decomposition of biological netktworks...2011/05/25  · [2] h. ma and a. zeng, reconstruction of...

11
Decomposition of biological Decomposition of biological t k t k networks networks Alice Hubenko and Igor Mezić

Upload: others

Post on 07-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Decomposition of biological Decomposition of biological t kt knetworksnetworks

Alice Hubenko and Igor Mezić

Page 2: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Outline of the talk

Network topology  and regulation

Giant Strong Component

Parametric sensitivity analysis can be usedParametric sensitivity analysis can be used 

to identify dominating forward‐feedback structure of 

the Giant Strong Component

Page 3: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Modeling a biological network

Each concentration is a state in the dynamical system

Elementary reaction

i

d

reaction rate constant

HVD decompositionHVD decomposition  reveals the crude structure of  "influence" in the network

Does not need the exact form of equations!

[1] I. Mezić, Coupled Nonlinear Dynamical Systems: Asymptotic Behavior and Uncertainty Propagation, 43rd IEEE Conference on Decision and Control December 14‐17,(2004).

Page 4: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

HVD decomposition for biological networks

1. Identify Strong Components (SCs) of graph G.

2. Make the graph of strong components SC(G). Vertices of SC(G) correspond to strong components. 

3. Place vertices of SC(G) with no out‐edges  in the top level.

4. To form the next level: cut all the vertices  that have been assigned to some level from SC(G) and find the vertices with no out‐edges in the resulting  graph.    

Page 5: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Problem: giant strong component

The dynamics  of  each component can only be affected by the ones below it

•Problem: Giant strong component

Cutting hubs reduces the size of the networkCutting hubs reduces the size of the network, but may can alter dynamical properties

[2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms, Bioinformatics, 2003[3] S. Schuster et al., Exploring the pathway structure of metabolism: Decomposition into subnetworks and application to Mycoplasma pneumoniae, Bioinformatics,18, 2002

Page 6: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Decomposition of NFkB network

Identifying Minimal Production Unit

Dynamical system with 15 states  and 29 parameters

HVD decomposition obtained by cycle search: a rather complicated procedure

[3] Y. Lan, I. Mezić, On the architecure of cell regulation networks , BMC systems biology

Page 7: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Modeling a biological networkParametric sensitivity analysis

Sensitivity coefficientParameters =reaction rate constants

steady state

Step function perturbationAbsolute value of sensitivity coefficient

ters

paramet

timeNFkB network

Page 8: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Modeling a biological networkParametric sensitivity analysis

Sensitivity metricsy

s

ity m

etrics

vity m

etrics

sensitiv

sensitiv

parametersparameters

Page 9: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Finding the forward structure

Sensitivity metrics

Parameters that affect within short time interval:Parameters that affect            within short time interval: 

States affected b these parametersStates affected by these parameters:

States in forward part obtained by using sensitivity metrics are identical to reduction obtained by 

i f db k i l h i [3]removing feedbacks using cycle search in [3]  

Page 10: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Finding the dominating feedbacks

P t th t ff t ithi l ti i t lParameters that affect within long time interval

R lti d i ti f db kResulting dominating feedbacks:

Page 11: Decomposition of biological netktworks...2011/05/25  · [2] H. Ma and A. Zeng, Reconstruction of metabolic networks from genome data and analysis of their global structure for various

Conclusions

•Based on the idea that the forward part of the complex biological network is activates before the feedbacks take effect, we used parametric sensitivity analysis to identify the forward part of the network   

•Parametric sensitivity analysis is a promising tool in finding dominant parts of complex biological networkscomplex biological networks 

Thank you!Thank you!