description of work for the esfr project · ③ based on esfr mcnp model obtained from jrc petten...

28
1/5 Description of work for the ESFR project D. Rochman, NRG Nuclear Research and Consultancy Group, NRG, Petten, The Netherlands February 25, 2010

Upload: others

Post on 21-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1 / 5

    Description of work for the ESFR project

    D. Rochman, NRG

    Nuclear Research and Consultancy Group,

    NRG, Petten, The Netherlands

    February 25, 2010

  • SP 2.1, WP3: Feedback coefficients

    2 / 5

    ① Person-month:=⇒ 3

    ② Task 3.1.3:=⇒ ”The sensitivities and uncertainties, including those originated

    from the uncertainties in the nuclear data, will be quantified for the voidcoefficient. The full Monte Carlo uncertainty evaluation of the voidcoefficient will be performed using BOLNA.”

    ③ Based on ESFR MCNP model obtained from JRC Petten(received from H. Tsige-Tamirat in November 2009), =⇒ Is there a moreprecise model available ?

    ④ Start: Probably second half of 2010.

  • Nuclear data propagation: Monte Carlo approach (TALYS+MCNP)

    3 / 5

    5000 random ENDF-6 filesNJ OY −→ 5000 ACE files

    5000 MCNP calcs for the same case

    Average to get fullcovar iance matrix

    MF-32,33,34

    5000 random Talys parameter sets5000 random resonance para meter sets

    (1) (2)

    We have both routes, but one is easier and more exact to take than the second one.

    In solution (1):Problem 1: ENDF format for covariances for fission yields, thermal scattering,

    branching ratios, DDX, γ-productionProblem 2: Processing of these covariancesProblem 3: Neutronics with covariances: perturbation codes.

    Are these generally available and working?

  • Nuclear data propagation: Monte Carlo approach (TALYS+MCNP)

    3 / 5

    5000 random ENDF-6 filesNJ OY −→ 5000 ACE files

    5000 MCNP calcs for the same case

    Average to get fullcovar iance matrix

    MF-32,33,34

    5000 random Talys parameter sets5000 random resonance para meter sets

    (1) (2)

    We have both routes, but one is easier and more exact to take than the second one.

    In solution (1):Problem 1: ENDF format for covariances for fission yields, thermal scattering,

    branching ratios, DDX, γ-productionProblem 2: Processing of these covariancesProblem 3: Neutronics with covariances: perturbation codes.

    Are these generally available and working?

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 1

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 1

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 1(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 1(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 2

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 2

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 2(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 2(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 3

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 3

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 3(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 3(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 4

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 4

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 4(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 4(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 5

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 5

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 5(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 5(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 6

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 6

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 6(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 6(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 7

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 7

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 7(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 7(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 8

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 8

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 8(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 8(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 9

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 9

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 9(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 9(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 10

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 10

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 10(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 10(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

    n = 15

    θn = 61 degEn = 5.2 MeV

    (n,xn)

    Energy (MeV)

    d2σ/d

    E/d

    θ(b

    /eV

    /sr)

    6543210

    10−6

    10−7

    10−8

    10−9

    10−10

    n = 15

    En = 500 keV

    (n,el)

    Angle (deg)

    dσ/d

    θ(b

    /sr)

    150100500

    2.4

    2.0

    1.6

    1.2

    0.8

    0.4

    n = 15(n,γ)

    Incident Energy (eV)

    Cro

    ssse

    ctio

    n(b

    )

    1000800600400200

    10−1

    10−2

    10−3

    10−4

    n = 15(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    201510

    2.0

    1.5

    1.0

    0.5

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 20

    keff = 1.01451± 703 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 25

    keff = 1.01403± 696 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 30

    keff = 1.01395± 678 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 40

    keff = 1.01337± 712 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 60

    keff = 1.01429± 676 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 100

    keff = 1.01358± 693 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 200

    keff = 1.01306± 766 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 300

    keff = 1.01304± 743 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    10

    8

    6

    4

    2

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 400

    keff = 1.01355± 769 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    25

    20

    15

    10

    5

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 600

    keff = 1.01372± 745 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    25

    20

    15

    10

    5

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv MCNPTALYS

    n = 800

    keff = 1.01363± 744 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    25

    20

    15

    10

    5

    0

  • Hands on “1000 ×(Talys + ENDF + NJOY + MCNP) calculations”

    4 / 5

    Γn

    acompound

    atarget

    Γγ

    av

    rv

    =⇒ uncertainty due to nuclear data ' 740 pcm

    Statistical uncertainty ' 68 pcm

    MCNPTALYS

    n = 800

    keff = 1.01363± 744 pcm

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.041.031.021.011.000.99

    25

    20

    15

    10

    5

    0

  • The sodium void reactivity (SVR) in units of dollars ($) can beobtained from:

    5 / 5

    SVR = k2 − k1k1k2

    1βeff

    ×105, (1)

    Reduced Chi-square=0.215

    SVR= 8.02510± 0.55092 $

    Kalimer void coefficient (23Na)

    Void coefficient value ($)

    Num

    ber

    ofco

    unts

    /bin

    s

    8.28.18.07.97.8

    20

    15

    10

    5

    0

    Figure 1: Calculated sodium void coefficient (SVR) for the Kalimer-600 design,varying the 23Na nuclear data file (NIM/A 612 (2010) 374.)

    The final SVR is equal to 8.02510 (± 3 %statistical ± 6 %nuclear data).

    SP 2.1, WP3: Feedback coefficientsNuclear data propagation: Monte Carlo approach (TALYS+MCNP)Hands on ``1000 (Talys + ENDF + NJOY + MCNP) calculations''The sodium void reactivity (SVR) in units of dollars ($) can be obtained from: