dept. of mechanical engineering - uevora.pt · dept. of mechanical engineering and materiais...

7

Upload: others

Post on 26-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

..Adrian BejanDuke UniversityDept. of Mechanical Engineering

and MateriaIs ScienceDurham, NC [email protected]

Ibrahim Dincer

University of Ontario Instituteof Technology

School of Manufacturing EngineeringOshawa, Ontario LIH [email protected]

Sylvie LorenteLaboratoire Matériaux et

Durabilité des ConstructionsInstitut National des Sciences AppliquéesDépartement de Génie Civil31077 [email protected]

Antonio MiguelUniversidade de ÉvoraDepartamento de FisicaColegio Luis Verney7000-671 ÉvoraPORTUGAL

[email protected]

Heitor ReisUniversidade de ÉvoraDepartamento de FisicaColegio Luis Verney7000-671 É[email protected]

Library of Congress Cataloging-in-Publication DataPorous and complex flow structures in modern technologies / Adrian Bejan . .. [et al.].

p. cm.Includes bibliographical references and index.ISBN 0-387-20225-0 (alk. paper)1. Fluid dynamics. 2. Porous materials--Fluid dynamics. I. Bejan, Adrian, 1948-

TA357.P6952004620.1'06--dc22 2003060456

ISBN 0-387-20225-0 Printed on acid-free paper.

@ 2004 Springer-Verlag New York, LLCAli rights reserved. This work may not be translated or copied in whole or in part withoutthe written permission of the publisher (Springer- Verlag New York, LLC, 175 Fifth Avenue,New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarlyanalysis. Use in connection with any form of information storage and retrieval, electronicadaptation, computer software, or by similar or dissimilar methodology now known orhereafter developed is forbidden. The use in this publication of trade names, trademarks,service marks, and similar terms, even if they are not identified as such, is not to be takenas an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321 SPIN 10949856

Springer-Verlag is a part of Springer Science+Business Media

springeronline. com

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Porous Media FundamentaIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 Structure..............................................

1.1.1 Microporous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1.2 Mesoporous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1.3 Macroporous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Mass Conservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3 Darcy Flow and More Advanced Models . . . . . . . . . . . . . . . . . . .1.4 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5 Heat and Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5.1 Fluid Flow ......................................1.5.2 Heat Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 FIows in Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 Use Simple Methods First . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 Scale Analysis of Forced Convection Boundary Layers . . . . . . .2.3 Sphere and Cylinder with Forced Convection. . . . . . . . . . . . . . .2.4 Channels with Porous Media and Forced Convection . . . . . . . .2.5 Scale Analysis of Natural Convection Boundary Layers . . . . . .2.6 Thermal Stratification and Vertical Partitions . . . . . . . . . . . . . .2.7 Horizontal Walls with Natural ConvectioIÍ . . . . . . . . . . . . . . . . .2.8 Sphere and Horizontal Cylinder with Natural Convection . . . .2.9 Enclosures Heated from the Side .........................2.10 Enclosures Heated from Below ... . . . . . . . . . . . . . . . . . . . . . . . .2.11 The Method of Intersecting the Asymptotes ...............

2.11.1 The Many Counterflows Regime. . . . . . . . . . . . . . . . . . . .2.11.2 The Few Plumes Regime. . . . . . . . . . . . . . . . . . . . . . . . . .2.11.3 The Intersection of Asymptotes . . . . . . . . . . . . . . . . . . . .

IX

115677

1017232829

313133373840424546475358606164

vi Contents

3 Energy Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 673.1 Thermodynamics Fundamentais: Entropy Generation or

Exergy Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2 Exergy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Thermal Energy Storage ................................3.4 Sensible Heat Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5 Aquifer Thermal Energy Storage . . . . . . . . . . . . . . . . . . .3.6 Latent Heat Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.7 Cold Thermal Energy Storage . . . . . . . . . . . . . . . . . .. . . . . . . . . .3.8 Porous Medium Model of a Storage System with

Phase-Change Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1003.9 Fuel Cell Principies and Operation. . . . . . . . . . . . . . . . . . . . . . .. 1053.10 Fuel Cell Structure and Performance . . . . . . . . . . . . . . . . . . . . .. 109

3.11 The Concept of Exergy-Cost-Energy-Mass (EXCEM)Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119

3.12 Exergy, Environment, and Sustainable Development 120

67717680878996

4 Environmental and Civil Engineering . . . . . . . . . . . . . . . . . . . .. 1254.1 The Energy-Environment lnterface . . . . . . . . . . . . . . . . . . . . . .. 1254.2 Wakes: Concentrated Heat Sources in

Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1264.3 Plumes: Concentrated Heat Sources in

Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1274.4 Penetrative Convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130

4.5 .Aerosol Transport and Collection in Filters . . . . . . . . . . . . . . .. 1344.6 Filter Efficiency and Filtration Theories . . . . . . . . . . . . . . . . . .. 1394.7 Pressure Drop, Permeability, and Filter Performance . . . . . . .. 1464.8 lonic Transport 1524.9 Reactive Porous Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1564.10 Electrodiffusion 1624.11 Tree-Shaped Flow Networks 1664.12 Optimal Size of Flow Element. . . . . . . . . . . . . . . . . . . . . . . . . . .. 1734.13 Hot Water Distribution Networks. . . . . . . . . . . . . . . . . . . . . . . .. 177

4.14 Minimal Resistance Versus Minimal Flow Length . . . . . . . . . .. 183

5 Compact Heat Transfer Flow Structures . . . . . . . . . . . . . . . . .. 193

5.1 Heat Exchangers as Porous Media. . . . . . . . . . . . . . :. . . . . . . .. 1945.2 Optimal Spacings in Natural Convection 2015.3 Optimal Spacings in Forced Convection 2075.4 Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2125.5 Optimal Packing of Fibrous lnsulation 2165.6 Optimal Maldistribution: Tree-Shaped Flows. . . . . . . . . . . . . .. 2185.7 Dendritic Heat Exchangers : 224

5.7.1 Elemental Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 224

--~ _..-

11

Contents VIl

5.7.2 First Construct 2295.7.3 Second Construct 230

5.8 Constructal Multiscale Structure for Maximal Heatilansfer Density 2385.8.1 Heat ilansfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2415.8.2 Fluid Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2425.8.3 Heat ilansfer Rate Density: The Smallest Scale . . . . .. 243

5.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 245

6 Living Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 247

6.1 Respiratory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2476.1.1 Airflow Within the Bronchialilee. . . . . . . . . . . . . . . . .. 2496.1.2 Alveolar Gas Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . .. 250

6.1.3 Particle Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 251

6.2 Blood and the Circulatory System . . . . . . . . . . . . . . . . . . . . . . .. 253

6.3 Biomembranes: Structure and ilansport Mechanisms 2546.3.1 Cell Membrane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 254

6.3.2 Capillary Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2636.4 ilansport of Neutral Solutes Across Membranes . . . . . . . . . . .. 266

6.5 Transport of Charged Solutes Across Membranes . . . . . . . . . .. 2756.5.1 Membrane Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 276

6.5.2 Electrical Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . .. 278

6.6 The Kidney and the Regulation of Blood Composition 2796.6.1 Kidney Failure and Dialysis. . . . . . . . . . . . . . . . . . . . . . .. 280

6.6.2 Pumping Blood Through SemipermeableMembranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 281

7 Drying of Porous MateriaIs. . . . , . . . . . . . . . . . . . . . . . . . . . . . . .. 2837.1 Introduction 2837.2 Drying Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2847.3 Drying Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2847.4 Basic Heat and Moisture Transfer Analysis 2857.5 Wet Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2887.6 Types of Moisture Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2947.7 Shrinkage 2957.8 Modeling of Packed-Bed Drying . . . . . . . . . . . . . . . . . . . . . . . . .. 2987.9 Diffusion in Porous Media with Low Moisture

Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3027.10 Modeling of Heterogeneous Diffusion

in Wet Solids 3037.10.1 Mass Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3047.10.2 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3057.10.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . .. 306

viii Contents

7.10.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3067.10.5 Heat and Mass Transfer Coefficients . . . . . . . . . . . . . . .. 308

7.11 Correlation for the Drying of Solids . . . . . . . . . . . . . . . . . . . . . .. 310

8 Multidisciplinary Applications . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3158.1 Walls with Cavities: lnsulation and Strength Combined 3158.2 Fibers Coated with Phase-Change Material. . . . . . . . . . . . . . .. 3268.3 Methane Hydrate Sediments: Gas Formation and

Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 337

Nomenclature 349

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 359

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 389