dc/ac 3-phase inverter (pspice model)

16
DC/AC Inverter (3- Phase) Simplified SPICE Behavioral Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1

Upload: tsuyoshi-horigome

Post on 28-Jun-2015

5.349 views

Category:

Technology


6 download

DESCRIPTION

DC/AC 3-Phase Inverter (PSpice Model) Simplified SPICE Behavioral Model Bee Technologies Inc.

TRANSCRIPT

Page 1: DC/AC 3-Phase Inverter (PSpice Model)

DC/AC Inverter (3-Phase) Simplified SPICE Behavioral Model

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1

Page 2: DC/AC 3-Phase Inverter (PSpice Model)

Contents

1. Model Overview

2. Benefit of the Model

3. Concept of the Model

4. 3-Phase DC/AC Specification (Example)

5. Parameter Settings

6. Input-Output Characteristics6.1 Simulation Circuit and Setting

7. Line-to-Line Output Characteristics7.1 Simulation Circuit and Setting

8. Efficiency Characteristics8.1 Simulation Circuit and Setting

9. Minimum DC Input Voltage9.1 Simulation Circuit and Setting

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2

Page 3: DC/AC 3-Phase Inverter (PSpice Model)

1.Model Overview

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3

• This 3-Phase DC/AC Inverter Simplified SPICE Behavioral Model is for users who require the model of an Inverter as a part of their system.

• The model focuses on the input/output relationships of the Inverter block; therefore, it is not using high frequency models (e.g. oscillator and noise models), and is not based on the electronic topologies of the Inverter.

• The model enables long-term behavior simulation of the system (e.g. in a Photovoltaic system simulation).

Page 4: DC/AC 3-Phase Inverter (PSpice Model)

2.Benefit of the Model

• Enable Transient Simulation.

• Can be adjusted to your own 3-Phase DC/AC specifications, by editing the

model parameters.

• The simplified model is an easy-to-use, which can be provided without the

circuit detail.

• Time and costs are saved because only the necessary parts are simulated.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4

Page 5: DC/AC 3-Phase Inverter (PSpice Model)

3.Concept of the Model

The model is characterized by parameters n, Vin_min, Vin_max, Vo_ac and Freq that represent the input-output-relationships of the Inverter. Where,

PAC : AC output powerPDC : DC input power

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5

3-Phase DC/AC Inverter Simplified SPICE Behavioral Model

IN+

IN-

U

N

VIN,MIN~VIN,MAX (Vdc)

IIN IO~

~

V

W

DC

AC

P

PnEfficiency )(

ININ IV

IV OO

)(3POUT(3-phase)

Page 6: DC/AC 3-Phase Inverter (PSpice Model)

4.DC/AC Specification (Example)

3-Phase DC/AC Inverter with •VIN = 24~250Vdc, •VO, LN = 100VAC, •POUT(3-phase) = 1500W,•and Efficiency = 80%

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6

3-Phase DC/AC InverterEfficiency (n) = 80%

Operating Input Voltage:VIN,MIN=24 ~ VIN,MAX =250(Vdc)

IN+

IN-

U

N

V

W

~ POUT(3-phase)

IO~IIN

Page 7: DC/AC 3-Phase Inverter (PSpice Model)

5.Parameter Settings (Example)VIN_MIN DC minimum input voltage• 0 < VIN_MIN < VIN_MAX• Value = 24V

VIN_MAX DC maximum input voltage• VIN_MAX > VIN_MIN• Value = 250V

VO_AC AC Output Voltage, rms value• e.g. 100V, 220V• Value = 100V

FREQ AC Output Frequency• e.g. 50Hz, 60Hz• Value = 50Hz

N Efficiency in 100%• 0 < N < 1• Value = 0.8 (80% Efficiency)

• From the inverter specification, the model is characterized by setting parameters VIN_MIN, VIN_MAX, VO_AC, FREQ, and N.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7

U 1D C -A C _ I N V E R TE R

V I N _ M I N = 2 4

V O _ A C = 1 0 0V I N _ M A X = 2 5 0

F R E Q = 5 0N = 0 . 8

I N +

I N -

U

V

W

N

Page 8: DC/AC 3-Phase Inverter (PSpice Model)

Time

0s 20ms 40ms 60ms 80ms 100msI(RU) I(RV) I(RW)

-10A

0A

10AV(U) V(V) V(W)

-200V

0V

200V

SEL>>

1 V(VIN) 2 I(in)0V

50V

100V

150V

200V

250V

300V1

0A

10A

15A

20A

25A

30A2

>>

6.Input-Output Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8

3-Phase AC Output Voltage: VO, LN

DC Input Current

DC Input Voltage

3-Phase AC Output Current

Page 9: DC/AC 3-Phase Inverter (PSpice Model)

6.1 Simulation Circuit and Setting

*Analysis directives: .TRAN 0 100ms 0 10us .PROBE V(*) I(*) W(*) D(*) NOISE(*)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9

v in

0

in

U 1D C -A C _ I N V E R TE R

V I N _ M I N = 2 4

V O _ A C = 1 0 0V I N _ M A X = 2 5 0

F R E Q = 5 0N = 0 . 8

I N +

I N -

U

V

W

N

V

U

R U{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}W

R W{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

PARAMETERS:P L O A D = 1 5 0 0

R V{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

0

V 12 5 0 V

Page 10: DC/AC 3-Phase Inverter (PSpice Model)

Time

0s 20ms 40ms 60ms 80ms 100msI(RU) I(RV) I(RW)

-10A

0A

10A

SEL>>

V(U,V) V(V,W)-300V

0V

300V1 V(vin) 2 I(in)

0V

50V

100V

150V

200V

250V

300V1

0A

10A

15A

20A

25A

30A2

>>

7.Line-to-Line Output Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10

Line-to-Line Output Current

Line-to-Line Output Voltage

DC Input Voltage

DC Input Current

Page 11: DC/AC 3-Phase Inverter (PSpice Model)

7.1 Simulation Circuit and Setting

*Analysis directives: .TRAN 0 100ms 0 10us .PROBE V(*) I(*) W(*) D(*) NOISE(*)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11

v in

0

in

U 1D C -A C _ I N V E R TE R

V I N _ M I N = 2 4

V O _ A C = 1 0 0V I N _ M A X = 2 5 0

F R E Q = 5 0N = 0 . 8

I N +

I N -

U

V

W

N

V

U

R U{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}W

R W{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

PARAMETERS:P L O A D = 1 5 0 0

R V{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

0

V 12 5 0 V

Page 12: DC/AC 3-Phase Inverter (PSpice Model)

Time

10s 20s 30s 40s 50s(3*(RMS(V(U))*RMS(I(RU))))/(V(vin)*I(in))*100

0

10

20

30

40

50

60

70

80

90

100

(50.000,80.004)

8.Efficiency Characteristics

Output and efficiency of the Inverter on time domain analysis.Efficiency(n) = PAC/PDC

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12

N = 0.8

Page 13: DC/AC 3-Phase Inverter (PSpice Model)

8.1 Simulation Circuit and Setting

*Analysis directives: .TRAN 0 50s 0 1ms .PROBE V(*) I(*) W(*) D(*) NOISE(*)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13

v in

0

in

U 1D C -A C _ I N V E R TE R

V I N _ M I N = 2 4

V O _ A C = 1 0 0V I N _ M A X = 2 5 0

F R E Q = 5 0N = 0 . 8

I N +

I N -

U

V

W

N

V

U

R U{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}W

R W{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

PARAMETERS:P L O A D = 1 5 0 0

R V{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

0

V 12 5 0 V

Page 14: DC/AC 3-Phase Inverter (PSpice Model)

Time

0s 50ms 100ms 150ms 200ms 250msV(U) V(V) V(W)

-200V

-100V

0V

100V

200V1 V(VIN) 2 I(in)

0V

50V

100V

150V

200V

250V1

0A

5A

10A

15A

20A

25A2

SEL>>SEL>>

(250.000m,250.000)

(24.000m,24.000)

9.Minimum DC Input Voltage

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14

VO(AC) disable as VIN < VIN ,MIN

3-Phase AC Output Voltage

DC Input Voltage

DC Input Current

Page 15: DC/AC 3-Phase Inverter (PSpice Model)

9.1 Simulation Circuit and Setting

*Analysis directives: .TRAN 0 250ms 0 10us .PROBE V(*) I(*) W(*) D(*) NOISE(*)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15

v in

0

in

U 1D C -A C _ I N V E R TE R

V I N _ M I N = 2 4

V O _ A C = 1 0 0V I N _ M A X = 2 5 0

F R E Q = 5 0N = 0 . 8

I N +

I N -

U

V

W

N

V

U

R U{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}W

R W{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

PARAMETERS:P L O A D = 1 5 0 0

R V{P W R (1 0 0 , 2 )/ (P L O A D / 3 )}

0

V 1

T1 = 0

T2 = 2 5 0 m sV 1 = 0

V 2 = 2 5 0 V

Page 16: DC/AC 3-Phase Inverter (PSpice Model)

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16

Simulations Folder name

1. Input-Output Characteristics.............................................

2. Line-to-Line Output Characteristics..................................

3. Efficiency Characteristics.................................................

4. Minimum DC Input

Voltage...............................................

VO_LN

VO_LL

Efficiency

VIN_MIN