depth profiling pdf

70
SIMS XVIII SIMS Course Depth Profiling Fondazione Bruno Kessler Trento, Italy Fred A. Stevie Analytical Instrumentation Facility North Carolina State University Raleigh, NC USA [email protected]

Upload: lytruc

Post on 07-Feb-2017

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Depth Profiling PDF

SIMS XVIII SIMS Course

Depth Profiling

Fondazione Bruno Kessler

Trento, Italy

Fred A. Stevie

Analytical Instrumentation Facility

North Carolina State University

Raleigh, NC

USA

[email protected]

Page 2: Depth Profiling PDF

Outline

•Depth profiling

•Quantification

•Insulators / Residual gas species

•Instrumentation

•Ultra shallow analysis

•Applications

Page 3: Depth Profiling PDF

Depth Profiling

•Rationale for SIMS depth profiling

•Static versus dynamic sputtering

•Depth profile characteristics

•Parameter choices

•Selection of primary beam and secondary species

•Raster and gate

•Sputtering rate

•Sensitivity (detection limit)

•Count rate saturation

•Mass interferences (high mass resolution, voltage offset)

•Memory effects

•Small area analysis

•Depth resolution (sensitivity versus depth resolution)

•Ion beam induced roughening

•Analysis approach

Page 4: Depth Profiling PDF

4

Common Elemental Analysis Analytical Techniques

AES XPS SIMS EDS

Probe Species electron x-ray ion electron

Detected Species electron electron ion x-ray

Information Depth 2nm 2nm 0.3-1nm 0.1-1μm

Lateral Resolution 20nm 10μm-1mm 7nm-10μm 5nm

Elements

Detected >He >He all >Na

Detection Limit 0.1-1% 0.1-1% ppm - ppb 0.5-1%

Chemical Info limited yes yes (ToF) no

Page 5: Depth Profiling PDF

Rationale for SIMS Depth Profiling

Typical surface analysis techniques for elemental analysis

AES, EDS, XPS, SIMS

SIMS depth profiling used to provide:

•High sensitivity

•Good depth resolution

Depth profiling can be achieved with magnetic sector, quadrupole,

or Time-of-Flight instruments.

Page 6: Depth Profiling PDF

6

Static vs. Dynamic Conditions

Parameter Static Dynamic

Residual pressure 10-10 Torr 10-7 Torr

Primary current density 10-3 - 10-1 µA/cm2 10 - 103 µA/cm2

Analyzed area 10-1 - 10-2 cm2 5x10-4 cm2

Atomic layer erosion rate 10-5 - 10-3 /s 10-1 - 10 /s

Primary current 1 nA 100 nA

Raster 1000 x 1000 µm2 250 x 250 µm2

Primary current density <1 nA/cm2 0.16 mA/cm2

Sputtering rate 0.5 nm/hr 3.6 µm/hr

Atoms in Si monolayer 1015/cm2 or 107/µm2

Page 7: Depth Profiling PDF

7

Static SIMS limit is ~1012 ions/cm2 (Si surface is 1015 atoms/cm2)

1 nA / (1000 µm x 1000 µm) = 6.25x1011 ions/cm2-sec

< 10 sec to reach static limit

10 pA / (1000 µm x 1000 µm) = 6.25x109 ions/cm2 -sec

> 800 sec to reach static limit

Dynamic SIMS may have 150 nA / (200 µm x 200 µm)

= 2.3x1015 ions/cm2-sec

< 0.001 sec to exceed static limit

Static vs. Dynamic SIMS

Page 8: Depth Profiling PDF

Si surface Si surface exposed

to 3x1012 ions/ cm2

H.J.W. Zandvliet, H. B. Elswijk, E. J. van Loenen, I. S. T. Tsong,

SIMS VIII, A. Benninghoven, et al., eds. (1992) 3

STM Images Before and After Static SIMS

Page 9: Depth Profiling PDF

9

Depth Profiling

•Need to remove material from region of interest

•Require a process that will work in vacuum, such as sputtering

•Electrons have very limited sputtering capability

•Laser ablation lacks uniformity of removal

•Sputtering typically done with ions

•Ions have charge

•Beam of ions can be rastered to create a crater

•Controlled removal possible

•Many different ion beams are used

•Raster and gate method employed

Page 10: Depth Profiling PDF

10

Depth Profile

Characteristics

J. Bennett, SEMATECH

Page 11: Depth Profiling PDF

Parameter Choices

•Primary beam species, energy, angle of incidence

•Sputtering rate (primary beam current and raster size)

•Raster and gate

•Secondary beam species

•Energy distribution of secondary species (voltage offset)

Page 12: Depth Profiling PDF

Absolute Positive Secondary Ion Yields

A. Benninghoven, Critical Rev. Solid State Sci. 6, 291 (1976)

Ar+ 3 keV, 70º incidence

Most elements show

greater than x10 increase

for oxygen covered surface

compared with clean surface

Page 13: Depth Profiling PDF

SIMS, R. G. Wilson, F. A. Stevie,

and C. W. Magee, Wiley, New York

(1989)

Positive Secondary Ion

Yields for O2+

Bombardment of Si

• Relative Sensitivity Factors

(RSFs) inversely proportional

to ion yields

• More than 6 orders of magnitude

variation across periodic table

• Highest yield for alkali elements

Page 14: Depth Profiling PDF

Negative Secondary Ion

Yields for Cs+

Bombardment of Si

SIMS, R. G. Wilson, F. A. Stevie.

and C. W. Magee, Wiley,

New York (1989)

• Relative sensitivity factors

(RSFs) inversely proportional

to ion yields

• More than 5 orders of magnitude

variation across periodic table

• Highest yield for halogens.

Yields for O2+ and Cs+

are complementary

Page 15: Depth Profiling PDF

15

Primary Beam / Secondary Polarity

Evans Analytical Group

O2+ and Cs+ provide complementary secondary ion yields

Page 16: Depth Profiling PDF

16

Choice of Profile Species for Detection Limit

Best detection limit

for In implant in Si

obtained using O2+

Page 17: Depth Profiling PDF

17

SIMS Depth Profile of V Implanted in SiO2

(Mass spectrum on next slide taken at peak of implant)

VO2 and VOSi have identical

secondary ion yields

Profile of atomic and molecular

ions indicates optimum choice

for sensitivity

Selection of Secondary Species

Page 18: Depth Profiling PDF

Mass Spectrum of Vanadium Implant

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Mass spectrum taken at peak intensity of V ion implant depth profile

showing relative intensities of species containing V. 28Si+ is saturated

Page 19: Depth Profiling PDF

19

Choice of Species

Improved detection limit for

Ge in InP using molecular ion

that contains an impurity

atom and a matrix atom

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Page 20: Depth Profiling PDF

20

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Choice of Species

Improved detection limit for Dy

in GaAs using molecular ion that

contains an impurity atom and

the primary beam species

Page 21: Depth Profiling PDF

21

Secondary Species Choices

• Matrix species for normalization

• Major or minor isotope

• Atomic or molecular ion

• Mass interferences / mass resolution required

• Count time per point (data density vs. statistics)

• Voltage offset

Page 22: Depth Profiling PDF

22

Crater Issues for SIMS Depth Profile

A) Surface layer with

atomically sharp

interface

B) Rounded crater

C) Flat bottomed crater

- sidewall contributions

D) Secondary ions due

to neutral species

E) Non-uniform

sputtering

F) Knock-on

SIMS, C. G. Pantano, Metals Handbook Ninth Edition, Vol. 10, R. E. Whan, ed.,

American Society for Metals, Metals Park (1986) 610

Page 23: Depth Profiling PDF

23

Raster & Gate Relationship to Depth Profile Shape

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Reduce sidewall contributions by detecting ions from center of larger crater

Page 24: Depth Profiling PDF

24

Depth Profiling: Raster and Gate Method

Raster Circular gate

(aperture)

Square gate

(electronic)

Page 25: Depth Profiling PDF

25

Beam Diameter Increases Crater Size

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Crater size will be raster chosen

plus beam diameter

For electronic gating,

detected area is beam diameter

added to gated length and width

Page 26: Depth Profiling PDF

26

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Parameters for Profilometer Trace of SIMS Crater

Crater width is sum

of raster width and

beam diameter.

Beam

Page 27: Depth Profiling PDF

27

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Profile B illustrates the distortion introduced by too small a ratio of

rastered area to detected area. The raster is insufficient to reject

sidewall contributions. The shaded area represents a 60 µm

diameter detected area. Profile A is more accurate.

Arsenic implant in Si

Profile A:

220 µm x 220 µm

Profile B:

80 µm x 80 µm

Detected Area versus Raster Size

Page 28: Depth Profiling PDF

Sputtering Rate

•Sputtering rate determines time for depth profile

•Sputtering rate can be varied with raster size or beam current

•Sensitivity typically improved with higher sputtering rate

•For sample with layers, sputtering rate can be different for each layer

Page 29: Depth Profiling PDF

29

Dynamic Range

K. Wittmaack and J. B. Clegg, Appl. Phys. Lett. 37, 285 (1980)

Depth profile of B implanted

Si at near normal incidence

O2+ bombardment with 13%

linear electronic gate.

Background signal is 15 cts/s.

Almost 6 orders of magnitude

dynamic range.

Page 30: Depth Profiling PDF

30

Sensitvity (Detection Limit)

F. A. Stevie, R. G. Wilson, J. M. McKinley, and C. J. Hitzman,

SIMS XI Proceedings, G. Gillen, et al., eds., Wiley, Chichester (1998) 983

10 ppt detection

limit obtained for

K in Si using O2+

CAMECA IMS-6f

1 ppma

1 ppba

10 ppta

K+

Page 31: Depth Profiling PDF

31

Count Rate Saturation

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

•Determine gated or detected area to rastered area ratio to convert

measured constant count rate to instantaneous count rate.

•Instantaneous count rate is constant count rate times ratio of

rastered area to detected area.

Page 32: Depth Profiling PDF

32

Count Rate Saturation

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Depth profiles of fluorine in Si

with different count rates.

The profiles are adjusted to show the

effect of different levels of count

rate saturation on profile shape.

Page 33: Depth Profiling PDF

33

Count Rate Saturation

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Mass spectra taken with detected area equal to 4 and 36% of the

sputtered area, showing that 28Si+ is saturated in both cases and

the ratio of 28Si+ to 30Si+ is incorrect. Analyzed using quadrupole.

Compare ratio

of 28Si+ / 30Si+

for Si+ and Si+

Page 34: Depth Profiling PDF

34

High Mass Resolution

31P and 30Si1H 31P 30.97376

1H 1.00797

30Si 29.97377

31P mass separation from 30Si1H is 0.0078 amu or 7.8 mmu

Mass resolution required is M/ΔM = 31/0.0078 = 3955

56Fe and 28Si2 56Fe 55.93494

28Si 27.97693

56Fe mass separation from 28Si2 is 0.0189 amu or 18.9 mmu

Mass resolution required is 56/0.0189 = 2955

40Ar and 40Ca 40Ar 39.96238

40Ca 39.96259

Mass resolution required is?

Page 35: Depth Profiling PDF

35

Secondary Ion Energy Distribution

K. Wittmaack, Phys. Lett. 69A, 322 (1979)

Normalized energy

distributions of sputtered

Si and Si molecular ions.

Analyzed using quadrupole

instrument.

Page 36: Depth Profiling PDF

36

Voltage Offset

CAMECA operating manual

Placement of energy window to

achieve maximum separation between

Si+ atomic and Si2O+ molecular ions.

Atomic and molecular distributions

1) energy window open

2) energy window translated

3) energy window translated and

sample voltage offset

Page 37: Depth Profiling PDF

37

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Improvement in detection limit for As implant in Si analyzed using

O2+ and Cs+ primary beams at different energy window positions

Energy window moved with sample offset voltage.

Mass interference

for 75As is 29Si30Si16O

Voltage Offset

Page 38: Depth Profiling PDF

38

Voltage Offset on Mass Spectrum

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

No offset 75 V offset

Reduction of molecular ion intensities in InSb mass spectrum

with application of voltage offset.

Page 39: Depth Profiling PDF

39

Memory Effects

Magnetic Sector Close proximity of sample and immersion lens cover plate

permits re-sputtering of material previously analyzed

Example: prior analysis of InP substrate will affect detection

of P in Si. The effect shows at about 5 orders of magnitude

below the matrix density

Quadrupole Open geometry reduces memory effect

Time of Flight

Low sputtering rate reduces this effect

Page 40: Depth Profiling PDF

40

Magnetic Sector Geometry

4.5 kV

Memory effect

~1 part in 105

1 2 3

ground

Sample

Immersion lens cover plate

Primary Beam

5 mm

1-primary beam

2-sputter and deposit

3-resputter and deposit

on sample

Page 41: Depth Profiling PDF

41

Quadrupole Geometry

Sample

ground

250 V

1

2 3

Primary

Beam

Extraction

1 - 2 cm

1-primary beam

2-sputter and deposit

3-resputter and deposit

on sample

Page 42: Depth Profiling PDF

42

Analysis Volume

1 cm

1 cm

100 m

100 m

30 m

Specimen

Raster Analysis

SIMS analysis volume is small

Page 43: Depth Profiling PDF

43

Analysis Volume

•SIMS analysis volume 100 µm x 100 µm raster

30 µm diameter analyzed area and 1 µm depth

analysis volume = 7.1x10-10 cm3

•Amount sampled Si density x analysis volume

= 5x1022 atoms/cm3 x 7.1x10-10 cm3

= 3.6x1013 atoms x 28 gm/6.02x1023 atoms

= 1.7 ng

•Need more than one analysis point per sample

Page 44: Depth Profiling PDF

44

Relationship of Analysis Area to Detection Limit

Page 45: Depth Profiling PDF

45

Small Area Analysis on Silicon Patterned Wafers

Analysis patterns in grid areas between devices

e.g.: n source and drain, p source and drain, poly/gate oxide/Si

Dedicated

SIMS

Patterns

Page 46: Depth Profiling PDF

46

SIMS Patterns on Patterned Wafers

Nthinox &

Pthinox in

Grid areas

90µm x320µm

pattern in

100µm grid

spacing

Page 47: Depth Profiling PDF

47

SIMS Patterns on Patterned Wafers

F. A. Stevie, et al., J. Vac. Sci. Technol. A10, 2280 (1992)

100 µm x 125 µm patterns. The crater in the pattern on the

right is from a 75 µm x 75 µm raster.

Page 48: Depth Profiling PDF

Sensitivity vs.

Depth Resolution

C, O, N in Nb

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

0 200 400 600

Time (s)

Co

un

ts (

cts

/se

c)

12C Counts

16O Counts

93Nb Counts

93Nb14N Counts

C, O, N in Nb

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

0 200 400 600 800 1000

Time (s)

Co

un

ts (

cts

/se

c)

12C Counts

16O Counts

93Nb Counts

93Nb14N Counts

Typically better depth

resolution but lower

counts by reducing impact

energy

Cs+

14.5 keV

Cs+

6 keV 14.5 keV

20nA 120µm raster

30µm analyzed diameter, MR2500

6 keV

15nA 130µm raster

30µm analyzed diameter, MR2000

Page 49: Depth Profiling PDF

12C

16O

93Nb14N

93Nb

1E+17

1E+18

1E+19

1E+20

1E+21

0.0 0.2 0.4 0.6 0.8Depth (um)

Co

nc

en

tra

tio

n (

ato

m/c

m3

)

1E+00

1E+01

1E+02

1E+03

1E+04

Co

un

ts (

cts

/se

c)

49

Quantification of C, N, O in Nb

Ion implantation

P. Maheshwari, et al., Surface and Interface Analysis (2010, 42)

•Dose: atoms/cm2

•C: 1E15

•N: 1E15

•O: 2E15

•SIMS analysis

CAMECA IMS-6F

6keV impact energy

Page 50: Depth Profiling PDF

Depth Profile of C, O, N in Nb

Depth (nm)0 500 1000 1500

1810

1910

Concentr

ation (

cm

-3)

100

101

102

Inte

nsity (

counts

)

C-C-C-C-C-C-C-C-C-

O-O-O-O-O-O-O-O-O-

Nb-Nb-Nb-Nb-Nb-Nb-Nb-Nb-Nb-

NbNNbNNbNNbNNbNNbNNbNNbNNbN

Depth (nm)500 1000 1500

1810

1910

Co

nce

ntr

atio

n (

cm

-3)

100

101

102

Inte

nsity (

co

un

ts)

C. Zhou, NC State University

Analysis

Beam

Sputtering

Beam

Ions Bi3+ Cs+

Energy 25 keV 10keV

Raster

area

50 x 50

µm2

120 x 120

µm2

Current 0.2 pA 20 nA

ToF

Energy 2 kV

ION-TOF TOF-SIMS V

Depth Profiling Using TOF-SIMS

Page 51: Depth Profiling PDF

Sputter

Gun

Delay 10 µs Leadoff 10 µs

60 µs

Interlaced Mode

Analysis

Gun

Cycle time 100 µs

<1 ns

Extraction 10 µs

Flood Gun

Delay 5 µs Leadoff 5 µs

80 µs

Sample is sputtered during the flight time of the secondary ions in

the analyzer between the analysis gun pulses

C. Zhou, NC State University

Page 52: Depth Profiling PDF

Non-Interlaced Mode

Pause

0.2 s Sputter 1.46 s

Flood gun 1.66 s

Analysis

Gun

100 µs cycle time, 16384 cycle

1 scan of 128 x 128 pixel, 1 shot/pixel

Sputter

Gun

Flood Gun

Analysis 1.64 s

1 2 3 4 5 6 7 16384

The sputtering and analysis are sequentially organized.

C. Zhou, NC State University

Page 53: Depth Profiling PDF

Depth (nm)100 200 300

1810

1910

2010

Co

nce

ntr

atio

n (

cm

-3)

102

103

104

Inte

nsi

ty (

cou

nts

)

Depth (nm)0 100 200 300

1810

1910

2010

Co

nce

ntr

atio

n (

cm

-3)

102

103

104

Inte

nsity (

cou

nts

)

H-H-H-H-H-H-H-H-H-

C-C-C-C-C-C-C-C-C-

O-O-O-O-O-O-O-O-O-

Si-Si-Si-Si-Si-Si-Si-Si-Si-

SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-

Depth (nm)0 100 200 300

1810

1910

2010

Co

nce

ntr

atio

n (

cm

-3)

102

103

104

Inte

nsity (

cou

nts

)

H-H-H-H-H-H-H-H-H-

C-C-C-C-C-C-C-C-C-

O-O-O-O-O-O-O-O-O-

Si-Si-Si-Si-Si-Si-Si-Si-Si-

SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-

H

C

O

Si

SiN

Interlaced Mode vs. Non-Interlaced Mode

• H, C, O, N implanted in Si

• H and O profiles in non-interlaced

mode show higher background signals

due to the influence of the residual gas

during the analysis phase

Analysis

Beam

Sputtering

Beam

Ions Bi3+ Cs+

Energy 25 keV 10keV

Raster

area

50 x 50

µm2

120 x 120

µm2

Current 0.2 pA 20 nA

ToF

Energy 2 kV

Interlaced mode

Non-Interlaced mode

Depth (nm)0 100 200 300

1810

1910

2010

Concentr

ation (

cm

-3)

102

103

104

Inte

nsity (

counts

)

H-H-H-H-H-H-H-H-H-

C-C-C-C-C-C-C-C-C-

O-O-O-O-O-O-O-O-O-

Si-Si-Si-Si-Si-Si-Si-Si-Si-

SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-

Depth (nm)0 100 200 300

1810

1910

2010

Concentr

ation (

cm

-3)

102

103

104

Inte

nsity (

counts

)

H-H-H-H-H-H-H-H-H-

C-C-C-C-C-C-C-C-C-

O-O-O-O-O-O-O-O-O-

Si-Si-Si-Si-Si-Si-Si-Si-Si-

SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-SiN-

H

C

O

Si

SiN

Depth (nm)0 100 200 300

1810

1910

2010

Co

nce

ntr

atio

n (

cm

-3)

102

103

104

Inte

nsi

ty (

cou

nts

)

C. Zhou, NC State University

Page 54: Depth Profiling PDF

54

D. S. McPhail, et al., Scanning Microscopy 2, 639 (1989)

Depth Resolution Simulation

Effect of 10% unevenness on

Gaussian distribution

Page 55: Depth Profiling PDF

55

Depth Resolution Simulation

Effect of 1% and 10% unevenness on crater bottom for a sinusoidal

dopant distribution, according to the uneven etching model

D. S. McPhail, et al., Scanning Microscopy 2, 639 (1989)

Page 56: Depth Profiling PDF

56

Depth Resolution

Factors that improve depth resolution

• Larger angle of incidence from normal for bombarding species

• Lower bombarding energy

• Increased mass of bombarding species

Depth Resolution improves as ion penetration is reduced

Depth resolution measurement

• Decay length

depth for 1/e intensity change

• Leading and trailing edges

decay length for increasing and decreasing ion intensity

• Interface width

84 - 16% of maximum

• Full width at half maximum

Page 57: Depth Profiling PDF

57

Penetration for Different Analysis Conditions

TRIM Monte Carlo Simulations in GaN

O2+ 5.5 keV

Θ = 41.3º

O2+ 1.25 keV

Θ = 48.5º

Rp = 4.8nm

DRp = 2.9nm

Cs+, 1.25 keV

Θ = 48.5 º

Rp = 1.6nm

DRp = 1.0nm

Rp = 1.4nm

DRp = 0.7nm

0

20 nm

GaN density 6.15gm/cm3

www.srim.org

Page 58: Depth Profiling PDF

58

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Depth Resolution

Depth profile parameters for analysis of interface described in terms of sputter

time or depth. Error function is derivative of interface curve and +/- sigma

points correspond to 84 and 16% of maximum intensity.

Page 59: Depth Profiling PDF

59

SIMS, R. G. Wilson, F. A. Stevie, and C. W. Magee, Wiley, New York (1989)

Illustration of depth

resolution for GaAs/Si

interface in structure of

GaAs/Si/Al2O3. As and Si

are quantified. 125 V

offset on As.

50% of maximum point

designates interface.

Depth Resolution

Page 60: Depth Profiling PDF

60

Depth Resolution

F. A. Stevie, J. Vac. Sci. Technol. B10, 323 (1992)

Profile of delta doped Be in

GaAs showing less than 3 nm

FWHM

O2+ 1.5 keV 60° from normal

Data from H. Luftman, E. F. Schubert, and R. F. Kopf

Page 61: Depth Profiling PDF

Sensitivity versus Depth Resolution

Cannot simultaneously optimize sensitivity and depth resolution

• Best sensitivity

• High sputtering rate

• Large detected area - more counts

• Best depth resolution

• Low impact energy, reduced ion penetration into sample

• Low sputtering rate

• Small detected area – reduce effect of sample variations

Page 62: Depth Profiling PDF

62

Non-Uniform Sputtering

• Ion bombardment can cause non-uniform sputtering

• Polycrystalline materials (metals) expose

surfaces at varied angles to ion beam

• Observed even for crystalline materials

under certain conditions

• Check for roughness

• Optical – crater bottom becomes dark if significant

roughening

• Profilometer

• SEM

• AFM

Page 63: Depth Profiling PDF

63

F. A. Stevie, P. M. Kahora, D. S. Simons, and P. Chi, J. Vac. Sci. Technol.

A6, 76 (1988)

O2+ 6 keV profile of (100) Si.

Arrows match depths for

SEM micrographs

SEM micrographs of SIMS

crater bottoms at depths of

a) 2.1, b) 2.8, and c) 4.3 µm

Sputter Induced Roughness

Roughening of crater affects secondary ion yields

Page 64: Depth Profiling PDF

64

Reduction of Roughening

• Choice of primary species

• Energy of species

• Incidence angle

• Sample rotation

Page 65: Depth Profiling PDF

65

Z. X. Jiang and P. F. A. Alkemade, Appl. Phys. Lett. 73, 315 (1998)

RMS Roughness vs Incidence Angle

• Different O2+ impact

energies

• AFM roughness

measurement

Page 66: Depth Profiling PDF

66

1keV O2+ 60° w/ O2 flood

Crater Roughness at Oblique Incidence

Z. X. Jiang and P. F. A. Alkemade UHV 2E-5 Pa 1.3E-4 Pa

Page 67: Depth Profiling PDF

67

Sample Rotation

E.-H. Cirlin, et al., J. Vac. Sci. Technol. A8, 4101 (1990)

Al and Ga profiles from 3 keV

O2+ analysis of GaAs/AlGaAs

superlattice

a) without rotation

b) with rotation

Page 68: Depth Profiling PDF

68

Sample Rotation During Ion Bombardment

SEM micrographs of a) aluminum surface, b) bottom of crater

sputtered through 1 µm aluminum layer into underlying silicon

without rotation and c) with rotation

F. A. Stevie and J. L. Moore, Surf. Interf. Anal. 18, 147 (1992)

Sputter through

layer Surface Sputter through

layer

Page 69: Depth Profiling PDF

69

Sample Rotation During Ion Bombardment

SIMS profiles of 11B ion implantation into 1 µm Al/Si. With

sample rotation, B at interface is clearly defined and silicon

from Al-Si-Cu layer shows movement to Al/Si interface

without rotation with rotation

F. A. Stevie and J. L. Moore, Surf. Interf. Anal. 18, 147 (1992)

Page 70: Depth Profiling PDF

70

• Choose primary beam species / secondary polarity

• Choose primary beam parameters (voltage, raster, current, …)

• Sample preparation if necessary (remove over-layers)

• If insulator, prevent sample charging

• Decide on quantification, determine if standards can be made

• Depth profile: determine sputtering rates, identify layers

• Obtain mass spectra: check mass interferences and interfacial

contaminants

• Depth profiles to obtain at least two matching analyses

If analyses do not match, check for particles and anomalies

Depth Profiling Analysis Approach