demystifying cold‐formed steel torsion analysis for design · 2020. 10. 30. · demystifying...

52
Demystifying Cold‐Formed Steel Torsion Analysis for Design Bob Glauz, PE RSG Software, Inc. October 29, 2020

Upload: others

Post on 26-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Demystifying Cold‐Formed SteelTorsion Analysis for Design

    Bob Glauz, PERSG Software, Inc.

    October 29, 2020

  • AnnouncementsDecember webinar – date/time TBD

    2

    Natasha Zamani, Ph.D., P.E.Code & Standards Senior Manager | Modular SystemsHilti North America

    “Structural Considerations for Openings in Metal Deck”

  • 3

  • 4

    Virtual Expo ‐ Upcoming

  • Virtual Expo – On Demand

    5

    [1]

    [2]

    [3]

    [4]Watch whenever you want!Free for CFSEI members!

    Register for the remaining Expo at:https://www.cfsei.org

  • Residential/Hospitality

    Commercial

    Municipal

    Cold-Formed Steel Experts, LLC

    Design Excellence

    Innovative  Detail

  • Demystifying Cold‐Formed SteelTorsion Analysis for Design

    Bob Glauz, PERSG Software, Inc.

    October 29, 2020

  • PDH Certificate

    8

    The Steel Framing Alliance/CFSEI is a registered continuing education provider with several organizations. 

    This program is registered for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the SFA/CFSEI /AISI of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. 

    Professional Development Hours earned upon completion of this program will be recorded for any participant that has indicated their attendance on the webinar sign in sheet and returned it to [email protected] at the conclusion of the webinar.

    Certificates will be sent to participants within two weeks of the end of the webinar.

    1.5 PDHFBPE  –1.5 PDHFBPE Provider # 0005013 

  • Copyright

    9

    Copyright Material

    This presentation is protected by US and International copyright laws.

    Reproduction, distribution, display and use of the presentation without written permission of the speaker and the Steel Framing Alliance is prohibited.

    Steel Framing Alliance/CFSEI 2020

  • Outline

    • Introduction• AISI Design Requirements• Pure Torsion• Warping Torsion• Warping & St. Venant Torsion• Design Examples• CFS® Software• Other Analysis Software

    10

  • Introduction• Torsion is common in cold‐formed steel members• Try to reduce torsional loads and effects• Designing for torsion is unique

    • Review torsion fundamentals• Learn about warping torsion characteristics• Provide tools to simplify torsion design• Develop a sense for torsion distribution based on knowledge of flexural behavior

    Objectives

    11

  • AISI Design Requirements

    12

    S100‐16 Section H4

    M RM

    Rf _

    f f

    fM y

    I

    fBwC

    Mx Moment EIxν′′ varies along length of member

    B Bimoment ECwϕ′′ varies along length of member

  • Bimoment Stresses

    13

    σBwC

    B EC ϕ

    M

    M

    d

    B=MdB σ w dA

  • Bimoment Determination

    14

    AISC Design Guide 9

  • Bimoment Determination

    15

  • Pure (St. Venant) Torsion

    • Plane sections remain plane• Only occurs with closed or solid circular cross‐sections• Predominant for other closed shapes• Predominant for angles, tees, cruciform (Cw≈0)

    𝜙𝑇𝐿𝐺𝐽

    T

    T

    φ

    L

    16

  • Pure Torsion

    𝐽4𝐴 𝑡

    𝑆

    Closed sections

    t

    𝐽 2𝜋𝑟 𝑡

    Cylindrical tubes

    Open sections

    𝐽13 𝑡 𝑑𝑠 ⅓ 𝛴 𝑏𝑡

    𝜏𝑇

    2𝐴 𝑡

    𝜏𝑇 𝑟

    𝐽

    𝜏𝑇 𝑡

    𝐽

    𝑇 𝐺𝐽𝜙 17

    t

    b

  • Pure Torsion Distribution

    Area = ΔT

    Slope = T′ = mtArea = −ΔGJφ

    Slope = φ′ = −T/GJ

    Torsion Intensity (k‐in/in)

    Internal Torque (k‐in)

    Twist Angle (rad)

    mt = −GJφ″

    T = −GJφ′

    φ

    18

  • Pure Torsion Diagrams

    Torque

    Twist

    Mt Mt

    −Mt

    −MtL/GJ

    Torque

    Twist

    −Mta/L

    Mtb/L

    a b

    −Mtab/GJL

    19

  • Pure Torsion Diagrams

    Torque

    Twist

    mt

    −mtL/2

    −mtL²/8GJ

    Torque

    Twist

    −mtL/3

    mtL/6

    −0.06415mtL²/GJ

    mtL/2

    mt0

    20

  • Flexure – Pure Torsion AnalogyUsing Beam Tables with Pinned Supports

    Flexure Pure Torsion

    Pinned Support Twisting Restraint

    Concentrated Load P Concentrated Torsion MtUniform Load w Uniform Torsion mtReaction Force R Reaction Torque RtInternal Shear V Internal Torque T

    Internal Moment M Proportional to Twist −GJφ

    21

  • 22

    Questions?

  • Warping Torsion

    T

    T

    • Plane sections do not remain plane• Predominant for most open thin‐walled shapes

    23

  • Warping PropertiesAISI S100‐16 Commentary

    Normalized Unit Warping

    w w1A w t ds S W t ds

    Warping Statical Moment

    (in2) (in4)

    24

  • Warping Torsion Distribution

    Area = ΔTw

    Slope = Tw′ = mtArea = ΔB

    Slope = φ′ = δ/Wn

    Torsion Intensity (k‐in/in)

    Internal Torque (k‐in)

    Twist Angle (rad)

    mt = ECwφ″″

    Tw = ECwφ‴

    φ

    Bimoment (k‐in²)

    B = ECwφ″

    Warping Displacement (in)

    δ = Wnφ′

    Slope = B′ = TwArea = Δδ∙ECw/Wn

    Slope = δ′ = BWn/ECw = εwArea = Δφ∙Wn/δ

    25

  • Flexure – Warping AnalogyFlexure Warping Torsion

    Differential equation EIxν″″ = w(z) Differential equation ECwφ″″ = mt(z)

    Moment of inertia Ix = ∫ y² dA in⁴ Warping constant Cw = ∫ Wn² dA in⁶

    First moment of area Q = ∫ y dA in³ First sectorial moment Sw = ∫ Wn dA in⁴

    Section coordinate y in Sectorial coordinate Wn in²

    Deflection ν in Twist φ rad

    Load intensity w k/in Torsion intensity mt k‐in/in

    Bending moment Mx = EIxν″ k‐in Warping bimoment B = ECwφ″ k‐in²

    Bending stress σb = Mxy/Ix ksi Warping stress σw = BWn/Cw ksi

    Stress resultant Mx = ∫ σby dA k‐in Stress resultant B = ∫ σwWn dA k‐in²

    Shear force V = EIxν‴ k Warping torque Tw = ECwφ‴ k‐in

    Shear stress τ = VQ/Ixt ksi Warping shear stress τw = TwSw/Cwt ksi

    26

  • Flexure & Warping Diagrams

    Deflection

    P

    −PL³/3EIx

    Shear

    −P

    Moment

    −PL

    Twist

    Mt

    −MtL³/3ECw

    Torque

    −Mt

    Bimoment

    −MtL

    27

  • Flexure & Warping Diagrams

    Mt

    Twist

    L/2

    Torque−Mt/2

    Mt/2

    Bimoment

    MtL/4

    L/2

    −MtL³/48ECw

    P

    Deflection

    L/2

    Shear−P/2

    P/2

    Moment

    PL/4

    L/2

    −PL³/48EIx

    28

  • Flexure & Warping Diagrams

    mt

    Twist

    Torque−mtL/2

    mtL/2

    Bimoment

    mtL²/8

    −5mtL⁴/384ECw

    Deflection

    Shear−wL/2

    wL/2

    Moment

    wL²/8

    −5wL⁴/384EIx

    w

    29

  • Flexure & Warping Diagrams

    Twist

    Torque

    −5mtL/8

    3mtL/8

    Bimoment

    9mtL²/128

    −mtL⁴/185ECw

    Deflection

    Shear

    −5wL/8

    3wL/8

    Moment

    9wL²/128

    −wL⁴/185EIx

    wmt

    −wL²/8 −mtL²/8

    30

  • Flexure – Warping Analogy

    Flexure Warping Torsion

    Pinned Support Twisting Restraint

    Fixed Rotation Warping Restraint

    Concentrated Load P Concentrated Torsion MtUniform Load w Uniform Torsion mtReaction Force R Reaction Torque RtInternal Shear V Internal Torque TwInternal Moment M Internal Bimoment B

    Moment of Inertia Ix Warping Constant CwDeflection Δ Twist Angle φ

    Using Beam Tables

    31

  • Warping & St. Venant Torsion

    Small L/a – mostly warping torsionLarge L/a – mostly St. Venant torsion

    Relative torsional stiffness:Warping torsion: ECw/L²St. Venant torsion: GJ

    aEC

    GJSection parameter(dimension of length)

    32

  • Warping & St. Venant Torsion

    aEC

    GJ33

    Tw+Tsv

    −mtL/2

    mtL/2

    −5mtL⁴/384ECw

    mtL²/8

    Tsv @ L/a=5Tsv @ L/a=2

    Tsv @ L/a=1

    L/a

  • 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.1 1 10

    B / B

    wo

    L/a

    Concentrated Torsion

    Uniform Torsion

    Warping & St. Venant TorsionSFIA Sections

    L=10h L=20h

    34

  • Typical Sections

    Section Cw (in⁶) J (in⁴) a (in) L/a, L=80” L/a, L=160”

    800S200‐27 2.448 0.000098 254.85 0.314 0.618

    800S200‐33 2.971 0.000179 207.74 0.385 0.770

    800S200‐43 3.797 0.000395 158.09 0.506 1.012

    800S200‐54 4.663 0.000775 125.07 0.640 1.280

    800S200‐68 5.712 0.001537 98.30 0.814 1.628

    800S200‐97 7.684 0.004381 67.53 1.185 2.370

    800S200‐118 8.981 0.007872 54.46 1.469 2.938

    aEC

    GJ

    Cw α t L/a α tJ α t³ a α 1/t

    35

  • 36

    Questions?

  • Warping & St. Venant TorsionDifferential equationECwφ″″ − GJφ″ = mt(z)

    SolutionFor trapezoidal loading: mt(z) = mt + Δmtz/Lφ = C1 + C2z +   C3∙sinh(z/a)     +   C4∙cosh(z/a) − mtz2/2GJ − Δmtz3/6GJLφ′ =        C2 +  C3/a∙cosh(z/a) +  C4/a∙sinh(z/a) − mtz/GJ − Δmtz2/2GJLφ″ =                  C3/a2∙sinh(z/a) + C4/a2∙cosh(z/a) − mt/GJ − Δmtz/GJLφ‴ =                 C3/a3∙cosh(z/a) + C4/a3∙sinh(z/a) − Δmt/GJLφ″″ =                C3/a4∙sinh(z/a)  + C4/a4∙cosh(z/a)

    Torque: T = Tw + Tsv = ECwφ‴ − GJφ′

    Bimoment: B = ECwφ″

    37

  • AISI Design Manual Example II‐11

    38

    w = 10 plf

    25’ simple span with mid‐span brace 𝐺 11300 ksi 𝐽 0.00102 in 1.78

    𝐸 29500 ksi 𝐶 11.15 in 𝑎 169 in

  • Bimoment using AISC DG9 Charts

    39

    Loading #2 𝑡 1.05 in 0.000875 k˗in/in

    𝜃 0.30

    𝜃 . 22.8 10 rad/in

    𝐵 𝐸𝐶 𝜃 7.49 k˗in

    Loading #3 𝑇 0.000875 300 0.164 k˗in

    𝜃 0.35

    𝜃 . 29.5 10 rad/in

    𝐵 𝐸𝐶 𝜃 9.69 k˗in𝐵 7.49 9.69 2.20 k˗in

  • Bimoment using Beam Tables

    40

    𝑚 1.05 in 0.000875 k˗in/in

    𝐵 2.46 k˗in

    𝐿 150 in

    𝜙

    (slightly conservative, L/a=0.89)

    0.1202 ˗ /

  • Bimoment using Proportioned Warping

    41

    𝑚 1.05 in 0.000875 k˗in/in

    𝐿 150 in

    𝐺𝐽𝜙

    Pure Torsion (one span)

    0.0041 ˗ /

    0.1243 ˗ /

    𝑚 𝑚 ..

    0.000846 k˗in/in (96.7%) 

    𝐵 2.38 k˗in

    𝑚 𝑚 ..

    0.000029 k˗in/in (3.3%) 

    0.1202 ˗ /

  • Example II‐11 Bimoment Comparison

    42

    Method BimomentAISI Design Manual 2.46 k‐in²AISC Design Guide 9 Charts 2.20 k‐in²Beam Table (L/a=0.86) 2.46 k‐in²Proportioned Warping 2.38 k‐in²CFS® (theoretically correct) 2.37 k‐in²

  • Example – Strength Reduction

    43

    + =

    fM y

    If

    BwC f

    M yI

    BwC

    f9.375 3.727

    10.30 3.39 ksi f2.37 8.82

    11.15 1.87 ksif 3.39 1.87 5.26 ksi

    f9.375 4.254

    10.30 3.87 ksi f2.37 6.99

    11.15 1.49 ksif 3.87 1.49 5.36 ksi

    f9.375 4.470

    10.30 4.07 ksi f2.37 5.28

    11.15 1.12 ksif 4.07 1.12 5.19 ksi

    f9.375 4.470

    10.30 4.07 ksi f2.37 3.69

    11.15 0.78 ksif 4.07 0.78 3.29 ksi

    𝑅4.07 ksi5.36 ksi 0.759

    𝑀 62.3 k˗in

    𝑀 𝑅𝑀 47.3 k˗in 9.375 k˗in (OK)

    𝑤 10 plf ..

    50.4 plf

    𝑅f _

    f f

  • Analysis Software• Finite Element Analysis

    • Determine torsional stresses and displacements• Cannot obtain internal forces (B, Tw, Tsv) for design

    • Frame Structural Analysis Software• Most handle pure torsion only (no warping torsion)• Most not sufficient for cold‐formed steel torsion response

    • RISA‐3D• 6 DOF, 1st order analysis, warping for AISC sections only, warping‐fixed ends only

    • VisualAnalysis• 6 DOF, 1st order analysis, isolated warping boundary conditions

    • MASTAN2• 7 DOF, 2nd order analysis, cubic polynomial approximation

    • RF‐/STEEL• 7 DOF, 2nd order analysis, solution method unclear

    • CFS®• Multi‐span beams, 1st order analysis, rigorous solution, code checks

    44

  • 45

    CFS® Software Examples

  • Torsion Reference Paper

    46

  • Thank You!

    Questions?

    [email protected]

  • AnnouncementsDecember webinar – date/time TBD

    48

    Natasha Zamani, Ph.D., P.E.Code & Standards Senior Manager | Modular SystemsHilti North America

    “Structural Considerations for Openings in Metal Deck”

  • 49

  • 50

    Virtual Expo ‐ Upcoming

  • Virtual Expo – On Demand

    51

    [1]

    [2]

    [3]

    [4]Watch whenever you want!Free for CFSEI members!

    Register for the remaining Expo at:https://www.cfsei.org

  • Residential/Hospitality

    Commercial

    Municipal

    Cold-Formed Steel Experts, LLC

    Design Excellence

    Innovative  Detail