de nite integral bander almutairi last lecture de nite ... · last lecture in the last lecutre we...

49
Definite Integral Bander Almutairi Last Lecture Definite Integral Bander Almutairi King Saud University 10 Sep 2013

Upload: others

Post on 28-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

Definite Integral

Bander Almutairi

King Saud University

10 Sep 2013

Page 2: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

1 Last Lecture

Page 3: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties.

Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 4: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 5: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234.

Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 6: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .

Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 7: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 8: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 9: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 10: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

In the last lecutre we studied the definite integral and we havesome important Theorems and properties. Here are someexamples on Last lecture:

Examples:(a) Suppse

∫ 151 x2dx = 10 and

∫ 151 2xdx = 1234. Use the

integral properties to Evaluate∫ 15

1 (x + 1)2dx .Solution:∫ 15

1(x + 1)2dx =

∫ 15

1(x2 + 2x + 1)dx

=

∫ 15

1x2dx +

∫ 15

12xdx +

∫ 15

1dx , prop(3)

= 10 + 1234 + 14 = 1258, prop(1)

Page 11: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.

Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 12: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:

∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 13: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx

=

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 14: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 15: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 16: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:

∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 17: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx

= −∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 18: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 19: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]

= −∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 20: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 21: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(b) Express∫ 1

4 f (x)dx +∫ 4

6 f (x)dx as one integral.Solution: We can rewrite the given sum as follows:∫ 4

6f (x)dx +

∫ 1

4f (x)dx =

∫ 1

6f (x)dx .

(c) Express∫ 6−2 f (x)dx −

∫ 2−2 f (x)dx as one integral.

Solution:∫ 6

−2f (x)dx −

∫ 2

−2f (x)dx = −

∫ −2

6f (x)dx −

∫ 2

−2f (x)dx

= −[∫ −2

6f (x)dx +

∫ 2

−2f (x)dx

]= −

∫ 2

6f (x)dx , prop(5)

=

∫ 6

2f (x)dx .

Page 22: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.

Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 23: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution:

Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 24: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2.

On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 25: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 26: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2

⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 27: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 28: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x).

Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 29: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(d) Verify the inquality∫ 9

1(5x4 + 3x)dx ≤

∫ 9

1(6x5 + 3x2 + 2)dx ,

without evaluating the integral.Solution: Here [a, b] = [1, 9], f (x) = 5x4 + 3x andg(x) = 6x5 + 3x2 + 2. On [1, 9], we have

5x4 ≤ 6x5

3x ≤ 3x2 ⇒ 3x ≤ 3x2 + 2

Thus, f (x) = 5x4 + 3x ≤ 6x5 + 3x2 + 2 = g(x). Hence byproperty (7) we get∫ 9

1f (x)dx ≤

∫ 9

1g(x)dx .

Page 30: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 31: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 32: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 33: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution:

First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 34: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1

=⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 35: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒

du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 36: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2

=⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 37: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒

u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 38: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0

=⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 39: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒

u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 40: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx

=

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 41: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx

=

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 42: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 43: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 44: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(e) In the integral∫ 0−2

3√x + 1dx :

(i) Find a number z satisfy the conclusion of the main-valuetheorem.

(ii) Find the average value of f on [−2, 0].

Solution: First we evaluate the integral by subtitution choosing

u = x + 1 =⇒ du = dx

x = −2 =⇒ u = −1

x = 0 =⇒ u = 1.

Now we integrate∫ 0

−2

3√x + 1dx =

∫ 0

−2(x + 1)

13 dx =

∫ 1

−1u

13 du

=

[3

4U

43

]1

−1

= 0.

Page 45: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(i) The Main-Value Theorem is∫ b

af (x)dx = (b − a)f (z)

∫ 0

−2

3√x + 1dx = (0− (−2))(z + 1)

13 = 0

.

Therefore, z = −1 ∈ (−2, 0).

(ii) fav = 1b−a

∫ ba f (x)dx = 1

0−(−2) (0) = 0.

Page 46: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(i) The Main-Value Theorem is∫ b

af (x)dx = (b − a)f (z)∫ 0

−2

3√x + 1dx

= (0− (−2))(z + 1)13 = 0

.

Therefore, z = −1 ∈ (−2, 0).

(ii) fav = 1b−a

∫ ba f (x)dx = 1

0−(−2) (0) = 0.

Page 47: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(i) The Main-Value Theorem is∫ b

af (x)dx = (b − a)f (z)∫ 0

−2

3√x + 1dx = (0− (−2))(z + 1)

13 = 0

.

Therefore, z = −1 ∈ (−2, 0).

(ii) fav = 1b−a

∫ ba f (x)dx = 1

0−(−2) (0) = 0.

Page 48: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(i) The Main-Value Theorem is∫ b

af (x)dx = (b − a)f (z)∫ 0

−2

3√x + 1dx = (0− (−2))(z + 1)

13 = 0

.

Therefore, z = −1 ∈ (−2, 0).

(ii) fav = 1b−a

∫ ba f (x)dx = 1

0−(−2) (0) = 0.

Page 49: De nite Integral Bander Almutairi Last Lecture De nite ... · Last Lecture In the last lecutre we studied thede nite integraland we have some important Theorems and properties. Here

DefiniteIntegral

BanderAlmutairi

Last Lecture

(i) The Main-Value Theorem is∫ b

af (x)dx = (b − a)f (z)∫ 0

−2

3√x + 1dx = (0− (−2))(z + 1)

13 = 0

.

Therefore, z = −1 ∈ (−2, 0).

(ii) fav = 1b−a

∫ ba f (x)dx = 1

0−(−2) (0) = 0.