan   .08  

www.nba.com/history/players/�jordan_�summary.html   .07  

Key  problems  to  solve:  •  RepresentaRon  –  how  to  compactly  summarize  user  preferences?  

•  Learning                          –  how  to  discover  user  profiles  from  historical  data?  •  Ranking                            –  how  to  balance  preferences  with  other  relevance  signals?  

Previous  approaches  •  Re-­‐Finding      (Teevan  ‘04)  

–  Remember  user’s  browsing  history  –  Re-­‐rank  search  results,  boosRng  score  of  previously  visited  pages  

•  Term-­‐based  profiles      (Teevan  et  al.  ’05,  Tan  et  al.  ’06,  Ma=hijs  and  Radlinski  ’11)  –  Construct  personalized  vocabulary  from  browsing  history  –  Use  to  re-­‐weight  term-­‐based  scoring  methods  such  as  BM25  or  

TF-­‐IDF  

•  Topic-­‐based  profiles      (Gauch  et  al.  ‘03,  Liu  et  al.  ’04,  Chirita  et  al.  ’05,  Dou  et  al.  ’07)  –  Learn  distribuRon  over  a  priori  query  intents  for  user  –  Re-­‐rank  search  results  using  linear  combinaRon  of  user  topic-­‐

document  topic  match  and  other  relevance  scores  

Our  representaRon  

•  Fundamental  goal  is  to  predict  query  intent  

•  User  preferences  summarized  as  (user  specific)  parameters,  

of  the  condiRonal  distribuRon:  

New  query  Computers  

ArRficial  Intelligence  

Soiware   Games  

Sports  

Soccer  

Basketball   Golf  

Football  

Arts  

Performing  Arts  People  

(top  2  levels  of  human-­‐generated  ontology,  dmoz.org)  

Pr  (  intent  |  query  ;    θu  )  

User  u  history   θu  

Our  ranking  method  

www.nba.com  /playerfile/Michael_Jordan  

.9  

 0          Pr  (relevance  |query,  intent  =  Sports/Golf)      

.6          Pr  (relevance  |query,  intent  =  Sports/Golf)      

 0          Pr  (relevance  |query,  intent  =  Sports/Basketball)      

1          Pr  (relevance  |query,  intent  =  Computers/A.I.)      

.92      Pr  (relevance  |query,  intent  =  Sports/Basketball)      

0            Pr  (relevance  |query,  intent  =  Computers/A.I.)      

eecs.berkeley.edu  /Faculty/Homepages  /�jordan.html  

.0001  

Background  model,  Pr  (  intent  |  “Michael  Jordan”;  generic  user)  

User  model,  Pr  (  intent  |  “Michael  Jordan”  ;  θu)  

Deconvolve  

Query  “Michael  Jordan”  

Pr  (relevance)  Re-­‐combine  

.1  

.8  

Pr  (relevance              to  user  u)  

Example  Query  “Rockefeller”  issued  by  Biologist  

(a) (b)

Pr(topic | query) for generic user

Business: 0.213

Society: 0.107

Shopping/Health: 0.096

Business/Consumer Goods+Services: 0.077

Arts: 0.062 !

Pr(topic | query) for biologist

Science/Biology: 0.402

Science: 0.228

Society: 0.052

Reference: 0.040

Health: 0.031 !

Web search engine results Categories

1. http://en.wikipedia.org/wiki/John_D._Rockefeller Society

2. http://en.wikipedia.org/wiki/Rockefeller_family Science, Society

3. http://www.rockefeller.edu Reference, Science !

Personalized re-ranking results (using Model 1) Categories

1. http://en.wikipedia.org/wiki/Rockefeller_family (2) Science, Society

2. http://www.rockefeller.edu (3) Reference, Science

3. http://en.wikipedia.org/wiki/John_D._Rockefeller (1) Society

Personalized re-ranking results (using Model 2) Categories

1. http://www.rockefeller.edu (3) Reference, Science

2. http://en.wikipedia.org/wiki/Rockefeller_family (2) Science, Society

3. http://bridges.rockefeller.edu/?page=news (12) Science, Health !

!

Pr  (  intent  |  “Rockefeller”;  generic  user)  

Pr  (  intent  |  “Rockefeller”  ;  θu)  

(original  rank)  

Original  

Personalized  

Query  “Rockefeller”  issued  by  Biologist  

(a) (b)

Pr(topic | query) for generic user

Business: 0.213

Society: 0.107

Shopping/Health: 0.096

Business/Consumer Goods+Services: 0.077

Arts: 0.062 !

Pr(topic | query) for biologist

Science/Biology: 0.402

Science: 0.228

Society: 0.052

Reference: 0.040

Health: 0.031 !

Web search engine results Categories

1. http://en.wikipedia.org/wiki/John_D._Rockefeller Society

2. http://en.wikipedia.org/wiki/Rockefeller_family Science, Society

3. http://www.rockefeller.edu Reference, Science !

Personalized re-ranking results (using Model 1) Categories

1. http://en.wikipedia.org/wiki/Rockefeller_family (2) Science, Society

2. http://www.rockefeller.edu (3) Reference, Science

3. http://en.wikipedia.org/wiki/John_D._Rockefeller (1) Society

Personalized re-ranking results (using Model 2) Categories

1. http://www.rockefeller.edu (3) Reference, Science

2. http://en.wikipedia.org/wiki/Rockefeller_family (2) Science, Society

3. http://bridges.rockefeller.edu/?page=news (12) Science, Health !

!

Pr  (  intent  |  “Rockefeller”;  generic  user)  

Document  distribuRons  

•  For  every  document  we  have  a  distribuRon,  

over  the  topic  that  the  document  is  about  

•  Learned  using  logisRc  regression;  training  data  is  from  the  Open  Directory  Project  

•  Stored  in  the  index  and  accessible  quickly  

Original  

(Benne=,  Svore,  Dumais,    WWW  ‘10)  

Pr  (  doc  d  about    |  d’s  text  )  

Our  ranking  method:  intuiRon  

www.nba.com  /playerfile/Michael_Jordan  

.9  .6          Pr  (relevance  |query,  intent  =  Sports/Golf)      

.92      Pr  (relevance  |query,  intent  =  Sports/Basketball)      

0          Pr  (relevance  |query,  intent  =  Computers/A.I.)      

Deconvolve  Pr  (relevance)  

Step  1.  

Pr  (  d  relevant)  =  Σ  Pr  (  intent  =  T  |  “Michael  Jordan”;  generic  user)  *  Pr(  d  relevant  |  intent  =  T)  

We  assume  that  Pr  (relevance)  is  the  expected  relevance  across  all  users:  

T  

Suppose  that  doc  d  is  about  topic   and  Pr(  d  relevant  |  intent  ≠  Td)  =  0  

Our  ranking  method:  intuiRon  

Pr  (  d  relevant)  =  Σ  Pr  (  intent  =  T  |  “Michael  Jordan”;  generic  user)  *  Pr(  d  relevant  |  intent  =  T)  

Step  1.  

We  assume  that  Pr  (relevance)  is  the  expected  relevance  across  all  users:  

T  

Suppose  that  doc  d  is  about  topic   and  Pr(  d  relevant  |  intent  ≠  Td)  =  0  

Td  =  Sports/Basketball  

Pr  (  d  relevant  |query,  intent  =  Sports/Basketball)    =                                                        Pr(  d  relevant)  

Pr  (  intent  =  Sports/Basketball  |  “Michael  Jordan”;  generic  user)  

www.nba.com  /playerfile/Michael_Jordan  

.9    0          Pr  (relevance  |query,  intent  =  Sports/Golf)      

.92      Pr  (relevance  |query,  intent  =  Sports/Basketball)      

0          Pr  (relevance  |query,  intent  =  Computers/A.I.)      

Deconvolve  Pr  (relevance)  

Our  ranking  method:  intuiRon  

Pr  (  d  relevant)  =  Σ  Pr  (  intent  =  T  |  “Michael  Jordan”;  generic  user)  *  Pr(  d  relevant  |  intent  =  T)  

Step  1.  

We  assume  that  Pr  (relevance)  is  the  expected  relevance  across  all  users:  

T  

Suppose  that  doc  d  is  about  topic   and  Pr(  d  relevant  |  intent  ≠  Td)  =  0  

Td  =  Computers/A.I.    0          Pr  (relevance  |query,  intent  =  Sports/Golf)        0          Pr  (relevance  |query,  intent  =  Sports/Basketball)      

1          Pr  (relevance  |query,  intent  =  Computers/A.I.)      

eecs.berkeley.edu  /Faculty/Homepages  /�jordan.html  

.0001  

Deconvolve  Pr  (relevance)  

Pr  (  d  relevant  |query,  intent  =  Computers/A.I.)    =                                                        Pr(  d  relevant)  

Pr  (  intent  =  Computers/A.I.  |  “Michael  Jordan”;  generic  user)  

Our  ranking  method:  intuiRon  

Step  2.  

Pr  (  d  relevant  to  u)  =  Σ  Pr  (u’s  intent  =  T  |  “Michael  Jordan”  ;  θu)  *  Pr(  d  relevant  |  intent  =  T)  

To  re-­‐combine,  we  marginalize  over  the  user’s  intent,  

T  

Td  =  Computers/A.I.   Pr  (relevance  |query,  intent  =  Sports/Golf)      Pr  (relevance  |query,  intent  =  Sports/Basketball)      

Pr  (relevance  |query,  intent  =  Computers/A.I.)      

eecs.berkeley.edu  /Faculty/Homepages  /�jordan.html  

Re-­‐combine  .8  

Pr  (relevance              to  user  u)  

0  0  1  

Putng  steps  1  and  2  together,  we  obtain:  

Pr  (  intent  =  Computers/A.I.|  “Michael  Jordan”;  generic  user)  

Pr  (  d  relevant  to  u)    =    Pr(  d  relevant)  Pr  (u’s  intent  =  Computers/A.I.  |  “Michael  Jordan”  ;  θu)  

•  Recall  our  simplifying  assumpRons:  

•  Ranking  formula:  

•  Obtained  by  probabilisRc  inference  –  see  paper  for  the  formal  probabilisRc  model  

Our  ranking  method  

Suppose  that  doc  d  is  about  topic   and  Pr(  d  relevant  |  intent  ≠  Td)  =  0  

Treat    as  a  random  variable  and  marginalize  over  it  

Use  the  distribuRon  Pr  (  d  relevant  |  u’s  intent  =  tu,  doc  about  topic  td)  

Call  this  f  (tu,  td)  

Σ  Pr  (  intent  =  tg  |  query;  generic  user)  f  (tg,  td)  

Pr(  d  relevant  to  u)    =    Pr(  d  relevant)  Σ    Pr  (  doc  d  about  topic    |  d’s  text  )    Σ  Pr  (u’s  intent  =  tu  |  query  ;  θu)  f  (tu,  td)  td   tu  

tg  

Algorithm  properRes  

•  Ranking  formula:  

•  Ranking  unchanged  if  user  intent  =  generic  user’s  for  query  •  Ranking  can  exhibit  big  effects  for  less-­‐common  intents  vs.  

generic  user  •  Very  fast  to  compute:  

–  Ranking  N  docs  takes  Rme  O(  Nk  +  T2)  

–  k  =  #  topics  per  doc  (e.g.  3),  and  T  is  total  number  of  topics  (e.g.  300)  

Σ  Pr  (  intent  =  tg  |  query;  generic  user)  f  (tg,  td)  

Pr(  d  relevant  to  u)    =    Pr(  d  relevant)  Σ    Pr  (  doc  d  about  topic    |  d’s  text  )    Σ  Pr  (u’s  intent  =  tu  |  query  ;  θu)  f  (tu,  td)  td   tu  

tg  

1  

What  is  lei  to  specify?  

•  Ranking  formula:  

Σ  Pr  (  intent  =  tg  |  query;  generic  user)  f  (tg,  td)  

Pr(  d  relevant  to  u)    =    Pr(  d  relevant)  Σ    Pr  (  doc  d  about  topic    |  d’s  text  )    Σ  Pr  (u’s  intent  =  tu  |  query  ;  θu)  f  (tu,  td)  td   tu  

tg  

✓  

We  learn  this  (details  in  paper)  

✓  

These  staRsRcs  can  be  pre-­‐computed  for  common  queries  

AlternaRvely,  use  weighted  average  of  document  topics  for  top  docs  in  original  ranking,  

Σ  Pr(  d  relevant)  *  Pr  (  doc  d  about  topic    |  d’s  text  )    

 (White,  Benne=,  Dumais,    CIKM  ‘10)  

d  

✓  If  not  available,  can  use  1/rank  

✓  

✓  Next  slides  

PredicRng  user  intent  

•  Long  term  personalizaRon,  using  historical  user  click-­‐through  data:  

•  Pr  (u’s  intent  =  t  |  query  ;  θu)  esRmated  using  two  approaches,  1.   GeneraRve  model  2.   DiscriminaRve  model  

•  We  use  an  ensemble  method,  interpolaRng  between  the  predicRons  of  both  methods  

User  u’s  history  =  {  (queryi,  intenti),  i=1,  …,  c  }    

PredicRng  user  intent:  GeneraRve  model  

•  From  single  user  u’s  history,  {  (queryi,  intenti),  i=1,  …,  c  },  esRmate  a  priori  query  intents:  

•  Using  data  from  all  users,  esRmate  language  model,  

i.e.  staRsRcs  on  frequency  of  queries  seen  for  each  intent  

•  Use  Bayes’  rule  to  “invert”:  

Pru  (  intent  )  

Pr  (  query  |  intent  ),  

Pr  (  u’s  intent  =  t  |  query  )  =  Pru  (  intent  =  t  )*  Pr  (  query  |  intent  =  t)  

 Σ  Pru  (  intent  =  t’  )*  Pr  (  query  |  intent  =  t’)  t’  

PredicRng  user  intent:  DiscriminaRve  model  

•  Choose  user-­‐specific  parameters  θu  which  correctly  predict  intent  on  historical  data:  

•  We  assume  log-­‐linear  model  for  the  distribuRon  

•  T+1  dimensional  feature  vector,  where  T  =  #  topics  •  Parameters  specify  how  to  re-­‐weight  Pr  (  intent  |  query;  

generic  user)  

θu   i=1  

c  

Complexity  penalty  to  avoid  over-­‐fitng  

Large-­‐scale  EvaluaRon  

•  Data  set:  September  2010  search  logs  (Bing)  –  20  days  training,  6  days  test  –  ~600K  queries,  ~200K  users  

•  Re-­‐rank  top  10  results  –  Assign  posiRve  judgment  to  URL  in  top  10  if  it  is  the  last  saRsfied  

result  click  in  the  session  

–  NegaRve  judgment  to  other  9  URLs  

•  We  report  the  mean  reciprocal  rank  (MRR):  

•  Compare  original  Bing  ranking  with  personalized  ranking  

MRR  =  (1/|Q|)      Σ  1  

rank  of  last  saRsfied  click  URL  q  in  Q  

(a) (b)

Pr(topic | query) for generic user

Business: 0.213

Society: 0.107

Shopping/Health: 0.096

Business/Consumer Goods+Services: 0.077

Arts: 0.062 !

Pr(topic | query) for CS researcher

Computers/Artificial Intelligence: 0.663

Arts/People: 0.098

Science: 0.044

Computers: 0.042

Arts/Performing Arts: 0.036 !

Web search engine results Categories

1. http://www.kevinmurphy.com.au Business, Shopping

2. http://en.wikipedia.org/wiki/Kevin_Murphy_(actor) Arts

3. http://www.kevinmurphystore.com Health, Shopping !

Personalized re-ranking results (using Model 1) Categories

1. http://en.wikipedia.org/wiki/Kevin_Murphy_(actor) (2) Arts

2. http://www.kevinmurphy.com.au (1) Business, Shopping

3. http://www.cs.ubc.ca/~murphyk (13) Reference, Computers

Personalized re-ranking results (using Model 2) Categories

1. http://www.cs.ubc.ca/~murphyk (13) Reference, Computers

2. http://en.wikipedia.org/wiki/Kevin_Murphy_(actor) (2) Arts

3. http://www.kevinmurphystore.com (3) Health, Shopping !

!Figure 3: (a) Top categories based on Pr(topic | query) for a generic user and a computer

science researcher for the query [kevin murphy]. (b) The original top three results from a

Web search engine for query [kevin murphy], and re-ranked results using Models 1 and 2.

Also shown to the right of each result is the original rank in parentheses and the top-level

ODP categories, as predicted by the text classifier used throughout this paper.

2010. 20 days of search logs from Sept. 1-20 were used to

construct users’ long-term profiles. The queries in five days

of search logs from Sept. 21-25 were used to evaluate the

performance of our personalization algorithms. We selected

users from the 5-day test period who had at least 100 sat-

isfied result clicks in the 20-day profile building period (see

Table 1). For this subset of users, we also identified search

sessions using a session extraction methodology similar to

[22]. Search sessions begin with a query and contain result

clicks and any subsequent queries and clicks that occurred.

Sessions terminated following 30 minutes of inactivity. We

used these sessions to obtain personalized relevance judg-

ments for each query (see below for more details).

Table 1: Descriptive statistics about our users, after

filtering for those who had at least 100 SAT clicks, com-

puted on the 20 days of search history.

average stdev median

num days 16.21 3.72 17

num queries 229.60 112.28 204

num SAT clicks 143.82 52.80 128

To explore parameter choices, we use a set of five weeks

of hold-out log-data from the same search engine and of

a similar type to our evaluation data described above but

non-overlapping with it. In particular, this hold-out data

was used to explore the parameter choices mentioned in this

section (e.g., β), learn the coverage function as described

earlier, and set a threshold for the entropy criteria used to

identify ambiguous queries, described later.

To focus on underspecified queries which [20] have found

especially amenable to personalization, we filtered the test

queries to only include one word queries. We also filtered

out the one word queries that we have not seen sufficiently

many times in the historical query logs to reliably estimate

the language model.2

This resulted in 571598 queries from 195108 users. In

our primary experiments, to further emphasize ambiguity,

we retained only non-navigational queries (using a classifier)

and queries where the entropy of the ODP topics of the

top 10 URLs (i.e., the entropy of Prr(Td | q)) is above a

threshold. We refer to the queries that have passed the

entropy filter as “ambiguous” in our results below. After

these filters, our test set consisted of 54581 users with at

least one query, and 102417 queries in total.

Evaluation of our personalized ranking algorithms required

a personalized relevance judgment for each result. Obtain-

ing relevance judgments from a large number of real users is

impractical, and there is no known approach to train expert

judges to provide reliable personalized judgments that reflect

real user preferences. Instead, we obtained these judgments

using a log-based methodology inspired by [8]. Specifically,

we assign a positive judgment to one of the top 10 URLs if

it is the last satisfied result click in the session (Last SAT).

The remaining top-ranked URLs receive a negative judg-

ment. This gives us one positive judgment and nine negative

judgments for each of the top-10 URLs for each session.

One consequence of evaluating on retrospective data is

that we can only evaluate based on the search results which

were shown. Since items below the last clicked item may

have been unexamined by the user and actually be relevant,

treating them as irrelevant serves as a lower bound on the

performance of our algorithms.

The rank position of the single positive judgment is used

to evaluate retrieval performance before and after re-ranking.

Specifically, we measure our performance using the inverse

2In particular, we considered words w that had at least one

category c such that w was part of at least 50 queries leading

to a click on a document with category c.

User  staRsRcs  for  training  data  

3rd  →  2nd  posiRon:  ∆MRR  =  0.1667  

Filter  condi)ons   Set  Size   Change  in  Filter  Set  MRR  

Change  in  Overall  MRR  

One  Word   100.00%   0.1213   0.1213  

MRR  on  subset  of  queries  where  last  saRsfied  result  click  moves  posiRon  

Large-­‐scale  EvaluaRon  

Filter  condi)ons   Set  Size   Change  in  Filter  Set  MRR  

Change  in  Overall  MRR  

One  Word   100.00%   0.1213   0.1213  

One  Word.  Ambig.   68.21%   0.1361   0.0928  

One  Word,  non-­‐Nav   73.28%   0.1442   0.1064  

One  Word,  Ambig.,  non-­‐Nav   54.81%   0.1686   0.0924  

MRR  on  subset  of  queries  where  last  saRsfied  result  click  moves  posiRon  

Large-­‐scale  EvaluaRon  

Filter  condi)ons   Set  Size   Change  in  Filter  Set  MRR  

Change  in  Overall  MRR  

One  Word   100.00%   0.1213   0.1213  

One  Word.  Ambig.   68.21%   0.1361   0.0928  

One  Word,  non-­‐Nav   73.28%   0.1442   0.1064  

One  Word,  Ambig.,  non-­‐Nav   54.81%   0.1686   0.0924  

Acronym   31.73%   0.1745   0.0554  

Acronym,  Ambig,  non-­‐Nav   21.08%   0.2269   0.0478  

MRR  on  subset  of  queries  where  last  saRsfied  result  click  moves  posiRon  

Large-­‐scale  EvaluaRon  

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

0.07  

-­‐6   -­‐5   -­‐4   -­‐3   -­‐2   -­‐1   1   2   3   4   5   6  

Prop

or)on

 of  Q

ueries  

Change  in  Rank  Posi)on  of  Last  Sa)sfied  Click  

Reliability  of  Personaliza)on  Models  

GeneraRve  Model  2  

Filter  =  ambiguous,  one  word  non-­‐navigaRonal  queries  

Re-­‐ranking  win/loss  distribuRon  

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

0.07  

-­‐6   -­‐5   -­‐4   -­‐3   -­‐2   -­‐1   1   2   3   4   5   6  

Prop

or)on

 of  Q

ueries  

Change  in  Rank  Posi)on  of  Last  Sa)sfied  Click  

Reliability  of  Personaliza)on  Models  

DiscriminaRve  Model  2  

Filter  =  ambiguous,  one  word  non-­‐navigaRonal  queries  

Re-­‐ranking  win/loss  distribuRon  

0  

0.01  

0.02  

0.03  

0.04  

0.05  

0.06  

0.07  

-­‐6   -­‐5   -­‐4   -­‐3   -­‐2   -­‐1   1   2   3   4   5   6  

Prop

or)on

 of  Q

ueries  

Change  in  Rank  Posi)on  of  Last  Sa)sfied  Click  

Reliability  of  Personaliza)on  Models  

InterpolaRon  Model  2  Ensemble  Model  

Filter  =  ambiguous,  one  word  non-­‐navigaRonal  queries  

Re-­‐ranking  win/loss  distribuRon  

Framework  is  broadly  applicable  

•  Short-­‐term  personalizaRon  (within  session)  

•  Different  personalizaRon  criteria  – Geographic  locaRon  – Reading  proficiency  – MulRple  topics  per  document  or  user  intent  

Summary  of  contribuRons  

•  ProbabilisRc  framework  for  personalizaRon  

•  Learning  user  profiles  formalized  as  intent  predicRon  (condiRoned  on  query)  

•  Use  of  a  background  model  (generic  user’s  intent)  to  interpret  ranker’s  relevance  scores  

•  Large-­‐scale  evaluaRon  of  long-­‐term  personalizaRon  using  query  logs  

•  SubstanRal  gains  over  compeRRve  baseline  on  ambiguous  queries  such  as  acronyms  and  names  

Many  direcRons  to  explore!  •  PredicRng  intent  given  query  and  user  history:  

–  Expand  the  set  of  features  used  in  condiRonal  model  

–  Transfer  learning  across  users  –  Learn  from  non-­‐search  data,  e.g.  browsing,  mobile,  social  

–  Online  learning  of  user  profiles  •  Understanding  when  and  how  to  personalize  

–  Consider  both  potenRal  for  personalizaRon  and  confidence  in  user’s  query  intent  

•  RepresentaRon  –  (Un)supervised  learning  of  topics  rather  than  using  ODP  –  Use  relaRonal  classificaRon  to  improve  accuracy  of  web  page  

classificaRon  

–  Cross-­‐product  of  many  variables,  e.g.  topic  and  reading  proficiency