desalination tech sheet

6
1768 East 25 th Street Suite 301 Cleveland, OH 44114 216.367.0602 egeneration.org ECONOMICAL ENERGY & WATER PRODUCTION Molten Salt Reactors and Desalination Authored By: Jon Paul Morrow eGeneration Fellow

Upload: the-e-generation

Post on 22-Jul-2016

215 views

Category:

Documents


0 download

DESCRIPTION

How Molten Salt Reactors can impact Potable Water

TRANSCRIPT

Page 1: Desalination Tech Sheet

 

 

   

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

egeneration.org  

ECONOMICAL ENERGY & WATER PRODUCTION  

Molten  Salt  Reactors  and  Desalination  

Authored  By:  Jon  Paul  Morrow    eGeneration  Fellow  

Page 2: Desalination Tech Sheet

 

 

TABLE OF CONTENTS

Water:  A  National  Security  Issue  ....................................................................................................................................................  1  

Desalination:  Opportunities  and  Challenges  ..............................................................................................................................  1  

Next  Generation  Desalination:  Forward  Osmosis  ...................................................................................................................  2  

The  Ideal  Draw  Solution:  Ammonia-­‐Carbon  Dioxide  .............................................................................................................  2  

Benefits  of  Synergy:  Forward  Osmosis,  MSR  and  SNG  ..........................................................................................................  3  

 

Copyright  ©  2015  by  eGeneration  Foundation  

All  rights  reserved  

Page 3: Desalination Tech Sheet

 

    Economical  Energy  &  Water  Production  (r1)    |    1    

WATER: A NATIONAL SECURITY ISSUE There  is  a  finite  amount  of  fresh  water  readily  available  for  human  consumption  and  use.  This  supply  is  already  strained  due  to  competing  demands  for  farming,  industry,  commercial  and  domestic  uses.  With  world  population  expected  to  exceed  ten  billion  by  2040,  the  draw  on  these  resources  will  become  even  less  sustainable.  Water  problems  will  hinder  the  ability  of  key  countries  and  domestic  states  to  produce  food  and  generate  energy,  posing  a  risk  to  global  food  markets  and  hobbling  economic  growth.  

During  the  next  10  years,  many  countries  important  to  the  United  States  will  likely  experience  water  shortages  and  poor  water  quality.    North  Africa,  the  Middle  East,  and  South  Asia  will  face  major  challenges  coping  with  water  problems.  These  water  shortages  will  risk  instability  and  state  failure,  increase  regional  tensions,  and  distract  foreign  countries  from  working  with  the  United  States  on  important  US  policy  objectives.  Domestically,  the  situation  is  equally  serious.  Water  shortages  are  already  impacting  the  quality  of  life  and  economic  prospects  of  US  residents  living  in  the  southwestern  states.  

Without  more  effective  water  resource  management,  fresh  water  availability  will  not  keep  up  with  demand.  Molten  Salt  Reactor  (MSR)  technology  offers  a  powerful  potential  solution  to  the  impending  global  freshwater  crisis.  MSRs  produce  economical,  high  temperature  process  heat  that  can  be  used  for  a  variety  of  valuable  applications.    A  co-­‐generation/manufacturing  synergy  of  a  MSR  and  coal  with  access  to  seawater  or  brackish  groundwater  can  provide  electricity,  industrial  heat,  gaseous  and  liquid  transportation  fuels,  fertilizer,  and  most  importantly,  clean  potable  drinking  water  for  agriculture,  industrial,  and  domestic  use.    

DESALINATION: OPPORTUNITIES AND CHALLENGES  Over  97  percent  of  the  world’s  water  supply  is  held  either  as  saline  ocean  water  or  brackish  groundwater  reserves.  If  an  effective,  economical  desalination  process  could  be  developed,  it  would  provide  a  virtually  unlimited  supply  of  fresh  water,  solving  the  world’s  water  issues.  

Currently,  most  of  the  word’s  desalination  capacity  is  based  on  thermal  technologies,  primarily  multi-­‐stage  flash  (MSF)  distillation  and  multi-­‐effect  distillation  (MED).  MSF  and  MED  are  popular  in  parts  of  the  world  where  thermal  energy  is  readily  available  and  inexpensive.  These  technologies  require  large  thermal  energy  inputs  to  vaporize  water,  produce  problematic  brine  discharges,  and  result  in  relatively  low  water  recoveries.    Significantly,  these  technologies  have  electrical  requirements  for  ancillary  operations  that  often  approach  those  of  Reverse  Osmosis.    

Reverse  Osmosis  (RO)  continues  to  gain  popularity  as  a  successful  desalination  technology;  nearly  all  desalination  plants  built  today  are  RO  plants.  Its  benefits  include  the  capability  of  achieving  higher  recoveries  than  those  typical  of  its  thermal  counterparts,  while  using  less  overall  energy.  However,  electricity  use  is  still  high,  and  brine  discharge  problems  remain.    

Page 4: Desalination Tech Sheet

 

    Economical  Energy  &  Water  Production  (r1)    |    2    

Brine  production  is  a  significant  drawback  for  these  technologies.  Plants  must  be  located  near  an  ocean,  where  discarded  brine  has  less  environmental  impact.  In  brackish  water  applications,  the  quantity  of  brine  produced  precludes  the  use  of  economic  solar  pond  evaporation,  and  ground  well  injection  increases  source  water  salinity  over  time.  Since  there  is  no  sustainable,  environmentally  sound  way  to  dispose  of  the  brine  on  site,  MSF,  MED  and  RO  technologies  cannot  be  used  to  desalinate  inland  brackish  groundwater  sources.  

NEXT GENERATION DESALINATION: FORWARD OSMOSIS Next  generation  desalination  technologies  address  outstanding  issues  of  energy  use,  brine  management  and  water  recovery.  Forward  Osmosis  (FO)  is  a  membrane-­‐based  separation  process,  like  Reverse  Osmosis,  which  relies  on  a  semipermeable  membrane  to  remove  salt.  However,  the  driving  force  for  separation  in  Forward  Osmosis  is  osmotic  pressure,  not  the  hydraulic  pressure  used  in  RO.    

By  using  a  concentrated  solution  of  high  osmotic  pressure  called  a  draw  solution,  water  can  be  induced  to  flow  across  the  membrane,  rejecting  the  salt.  The  draw  solution  must  then  be  removed  from  the  draw  solution-­‐laden  water,  yielding  potable  water.  Recycling  the  draw  solution  is  key  to  economic  viability  of  Forward  Osmosis.  

THE IDEAL DRAW SOLUTION: AMMONIA-CARBON DIOXIDE A  draw  solution  for  use  in  a  continuous  FO  desalination  process,  in  which  the  draw  solution  is  recovered,  must  have  certain  characteristics  to  make  the  process  economically  viable.  For  this  FO  process  the  draw  solution  must  have  high  solubility,  a  low  molecular  weight,  and  easy  removal.    

The  Forward  Osmosis  next  generation  desalination  process  currently  uses  a  recyclable  solution  composed  of  ammonium  salts.  These  salts  (a  mixture  of  ammonium  bicarbonate,  ammonium  carbonate  and  ammonium  carbamate)  are  formed  when  ammonia  and  carbon  dioxide  gases  are  mixed  in  an  aqueous  solution.  The  salts  are  highly  rejected  by  the  semipermeable  membrane  used  in  FO  and  are  highly  soluble,  leading  to  the  reliable  generation  of  high  osmotic  pressures  for  the  FO  process.  

Once  the  concentrated  draw  solution  is  used  to  effect  separation  of  water  from  the  saline  feed  source,  the  subsequently  diluted  draw  solution  may  be  heated  to  remove  its  ammonium  salt  solution,  producing  fresh  water  as  the  primary  product  of  the  FO  process.  This  thermal  separation  of  draw  solution  is  based  on  the  useful  characteristic  of  these  salts  to  decompose  into  ammonia  and  carbon  dioxide  gases  when  the  solution  is  heated.  The  temperature  at  which  this  occurs  is  dependent  on  the  pressure  of  the  solution.  If  a  vacuum  distillation  column  is  used  for  this  separation,  the  temperature  of  heat  required  can  be  quite  low,  in  the  range  of  35-­‐40°C  (95-­‐104°F)  given  an  ambient  temperature  of  15-­‐20°C  (59-­‐68°F).    

   

Page 5: Desalination Tech Sheet

 

    Economical  Energy  &  Water  Production  (r1)    |    3    

The  use  of  an  ammonia-­‐carbon  dioxide  draw  solution  thereby  allows  for  effective  desalination  of  saline  feedwater  sources  using  little  more  than  low-­‐grade  heat  (very  little  electricity  is  required  for  unpressurized  process  pumping).  Furthermore,  the  high  osmotic  pressures  that  solutions  of  this  type  may  generate  allow  for  very  high  feedwater  recoveries.  This  has  the  benefit  of  reducing  brine  discharge  volumes,  electrical  requirements  for  feedwater  pumping  and  process  capital  costs.    

BENEFITS OF SYNERGY: FORWARD OSMOSIS, MSR AND SNG The  use  of  an  ammonia  and  carbon  dioxide  based  salt  to  create  osmotic  pressure  to  effect  the  separation  of  fresh  water  from  saline  sources  allows  for  higher  feedwater  recoveries,  lower  brine  discharge  volumes,  lower  (and  less  expensive)  energy  use  and  a  lower  total  water  cost.  Using  a  vacuum  distillation  column  for  solution  recovery,  it  is  possible  to  use  very  low-­‐grade  heat  as  the  primary  energy  source  for  FO  and  hence  radically  reduce  the  cost  of  desalination.  

The  high  recoveries  and  subsequent  low  brine  discharge  volumes  make  it  possible  to  reduce  the  negative  environmental  impact  of  desalination  of  all  types,  opening  up  the  possibility  of  effectively  desalting  inland  saline  water  sources.  With  high  recovery  FO,  it  is  possible  to  obtain  fresh  water  economically  from  brackish  groundwater  without  producing  a  liquid  brine  stream.  This  could  be  of  great  benefit  to  arid  regions  with  such  resources,  such  as  the  southwestern  US.  

Cost-­‐effective  Forward  Osmosis  will  rely  on  ample  supplies  of  high  purity  carbon  dioxide  and  ammonia.  Both  can  be  produced  from  the  Synthetic  Natural  Gas  (SNG)  process  driven  by  an  Molten  Salt  Reactor  (MSR),  offering  the  promise  of  a  synergy,  especially  for  developing  nations  that  are  in  dire  need  of  electricity,  transportation  fuel,  and  water.    Transforming  various  carbon-­‐based  feed  stocks  such  as  coal  into  SNG  creates  carbon  dioxide  and  ammonia.  MSR  power  makes  this  an  economically  attractive  proposition.    

MSRs  offer  other  benefits  to  the  FO  process.  Residual  heat  captured  from  a  MSR  used  in  an  SNG  production  process  could  be  used  in  the  desalination  process.  The  low  cost  electricity  generated  could  power  pumps,  making  it  economically  viable  to  transport  water  long  distances.  This  is  preferable  to    drawing  water  from  environmentally  sensitive  streams  and  fresh  water  habitats,  positively  impacting  the  natural  environment,  while  enabling  continued,  sustainable  economic  growth.  

Forward  Osmosis  is  a  compelling  potential  solution  to  the  world’s  impending  water  crisis.  Molten  Salt  Reactor  technology,  powering  Synthetic  Natural  Gas  production,  can  create  the  raw  materials  for  affordable  FO  desalination  and  the  low-­‐cost  energy  needed  to  maximize  the  benefits  of  these  technologies,  offering  communities,  states,  and  nations  a  means  to  produce  and  secure  their  own  prosperity.  

Page 6: Desalination Tech Sheet

 

 

 

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

egeneration.org