deep sea drilling project initial reports volume 94 · 2007-04-27 · tractus universus occurs...

15
16. RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN, DEEP SEA DRILLING PROJECT LEG 94 1 M. J. Westberg-Smith, L. E. Tway, and W. R. Riedel, Geological Research Division, Scripps Institution of Oceanography 2 ABSTRACT Radiolarians occur at all Leg 94 sites in Quaternary and Pliocene sediments, and at Sites 608 and 610 in Miocene sediments. At Sites 607 and 609 there is an inverse relation between abundance of terrigenous components (in the silt- sand range) and both the abundance and preservation of radiolarians, although this tendency has more exceptions at Site 607. Cluster analysis indicated a substantial change in the radiolarian assemblage at the level of Core 609-12 or -13, but no enduring change was detected in the samples of equivalent age at Site 607. INTRODUCTION DSDP Leg 94 drilled six sites in the mid-Atlantic be- tween 37° and 53°N: Site 606 607 608 609 610 611 Location 37°20.29 41° 42° 49° 53° 52° 00.07 50.21 52.67 13.47 50.47 'N, 35 'N, 32 'N, 23 'N, 24 °30.02 °57.44 °05.25 ° 14.29 'N, 18°53.69 'N, 30°18.58 W 'W 'W 'W 'W 'W Water depth (m) 3007 3426 3526 3883 2445 3203 Radiolarians are present in the Pleistocene and Pliocene sediments at these sites and in some of the Miocene sed- iments of Sites 608 and 610. Figure 1 summarizes the occurrences of calcareous and siliceous fossils in Leg 94 cores. PROCEDURES Samples were acidified, sieved at 44 μm, and the residue pipetted onto slides and mounted in Canada balsam. Relative abundances of counting groups shown in Table 1 are recorded as percentages of ap- proximately 600 radiolarians counted in diagonal traverses across the slide. Abundance estimates of Miocene species are presented in Tables 2 and 3. RESULTS Site 606 Site 606 consists of two piston-core holes located on the upper western flank of the Mid-Atlantic Ridge. Core- catcher samples from Hole 606 were examined for radi- olarians. Radiolarians are present in the Quaternary and Plio- cene sediments of the first ten cores of Hole 606. Most 1 Ruddiman, W. E, Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office). 2 Address: Geological Research Division, A-020, Scripps Institution of Oceanography, University of California, La Jolla, CA 92093 (reprint requests should be addressed to M. J. Westberg-Smith c/o W. R. Riedel at this address). of the species in these samples are long-ranged forms that provide little stratigraphic information. However, there are several species present whose ranges are con- fined to the upper Pliocene and Pleistocene: Amphirho- palum ypsilon, Didymocyrtis tetrathalamus, and Theo- corythium trachelium. The latest occurrence of Styla- tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core catchers and the assemblage is diverse, containing forms that in- habit warm-temperate surface waters, such as: collos- phaerids, phacodiscids, artiscins, pyloniids, Pterocorys zancleus, Lithopera bacca, and Phormostichoartus cor- bula. In the sample from Core 606-3, the radiolarians are less well preserved and less diverse, and in the next core, 606-4, siliceous fossils are dissolved. In the core catchers from Cores 606-5 and -6, radiolarians are mod- erately well preserved, but they are rare and not very di- verse. In core catchers from Cores 606-7 through -10, radiolarians are more abundant, diverse, well preserved, and include the warm-temperate, surface forms found in the top of this hole. All samples from below Core 606-10 were barren of radiolarians. Site 607 Two holes were piston cored at Site 607, in the upper- middle western flank of the Mid-Atlantic Ridge. Radio- larians are present and well preserved in most of the up- per Pliocene to Pleistocene samples examined from Holes 607 and 607A, and in several upper Miocene samples from Hole 607A. The latest occurrence of Stylatractus universus occurs between Samples 607-2-6, 40-42 cm and 607-l,CC; and between Samples 607A-3,CC and 607A- 2,CC. Samples that contain abundant, diverse assem- blages of radiolarians, including species considered indic- ative of warm-temperate surface water (collosphaerids, artiscins, pyloniids, Pterocanium charybdeum, Phormos- tichoartus corbula, and others), are interspersed with samples that contain only rare, long-ranging species be- lieved to inhabit cold or deep water (robust actinommids, spongodiscids, Cornutella sp., Cyrtopera laguncula), or in which radiolarians are entirely absent. Abundance and 763

Upload: others

Post on 02-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

16. RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN, DEEP SEA DRILLINGPROJECT LEG 941

M. J. Westberg-Smith, L. E. Tway, and W. R. Riedel, Geological Research Division,Scripps Institution of Oceanography2

ABSTRACT

Radiolarians occur at all Leg 94 sites in Quaternary and Pliocene sediments, and at Sites 608 and 610 in Miocenesediments. At Sites 607 and 609 there is an inverse relation between abundance of terrigenous components (in the silt-sand range) and both the abundance and preservation of radiolarians, although this tendency has more exceptions atSite 607. Cluster analysis indicated a substantial change in the radiolarian assemblage at the level of Core 609-12 or -13,but no enduring change was detected in the samples of equivalent age at Site 607.

INTRODUCTION

DSDP Leg 94 drilled six sites in the mid-Atlantic be-tween 37° and 53°N:

Site

606607608609610611

Location

37°20.2941°42°49°53°52°

00.0750.2152.6713.4750.47

'N, 35'N, 32'N, 23'N, 24

°30.02°57.44°05.25° 14.29

'N, 18°53.69'N, 30°18.58

W'W'W'W'W'W

Water depth(m)

300734263526388324453203

Radiolarians are present in the Pleistocene and Pliocenesediments at these sites and in some of the Miocene sed-iments of Sites 608 and 610. Figure 1 summarizes theoccurrences of calcareous and siliceous fossils in Leg 94cores.

PROCEDURES

Samples were acidified, sieved at 44 µm, and the residue pipettedonto slides and mounted in Canada balsam. Relative abundances ofcounting groups shown in Table 1 are recorded as percentages of ap-proximately 600 radiolarians counted in diagonal traverses across theslide. Abundance estimates of Miocene species are presented in Tables2 and 3.

RESULTS

Site 606

Site 606 consists of two piston-core holes located onthe upper western flank of the Mid-Atlantic Ridge. Core-catcher samples from Hole 606 were examined for radi-olarians.

Radiolarians are present in the Quaternary and Plio-cene sediments of the first ten cores of Hole 606. Most

1 Ruddiman, W. E, Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94: Washington(U.S. Govt. Printing Office).

2 Address: Geological Research Division, A-020, Scripps Institution of Oceanography,University of California, La Jolla, CA 92093 (reprint requests should be addressed to M. J.Westberg-Smith c/o W. R. Riedel at this address).

of the species in these samples are long-ranged formsthat provide little stratigraphic information. However,there are several species present whose ranges are con-fined to the upper Pliocene and Pleistocene: Amphirho-palum ypsilon, Didymocyrtis tetrathalamus, and Theo-corythium trachelium. The latest occurrence of Styla-tractus universus occurs between Samples 606-l,CC and606-2,CC.

Preservation is very good in the first two core catchersand the assemblage is diverse, containing forms that in-habit warm-temperate surface waters, such as: collos-phaerids, phacodiscids, artiscins, pyloniids, Pterocoryszancleus, Lithopera bacca, and Phormostichoartus cor-bula. In the sample from Core 606-3, the radiolariansare less well preserved and less diverse, and in the nextcore, 606-4, siliceous fossils are dissolved. In the corecatchers from Cores 606-5 and -6, radiolarians are mod-erately well preserved, but they are rare and not very di-verse. In core catchers from Cores 606-7 through -10,radiolarians are more abundant, diverse, well preserved,and include the warm-temperate, surface forms foundin the top of this hole. All samples from below Core606-10 were barren of radiolarians.

Site 607Two holes were piston cored at Site 607, in the upper-

middle western flank of the Mid-Atlantic Ridge. Radio-larians are present and well preserved in most of the up-per Pliocene to Pleistocene samples examined from Holes607 and 607A, and in several upper Miocene samplesfrom Hole 607A. The latest occurrence of Stylatractusuniversus occurs between Samples 607-2-6, 40-42 cm and607-l,CC; and between Samples 607A-3,CC and 607A-2,CC. Samples that contain abundant, diverse assem-blages of radiolarians, including species considered indic-ative of warm-temperate surface water (collosphaerids,artiscins, pyloniids, Pterocanium charybdeum, Phormos-tichoartus corbula, and others), are interspersed withsamples that contain only rare, long-ranging species be-lieved to inhabit cold or deep water (robust actinommids,spongodiscids, Cornutella sp., Cyrtopera laguncula), orin which radiolarians are entirely absent. Abundance and

763

Page 2: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

606 607 608 609 610 611

Pleist.

upperPliocene

lowerPliocene

upperMiocene

middleMiocene

lowerMiocene

110

18

10 i

H

30

132

44

126

42

1A21/V

I

46

21',

Figure 1. Neogene sediments cored on Leg 94. Core sites are repre-sented by numbered rectangles. Empty areas indicate sedimentscontaining only calcareous micro fossils, hachured areas indicatethe presence of both calcareous and siliceous microfossils. Notethat Hole 608 continues down through the Paleogene, but no sili-ceous microfossils were found below the Neogene.

preservation of radiolarians are shown in Figure 2, anddiscussed later in this chapter. Table 1 shows percent abun-dances of counting groups from some of these samples.

In the core catchers from the Pliocene and PleistoceneHole 607A samples, radiolarians are very rare or absentbelow Core 607A-9, except for Sample 607A-12,CC. Ra-diolarians are present in upper Miocene Samples 607 A-23,CC and -24,CC, but only in -24,CC are they abun-dant and diverse. Stichocorys peregrina is common inthis sample, therefore it belongs in either the S. peregri-na Zone or the Spongaster pentas Zone.

Site 608

Two holes were piston cored at Site 608 on the south-ern flank of the King's Trough tectonic complex. Be-cause the cores from the two holes could be expected to

be closely similar, radiolarians were not investigated inboth. Samples from Miocene, upper Pliocene, and Pleis-tocene sediments of Hole 608 contain radiolarian as-semblages. In the Pliocene and Pleistocene cores, inter-vals with well-preserved, diverse assemblages alternatewith intervals in which there are only robust, deep-livingradiolarians or in which there are no siliceous fossils.The only radiolarian event observed in these cores is thelatest occurrence of Stylatractus universus which occursbetween Samples 608-2,CC and 608-1,CC.

With the exception of a few forms in Sample 608-11 ,CC, radiolarians are absent from Section 608-9-3 downthrough Core 608-28. All eight samples examined be-tween Samples 608-29-2, 40-42 cm and 608-32-5, 40-42cm contain species representative of the middle MioceneDorcadospyris alata Zone. Table 2 shows the order ofmagnitude abundances of these species. Below Core608-33, all the samples that were examined are barren ofsiliceous fossils.

Site 609

Site 609 is located on the upper-middle eastern flankof the Mid-Atlantic Ridge, and consists of four holes,one of which is reported on here.

Radiolarians are present in the upper Pliocene to Pleis-tocene sediments of Site 609. Preservation of radiolari-ans throughout these cores is generally good, but in manysamples, dilution by glacial debris is so great that veryfew or no radiolarians are observed on the strewn slides.In Figure 2, which presents abundance of radiolariansfrom Hole 609, every sample shown to contain few orno radiolarians has abundant glacial debris in the strewnslides of the fraction >44 µm. Samples with abundant,well-preserved assemblages can be found down throughSample 609-26,CC. Orosphaerid fragments and occa-sional robust forms were found in a few samples be-tween Cores 27 and 30, and sediments below that levelare barren of siliceous fossils.

Most of the forms found in Hole 609 are long-rang-ing species, but Amphirhopalum ypsilon, Theocorythiumtrachelium, and T. vetulum, which are characteristic ofPliocene to Pleistocene assemblages, are present in manyof the samples above Core 609-15. Percent abundancesof radiolarian counting groups in Cores 609-1 through17 are recorded in Table 1.

Site 610

Site 610 is located on the western side of the RockallTrough at the crest of the sediment drift, Feni Ridge. Sixholes were drilled at this site, two of which were exam-ined for this report.

Radiolarians are present in the Pleistocene, upper Plio-cene, and Miocene sediments of Site 610. The glacial cy-cles of the Pliocene and younger cores yield samplesthat alternate between very well-preserved, abundant, di-verse assemblages, and sparse assemblages of a few ro-bust taxa and samples in which there are no radiolariansat all. In Hole 610A, radiolarians were found in at leastone sample from nearly every core down to 610A-21,CC.

The Miocene cores also contain radiolarian assem-blages in varying degrees of abundance and preserva-

764

Page 3: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

No. of radiolariansHole 607

cores 10 100 1000 10,000

jepth

(m

)S

ub-b

ott<

1 0 -

2 0 -

3 0 -

4 0 -

5 0 -

6 0 -

7 0 -

8 0 -

9 0 -

1

2

3

4

5

6

7

8

9

10

Legend

- Radiolarians

Mineral grains

Radiolarian preservation:1 = good2 = rather good3 = moderate4 = rather poor

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

No. of radiolariansHole 609

cores 10 100 1000 10,000

1 0 -

2 0 -

3 0 -

4 0 -

5 0 -

6 0 -

7 0 -

E 8 0 -

9 0 ^

100-^

1 1 0 -

120-

130-

140"

150

160 -

170-

180-

Figure 2. Numbers of radiolarians and mineral grains, and radiolarian preservation on strewn slides of the >44-µm frac-tion at Sites 607 and 609.

tion. Sample 610-15-2, 46-48 cm is placed in the Didy-mocyrtis antepenultima Zone based on the presence ofthat species and absence of its ancestor, D. laticonus.Samples from Cores 610-16,-17, and -18 contain speciescharacteristic of the middle Miocene Diartus petterssoniand Dorcadospyris alata Zones. Although the following

species are found in small numbers, each occurs in atleast two consecutive samples in this interval: Didymo-cyrtis laticonus, Dorcadospyris alata, Lithopera renzae,and L. neotera. In Cores 610-19 and -20, radiolariansare either too rare and poorly preserved for age determi-nation or they are entirely dissolved. Between Samples

765

Page 4: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

Table 1. Abundance of radiolarian counting groups at Sites 607 and 609.

Sample(core-section,

interval in cm)

Hole 607

1-1,1-3,2-2,2-6,3-2,3-4,4-3,4-6,5-2,5-4,6-1,6-5,7-2,7-5,8-1,8-4,9-3,10-2

1-1,1-4,2-2,2-6,3-3,4-2,4-5,5-3,6-1,6-4,7-1,7-5,8-2,8-5,9-1,9-3,9-5,10-110-511-311-512-212-412-613-514-214-515-115-415-616-117-117-4

40-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-42, 40-42

40-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-42

40-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-4240-42

Slideno.

1212112121|1111112

112211211111211212121121112212212

1an

ds)

>. R

adio

l;ie

(t

hou

s

Z ^

15.020.030.010.020.0

5.025.020.0

7.020.025.015.020.015.028.010.05.05.0

22.06.53.0

20.31.5

12.017.015.015.018.015.08.0

19.04.0

19.027.5

6.717.015.84.58.2

10.328.010.75.1

13.049.013.919.110.00.0

10.015.0

Ia.

CC

cGGMMGGGGGGMGGMP

GGGGGGGGGGGGGGGGGGGMMMGMMGGGGMPMM

jnte

d

È

Z

596589599605601603599607588589605606600595604603598601

650610601595599600587605606597599601601699601599597600598601600601600600603601600601599607601599588

id g

rp.

>llo

spha

ei

o

0.21.20.70.71.50.70.22.04.50.80.50.00.20.00.00.70.20.3

0.00.31.00.00.20.30.00.20.00.00.00.00.30.00.20.00.00.00.30.00.00.00.20.00.00.00.00.00.00.00.00.00.2

1

med

ia

s

X

0.00.30.30.30.00.20.20.00.70.31.00.50.20.00.00.50.00.0

0.33.91.50.84.01.72.70.51.30.50.50.80.30.10.70.20.21.51.70.00.50.20.80.30.20.00.20.20.00.30.00.00.0

'nta

tail

ha

di

1

0.00.20.70.00.20.30.50.50.50.00.20.30.50.00.30.50.00.0

0.00.80.00.00.30.20.30.30.00.20.50.00.20.00.20.30.00.20.00.00.00.02.00.20.01.30.20.20.20.01.00.00.2

<

'us

grp

uppa

trac

,

Q

0.20.00.00.00.00.30.00.30.70.30.30.00.30.20.30.00.50.5

0.00.30.20.20.20.80.00.00.00.00.00.00.00.60.00.70.20.00.00.20.30.20.30.00.70.00.20.30.00.00.20.50.3

m

'us

grp

|

I1

0.00.20.30.20.00.70.01.23.51.20.20.30.71.71.31.04.35.2

1.81.62.73.91.20.71.92.10.21.70.01.20.20.00.30.31.30.21.71.20.21.81.30.20.81.23.00.01.31.02.0

16.21.9

d

£

*

0.20.71.20.30.00.50.20.50.50.20.50.00.00.20.00.70.20.0

0.20.72.70.31.51.30.00.70.30.70.70.70.50.00.30.20.01.21.20.30.30.20.20.20.00.70.70.20.00.20.00.20.0

' lá

ngii

11

0.00.80.00.50.30.00.00.00.00.00.00.20.00.00.00.00.00.2

0.20.00.20.30.20.30.00.00.00.00.00.30.20.30.20.30.00.00.00.00.00.00.30.00.00.00.20.00.20.00.00.00.2

'la

tra

ctu

s

0.00.00.00.00.00.00.00.20.00.00.00.00.00.20.00.00.00.0

0.00.00.00.00.00.80.00.00.00.20.20.00.00.00.50.20.00.00.70.30.80.31.30.51.20.50.70.31.30.20.80.00.0

d

ε

1•S

£

0.00.20.00.00.00.00.00.00.80.00.00.00.70.00.00.50.00.0

0.00.00.00.30.00.00.00.00.00.00.00.00.00.30.00.00.00.20.20.20.00.20.00.00.00.20.00.00.00.00.00.00.0

-d

1

her

Act

in

C

3.99.09.23.47.29.24.88.39.22.57.25.09.74.36.25.24.54.5

2.94.1

13.05.99.27.85.68.19.14.55.33.53.56.73.22.34.93.85.20.74.85.26.52.53.69.36.04.59.26.13.05.32.2

acod

isci

d

α.

0.00.20.30.00.00.00.00.00.30.30.30.00.30.00.00.00.30.0

0.00.30.00.20.30.80.20.00.00.00.30.00.00.10.00.00.00.20.00.20.00.20.20.00.00.20.00.20.30.00.00.00.0

tisc

in g

rp

<

0.00.00.20.20.00.20.00.20.00.80.50.20.00.20.30.20.20.0

0.00.00.20.00.00.00.00.00.00.20.00.00.20.00.20.00.00.30.20.00.00.00.00.30.00.00.20.00.00.00.00.00.0

alu

m g

|

J

0.20.30.00.20.20.20.20.20.30.00.30.00.50.08.50.50.28.7

0.00.00.00.00.00.00.00.00.20.20.00.30.20.00 ?0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.3

ie g

rp.

Q

0.72.20.81.61.32.82.51.82.51.80.81.51.30.80.80.80.72.5

0.80.81.20.32.81.70.71.22.50.51.21.21.00.90 31.30.21.51.80.30.80.21.81.20.00.52.81.02.21.20.30.51.2

rod

iscu

s

s,

2.93.54.81.02.36.75.0

10.34.32.06.23.87.57.55.22.54.77.2

8.23.93.88.43.33.53.22.17.13.00.37.72.34.94 27.25.94.53.77.76.55.22.83.80.25.72.23.03.04.92.04.2

11.1

grp•

/lod

icty

a

0.50.31.20.51.71.00.02.02.51.72.01.51.80.50.31.30.81.3

11.43.02.54.41.31.53.22.31.70.81.2

.1.71.72.11 51.81.01.50.70.31.52.30.51.20.00.81.30.30.50.70.00.00.5

•d

ds

on

goco

re

0.80.50.50.50.20.70.80.81.20.50.80.50.50.00.20.30.30.2

0.01.30.00.01.20.51.70.81.01.20.80.50.00.00 20.20.20.20.20.00.20.00.00.20.00.50.20.00.00.00.00.00.5

d

3

on

go

dis

c

14.514.85.7

17.112.913.726.911.310.215.315.426.916.522.324.311.816.418.5

11.46.46.5

11.614.27.5

14.712.119.124.122.423.314.029.824 039.629.122.529.129.325.025.020.048.724.233.947.746.635.235.748.332.743.9

d

•to

pyle

gr

δ

0.20.20.20.00.00.00.20.00.30.00.00.00.00.00.00.00.00.3

0.00.20.00.00.00.00.00.20.50.30.00.00.20.00 00.20.00.00.70.00.20.00.00.00.00.00.00.00.30.30.00.00.0

d

^xap

yle

gi

0.00.00.00.00.00.00.00.20.00.00.00.20.20.00.20.00.20.2

0.00.20.00.00.20.20.00.00.00.00.00.00.00.30 20.00.00.00.00.00.20.00.00.00.00.00.20.00.30.30.30.00.0

trap

yle

gi

0.00.30.80.20.50.20.31.00.80.50.71.30.70.20.00.80.30.3

0.60.00.00.20.00.30.01.30.51.20.80.31.20.40 70.80.20.00.30.20.00.20.20.30.00.00.20.00.20.30.20.00.3

d

rco

pyl

e %

•3

0.00.00.00.80.20.80.50.20.80.50.80.51.70.00.70.31.70.0

0.00.30.20.30.30.71.00.50.70.70.20.30.50.0n ?0.50.21.00.30.00.30.30.70.30.00.80.50.01.02.60.00.30.9

ino

rth

eliu

s m

•j

25.210.510.311.520.823.417.216.714.715.015.613.413.517.010.018.517.027.7

23.115.618.512.312.017.316.414.213.512.712.416.614.517.918.023.425.111.519.416.319.29.7

13.015.88.6

13.511.59.09.74.9

18.313.217.9

rp.

'losp

ira

g

11.115.512.68.4

16.915.9

9.219.514.215.512.110.212.2

6.010.818.210.512.0

10.87.97.06.95.8

14.07.37.39.18.06.57.29.28.49.24.84.25.29.06.38.24.7

17.54.73.6

22.17.75.87.5

11.24.26.85.4

d

•ra

tosp

yn

0.00.00.30.20.00.00.20.31.01.00.20.20.80.30.50.20.20.0

0.30.30.20.00.00.00.20.30.00.30.70.70.20.00 80.00.30.50.20.00.00.20.20.00.00.00.00.00.20.00.00.00.0

1

: rh

onti

•a

0.00.00.00.20.00.00.00.00.20.00.00.00.00.00.20.00.00.0

0.00.00.00.00.20.00.00.20.00.00.00.00.00.0

on0.00.00.00.00.00.00.00.00.00.00.00.00.00.20.00.00.00.0

grp

.'g

ocir

cus

N

0.30.20.50.70.50.30.30.71.31.30.51.20.30.30.50.71.80.2

0.80.30.20.20.50.00.30.20.20.50.70.00.70.0i n

0.00.00.50.50.20.80.20.50.20.20.00.00.00.00.00.00.00.0

a gr

p.•

nphi

plec

i

0.00.00.50.00.00.20.00.20.00.00.30.00.20.00.00.20.00.2

0.20.00.20.00.00.20.00.20.20.00.30.00.30.00.00.00.00.20.20.00.00.00.00.00.00.00.00.00.20.00.00.00.0

D.

11

g

0.50.82.51.53.00.70.20.51.80.81.00.01.00.51.00.82.50.7

0.91.61.21.21.31.00.71.80.00.20.50.21.50.3? 70.20.51.50.30.00.50.01.50.51.30.20.30.50.80.72.20.70.2

i gr

p.

•ra

tocy

rti.

U

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.50.20.20.0

0.90.20.00.00.20.20.20.20.30.21.70.20.00.11 00.50.20.30.00.00.00.20.30.20.00.00.20.20.30.30.00.00.2

Note: The third column shows the estimated number of radiolarians on the strewn slide. Preservation (fourth column): G = good, M = moderate, and P = poor. The fifth column shows the actual number counted to derivethe percentages that make up the remainder of the table.

610-21-2, 46-48 cm and 610-27.CC, radiolarian assem-blages are more abundant and moderately well-preserved,and appear to be from the Cyrtocapsella tetrapera Zoneof the early Miocene. This age is based on the presenceof C. tetrapera, C. cornuta, and Lychnocanoma elonga-ta, and the absence of Stichocorys delmontensis and S.wolffii. In Samples 610-21-2, 46-48 cm and 610-26-3,70-72 cm there are single, reworked specimens of thelate Eocene Lithocyclia aristotelis group. Abundancesof Miocene species are recorded in Table 3.

Site 611

Site 611 consists of six holes drilled on the northeast-ern edge of Gardar Drift along the eastern flank of theReykjanes Ridge.

Radiolarians are well-preserved, but generally not veryabundant in some of the samples examined from Hole

611. Core catchers of Cores 611-2, -5, -6, and -7 are bar-ren or contain only occasional specimens. Very sparseassemblages were found in Cores 611-8, -12, and -14,and Cores 611-1, -3, -4, -11, and -13 have more abun-dant and diverse assemblages. In the Pliocene to upperMiocene sediments below Core 611C-15, radiolarians arevery rare or absent, with the exception of Cores 611C-18,-20 and -27. Site 611 is reported on in another chap-ter in this volume (Morley, this volume).

ABUNDANCE AND PRESERVATION OFRADIOLARIANS

Abundances of radiolarians on slides prepared rou-tinely from unweighed samples were estimated accord-ing to the procedure described by Riedel and Sanfilippo(1978, pp. 82-83), and preservation was recorded accord-ing to the numbered scale established by Westberg and

766

Page 5: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

Table 1 (continued).

d

Lop

hoph

aena

gi

5.73.57.75.73.43.52.00.03.84.02.51.85.85.04.24.07.02.8

4.65.27.2

10.84.87.35.69.47.36.04.23.7

10.02.45.82.51.79.07.02.57.27.24.25.23.00.53.24.25.84.63.22.21.4

imus

grp

.

I

3.73.87.86.65.71.81.03.73.54.74.43.83.23.34.25.26.32.2

3.27.23.33.44.04.24.33.32. '3.95.83.08.20.96.52.73.93.83.00.72.34.84.54.04.52.52.54.32.33.11.52.52.7

rp.

AS

eth

op

ho

rmin

g

0.00.00.20.00.00.00.01.70.00.00.00.00.00.00.00.00.00.2

0.20.20.20.20.00.50.00.20.00.00.20.20.00.00.00.00.00.30.20.20.00.00.50.00.00.00.00.00.20.20.00.00.0

CQ

d

Set

ho

ph

orm

in g

0.00.80.30.00.00.00.00.00.20.20.70.30.00.00.00.20.30.2

0.00.00.70.00.00.50.20.50.00.00.00.00.00.00.20.00.00.30.20.00.00.00.50.20.00.00.00.00.00.20.00.00.0

Oth

er P

lago

niid

0.20.00.00.20.50.00.20.00.30.00.50.00.20.00.00.00.00.0

0.50.80.50.20.50.80.20.70.50.30.50.00.50.00.20.20.20.20.50.00.20.00.30.00.20.20.30.50.20.50.00.00.2

pp

.B

athr

opyr

amis

s

0.00.20.20.00.00.00.20.00.20.20.20.20.30.00.00.20.30.0

0.00.00.20.00.00.20.00.30.20.00.20.20.00.90.00.00.00.00.00.20.20.00.00.20.00.00.00.20.00.00.30 00.0

Cor

nute

lla

spp

.

1.41.22.80.51.00.70.20.31.70.81.30.31.30.20.52.50.30.8

2.60.82.51.21.20.72.41.30.50.30.00.32.50.30.50.30.51.20.80 ?0.70.70.70.73.80.01.50.50.71.01.81.20.7

§

Cyc

lado

phor

a di

17.915.17.5

27.35.25.5

21.11.02.0

17.88.0

16.72.0

17.516.86.04.21.8

1.415.94.2

17.313.09.39.08.4

10.418.917.014.510.515.26.50.2

12.79.33.5

29.612.520.6

1.32.8

35.70.20.29.79.8

12.04.37.20.9

•orn

isT

heoc

alyp

tra

bit

0.00.00.00.32.00.50.03.80.00.80.70.00.00.00.50.00.70.2

0.20.30.00.20.50.00.00.80.00.50.00.70.20.30.30.00.20.20.00 00.30.00.00.00.00.00.00.00.00.00.00.00.0

Cyr

tope

ra

lagu

n

0.00.20.20.30.50.00.00.00.00.00.20.00.00.00.20.20.00.0

0.00.30.30.50.80.20.20.00.00.00.30.00.00.00.00.00.00.00.30.00.00.00.30.00.00.00.20.00.00.00.00.00.0

d

Dic

tyop

him

us

gi

0.00.20.20.00.30.00.20.00.30.00.00.20.30.00.00.20.00.0

0.00.00.20.00.00.00.00.20.00.00.00.00.30.00.00.20.00.00.30 00.20.00 00.20.20.00.20.00.20.00.00.00.0

d

Euc

ecry

phal

us

g

0.20.32.30.20.00.00.00.50.20.21.00.50.30.00.30.50.30.0

0.00.20.50.00.20.30.20.30.00.01.50.20.20.00.20.00.00.00.20.00.20.01.20.70.00.00.30.00.20.00.00.00.0

1

Eucy

rtid

ium

acu

0.20.20.00.00.30.00.00.50.20.20.00.20.00.20.20.00.00.0

0.30.20.50.00.20.00.00.50.30.00.51.00.20.00.00.00.00.00.20.00.00.00.20.20.00.00.0

o.oo.o0.00.00.00.0

E.

calv

erte

nse

0.00.00.00.00.20.00.20.20.00.00.00.00.20.80.20.00.00.2

0.20.00.00.00.00.00.30.00.00.00.00.00.00.00.00.20.00.00.00 00.20.00.00.00.00.20.00.20.00.00.00.00.2

E.

cien

kow

skii

0.00.00.00.00.20.00.00.00.00.00.00.00.00.00.20.50.00.0

0.00.00.00.00.50.00.00.00.20.00.00.00.20.10.00.00.00.00.20 00.0

o.o0.00.00.00.00.00.00.00.00.00.00.0

g

Oth

er

Euc

yrti

dii

0.82.71.50.70.71.20.81.51.21.52.01.51.21.00.70.71.00.7

1.41.61.71.21.00.31.42.61.30.30.52.31.00.91.21.50.71.70.70.20.50.31.71.70.31.20.51.01.01.30.51.00.0

<

Gon

dwan

aria

gr

0.00.20.00.00.00.00.00.00.00.00.00.20.00.00.00.00.20.0

0.00.30.00.00.20.00.00.00.00.00.20.00.00.00.00.20.00.20.00 00.00.00.20.20.00.00.00.00.00.00.00.00.0

CQ

d

Gon

dwan

aria

gr

0.00.00.00.00.00.00.00.00.00.00.00.00.20.00.00.00.00.0

0.00.00.00.20.00.00.00.00.30.20.00.00.30.00.00.20.00.00.00 00.00.00.20.20.00.00.00.00.00.00.00.00 0

D.

Lit

ha

rach

niu

m g

1.00.51.00.81.00.30.20.00.70.50.50.30.00.50.00.80.30.2

1.20.50.70.70.20.20.70.50.30.20.30.30.50.30.20.30.50.20.00 00.30.00.30.30.70.00.00.30.70.00.50.30.0

Pte

roca

nium

grp

0.01.31.30.00.30.50.70.70.50.31.30.20.70.20.21.50.30.3

0.20.02.20.30.70.30.91.30.70.21.50.50.80.00.20.00.01.20.20 30.20.50.70.50.00.80.50.00.20.20.20.30.2

The

ocor

ys g

rp.

0.80.50.20.30.20.80.71.80.00.21.30.01.51.00.51.70.82.0

0.00.00.20.30.20.70.90.70.20.30.31.20.50.40.20.70.30.70.70 00.20.00.30.30.80.00.30.70.30.80.30.71.0

Oth

er t

heo

per

id!

0.20.31.30.81.30.30.00.30.50.81.30.00.00.20.00.50.80.0

0.01.00.30.20.80.20.50.50.30.71.00.30.70.00.70.00.00.30.20.00.00.50.20.00.00.20.20.20.00.00.00.00.0

<d

Car

poca

nist

rum

0.70.72.30.71.00.70.70.71.30.50.50.23.01.81.00.50.72.0

0.80.30.50.00.30.70.20.21.30.00.30.30.30.10.50.20.00.30.70.00.00.00.20.00.70.30.50.00.30.20.30.70.3

CQ

d

Car

poca

nist

rum

0.00.00.00.00.00.00.00.00.00.00.20.00.00.00.00.00.20.3

0.00.00.00.00.00.00.00.00.00.00.20.00.00.00.00.00.00.00.00.00.00.00.00.20.00.20.00.00.00.00.30.20.2

d

An

tho

cyrt

idiu

m

0.00.00.20.00.00.00.00.80.00.00.50.21.00.00.30.80.21.0

0.00.00.00.00.00.00.00.00.00.00.00.00.80.10.30.30.20.50.50.00.00.01.30.00.00.80.30.00 30.00.00.20.2

arit

alis

Lam

proc

ycla

s m

0.00.20.00.00.30.20.00.20.80.20.00.20.20.00.00.00.00.0

0.50.30.00.00.00.30.30.20.30.30.00.00.20.00.00.00.00.00.00.00.50.00.20.20.00.20.00.00.00.00.00.00.0

Lam

proc

yrti

s ha

0.20.20.00.00.00.00.00.00.20.20.00.00.20.00.20.30.00.0

0.00.30.00.00.00.00.20.00.20.00.00.00.20.00.20.20.00.00.00.00.00.00.50.00.00.20.00.00.00.00.00.00.0

Pte

roco

rys

zana

0.31.50.80.20.20.00.00.20.20.20.00.00.00.00.00.00.00.0

0.20.31.50.01.81.52.91.30.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

trac

heli

um g

rp.

The

ocor

ythi

um

0.30.31.00.01.20.00.00.20.50.20.80.30.00.20.31.30.70.2

1.50.52.50.00.00.00.00.70.00.00.00.71.00.00.00.00.00.00.30.00.30.00.80.00.00.50.30.00.01.30.20.00.9

<d

Bot

ryos

trob

us

g

0.31.84.51.53.04.02.03.22.33.22.24.05.23.33.55.25.72.3

3.86.44.84.06.55.08.56.82.63.55.82.06.02.95.54.05.47.82.81.72.37.25.01.84.80.83.03.33.02.83.32.52.7

B.

acqu

ilon

aris

0.00.00.00.00.00.00.00.00.20.00.20.00.00.20.00.00.00.0

0.02.10.00.20.30.50.00.00.00.00.00.00.00.10.5

o.o0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

tus

grp

.P

horm

ost

ichoar

1.21.51.51.10.70.30.50.00.30.21.20.50.70.71.30.70.30.0

0.00.31.20.80.22.00.31.21.80.50.51.30.51.10.50.80.02.50.00.00.30.30.80.20.00.00.20.20.20.00.00.20.2

Siph

ocam

pe

grp

0.50.30.32.00.00.30.00.00.50.20.00.20.20.20.00.00.50.2

0.30.21.20.50.20.00.20.20.30.30.20.00.00.40.30.00.20.50.20.01.71.20.00.00.20.00.02.30.00.00.00.30.7

Spir

ocyr

tis

grp

.

0.20.20.00.00.70.00.00.00.00.20.00.00.00.00.00.00.00.0

0.30.00.00.00.00.70.00.01.00.21.20.30.20.00.00.00.00.00.00.00.20.00.80.00.00.00.00.0

o.o0.00.00.00.0

d

Can

no

bo

try

id g

0.80.51.20.70.00.00.00.00.50.20.20.01.00.20.30.00.50.0

0.60.20.50.21.00.20.30.80.30.70.50.50.80.00.20.20.01.20.20.00.00.70.30.00.20.00.00.30.50.70.20.00.0

d

Car

poca

nari

um

1.20.20.20.50.50.70.20.01.00.30:80.50.21.50.30.30.70.0

0.80.30.20.20.50.20.20.00.20.80.00.00.70.30.00.30.20.30.00.20.20.00.70.20.50.00.00.00.00.20.30.00.5

Riedel (1978). Mineral grains on the slides were visuallyestimated to an order of magnitude. Results are plottedon a logarithmic scale in Figure 2.

At both Sites 607 and 609 there is a strong tendencyfor the radiolarians to be better preserved and more abun-dant where mineral grains are fewer, and vice versa. Thisevidence for dissolution of siliceous microfossils in thepresence of high concentrations of terrigenous silt- andsand-size components has a parallel in the results re-ported by Johnson (1976), who found an inverse corre-lation between siliceous microfossil preservation and in-put of terrigenous silicates in sediments of the easterntropical Pacific.

Exceptions to this general picture are more commonat Site 607. In several of the samples from this site (e.g.,607-1-6, 40-42 cm, 607-2-5, 40-42 cm, 607-5-6, 40-42cm, 607-7-6, 40-42 cm, and 607-10-3, 40-42 cm), lowabundances of radiolarians, poorly preserved, are notassociated with high concentrations of mineral grains.

STATISTICAL ANALYSIS OF RADIOLARIANASSEMBLAGES

Box-Jenkins time series analysis (Box and Jenkins,1976) using the BMDP statistical software package (Dix-on, 1983) was performed on the data to detect any trendsin abundances of the counting groups occurring in thecores. This analysis confirms the impression given bythe tabulation that the abundance of the Spongodiscusgroup decreases with time throughout the section at Site609. The reader can judge the degree of possible taxo-nomic heterogeneity of the forms grouped under thisname by the fact that it includes the three species illus-trated on Plate 15 of Nigrini and Moore (1979).

Cluster analysis was used to determine the similarityof samples and the tendency for the counted taxa toform groups based on the abundance data of the radio-larians at Sites 607 and 609. The abundance data werestandardized and analyzed using the average taxonomic

767

Page 6: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

Table 2. Abundance of Miocene radiolarians at Site 608.

Sample(core-section,

interval in cm)

29-2, 40-4229-6, 40-4229.CC30-2, 40-4230.CC31-2, 40-4231-6, 40-4231.CC32-2, 40-4232-5, 20-22

c

ε.

IfUo 32

0.12.05.01.00.53.01.56.01.00.1

1

pGPMMGGGMP

a

11

!

RR---

-

-

oen

ult

ima

1o

1QR

+

+

-

-

-on

us

.a

IS

Q

RRRRRRrrr

-

"a

1Q

R

-

-

-

aaco

|

r+R

RRRR

nic

a

.1a

1

r

-

pera

S

s.a1ft

o1

RFFF-rR

FFF

an

es

|

|

rrr-RRrr-

I- • ;

FRR.RFRFr

-

1g

13

-r

+r

-

|a

1RFR

+r

R

-

nte

nsi

s

0|

1£5

FFFRFFFFFF

110

o

R

-

-

-

mle

ttei

2.c

α03a.

δ

-+r

-

J co

rbu

la

ú

|

1Eo

R

-r-

a

a

|133

RR.RR

-

Note: Preservation: G = good, M = moderate, P = poor. Abundance: - = looked for but not found; + = <0.01%; r0.01-0.1%; R = 0.1%-1.0%; and F = 1 .O<Vo-lO<Vo.

Table 3. Abundance of Miocene radiolarians at Site 610.

Sample(core-section,

interval in cm)

15-2, 46-48

16-2, 66-6816-6, 46-4816.CC17-3, 46-4818-2, 55-57

19-3, 40-4220-2, 106-108

21-2, 46-4821,CC22,CC23-2, 46-4823.CC24-3, 46-4824.CC25-3, 36-3825.CC26-3, 70-7226,CC27-2, 46-4827-6, 40-4227,CC

trew

n

5 •β.2 c

"2 o

~° -s"~• • α

Z "~

2.7

3.03.02.51.0

0.8

0.2

0.1

1.00.50.2

0.12.0

0.10.3

3.01.00.80.12.0

0.11.5

>

Scü

G

GGGMP

PP

PMPPMPPGMMPGPG

a

Ig-Si

a

Ir

rr-r

-

--r-

-R

oenu

ltim

a

K

a

|

sr

r

-

-

-

-

1_a

o

1Q

Fr-

-

-

-

ag

1|

+

r--r-

a.aa

Is

rR

-

gtto

0

RR

R

RF

R

r

uta

s_a

!

ò

rR

R

RRRRR-RRRF-RRR

nica

o•I,a

fèr

Fr

R

FF

FFRFFRF

R

-

pera

I

s"§3

ù

RRFRF

FR

FFRRFRFCFFRCFF

anes

1•s

|

RRRRFFF.RF

gSio

1

r

Fr-

R

-

-

-

11

+rRR

.

R?

-

ngat

a

o

a

ε0

I

--

-R

R

R+

+

R-

R

1g

ε

11

RRr

-

R

r

R

rRR

r

r

1a

g,δ

-

-

-R

IcQ

Is053

R

Rr

rr

-

-

ina

8&

oS

r

+

-

-

-

-

-

-

1

R

rrr

-

-

-

--

f co

rbu

la

3

Jεo

R

+

-

--

-

-

-

DU

OJ

8

5a

1

---RRR

RR

R

R

Zone

D. antepenultima

D. petterssoni/soliduD. alata

C. tetrapera

Note: For an explanation of symbols, see Table 2.

distance coefficient (Sokal, 1961). For each analysis, acophenetic correlation coefficient (rc; Sokal and Rohlf,1962) was calculated to measure the amount of distor-tion of the original data by the dendrogram. The NT-SYS package for multivariate statistics (Rohlf et al., 1984)was used.

Cluster analyses of the radiolarians produced similarresults for both Sites 607 and 609 (Figs. 3 and 4, respec-

tively). A tight cluster (A) containing most of the radio-larians reflects the low abundances of these radiolariansin the majority of the samples. A second small cluster(B) contains five groups (other Actinommids, Porodis-cus group, Lophophaena group, Pseudodictyophimusgroup, and Botryostrobus group A) with intermediateabundances. Radiolarians with particularly high abun-dances {Spongodiscus group, Lithelius minor, Pylospira

768

Page 7: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

4.0 3.0Average taxonomic distance

2.0 1.0 0,0

All othercountinggroups

Other Actinomids

Porodiscus grp. A

Lophophaeπa grp.

Pseudodictyophimus grp.

Botryostrobus grp. A

Spongodiscus grp.

Lithelius minor

• Pylospira grp.

Cycladophora davisiana

- A

- C

4.0 3.0 2.0 1.0 0.0

Figure 3. Dendrogram resulting from cluster analysis of radiolarian counting groups from Site 607 (rc = 0.9814). See text for an explanation of A-C.

6.0 5 0 4.0

Average taxonomic distance3.0 2.0 1.0 0.0

All othercountinggroups

- A

Other Actinomids

Porodiscus grp. A

Lophophaena grp.

Pseudodictyophimus grp.

Botryostrobus grp. A

Pylospira grp.

Lithelius minor

Cycladophora davisiana

Spongodiscus grp.

6.0 5.0 4.0 3.0 2.0 1.0 0.0

Figure 4. Dendrogram resulting from cluster analysis of radiolarian counting groups from Site 609 (rc = 0.9910). See text for an explanationof A and B.

769

Page 8: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

group, and Cycladophora davisiana) have very low simi-larity values compared to the other radiolarians, andform a third cluster (C) for Site 607.

Samples from Site 609 clustered into three distinctgroups (Fig. 5). With the exception of Sample 609-13-5,40-42 cm, all samples in clusters A and B were taken atthe level of Section 609-12-2 and above. Additional sam-ples would have to be examined to establish whether theapparent concentration of cluster A samples near thetop of the column is meaningful. All samples in clusterC were taken at the level of Section 609-12-4 and belowexcept for Sample 609-9-3, 40-42 cm. This indicates thatthe radiolarian assemblages are distinct in the parts ofthe section above and below Sample 609-12-2, 40-42 cm.From the tabulation it appears that the Stylodictya groupis generally more abundant above this level than belowit, whereas the Spongodiscus group was more abundant

below this level. Theocalyptra bicornis was found in morethan half the samples above this level and in none belowit. We do not attempt to interpret these changes in pa-leoenvironmental terms because they are not very pro-nounced, and we have investigated only one other se-quence (Site 607) with which Site 609 could be com-pared.

Cluster analysis of the samples from Site 607 did notproduce any groups that can be readily interpreted. Sam-ples are clustered into two distinct groups as shown inFigure 6, but these clusters show no stratigraphic coher-ence in the sequence, nor any clear relationship to radio-larian preservation.

These results indicate that analysis of much more close-ly spaced samples (so that several consecutive sampleshave similar assemblages) will be necessary for effectiveinvestigation of the paleoenvironmental signals in the

0.8 0 7 0.6

Average taxonomic distance0.5 0.4 0.3 0.2 0.1 0.0

1-1, 40-32 cm

2-2, 40-42 cm

4-2, 40—42 cm

1-4, 40-42 cm

2-6, 40-42 cm

3-3, 40-42 cm

4-5, 40—42 cm

5-3, 40-42 cm

8-2, 40-42 cm

6-1, 40-42 cm

7-5, 40-42 cm

1 1-5, 40-42 cm

8-5, 40—42 cm

9-5, 40—42 cm

9-1, 40-42 cm

10-5, 40-42 cm

10-1, 40—42 cm

6-4, 40-42 cm

7-1, 40-42 cm

12-2, 40-42 cm

1 1-3, 40 — 42 cm

13-5, 40-42 cm

9-3, 40 — 42 cm

17-4, 40-42 cm

12-6, 40-42 cm

16-1, 40—42 cm

14-5, 40-42 cm

15-1, 40—42 cm

15-4, 40-42 cm

15-6, 40-42 cm

17-1. 40-42 cm

12-4, 40-42 cm

14-2, 40-42 cm

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Figure 5. Dendrogram resulting from cluster analysis of samples from Site 609 (rc = 0.7140). See text for an explanation of A-C.

- A

- B

- C

770

Page 9: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

0.7 0.6 0.5

Average taxoπomic distance

0.4 0.3 0.2 0.1

0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.0

1-1, 40-42 cm

1-3, 40-42 cm

5-4, 40 — 42 cm

4-3, 40—42 cm

7-5, 40-42 cm

6-5, 40-42 cm

8-1, 40-42 cm

2-6, 40-42 cm

2-2, 40-42 cm

3-2, 40-42 cm

8-4, 40-42 cm

3-4, 40-42 cm

6-1, 40-42 cm

4-6, 40-42 cm

5-2, 40-42 cm

7-2, 49-42 cm

9-3, 40-42 cm

10-2, 40—42 cm

0.0

- B

Figure 6. Dendrogram resulting from cluster analysis of samples from Site 607 (rc = 0.8110). See text for an explanation of Aand B.

radiolarian record at Site 607. Similarly, closer samplingat both Sites 607 and 609 would be required for a mean-ingful description and interpretation of radiolarian abun-dances and preservation, and would provide an improvedbasis for the statistical procedures.

TAXONOMIC NOTES

Listed below are the Miocene species used for stratigraphic inter-pretations, as well as the generally supraspecific groups used for count-ing the entire assemblages for paleoenvironmental interpretations.

Family COLLOSPHAERIDAE Müller, 1858Collosphaerid group

All collosphaerids are counted together in this study.

Family ACTINOMMIDAE Haeckel, 1862, emend, Sanfilippo andRiedel, 1980

Genus ACTINOMMA Haeckel, 1860a

Actinomma medianum Nigrini

Actinomma medianum Nigrini, 1967, p. 27, pi. 2, fig. 2a, b; West-berg-Smith and Riedel, 1985, p. 485, pi. 1, fig. la, b.

Genus ANOMALACANTHA Loeblich and Tappan, 1961

Anomalacantha dentata (Mast)

Heteracantha dentata Mast, 1910, p. 37, fig. 47Anomalacantha dentata (Mast), Benson, 1966, p. 170, pi. 5, figs. 10,

11.

Genus DRUPPATRACTUS Haeckel, 1887

Druppatractus group A

Druppatractus group, Westberg-Smith and Riedel, 1985, p. 486, pi. 1,fig. 2.Bipolar actinommid with pear-shaped medullary shell, and coarse

pores on the cortical shell (less than eight across a half-equator). Polar

spines may be conical or bladed, and equal or unequal in length; thelattice of the cortical shell is thick.

Druppatractus group B

Bipolar actinommid with pear-shaped medullary shell and ellipsoi-dal cortical shell. The lattice of the cortical shell is relatively thin,sometimes altogether missing, leaving only the unequal, bladed polarspines and the pear-shaped medullary shell. Members of this group re-semble Druppatractus irregularis Popofsky (1912).

Genus HEXACONTIUM Haeckel, 1881

Hexacontium group

Hexacontium group A, Westberg-Smith and Riedel, 1985, p. 486, pi.1, fig. 4a, b.Spherical form with two medullary shells and six to seven spines in

three mutually perpendicular axes. The pores are small, closely spaced,more than eight across a half-equator. Some forms in this group tendto a cubic shape.

Genus SPHAEROPYLE Dreyer, 1889

Sphaeropyle langii Dreyer

Sphaeropyle langii Dreyer, 1889, p. 13, pi. 4, fig. 54; Kling, 1973, p.634, pi. 1, figs. 5-10, pi. 13, figs. 6-8; Westberg-Smith and Riedel,1985, p. 486, pi. 1, fig. 9.

Sphaeropyle robusta Kling

Sphaeropyle robusta Kling, 1973, p. 634, pi. 1, figs. 11, 12, pi. 6, figs.9-13, pi. 13, figs. 1-5; Westberg-Smith and Riedel, 1985, p. 487,pi. 1, fig. 8.

Genus STYLATRACTUS Haeckel, 1887

Stylatractus universus Hays

Stylatractus sp. Hays, 1965, p. 167, pi. 1, fig. 6.Stylatractus universus Hays, 1970, p. 215.Axoprunum angelinum (Campbell and Clark), Kling, 1973, p. 634, pi.

1, figs. 13-16, pi. 6, figs. 14-18.

771

Page 10: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

Genus STYLOSPHAERA Ehrenberg, 1847a

Stylosphaera group

Stylosphaera spp., Westberg-Smith and Riedel, 1985, p. 487, pi. 2,fig. la, b.Bipolar actinommid with spherical medullary shell and spherical

to subspherical cortical shell with deep-set subcircular pores. Polarspines are cylindrical in cross section, and equal or unequal in length.

Other Actinommids

Any actinommid not previously categorized.

Family PHACODISCIDAE Haeckel, 1881

Phacodiscid group

Phacodiscid group, Westberg-Smith and Riedel, 1985, p. 487.

Family COCCODISCIDAE Haeckel, 1862, emend.Sanfilippo and Riedel, 1980

Subfamily ARTISCINAE Haeckel, 1881, emend, Riedel, 1967a

Artiscin group

All artiscins were counted together for the quantitative part of thisstudy.

Genus DIDYMOCYRTIS Haeckel, 1860a

Didymocyrtis antepenultima (Riedel and Sanfilippo)

Ommatartus antβpenultimus Riedel and Sanfilippo, 1970, p. 521, pi.14, fig. 4; Westberg and Riedel, 1978, p. 22.

Didymocyrtis antepenultima (Riedel and Sanfilippo), Sanfilippo andRiedel, 1980, p. 1010; Sanfilippo et al., in press, fig. 8.6.

Didymocyrtis laticonus (Riedel)

Cannartus laticonus Riedel, 1959, p. 291, pi. 1, fig. 5; Westberg andRiedel, 1978, p. 20.

Didymocyrtis laticonus (Riedel), Sanfilippo and Riedel, 1980, p. 1010;Sanfilippo et al., in press, fig. 8.5a, b.

Didymocyrtis violina (Haeckel)

Cannartus violina Haeckel, 1887, p. 358, pi. 39, fig. 10.Didymocyrtis violina (Haeckel), Sanfilippo and Riedel, 1980, p. 1010;

Sanfilippo et al., in press, fig. 8.3.

Family SPONGODISCIDAE Haeckel, 1862, emend. Riedel, 1967aGenus AMPHIRHOPALUM Haeckel, 1881

Amphirhopalum group

Amphirhopalum ypsilon Haeckel, 1887, p. 522; Nigrini, 1967, p. 35,pi. 3, fig. 3a-d (as Amphirrhopalum ypsilon).

Euchitonia virchowii Haeckel, 1862, p. 503-505, pi. 30, figs. 1-4.Amphirhopalum virchowii (Haeckel), Dumitricà, 1973, p. 835, pi. 9,

figs. 2, 4; pi. 11, fig. 6; pi. 21, figs. 2-13.In the quantitative part of this report, both species of Amphirho-

palum were counted together.

Genus DICTYOCORYNE Ehrenberg, 1860

Dictyocoryne group

Dictyocoryne group, Westberg-Smith and Riedel, 1985, p. 489, pi. 3,fig. 1.All three-armed spongodiscids except the Amphirhopalum group

were counted together in this group. The specimens encountered herehave simple, unchambered arms and no patagium.

Genus PORODISCUS Haeckel, 1881

Porodiscus group

Porodiscus group A, Westberg-Smith and Riedel, 1985, p. 489, pi. 2,fig. 4.

Porodiscus group B, Westberg-Smith and Riedel, 1985, p. 489, pi. 2,fig. 5.A spongy disc with a variable number of regular or irregular con-

centric or spiral rings. The most common form has spongy material

obscuring the concentric structure at the center of the disk, but speci-mens with distinct structure were also counted in this group.

Genus STYLOD1CTYA Ehrenberg, 1847a, emend. Kozlova inPetrushevskaya and Kozlova, 1972

Stylodictya group

Stylodictya spp., Westberg-Smith and Riedel, 1985, p. 489, pi. 2, fig. 6.A disk with concentric chambers, the innermost of which are dis-

tinctly scalloped.

Genus SPONGOCORE Haeckel, 1887

Spongocore spp.

Spongocore spp., Westberg-Smith and Riedel, 1985, p. 489, pi. 3, fig. 2.All cylindrical, bipolar spongodiscids.

Genus SPONGODISCUS Ehrenberg, 1854

Spongodiscus group

Spongodiscus group, Westberg-Smith and Riedel, 1985, p. 489, pi. 2,fig. 7a, b.Any spongy discoidal form with no concentric structure.

Family PYLONIIDAE Haeckel, 1881Genus HEXAPYLE Haeckel 1881

Hexapyle group

Pyloniids with six symmetrical gates.

Genus OCTOPYLE Haeckel, 1881

Octopyle group

Pyloniids with eight symmetrical gates.

Genus TETRAPYLE Müller, 1858

Tetrapyle group

Pyloniids with four symmetrical gates.

Family LITHELIIDAE Haeckel, 1862Genus LARCOPYLE Dreyer, 1889

Larcopyle group

Larcopyle group, Westberg-Smith and Riedel, 1985, p. 490, pi. 3, fig.3a, b.The internal spiral structure is enclosed in a smooth elliptical shell

with regular outline and small pores. There may be a pylome visible atone end that may be surrounded by short spines.

Genus LITHELIUS Haeckel, 1860b

Lithelius minor Jörgensen

Lithelius minor Jörgensen, 1900, p. 65, pi. 5, fig. 24; Westberg-Smithand Riedel, 1985, p. 490, pi. 3, fig. 5.

Genus PYLOSPIRA Haeckel, 1887

Pylospira group

Pylospira group, Westberg-Smith and Riedel, 1985, p. 490, pi. 3, fig.6a, b.This broad counting group includes any litheliid with wide, loose

whorls, and no enclosing shell. Tightly coiled litheliids were countedin the preceding group, L. minor.

Order NASSELLARIA Ehrenberg, 1875Suborder SPYRIDA Ehrenberg, 1847b, emend. Petrushevskaya,

1971Genus CERATOSPYRIS Ehrenberg, 1847a

Ceratospyris group

Ceratospyris group A, Westberg-Smith and Riedel, 1985, p. 491, pi. 3,fig. 9.

Ceratospyris group B, Westberg-Smith and Riedel, 1985, p. 491, pi. 3,fig. 8a, b.

772

Page 11: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

Ceratospyris group C, Westberg-Smith and Riedel, 1985, p. 491, pi. 3,fig. 10.Spyrids were very rare in this material, and this group contains any

spyrid with a bilocular cephalic lattice.

Genus DORCADOSPYRIS Haeckel, 1881

Dorcadospyris alata (Riedel)

Brachiospyris alata Riedel, 1959, p. 293, pi. 1, figs. 11, 12.Dorcadospyris alata (Riedel), Sanfilippo et al., in press, fig. 10.7.

Genus THOLOSPYRIS Haeckel 1881, emend. Goll, 1969

Tholospyris rhombus (Haeckel)

Archicircus rhombus Haeckel, 1887, p. 942, pi. 81, fig. 7.Tholospyris rhombus (Haeckel), Goll, 1972, p. 455, pi. 16, figs. 1-11.

Genus ZYGOCIRCUS Bütschli, 1882

Zygocircus group

Zygocircus group, Westberg-Smith and Riedel, 1985, p. 491, pi. 3,fig. 11.

Family PLAGONIIDAE Haeckel, 1881, emend. Riedel, 1967bGenus AMPHIPLECTA Haeckel, 1881

Amphiplecta group

Amphiplecta group, Westberg-Smith and Riedel, 1985, p. 491, pi. 4,fig. 1.Two-segmented plagoniid with a cylindrical, open cephalis and

widely conical thorax.

Genus ARACHNOCORALLIUM Haeckel, 1887

Arachnocorallium group

Arachnocorallium group, Westberg-Smith and Riedel, 1985, p. 492,pi. 4, fig. 2.One-segmented plagoniid consisting of an ovoid cephalis, the base

of which is a narrow structure composed of the median bar and threeprotruding spines (dorsal and primary laterals).

Genus CERATOCYRTIS Bütschli, 1882

Ceratocyrtis group

Ceratocyrtis group, Westberg-Smith and Riedel, 1985, p. 492, pi. 4,fig. 3a, b.Two-segmented plagoniid in which the small cephalis is separated

from the hood-shaped thorax by a constriction.

Genus LOPHOPHAENA Ebrenberg, 1847b

Lophophaena group

Lophophaena group, Westberg-Smith and Riedel, 1985, p. 492, pi. 4,fig. 4a-e.This large counting group (any two-segmented plagoniid in which

the cephalis and thorax are nearly equal in volume) probably includesseveral genera. The cephalis is spherical to subspherical, and may ormay not have horns. The thorax is open, conical to cylindrical, andmay or may not have appendages. Pores are small, and irregular insize and shape.

Genus PSEUDODICTYOPHIMUS Petrushevskaya, 1971

Pseudodictyophimus group

Pseudodictyophimus group, Westberg-Smith and Riedel, 1985, p.492, pi. 4, fig. 5a, b.Two-segmented form having three thoracic ribs that may extend

beyond the margin of the thorax. The cephalis is small and may bearan apical horn. The second segment is usually open, conical to cylin-drical, but it may be closed. The distinguishing characteristic in thisgroup is the three thoracic ribs usually extending as feet.

Sethophormin group A

Sethophormin group A, Westberg-Smith and Riedel, 1985, p. 492, pi.4, fig. 6.

Widely flattened conical skeleton, with three to four prominentribs and a distinctly differentiated thoracic rim.

Sethophormin group B

Sethophormin group B, Westberg-Smith and Riedel, 1985, p. 492, pi.4, fig. 7.Widely flattened conical skeleton, with no prominent ribs nor dis-

tinctly differentiated thoracic rim.

Other Plagoniids

Other Plagoniids, Westberg-Smith and Riedel, 1985, p. 492, pi. 4, fig.8a, b.Any plagoniid that has not been categorized above.

Family THEOPERIDAE Haeckel 1881, emend. Riedel, 1967aGenus ARTOPHORM1S Haeckel, 1881

Artophormis gracilis Riedel

Artophormis gracilis Riedel, 1959, p. 300, pi. 2, figs. 12, 13.

Genus BATHROPYRAMIS Haeckel, 1881

Bathropyramis spp.

Slender, conical shell with heavy, quadrangular meshes.

Genus CORNUTELLA Ehrenberg, 1838

Cornutella spp.

Cornutella spp., Riedel et al., in press, pi. 4, fig. 4.

Genus CYCLADOPHORA, Ehrenberg, 1847a

Cycladophora davisiana Ehrenberg

Cycladophora davisiana Ehrenberg, 1861, p. 297.The subspecies described by Petrushevskaya (1967) were counted

together in the quantitative part of this study.

Genus CYRTOCAPSELLA Haeckel, 1887

Cyrtocapsella cornuta Haeckel

Cyrtocapsa (Cyrtocapsella cornuta Haeckel, 1887, p. 1513, pi. 78, fig.9.

Cyrtocapsella cornuta Haeckel, Sanfilippo and Riedel, 1970, p. 453,pi. 1, figs. 19-20.

Cyrtocapsella japonica (Nakaseko)

Eusyringium japonicum Nakaseko, 1963, p. 193, text-figs. 20-21, pi.4, figs. 1-3.

Cyrtocapsella japonica (Nakaseko), Sanfilippo and Riedel, 1970, p.452, pi. 1, figs. 13-15.

Cyrtocapsella tetrapera Haeckel

Cyrtocapsa (Cyrtocapsella) tetrapera Haeckel, 1887, p. 1512, pi. 78,fig. 5.

Cyrtocapsella tetrapera Haeckel, Sanfilippo and Riedel, 1970, p. 453,pi. 1, figs. 16-18.

Genus CYRTOPERA Haeckel, 1881

Cyrtopera laguncula Haeckel

Cyrtopera laguncula Haeckel, 1887, p. 1451, pi. 75, fig. 10.

Genus DICTYOPH1MUS Ehrenberg, 1847a

Dictyophimus group

Dictyophimus crisiae Ehrenberg, 1854, p. 1476.Dictyophimus hirundo (Haeckel) group, Nigrini and Moore, 1979, p.

N35, pi. 22, figs. 2-4.In the quantitative part of this study, both species of Dictyophi-

mus were counted together.

773

Page 12: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

Genus EUCECRYPHALUS Haeckel, 1860b, emend.Petrushevskaya, 1971

Eucecryphalus group

Eucecryphalus group, Westberg-Smith and Riedel, 1985, p. 492, pi. 4,fig. 10.Three-segmented shell forming a wide cone. Circular pores are reg-

ularly spaced in transverse rows and increase in size distally. The abdo-men varies from flatly expanded to conical. The most common mem-ber of this group is E. elizabethae (Haeckel) (Petrushevskaya, 1971, p.224).

Genus EUCYRTIDIUM Ehrenberg, 1847a, emend. Nigrini 1967

Eucyrtidium acuminatum (Ehrenberg)

Eucyrtidium acuminatum Ehrenberg 1844, p. 84.Eucyrtidium acuminatum (Ehrenberg), Nigrini, 1967, p. 81, pi. 8, fig.

3a, b.Stichocyrtid with small conical abdomen, lumbar stricture not in-

dented externally, four to five postabdominal segments of approxi-mately equal length expanding distally.

Eucyrtidium calvertense Martin

Eucyrtidium calvertense Martin, 1904, p. 450-451, pi. 130, fig. 5.Stichocyrtid of five of more segments, with distinct change in con-

tour between second and third segments, and with longitudinally align-ed pores set in deep furrows.

Eucyrtidium cienkowskii Haeckel group, Sanfilippo et al.

Eucyrtidium cienkowskii Haeckel, 1887, p. 1493, pi. 80, fig. 9.Eucyrtidium cienkowskii group, Sanfilippo et al., 1973, p. 221, pi. 5,

figs. 7-11; Riedel et al., in press, pi. 4, fig. 6.Multisegmented stichocyrtid with small cephalis and thorax set off

from the remaining segments by a distinct external constriction; thethird segment is conical, longer than the remaining cylindrical seg-ments. Small pores of nearly equal size are longitudinally aligned.Some specimens have winglike thoracic ribs.

Eucyrtidium diaphanes Sanfilippo and Riedel

Eucyrtidium diaphanes Sanfilippo and Riedel, in Sanfilippo et al.,1973, p. 221, pi. 5, figs. 12-14.

Other Eucyrtidium

Any member of the genus that does not fall into one of the abovegroups.

Genus GONDWANARIA Petrushevskaya, 1974

Gondwanaria group A

Gondwanaria group A, Westberg-Smith and Riedel, 1985, p. 493, pi.5, fig. 4.

Gondwanaria group B

Gondwanaria group B, Westberg-Smith and Riedel, 1985, p. 493, pi.5, fig. 5.

Genus LITHARACHNIUM Haeckel, 1860b

Litharachnium group

Tent-shaped, or flattened cone with delicate quadrangular meshes.

Genus LITHOPERA Ehrenberg, 1847a

Lithopera neotera Sanfilippo and Riedel

Lithopera neotera Sanfilippo and Riedel, 1970, p. 454, pi. 1, figs. 24-26, 28; Sanfilippo et al., in press, fig. 16.5a, b.

Lithopera renzae Sanfilippo and Riedel

Lithopera renzae Sanfilippo and Riedel, 1970, p. 454, pi. 1, figs. 21-23, 27; Sanfilippo et al., in press fig. 16.4a-c.

Genus LYCHNOCANOMA Haeckel, 1887

Lychnocanoma elongata (Vinassa de Regny)

Tetrahedrina elongata Vinassa de Regny, 1900, p. 243, pi. 2, fig. 31.Lychnocanoma elongata (Vinassa de Regny), Sanfilippo et al., 1973,

p. 221, pi. 5, figs. 19-20; Sanfilippo et al., in press, fig. 19.1a, b.

Genus LYCHNODICTYUM Haeckel, 1881

Lychnodictyum audax Riedel

Lychnodictyum audax Riedel, 1953, p. 810, pi. 85, fig. 9; Sanfilippoet al., in press, fig. 21.2.

Genus PTEROCANIUM Ehrenberg, 1847a

Pterocanium group

Pterocanium group, Westberg-Smith and Riedel, 1985, p. 493, pi. 5,fig. 6.

Genus STICHOCORYS Haeckel, 1881

Stichocorys armata (Haeckel)

Cyrtophormis armata Haeckel, 1887, p. 1460, pi. 78, fig. 17.Stichocorys armata (Haeckel), Riedel and Sanfilippo, 1971, p. 1595,

pi. 2E, figs. 13-15.

Stichocorys delmontensis (Campbell and Clark)

Eucyrtidium delmontense Campbell and Clark, 1944, p. 56, pi. 7,figs. 19-20.

Stichocorys delmontensis (Campbell and Clark), Sanfilippo and Rie-del, 1970, p. 451, pi. 1, fig. 9; Sanfilippo et al., in press, fig.23.1a, b.

Stichocorys peregrina (Riedel)

Eucyrtidium elongatum peregrinum Riedel, 1953, p. 812, pi. 85, fig. 2.Stichocorys peregrina (Riedel), Riedel and Sanfilippo, 1970, p. 530.

Stichocorys wolffli Haeckel

Stichcorys wolffii Haeckel, 1887, p. 1479, pi. 80, fig. 10; Sanfilippo etal., in press, fig. 23.3a, b.

Genus THEOCALYPTRA Haeckel, 1881

Theocalyptra bicornis (Popofsky)

Pterocorys bicornis Popofsky, 1908, p. 228, pi. 34, figs. 7, 8.Theocalyptra bicornis (Popofsky), Riedel, 1958, p. 240, pi. 4, fig. 4;

Nigrini and Moore, 1979, p. N53, pi. 24, fig. 1.

Genus THEOCORYS Haeckel, 1881

Theocorys group

Theocorys group, Westberg-Smith and Riedel, 1985, p. 493, pi. 5,fig. 10.Three-segmented theoperid with open, although sometimes con-

stricted, abdomen without a differentiated termination. Small, spheri-cal cephalis bears a small apical horn. Pores are subcircular, of nearlyequal size of both abdomen and thorax.

Other Theoperids

Any theoperid not accounted for in one of the preceding countinggroups.

Family CARPOCANIIDAE Haeckel, emend. Riedel, 1967aGenus CARPOCANISTRUM Haeckel, 1887

Carpocanistrum group A

Carpocanistrum group A, Westberg-Smith and Riedel, 1985, p. 493,pi. 5, fig. l la , b.Members of the genus with a smooth shell surface.

Carpocanistrum group B

Carpocanistrum group B, Westberg-Smith and Riedel, 1985, p. 494,pi. 5, fig. 12.

774

Page 13: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

Form similar to Carpocanistrum group A in all respects except thatthe surface of the shell is rough.

Genus CARPOCANOPSIS Riedel and Sanfilippo, 1971

Carpocanopsis bramlettei Riedel and Sanfilippo

Carpocanopsis bramlettei Riedel and Sanfilippo, 1971, p. 1597, pi.2G, figs. 8-14, pi. 8, fig. 7.

Family PTEROCORYTH1DAE Haeckel, emend. Riedel, 1967a,Moore, 1972

Genus ANTHOCYRTIDIUM Haeckel, 1881

Anthocyrtidium group

Anthocyrtidium group, Westberg-Smith and Riedel, 1985, p. 494, pi.5, fig. 15.This group includes all two-segmented pterocorythids.

Genus LAMPROCYCLAS Haeckel, 1887

Lamprocyclas maritalis Haeckel

Lamprocyclas maritalis Haeckel, 1887, p. 1390, pi. 74, figs. 13, 14.Lamprocyclas maritalis maritalis Haeckel, Nigrini, 1967, p. 74, pi. 7,

fig. 5.Lamprocyclas maritalis polypora, Haeckel, Nigrini, 1967, p. 76, pi. 7,

fig. 6.

Genus LAMPROCYRTIS Kling, 1973

Lamprocyrtisd) hannai (Campbell and Clark)

Calocyclas hannai Campbell and Clark, 1944, p. 48, pi. 69, figs. 21,22.

Lamprocyrtis(l) hannai (Campbell and Clark), Kling, 1973, p. 638,pi. 5, figs. 12-14, pi. 12, figs. 10-14.

Genus PTEROCORYS Haeckel, 1881

Pterocorys zancleus (Müller)

Eucyrtidium zanclaeum Müller, 1858, p. 41, pi. 6, figs. 1-3.Pterocorys zancleus (Müller), Nigrini and Moore, 1979, p. N89, pi.

25, fig. l l a , b.

Genus THEOCORYTHIUM Haeckel, 1887

Theocorythium trachelium group

Eucyrtidium trachelius Ehrenberg, 1872, p. 312.Theocorys dianae Haeckel, 1887, p. 1416, pi. 69, fig. 11.Theocorythium trachelium trachelium (Ehrenberg), Nigrini, 1967, p.

79, pi. 8, fig. 2, pi. 9, fig. 2.Theocorythium trachelium dianae (Haeckel), Nigrini, 1967, p. 77, pi.

8, fig. la, b, pi. 9, fig. la, b.Both subspecies were counted together in this study.

Family ARTOSTROBIIDAE Riedel, 1967bGenus BOTRYOSTROBUS Haeckel 1887, emend. Nigrini, 1977

Botryostrobus aquilonaris (Bailey)

Eucyrtidium aquilonaris Bailey, 1856, p. 4, pi. 1, fig. 9.Botryostrobus aquilonaris (Bailey), Nigrini, 1977, p. 246, pi. 1, fig. 1.

Botryostrobus group A

Botryostrobus group, Westberg-Smith and Riedel, 1985, p. 494, pi. 6,fig. la, b.Shell with more than four segments, each with three or more trans-

verse rows of small pores, and separated by deep constrictions. Cepha-lis bears an apical horn and cylindrical vertical tube. Outline of eachsegment is smooth and rounded.

Genus PHORMOSTICHOARTUS Campbell, 1951, emend.Nigrini, 1977

Phormostichoartus corbula (Harting)

Lithocampe corbula Harting, 1863, p. 12, pi. 1, fig. 21.Phormostichoartus corbula (Harting), Nigrini, 1977, p. 252, pi. 1,

fig. 10.

Phormostichoartus group

Phormostichoartus group, Westberg-Smith and Riedel, 1985, p. 494,pi. 6, fig. 2a, b.Cylindrical shell with four segments, many rows of small, transver-

sely aligned pores on third and fourth segments. There is no apicalhorn, and a well-developed, cylindrical vertical tube lies along the proxi-mal thorax.

Genus SIPHOCAMPE Haeckel, emend. Nigrini, 1977

Siphocampe group

Siphocampe group, Westberg-Smith and Riedel, 1985, p. 494, pi. 6,fig. 3.Three-segmented artostrobiid with a short vertical tube and no horn.

Transverse rows of small pores are widely separated. Frequently, round-ed constrictions separate the pore rows of the third segment.

Genus SIPHOSTICHARTUS Nigrini, 1977

Siphostichartus corona

Cyrtophormis (Acanthocyrtis) corona Haeckel, 1887, p. 1462, pi. 77,fig. 15.

Siphostichartus corona (Haeckel), Nigrini, 1977, p. 257, pi. 2, figs. 5-7.

Genus SPIROCYRTIS Haeckel, 1881, emend. Nigrini, 1977

Spirocyrtis group

Spirocyrtis group, Westberg-Smith and Riedel, 1985, p. 494, pi. 6,fig. 4.Multisegmented artostrobiid with prominent flared (duck-billed)

vertical tube and apical horn. Segments with angular constrictions ex-pand distally, presenting a stepped profile.

Family CANNOBOTRYIDAE Haeckel, emend. Riedel, 1967a

Cannobotryid groupAll members of the family were counted together.

Incertae sedisGenus CARPOCANARIUM Haeckel, 1887

Carpocanarium group

Carpocanarium group, Westberg-Smith and Riedel, 1985, p. 494, pi.6, fig. 5.Two-segmented form with hemispherical cephalis separated from

an ovate thorax by a well-defined stricture. Sometimes a small lateralcephalic tube is observed, and in some specimens there are three small,winglike thoracic ribs. Pores are widely spaced, of nearly equal size.

REFERENCES

Bailey, J. W., 1856. Notice of microscopic forms found in the sound-ings of the Sea of Kamtschatka—with a plate. Am. J. Sci. Arts,Ser. 2, 22(64 [Vol. 72]), pp. 1-6, pi. 1.

Benson, R. N., 1966. Recent radiolaria from the Gulf of California[Ph.D. dissert.] Minnesota University, Minneapolis, Minnesota.

Box, G. E. P., and Jenkins, G. M., 1976. Time Series Analysis, Fore-casting and Control: San Francisco (Holden Day).

Bütschli, O., 1882. Beitràge zur Kenntnis der Radiolarienskelette, ins-besondere der der Cyrtida. Z. Wissen. Zool., 36:485-540.

Campbell, A. S., 1951. New genera and subgenera of Radiolaria. J.Paleontol., 25(4):527-530.

Campbell, A. S., and Clark, B. L., 1944. Miocene radiolarian faunasfrom southern California. Geol. Soc. Am. Spec. Pap., 51:1-76.

Dixon, W. J., 1983. Biomedical Statistical Software (BMDP): LosAngeles (University of California Press).

Dreyer, F., 1889. Die Pylombildungen in vergleichendanatomischer undentwicklungs-geschichtlicher Beziehung bei Radiolarien und bei Pro-tisten überhaupt. Jenaische Z. Naturwiss., 23:1-138.

Dumitricà, P., 1973. Cretaceous and Quaternary Radiolaria in deepsea sediments from the northeast Atlantic Ocean and Mediterrane-an Sea. In Ryan, W. B. F., Hsü, K. J., et al., Init. Repts. DSDP,13, Pt. 2: Washington (U.S. Govt. Printing Office), 829-901.

Ehrenberg, C. G., 1838. Uber die Bildung der Kreidefelsen und desKreidemergels durch unsichtbare Organismen. K. Akad. Wiss. Ber-lin, Abh., pp. 59-147, pis. 1-4.

775

Page 14: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

M. J. WESTBERG-SMITH, L. E. TWAY, W. R. RIEDEL

, 1844. über 2 neue Lager von Gebirgsmassen aus Infusorienals Meeres-Absatz in Nord-Amerika und eine Vergleichung dersel-ben mit den organischen Kreide-Gebilden in Europa und Afrika.K. Preuss. Akad. Wiss. Berlin, Ber., pp. 57-97.

_, 1847a. über eine halibiolithische, von Herrn R. Schomburgkentdeckte, vorherrschend aus mikroskopischen Polycystinen gebil-dete, Gebirgsmasse von Barbados. K. Preuss. Akad. Wiss. Berlin,Ber., pp. 382-385.

_, 1847b. über die mikroskopischen kieselschaligen Polycys-tinen als màchtige Gebirgsmasse von Barbados und über das Ver-hàltniss der aus mehr als 300 neuen Arten bestehenden ganz eigen-thümlichen Formengruppe jener Felsmasse zu den jetzt lebendenThieren und zur Kreidebildung. Eine neue Anregung zur Erfors-chung des Erdlebens. K. Preuss. Akad. Wiss. Berlin, Ber., pp. 40-60.

_, 1854. Die systematische Charakteristik der neuen mikros-kopischen Organismen des tiefen atlantischen Oceans. K. Preuss.Akad. Wiss. Berlin, Ber., pp 236-250.

., 1860. über den Tiefgrund des stillen Oceans zwischen Cali-fornien und den Sandwich-Inseln aus bis 15600' Tiefe nach Lieu-tenant Brooke. K. Preuss. Akad. Wiss. Berlin, Monatsber., pp.819-833.

., 1861. über die Tiefgrund-Verhàltnisse des Oceans am Ein-gange der Davisstrasse und bei Island. K. Preuss. Akad. Wiss.Berlin, Monatsber., pp. 275-315.

_, 1872. Mikrogeologische Studien als Zusammenfassung derBeobachtungen des kleinsten Lebens der Meeres-Tiefgründe allerZonen und dessen geologischen Einfluss. K. Preuss. Akad. Wiss.Berlin, Monatsber., pp. 265-322.

_, 1875. Fortsetzung der mikrogeologischen Studien als Ge-sammt-Uebersicht der mikroskopischen Palàontologie gleichartiganalysirter Gebirgsarten der Erde, mit specieller Rücksicht auf denPolycystinen-Mergel von Barbados. K. Preuss. Akad. Wiss. Ber-lin, Abh., pp. 1-225.

Goll, R. M., 1969. Classification and phylogeny of Cenozoic Trissocy-clidae (Radiolaria) in the Pacific and Caribbean basins. Part II. J.Paleontol, 43(2):322-339.

, 1972. Systematics of eight Tholospyris taxa (Trissocyclidae,Radiolaria). Micropaleontology, 18(4):443-475.

Haeckel, E., 1860a. über neue, lebende Radiolarien des Mittelmeeresund. . .die dazu gehörigen Abbildungen. K. Preuss. Akad. Wiss.Berlin, Monatsber., pp. 794-817.

, 1860b. Fernere Abbildungen und Diagnosen neuer Gattun-gen und Arten von lebenden Radiolarien des Mittelmeeres. K. Pre-uss. Akad. Wiss. Berlin, Monatsber., pp. 835-845.

., 1862. Die Radiolarien (Rhizopoda Radiolaria): Berlin(Reimer).

_, 1881. Entwurf eines Radiolarien-Systems auf Grund vonStudien der Challenger-Radiolarien. J. Z. Naturwiss, 15:418-472.

., 1887. Report on the Radiolaria collected by H.M.S. Chal-lenger during the years 1873-1876. In Report on the Scientific Re-sults of the Voyage of the H.M.S. Challenger, Zoology, 18.

Harting, P., 1863. Bijdrage tot de kennis der mikroskopische Fauna enFlora van de Banda-Zee. Verh. K. Acad. Wetensch., Amsterdam,pp. 2-54.

Hays, J. D., 1965. Radiolaria and late Tertiary and Quaternary historyof Antarctic Seas. In Biology of Antarctic Seas, II: Am. Geophys.Union, Antarctic Res. Sen, 5:125-184.

, 1970. Stratigraphy and evolutionary trends of Radiolaria innorth Pacific deep sea sediments. In Hays, J. D., (Ed.), GeologicalInvestigations of the North Pacific, Geol. Soc. Am. Mem., 126:185-218.

Johnson, D. A., 1976. Cenozoic radiolarians from the central Pacific,DSDP Leg 33. In Schlanger, S. O., Jackson, E. D., et al., Init.Repts. DSDP, 33: Washington (U.S. Govt. Printing Office), 425-437.

Jörgensen, E., 1900. Protophyten und Protozöen im Plankton aus dernorwegischen Westküste. Bergens Mus. Aarbog (1899), pp. 1-112.

Kling, S. A., 1973. Radiolaria from the eastern North Pacific, DeepSea Drilling Project Leg 18. In Kulm, L. D., von Huene, R., et al.,Init. Repts. DSDP, 18: Washington (U.S. Govt. Printing Office),pp. 617-671.

Loeblich, A. R., and Tappan, H., 1961. Remarks on the systematicsof the Sarkodina (Protozoa), renamed homonyms and new vali-dated genera. Proc. Biol. Soc. Washington, 74:213-234.

Martin, G. C , 1904. Radiolaria: Baltimore (Maryland Geological Sur-vey, The John Hopkins Press), pp. 447-459.

Mast, H., 1910. Die Astrophaeriden der Deutschen Tiefsee-Expedi-tion. Inaugural-Dissertation zur Erlangung der Doktorwurde, Un-iversitàt Tubingen, pp. 1-68, pi. 1-8.

Moore, T. C , Jr., 1972. Mid-Tertiary evolution of the radiolarian ge-nus Calocycletta. Micropaleontology, 18:144-152.

Müller, J., 1858. über die Thalassicollen, Polycystinen und Acantho-metren des Mittelmeeres. K. Preuss. Akad. Wiss. Berlin, Abh.,pp. 1-62.

Nakaseko, K., 1963. Neogene Cyrtoidea (Radiolaria) from the IsozakiFormation in Ibaraki Prefecture, Japan. Sri. Rep. College of Gen-eral Education, Osaka University, 12(2): 165-198.

Nigrini, C. A., 1967. Radiolaria in pelagic sediments from the Indianand Atlantic Oceans. Scripps Inst. Oceanog. Bull. 11:1-125.

, 1977. Tropical Cenozoic Artostrobiidae (Radiolaria). Mi-cropaleontology, 23(3):241-269.

Nigrini, C , and Moore, T. C , 1979. A guide to modern Radiolaria.Cushman Found. Foraminif. Res. Spec. Publ., 16:(S1-S142, Nl-N106), i-xii.

Petrushevskaya, M. G., 1967. Radiolarians of the orders Spumellariaand Nasellaria of the Antarctic region, (in Russian) Rezultaty biolo-gicheskikh issledovanii Sovetskoi antarkticheskoi ekspeditsii (1955-1958). Sssledovaniya fauny mozei IV (XII), Vol. 3, pp. 5-183.

, 1971. On the natural system of polycystine Radiolaria(Class Sarcodina). In Farinacci, A. (Ed.), Proc. 2nd Plank. Conf.,Rome (Tecnoscienza), pp. 981-982.

., 1974. Radiolarians of the Antarctic Waters and Their Dis-tribution in the Sediments of Shelf: Nauka (Academy of Sciences,Institute of Geology, Leningrad, USSR), pp. 40, 41.

Petrushevskaya, M. G., and Kozlova, G. E., 1972. Radiolaria: Leg 14,Deep Sea Drilling Project. In Hayes, D. E., Pimm, A. C , et al.,Init. Repts. DSDP, 14: Washington (U.S. Govt. Printing Office).495-648.

Popofsky, A., 1908. Die Radiolarien der Antarktis (mit Ausnahme derTripyleen). Deutsche Südpolar-Exped. 1901-1903, 10:183-305.

, 1912. Die Sphaerellarien des Warmwassergebietes. DeutschSüdpolar-Exped., 1901-1903, 13:73-159.

Riedel, W. R., 1953. Mesozoic and late Tertiary radiolaria of Rotti. J.Paleontol., 27(6):8O5-813.

, 1958. Radiolaria in Antarctic sediments. Repts. B.A.N.Z.Antarctic Research Expedition, Ser. B, 6(10):217-255.

_, 1959. Oligocene and Lower Miocene Radiolaria in tropicalPacific sediments. Micropaleontology, 5(3):285-302.

, 1967a. Subclass Radiolaria. In Harland, W. B., Holland,C. H., House, M. R. et al. (Eds.), The Fossil Record: London (Ge-ological Society of London), pp. 291-298.

, 1967b. Some new families of Radiolaria. Proc. Geol. Soc.London, 1640:148-149.

Riedel, W. R., and Sanfilippo, A., 1970. Radiolaria, Leg 4, Deep SeaDrilling Project. In Bader, R. G., Gerard, R. D., et al., Init. Repts.DSDP, 4: Washington (U.S. Govt. Printing Office), 503-575.

, 1971. Cenozoic Radiolaria from the western tropical Pacif-ic, Leg 7. In Winterer, E. L., Riedel, W. R., et al., Init. Repts.DSDP, 7, Pt. 2: Washington (U.S. Govt. Printing Office), 1529-1672.

., 1978. Radiolaria. In Micropaleontological counting meth-ods and techniques—an exercise on an eight-meter section of thelower Pliocene of Capo Rosello, Sicily. Utrecht Micropaleontol.Bull., 17:81-128.

Riedel, W. R., Westberg-Smith, M. J., and Budai, A., in press. LateNeogene Mediterranean radiolaria from the point of view of paleo-environment. In Stanley, D. J., and Wetzel, F. (Eds.), GeologicalEvolution of the Mediterranean Basin: New York (Plenum Press).

Rohlf, F. J., Kishpaugh, J., and Kirk, D., 1984. Numerical TaxonomySystem of Multivariate Statistical Programs (NT-SYS): StoneyBrook (State University of New York at Stoney Brook).

Sanfilippo, A., Burckle, L. H., Martini, E., and Riedel, W. R., 1973.Radiolarians, diatoms, silicoflagellates, and calcareous nannofos-sils in the Mediterranean Neogene. Micropaleontology, 19(2):209-234.

Sanfilippo, A., and Riedel, W. R., 1970. Post-Eocene "closed"theoperid radiolarians. Micropaleontology, 16(4):446-462.

, 1980. A revised generic and suprageneric classification ofthe Artiscins (Radiolaria). J. Paleontol., 54(5): 1008-1011.

776

Page 15: Deep Sea Drilling Project Initial Reports Volume 94 · 2007-04-27 · tractus universus occurs between Samples 606-l,CC and 606-2,CC. Preservation is very good in the first two core

RADIOLARIANS FROM THE NORTH ATLANTIC OCEAN

Sanfilippo, A., Westberg-Smith, J., and Riedel, W. R., in press. Ceno-zoic Radiolaria. In Bolli, H. M., Perch-Nielsen, K., and Saunders,J. B., (Eds.) Plankton Stratigraphy: Cambridge (Cambridge Uni-versity Press).

Sokal, R. R., 1961. Distance as a measure of taxonomic similarity.Systematic Zoology, 10:70-79.

Sokal, R. R., and Rohlf, F. J., 1962. The comparison of dendrogramsby objective methods. Taxon, 11:33-40.

Vinassa de Regny, P. E., 1900. Radiolari miocenici italiani. Mem. R.Accad. Sci. 1st. Bologna, Ser. 5, 8:227-257 (565-595), pis. 1-3.

Westberg, M. J., and Riedel, W. R., 1978. Accuracy of radiolariancorrelations in the Pacific Miocene. Micropaleontology, 24(1): 1-23.

Westberg-Smith, M. J., and Riedel, W. R., 1985. Radiolarians fromthe western margin of the Rockall Plateau: Deep Sea Drilling Proj-ect Leg 81. In Roberts, D. G. and Schnitker, D., et al., Init. Repts.DSDP, 81: Washington (U.S. Govt. Printing Office), 479-501.

Date of Initial Receipt: 1 February 1985Date of Acceptance: 25 June 1985

777