de chap 2 lde of order one

98
LINEAR DIFFERENTIAL EQUATIONS OF ORDER ONE Chapter 3 Prepared by Maria Cristina R. Tabuloc 1

Upload: andrew-nibungco

Post on 26-Jan-2016

21 views

Category:

Documents


2 download

DESCRIPTION

Lessons of Linear Differential Equation

TRANSCRIPT

Page 1: De Chap 2 LDE of Order One

LINEAR DIFFERENTIAL EQUATIONS

OF ORDER ONE

Chapter 3

Prepared by Maria Cristina R. Tabuloc

1

Page 2: De Chap 2 LDE of Order One

First Order First Degree ODE’s

◦An ordinary differential equation of first

order and first degree may be expressed

in any of the following forms:

),( yxfdx

dy

0),(),( dyyxNdxyxM

Derivative form:

Differential form:

),(

),(),(

yxN

yxMyxf where

2

Page 3: De Chap 2 LDE of Order One

Examples of first order first degree ODE

Derivative Form Differential Form

xexyy 3233 022 dyeydxx x

824

623

yxyx

yxyx

dx

dy

0432 22 dvwvdwvw

)( mTTkdt

dT

0)cos()sin( dttuedutte uu

dyyxy )tan(

θdrrdθr tan)1( 2

dx

dTkAq

kdtQ

dQ

3

Page 4: De Chap 2 LDE of Order One

Two principal goals of studying DE

The study of differential equations has two principal goals:

To discover the differential equation

model that describes a specified physical situation

To find the appropriate solution of that differential equation, that is, to obtain a function defined either explicitly or

implicitly free from derivatives and that satisfies the differential equation.

4

Page 5: De Chap 2 LDE of Order One

Types of First Order First Degree ODE’s

◦Variables Separable DE

◦DE with Homogeneous Coefficients

◦Exact DE

◦Non-exact DE

◦DE with Integrable Combinations

◦Linear DE of Order One

◦Bernoulli’s DE

◦DE Solvable by Simple Substitution

◦DE with Coefficients Linear in Two Variables5

Page 6: De Chap 2 LDE of Order One

VARIABLE SEPARABLE DIFFERENTIAL EQUATIONS

Chapter 2

Section 1

6

Page 7: De Chap 2 LDE of Order One

Variables Separable DE’s

◦The simplest type of first order first degree

ordinary differential equations is the

variables separable differential equation.

This type of a differential equation can be

solved by direct integration of terms of the

same variable type.

◦Definition 2.1: A variables separable

DE is one with all nonzero terms

expressible with one type of variable

only.7

Page 8: De Chap 2 LDE of Order One

Variables Separable DE’s◦Consider a differential equation of the form

◦ If it is possible to collect all x terms with dx and all

y terms with dy, then by algebraic manipulation,

the above equation may be written as

so that, by dividing both sides by , it becomes

8

0),(),( dyyxNdxyxM

0)()()()( 1221 dyyBxAdxyBxA

)()( 22 yBxA

Page 9: De Chap 2 LDE of Order One

Variables Separable DE’s◦ If we put and , then we get

◦ If we let and

it becomes

From which the general solution can be obtained as follows.

9

0)(

)(

)(

)(

2

1

2

1 dyyB

yBdx

xA

xA

)(

)()(

2

1

xA

xAxA

)(

)()(

2

1

yB

yByB

0)()( dyyBdxxA

CdyyBdxxA )()( +

Page 10: De Chap 2 LDE of Order One

Examples

◦Find the general solution of

10

0cotsin)1 2 ydyydxx

01

sin)2()2 22

dyx

ydxxyy

0)323 dyedxxy x

Page 11: De Chap 2 LDE of Order One

Exercises

◦Find the general solution of the ff DEs

11

yxy 42)1

21)2 ydx

dy

02

)4(

1)3

2

2

xx

dyy

x

ydx

dyxyxdx 32 4ln)4

Page 12: De Chap 2 LDE of Order One

Exercises◦Find the general solution of ff DEs

12

0seccossin)5 22 xdyydxx

041)6 42 drtdtrt

yy

xy

dx

dyx

)4ln(

ln)4()7

2

2

0)8 2 dyeyxdx yx

Page 13: De Chap 2 LDE of Order One

Examples: Initial-Value Problems

◦Determine the particular solution

13

1 = /4)(rdθ

drθrr ,tan1)1 2

,03sec2csc)2 dyxdxy 3/ /2)(y

,824

623)3

yxyx

yxyx

dx

dy23 )y(

,sin)cos1()4 θdθxdxθ

,0)52

x

dydxe xy

4ln2ln )( y

;

02 whenx

Page 14: De Chap 2 LDE of Order One

Assignment

◦Solve Exercises from the text book for

your review

◦See attached Exercises

14

Exercise 2.1

Page 15: De Chap 2 LDE of Order One

HOMOGENEOUS LINEAR

DIFFERENTIAL EQUATIONS

15

Chapter 2Section 2

Page 16: De Chap 2 LDE of Order One

Homogeneity of a Function

◦Definition

A function f(x, y) is said to be

homogeneous if and only if

, k > 0

for some real number n where n is the

degree of homogeneity of f.

For a polynomial function, the

degree of homogeneity is determined by

the polynomial degree of each term.

),(),( yxfkkykxf n

16

Page 17: De Chap 2 LDE of Order One

Homogeneity of a Function

If all the terms of a polynomial function have

the same degree, it is homogeneous. For

instance, the polynomial

is homogeneous of degree 4.

2243 35 yxxyx

17

Page 18: De Chap 2 LDE of Order One

Example◦Decide if the function defined in each of the

following is homogeneous or not. Give its degree

If it is a homogeneous function.

434 )())((7)(4),( kykykxkxkykxf 443344 ))((74 ykykkxxk

4344 74 yxyxk

),(),( 4 yxfkkykxf

434 74),( yxyxyxf 1)

Therefore 434 74),( yxyxyxf

is homogeneous of degree 4 18

Page 19: De Chap 2 LDE of Order One

Example

y

xy

x

yxyxf lntan),( 2/112/12)

ky

kxky

kx

kykxkykxf ln)(tan)(),( 2/112/1

y

xyk

x

yxk lntan 2/12/112/12/1

),(),( 2/1 yxfkkykxf

Therefore,

is a homogeneous function of degree 1/2.

y

x y xy

/xk ln2/11tan212/1

y

xy

x

yxyxf lntan),( 2/112/1

19

Page 20: De Chap 2 LDE of Order One

Example

)( lnln),()4 22 xyxyyxf

yxyxf 74),( 3)

20

Page 21: De Chap 2 LDE of Order One

Exercise

◦Test the given function for homogeneity.

Determine its degree if the function is

homogeneous

21

Page 22: De Chap 2 LDE of Order One

Homogeneous DE

◦Definition:

If the functions M and N are both

homogeneous functions of the same

degree in x and y, then

is said to be a homogeneous DE (DE

with homogeneous coefficients)

0dyyx,Ndxyx,M )()(

22

Page 23: De Chap 2 LDE of Order One

Solution of Homogeneous DE

An ordinary differential equation

with homogeneous coefficients can

be reduced to a separable DE by

using the appropriate set of

substitutions.

23

Page 24: De Chap 2 LDE of Order One

Solution of Homogeneous DE

Rules:

stands out, i) if N is simpler or xy /

stands out, ii) if M is simpler or

let y = vx ; dy = vdx + xdv

let x = uy ; dx = udy + ydu

24

yx /

Page 25: De Chap 2 LDE of Order One

Example 1

3

44 2

xy

yxy'

Solve

02 344 dyxydxyx

Solution: Write the equation in Mdx + Ndy = 0 form

Since N is simpler,

let y = vx, and dy = vdx + xdv

0)(2 33444 xdvvdxxvxdxxvx

02 3544444 dvvxdxxvdxxvdxx

035444 dvvxdxxvdxx

0)1( 3544 dvvxdxvx

Variable separable

25

Page 26: De Chap 2 LDE of Order One

Example 1

54

3544

)1(

0)1(

xv

dvvxdxvx

0)1( 4

3

v

dvv

x

dx

cvx ln)1ln(4

1ln 4

cv

xln

)1(ln

4/14

cv

x

4/14 )1(

4/14

1

xy

cx

4

14 1

xy

cx

4

44

14

x

yxcx

44

1

8

yxc

x

482

4 xxcy

4/1482 xxcy

Since v = y/x

26

Page 27: De Chap 2 LDE of Order One

Example 2◦Solve the initial-value problem

27

0222 xydydxyx

Let y = vx ; dy = vdx + xdv so that the DE becomes

0)(2])( 22 dyvxxdxvxx[

0)(2) 2222 xdvvdxvxdxxvx(

.

Factoring out x2 from the first term of the latter equation gives

0)(2) 222 xdvvdxvxdxvx (1

0)(2)2 xdvvdxvdxv(1

02)2 22 vxdvdxvv(1

Page 28: De Chap 2 LDE of Order One

By separation of variables, we get

28

031

22

v

vdv

x

dx

1231

2C

v

vdv

x

dx

1231

6

3

1||ln C

v

vdvx

12 )31ln(

3

1||ln Cvx

12 3)31ln(||ln3 Cvx

123 3)31(ln Cvx

Example 2

Page 29: De Chap 2 LDE of Order One

Example 2

◦ Solve the initial-value problem

29

)(cossin1 xdyydxx

ydx

x

yx

Page 30: De Chap 2 LDE of Order One

EXACT DIFFERENTIAL EQUATIONS

Chapter 2Section 3

Page 31: De Chap 2 LDE of Order One

Definition: Exact Differential Equation

◦ DE M(x, y) dx + N(x, y) dy = 0 is said to be exact if and only if there exists a function f such that

throughout some region.

Mx

f

N

y

f

and

Page 32: De Chap 2 LDE of Order One

Exact Differential Equation

Test for Exactness of a DE

A necessary and sufficient condition that

M(x, y) dx + N(x, y) dy = 0

be an exact DE is

x

N

y

M

Page 33: De Chap 2 LDE of Order One

Example 1: Test the DE for exactness

0)sin2()1()1 2 dyyxydxy

1),( 2 yyxM

yy

M2

yxyyxN sin2),(

yx

N2

x

N

y

M

0)sin2()1( 2 dyyxydxy

Since

is an exact DE.

.

Therefore,

Solution: First, identify M(x, y) and N(x, y)

Page 34: De Chap 2 LDE of Order One

Example 2: Test the DE for exactness

0)sincos()sin(sin)2 dyxyxyxdxxyyy

xyyyyxM sinsin),( xyxyxyxN sincos),(

xyxyxyyy

Msincoscos

xyxyxyy

x

Nsincoscos

.

x

N

y

M

Since

is an exact DE.

Therefore, 0)sincos()sin(sin dyxyxyxdxxyyy

Page 35: De Chap 2 LDE of Order One

Example 3: Test the DE for exactness

35

dwwppwdpwp

w 211

1sectantan2tan 2

Page 36: De Chap 2 LDE of Order One

Solve the following

36

1. Find the value of k so that the DE

dyxkyxydxxyyx )cos6()sin2( 223

becomes exact.

2. Find the most general function M(x, y)so that

0)2(),( 3 dyyxexdxyxM y

is exact.

Page 37: De Chap 2 LDE of Order One

Exercise

◦Test for exactness

37

drrpeprpdprpepr rr )62sin()cos3( 3222124

0)ln()14(1

sin)(tan 2221

2

1222

dyyxyxe

y

xdxyyxy

x x

o Find the value of the constant k so that each

of the following DE becomes exact.

0)3()15( 224323 dtrtrdrtrtkr

03)1(ln2)4ln( ][2322 dyyexxxydxxykxxy y

0sin2cossin2 ][)(22 22 dykxyexxdxeyyxxy xyxy

Page 38: De Chap 2 LDE of Order One

Method of Solving Exact DE

◦ Test the DE M(x, y) dx + N(x, y) dy = 0 for

exactness

◦ Let

◦ Integrate M or N

Ny

fM

x

f

and

constantiswhere

constantholding

)()()(),(

),(),(

yTyTxQyxF

ydxyxMx

fyxf

constantiswhere

constantholding

)()()(),(

),(),(

xQyTxQyxF

xdyyxNy

fyxf

Page 39: De Chap 2 LDE of Order One

Alternative Method of Solving Exact DE:The DIRECT METHOD

◦ Test the DE M(x, y) dx + N(x, y) dy = 0 for

exactness

◦Find f(x, y) which is the solution of the DE

alone in of terms has yyxNNwhere

CdyyNdxyxMyxf

),(

)(),(),(

1

1

alone in of terms has xyxMMwhere

CdyyxNdxxMyxf

),(

),()(),(

1

1

Page 40: De Chap 2 LDE of Order One

Example

◦Solve the DE using the direct formula

40

0)2sin2)sin23( 22 dyxyxyxdxxyy

0)2cossin2()4sin(22 22 dyexyyxxdxxyeyy yxyx

Page 41: De Chap 2 LDE of Order One

NONEXACTDIFFERENTIAL EQUATION

Chapter 3

Section 4

41

Page 42: De Chap 2 LDE of Order One

Nonexact DE

42

Page 43: De Chap 2 LDE of Order One

INTEGRATING FACTORSFOUND BY

INSPECTION

43

Page 44: De Chap 2 LDE of Order One

Integrating Factors Found by Inspection

◦In the previous section, the

discussion is about the

determination of the Integrating Factor I(x) or I(y). This section is

concern with DE that are simple

enough to enable us to find the

integrating factor by inspection.

The following are some exact

differentials that occurs frequently. 44

Page 45: De Chap 2 LDE of Order One

Integrating Factors Found by Inspection(Exact Differential Equations)

ydxxdyxyd

2y

xdxydy

y

xd

2x

ydxxdy

x

yd

45

xy

xdyydxxyd

ln

xy

xdyydxd

yx

ln

xy

ydxxdyd

x

y

ln

Page 46: De Chap 2 LDE of Order One

Integrating Factors Found by Inspection

◦More Exact differentials

22

22

yx

ydyxdxyxd

n

n

xy

ydxxdynxyd

1

46

2

1

y

xdyydx

y

xn

y

xd

nn

22

22 22ln

yx

ydyxdxyxd

22tan

yx

xdyydx

y

xd

Arc

22tan

yx

ydxxdy

x

yd

Arc

Page 47: De Chap 2 LDE of Order One

Example

◦ Form an integrable combination for each differential

47

)()1 2yxd

3

2

)2y

xd

)][ln()3 2yxd

)sin()4 yxd

4.

)arctan()5 yxd

)()6 yxed

Page 48: De Chap 2 LDE of Order One

Example

◦Evaluate each of the following integrals, omitting the constant of integration.

48

3.

)()()1 3 ydxxdyxy

)3()2 23 ydxxdyx

22

)4yx

ydyxdx

ydxxdy

y

x4

2

)3

Page 49: De Chap 2 LDE of Order One

Example

49

0)()()1 32 dyxydxyxy

0)1(3)3 3342 dyyxdxyx

0)()2 3 dyxyydx

0)()2()4 22 dyxyxdxxyy

0)1()1()5 232 dyyxdxyxyy

Solve each of the following differential equations

applying the integrating factors by inspection.

Page 50: De Chap 2 LDE of Order One

Example

50

0)1()()6 22232 dyxxdxyxxy

0)1()13()7 2222 dyyxxdxyxy

0)1()8 22 xdydxyxy

0)()()9 33 dyxyydxxyx

0)2()22()10 3223 dyyyxxdxxyxyx

Solve each of the following differential equations

applying the integrating factors by inspection.

Page 51: De Chap 2 LDE of Order One

Solution for #1

51

0)()()1 32 dyxydxyxy

032 xdydyyydxdxxy

032 dyydxxyxdyydx

02

ydyxdxy

xdyydx

02

22

yxd

y

xd

Cyx

y

x

2

22

1322 Cyyxx

Page 52: De Chap 2 LDE of Order One

Solution for #2

52

0)()2 3 dyxyydx

03 xdydyyydx

03 dyyydxxdy

0)( 441 ydxyd

Cydxyd

441)(

Cyxy 441

Page 53: De Chap 2 LDE of Order One

53

0)1(3)3 3342 dyyxdxyx

Solution for #3

03

03

332

33

33

3

42

dyydyxydxx

y

dydy

y

yxdx

y

yx

03 3342 dydyyxdxyx

033 dyyyxd

Page 54: De Chap 2 LDE of Order One

54

Solution for # 4

0)()2()4 22 dyxyxdxxyy

02 223 dyxdyxyxydxdxy

0)2()(

0)2()(

02

2

2

2

2

22

223

y

dyxxydx

y

xdyydxy

dyxxydxxdyydxy

dyxxydxdyxydxy

0)2()( 221 dyyxdxxyxdyydx

Page 55: De Chap 2 LDE of Order One

55

Alternative Solution for # 4

0)()2()4 22 dyxyxdxxyy

02 223 dyxdyxyxydxdxy

02 223 dyxxydxdyxydxy

Multiply the equation by xm yn

0)2()( 211213 dyyxdxyxdyyxdxyx nmnmnmnm

)( 31 nm yxd 0)( 12 nm yxd dyyxndxyxm nmnm 223 )3()1( 0)1()2( 211 dyyxndxyxm nmnm

21

3

1

1

nm

nm

42

2221

1

2

2

nm

nmnm

2;0 nm

Page 56: De Chap 2 LDE of Order One

56

0)1()1()5 232 dyyxdxyxyy

Solutions

02233 xdydyxydxyxdxyydx

0)(

22

23

22

2

22

yx

dxyx

yx

xdyydxy

yx

xdyydx

0)( 232 dxyxxdyydxyxdyydx

0)(2

2

xdx

x

xdyydxxdyydxxy

0)( 2211

xd

x

ydxyd

Page 57: De Chap 2 LDE of Order One

FIRST ORDER FIRST DEGREE ODE

Chapter 3

Section 157

Page 58: De Chap 2 LDE of Order One

First Order First Degree ODE’s◦A special class of first-order ordinary DE’s which

is generally a nonexact DE with special

integrating factor is a linear differential

equation.

◦A linear DE of order one takes the form .

58

)()( xQxyPdx

dy

dxxQdxxyPdy )()(

Derivative form

Differential form

dxxp

exv)(

)(Whose integrating factor is

Page 59: De Chap 2 LDE of Order One

The General Solution ◦The general solution of

Is found by multiplying the integrating factor, v(x) to each term and then solving

for the exact DE formed.

59

)()( xQxyPdx

dy

dxxPdxxP

edxxQdxxyPdye)()(

)()(

Page 60: De Chap 2 LDE of Order One

The General Solution

Continuation

Thus, by the Derivative of a Product:

60

dxxQeyeddxxPdxxP

)()()(

dxxQedxxPyedyedxxPdxxPdxxP

)()()()()(

Page 61: De Chap 2 LDE of Order One

The General Solution ◦Simplify the equation using

◦ Integrating both sides will result to

61

dxxQxvxyvd )()()(

dxxp

exv)(

)(

dxxQxvxyvd )()()(

CdxxQxvxyv )()()(

Page 62: De Chap 2 LDE of Order One

The General Solution

Thus, the general solution is

62

CdxxQxv

xvy )()(

)(

1

CdxxQxvxvy )()()( 1

Page 63: De Chap 2 LDE of Order One

The General Solution ◦ It is also possible that the given DE is not

linear in y but instead linear in other

variable.

◦ Linear DE in y:

◦ Linear DE in x:

63

CdxxQxvxvy )()()( 1

CdyyQyvyvx )()()( 1

)()( xQxyPdx

dy

)()( yQyxPdy

dx

Page 64: De Chap 2 LDE of Order One

The General Solution ◦ It is also possible that the given DE is not

linear in y but instead linear in other

variable.

◦Linear in w:

64

CdttQtvtvw )()()( 1

)()( tQtwPdt

dw

Page 65: De Chap 2 LDE of Order One

Example: Find the general solution

65

xxydx

dycos4cos2)3

xxyy cos2cot)1

0)tan(sec)2 3 dyyxydx

2)1(1

)4

xx

yy

0sectan)5 yywdy

dw

xyedy

dx y sin)6

Page 66: De Chap 2 LDE of Order One

Example I: Find the general solution

66

xxyy cos2cot)1

xdxxdxydy cos2cot

xxQxxP cos2)(;cot)(

xe

eexv

x

xdxdxxP

sin

)(

sinln

cot)(

dxxxxy cos2sinsin

Cxxy 2sinsin

Solving for the general solution:

xCxy cscsin

Page 67: De Chap 2 LDE of Order One

Example I: Find the general solution

67

0)tan(sec)2 3 dyyxydx

dyydyyxdx 3sectan

yyQyyP 3sec)(;tan)(

w/c is linear in x

yy

eeyv

y

ydyy

seccos

)(

cos11

coslntan

dyyyyx 3secsecsec

Solving for the gen solution:

Page 68: De Chap 2 LDE of Order One

Exercise I: Find the particular solutionShow how P(x) & Q(x) were derived.

when x = 1, y = 2

if y(10) = 0

when x = 1, y = 2

68

xyyx 21)1 2

dyyexdx y )sin4()2 2

xyx

x

dy

dx

463)3

3

2

Cxyx 22

1)(;

2)(

xxQ

xxP Gen solution:

yeyQyP y 2sin4)(;1)( Cyyxe y

2sin2Gen sol’n:

2

363)(;

4)(

x

xxQ

xxP

Cxxyx 33 35

Gen sol’n:

Page 69: De Chap 2 LDE of Order One

Exercise I: Find the particular solution

if x(0) = 2

if T(0) = T0

where k, Tm & T0 are constants

69

xyedy

dx y sin)4

yeyQyP y sin)(;1)(

yyCeyyex

)cos(sin5

Gen solution:

)()5 mTTkdt

dT

mkTtQktP )(;)( ktm CeTT Gen solution:

Page 70: De Chap 2 LDE of Order One

Exercise: Find the particular solution

when x = 1, y = 2

if y(10) = 0

when x = 1, y = 2

70

xyyx 21)1 2

dyyexdx y )sin4()2 2

xyx

x

dy

dx

463)3

3

2

Page 71: De Chap 2 LDE of Order One

THE BERNOULLI’S EQUATION

Chapter 3Section 3

71

Page 72: De Chap 2 LDE of Order One

Definition

◦A differential equation that can

be expressed in the form

is called a Bernoulli’s equation

(BE) in y.

72

)()( xQyxyPdx

dy n

Page 73: De Chap 2 LDE of Order One

Definition

The BE

may be made linear upon

multiplication of

and substitution of

73

)()( xQyxyPdx

dy n

nyn )1(

dx

dyyn

dx

dzyz nn )1(1 ;

Page 74: De Chap 2 LDE of Order One

The General Solution of BE

◦Thus, the BE becomes

◦The general solution of this linear DE in z

may be accomplished by the method of

linear DE of order one.74

)()1()()1()1( 1 xQnxPnydx

dyyn nn

)()1()()1( xQnxPnzdx

dz

Page 75: De Chap 2 LDE of Order One

Example: Solve the following BE

75

23)1 xexyxyy

Solution: n = 3

dx

dyy

dx

dzyz 32 2 ; Let

Thus, the given DE becomes

2)13()13( xxezx

dx

dz

22)2( xxexz

dx

dz which is linear in z

Page 76: De Chap 2 LDE of Order One

Example: Solve the following BE

76

Continuation of Solution of Ex. 1

So that the integrating factor is2)2(

xxdx

ee

Thus, Cdxexeze xxx ))(2(

222

Cdxxze x )2(

2

Cxez x 22 2 yz

Cxey x 22 2

,

2)(1 22 xexCy

Page 77: De Chap 2 LDE of Order One

Exercise: Solve the given BEs

77

xyxydx

dy 33 sectan)1

xxyyyx ln)2 3/13/4

)124(77)3 35 xxxyyyx

)1()4 531 yxxydy

dx

7.

Page 78: De Chap 2 LDE of Order One

Exercise: Solve the given BEs

78

9)5

2

2

xx ee

yy

dx

dy7.

44534)6 yxxy

dy

dx

0)tancsc(2)7 2 dvvvwdww

37)8 yxyyx

Page 79: De Chap 2 LDE of Order One

Exercise: Solve the given BEs

79

4cot)9 xyxdy

dx7.

2142 )1(;32)10 yyxy

dx

dyx

Page 80: De Chap 2 LDE of Order One

DIFFERENTIAL EQUATIONS

SOLVABLE BY SIMPLE SUBSTITUTION

Chapter 3 Section4

80

Page 81: De Chap 2 LDE of Order One

◦Sometimes the DE

may not be reducible at once to any of the forms discussed previously. This means that the previous methods even how effective they were would not work.

81

0),(),( dyyxNdxyxM

DE’s Solvable by Simple Substitution

Page 82: De Chap 2 LDE of Order One

◦But if a wise change of

variable would be done, the

equation could be

transformed into an equation

that could be well handled by

one of the previous methods.

82

DE’s Solvable by Simple Substitution

Page 83: De Chap 2 LDE of Order One

◦Solve the following

83

DE’s Solvable by Simple Substitution

021 yxxe

dx

dy

Let w = x ydx

dw

dx

dy

dx

dy

dx

dw 11

Substituting these to the given DE, we get

0211 wxedx

dw

0202 ww xedx

dwxe

dx

dw

Page 84: De Chap 2 LDE of Order One

◦Continuation of solution

84

DE’s Solvable by Simple Substitution

But w = x y

Variable Separable DE

02 wxe

dx

dw

02 xdxdwe

w

02

xdxdwe

w

Cxew 2

xyyxeCxCxe

22)(

Page 85: De Chap 2 LDE of Order One

Exercise: Solve the following

85

7.

0)733()4()1 dyyxdxyx

0)74()22 yx

dx

dy

0)tan3(sec)3(tan)3222 dyyxxdxyx

0tan25cos3)42 dyyxdxxyx

Page 86: De Chap 2 LDE of Order One

Exercise Solve the following

86

7.

021)71

xdx

dye

y

0tan

])(tan1)[(tan)8

2

22

ydy

dxeyyyyxx

xxyxdy

dxy ln)1(ln)6

Page 87: De Chap 2 LDE of Order One

DE’S WITH COEFFICIENTS LINEAR

IN TWO VARIABLES

i87

Page 88: De Chap 2 LDE of Order One

DE w/ Coefficient Linear in Two Variables ◦Consider the DE whose form is

(1)

◦It is noted that the coefficients of dx

and dy are both linear in the variables

x and y. If these coefficients are each

equated to zero, we obtain two

equations of the lines of the forms

and 88

0)()( 222111 dycybxadxcybxa

0111 cybxa 0222 cybxa

Page 89: De Chap 2 LDE of Order One

DE w/ Coefficient Linear in Two Variables

For these associated equations of the lines,

we consider the following three cases:

Case 1: If

then the graph of the associated

equations of the lines are coincident and

the DE is reducible to kdx + dy = 0 ,

k is a constant 89

0111 cybxa 0222 cybxa

2

1

2

1

2

1

c

c

b

b

a

a

Page 90: De Chap 2 LDE of Order One

DE w/ Coefficient Linear in Two Variables Case 2: If

then the graph of the associated

equations of the lines are parallel and the

DE is reducible to

which can be handled by simple

substitution. 90

2

1

2

1

2

1

c

c

b

b

a

a

0)()( 222122 dycybxadxcybxak

Page 91: De Chap 2 LDE of Order One

DE w/ Coefficient Linear in Two Variables Case 3: If

then the associated lines are intersecting

and the DE is reducible to homogeneous

DE using the substitution

x = u + h ; dx = du

y = w + k ; dy = dw

where (h, k) is the point of intersection of

the linear system

91

2

1

2

1

b

b

a

a

0

0

222

111

ckbha

ckbha

Page 92: De Chap 2 LDE of Order One

DE w/ Coefficient Linear in Two Variables

◦In case the DE falls under case 3, try

also to check if it is an exact DE. If so,

it is suggested to use the method for

exact DE since it is much easier to perform.

92

Page 93: De Chap 2 LDE of Order One

Example1) Find the general solution of

(x + 2y + 6)dx (2x + y )dy = 0

Solution

For the associated system of linear equations, we

have

The solution point of this is (h, k) = (2, 4)

If we let x = u + h = u + 2 ; dx = du and

y = w + k = w 4 ; dy = dw

then, upon substitution we obtain (u + 2w)du (2u +w)dy = 0. 93

02

062

kh

kh

Page 94: De Chap 2 LDE of Order One

ExampleContinuation:

This is a homogeneous DE with

u = zw ; du = zdw + wdz

Then, by substitution, we get

(zw +2w) (zdw + wdz) (2zw + w)dw = 0

(z + 2) (zdw + wdz) (2z + 1)dw = 0

(z2 + 2z 2z 1)dw + w(z + 2)dz = 0

(z2 1)dw + w(z + 2)dz = 0

94

01

2

2

dz

z

z

w

dw

Page 95: De Chap 2 LDE of Order One

Example

95

01

23

1

21 dz

zzw

dw

Czzw ln|1|ln|1|ln||ln23

21

Cz

zwln

1

)1(ln

32

Cz

zw

1

)1(32

11)4(423

422

yx

yx Cy

)2()6(3 yxCyx

Page 96: De Chap 2 LDE of Order One

ExerciseSolve the following differential

equations.

1. (3x + y 8)dx + (x 2y + 2)dy = 0

2. (16x + 5y 6)dx + (3x + y 1)dy= 0

3. (x y 2)dx + (3x + y 10)dy = 0

4. (2x + 3y + 3)dx + (3x 4y + 13)dy= 0

5. (3x + y 9)dx + (x 4)dy = 0

96

Page 97: De Chap 2 LDE of Order One

ExerciseSolve the following differential

equations.

6. (x + y + 1)dx + (x y 5)dy = 0

7. (6x + y 9)dx + (x 2y + 5)dy = 0

8. (y 1)dx 2(x + y + 1)dy = 0

9. (3x + y 10)dx + (x + 3y + 2)dy = 0

10.(7x + y 8)dx + (x 2y + 5)dy = 0

97

Page 98: De Chap 2 LDE of Order One

References

◦ Differential Equations by D. Zill

◦ Differential Equations by Bedient

◦ Differential Equations by R. Marquez

98