design and simulation of power converters

Upload: hoang-ngo

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Design and Simulation of Power Converters

    1/48

    Design and

    Simulation ofPower Convertersusing the AnsoftPower Suite

    Presenter: Roberto Prieto

    Universidad Politcnica de Madrid (UPM). Spain

  • 8/3/2019 Design and Simulation of Power Converters

    2/48

    Outline

    The application: Interleaved converters

    Design of magnetic components for power conv erters usingconverters using PExprt

    Advantages of Integrated magnetics in InterleavedConverters

    Integrated magnetics component design using PExprt

    Converter design, including regulation loop: from PExprt toPExprt to Simplorer

    Digital control implementation with Simplorer

    System design: from the circuit level to the system levellevel

  • 8/3/2019 Design and Simulation of Power Converters

    3/48

    Ansoft Power Suite

  • 8/3/2019 Design and Simulation of Power Converters

    4/48

    Interleaved Converters Features

    LoadLoadParalleling

    Shift

    Packaging

    +

    +

  • 8/3/2019 Design and Simulation of Power Converters

    5/48

    IIL1L1

    LL11

    IIL2L2

    LL22

    Ripple cancellation

    Ripple cancellationRipple cancellation

    2 converters2 converters d = 50%d = 50%

    4 converters4 converters d = 25%d = 25%

    IIL1L1

    IIL2L2

    IICC

    IIL1L1

    IIL2L2

    IICC

    Small COUT

    Small COUT

    Advantages of Interleaved Converters (I)

  • 8/3/2019 Design and Simulation of Power Converters

    6/48

    Advantages of Interleaved Converters (II)

    Vs = 24V, Is = 10AVs = 24V, Is = 10A

    Vs = 9V, Is = 10AVs = 9V, Is = 10A

  • 8/3/2019 Design and Simulation of Power Converters

    7/48

    LoadLoad

    IIN/N

    Advantages of Interleaved Converters (III)

  • 8/3/2019 Design and Simulation of Power Converters

    8/48

    Application of Interleaved Converters

    AmpRF

    PowerConverte

    r

    Filter

    Control

  • 8/3/2019 Design and Simulation of Power Converters

    9/48

    42V

    DC-DC

    12V

    High LowD

    C-DC

    400V

    DC-DC

    12V

    Interleaved converters: Automotive

    application

  • 8/3/2019 Design and Simulation of Power Converters

    10/48

    80.00

    82.50

    85.00

    87.50

    90.00

    92.50

    95.00

    97.50

    100.00

    0 10 20 30 40 50 60 70

    Output current (A)

    Effici

    ency(%)

    Only power stage

    Power stage + control

    Phase currents

    -0.5

    0

    0.5

    1

    1.5

    2

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05t (s)

    a

    se

    currents

    Phase currents

    -0.5

    0

    0.5

    1

    1.5

    2

    0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05t (s)

    a

    se

    currents

    Very small size

    components

    SMD is possibleSMDSMD is possibleis possible

    SMDSMD

    Output capacitorsOutput capacitors

    Automotive Application: Multi-phase converters.36 phases

    I l d C d i i h

  • 8/3/2019 Design and Simulation of Power Converters

    11/48

    Interleaved Converters design withSimplorer (I)

    SMPS Library elementsSMPS Library elementsSMPS Library elements

  • 8/3/2019 Design and Simulation of Power Converters

    12/48

    SMPS library contains aSMPS library contains awide list of averagedwide list of averaged

    and switch level modelsand switch level models

    Simplorer SMPS library

  • 8/3/2019 Design and Simulation of Power Converters

    13/48

  • 8/3/2019 Design and Simulation of Power Converters

    14/48

    Magnetic Component design with PExprt (I)

  • 8/3/2019 Design and Simulation of Power Converters

    15/48

    Design with PExprt. Step 1: Design

  • 8/3/2019 Design and Simulation of Power Converters

    16/48

    PExprt. Step 2: Select & Compare

  • 8/3/2019 Design and Simulation of Power Converters

    17/48

    PExprt. Step 2: Select & Compare

  • 8/3/2019 Design and Simulation of Power Converters

    18/48

    PExprt. Step 3: Optimize

    PE t St 4 Ci it l l i l ti ith

  • 8/3/2019 Design and Simulation of Power Converters

    19/48

    PExprt. Step 4: Circuit level simulation withSimplorer

  • 8/3/2019 Design and Simulation of Power Converters

    20/48

    -1.00

    1.00

    0

    949.27u 999.90u960.00u 980.00u

    Phase Currents

    0

    1.00

    00.00m

    0 10.005.00

    max 84%

    Decrease due to

    parasitic effects0

    1.00

    500.00m

    0 10.005.00

    2.00

    5.00

    3.00

    4.00

    9.95m 10.00m9.96m 9.98m

    1.6A p-p1.5A p-p

    86%

    Comparison of models at circuit level with Simplorer

    EfficiencyEfficiencyEfficiency

    Current at each phaseCurrent at each phaseCurrent at each phase

    Integrated Magnetics vs Discrete

  • 8/3/2019 Design and Simulation of Power Converters

    21/48

    Integrated Magnetics vs Discrete

    Components

    -12.27

    13.98

    0

    10.00

    360.05u 400.00u370.00u 380.00u 390.00u

    Phase Currents

    -2.00

    2.00

    0

    360.08u 400.00u370.00u 380.00u 390.00u

    Phase Currents

    0

    4.94

    2.00

    4.00

    0 800.00u500.00u

    Output Voltage

    0

    5.23

    2.00

    4.00

    0 800.00u500.00u

    Output Voltage

    Discrete ComponentsDiscrete ComponentsDiscrete ComponentsIntegrated MagneticsIntegratedIntegrated MagneticsMagnetics

    Integrated Magnetics Features in Interleaved

  • 8/3/2019 Design and Simulation of Power Converters

    22/48

    Multiphase

    converters

    MultiphaseMultiphase

    convertersconvertersMagnetic

    integration

    MagneticMagnetic

    integrationintegrationCouplingCouplingCoupling

    Multiphase transformer(several implementations)

    i0

    Loadv1

    v2

    v3

    i1

    i2

    i3

    i4

    Integrated Magnetics Features in InterleavedConverters (I)

    Integrated Magnetics Features in Interleaved

  • 8/3/2019 Design and Simulation of Power Converters

    23/48

    iO Loadv1

    v2

    v3

    i2

    i3

    Standard cores

    Integrated Magnetics Features in InterleavedConverters (II)

    Integrated Magnetics Features in Interleaved

  • 8/3/2019 Design and Simulation of Power Converters

    24/48

    Core ACore A Core BCore B

    Windingphase 2

    Windingphase 4

    Winding phase 3 Winding phase 1

    Winding phase 4

    Core ACore A

    Core BCore B

    Phase 1

    Phase 2

    Phase 3

    Phase 4

    Core ACore A

    Core BCore B

    Volume comparison

    0%

    25%

    50%

    75%

    100%

    125%

    Decoupled

    inductor

    Integrated

    transformer +

    additional inductor

    Integrated

    transformer

    Integrated Magnetics Features in InterleavedConverters (III)

  • 8/3/2019 Design and Simulation of Power Converters

    25/48

    FeaturesFrequency dependent

    Capacitive effects

    Nonlinear core

    Design of Integrated Magnetics with PExprt

  • 8/3/2019 Design and Simulation of Power Converters

    26/48

    Fl ibl Wi di S t D fi iti f h l

  • 8/3/2019 Design and Simulation of Power Converters

    27/48

    Flexible Winding Setup Definition for each core leg

  • 8/3/2019 Design and Simulation of Power Converters

    28/48

    PExprt Model: Simplorer link

    Diff t b bbi b i d t h l

  • 8/3/2019 Design and Simulation of Power Converters

    29/48

    Different bobbins can be assigned to each core leg

    Planar Integrated can also be defined

  • 8/3/2019 Design and Simulation of Power Converters

    30/48

    Planar Integrated can also be defined

  • 8/3/2019 Design and Simulation of Power Converters

    31/48

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm1

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm2

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm3E1

    PEX

    PExprtLink1

    R1

    A

    AM1

    A

    AM2

    A

    AM3

    C1

    STEP1

    Circuit level simulation with Simplorer

  • 8/3/2019 Design and Simulation of Power Converters

    32/48

    1.00

    1.00

    0

    949.27u 999.90u960.00u 980.00u

    0

    1.00

    00.00m

    0 10.005.00

    max 84%

    1.5A p-p

    Comparison of models at circuit level with Simplorer

    2.00

    .00

    0

    2.50

    5.00

    0 1.02m500.00u

    0

    1.00

    00.00m

    0 10.005.00

    More stable behavior

    84%

    2.00

    2.00

    0

    949.27u 999.90u960.00u 980.00u

    The currents are in phase

    2.2A p-p

    2.0

    .00

    0

    2.50

    5.00

    0 1.02m500.00u

    Faster than the uncoupled version

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm1

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm2

    p

    n

    mMOSFET_LEG

    M1

    M2

    pwm

    pwm3E1

    PEX

    PExprtLink1

    R1

    A

    AM1

    A

    AM2

    A

    AM3

    C1

    STEP1

    DiscreteDiscreteDiscrete IntegratedIntegratedIntegrated

  • 8/3/2019 Design and Simulation of Power Converters

    33/48

    Particular geometries might require Maxwell 3D

    2D is feasible2D is feasible2D is feasible

    3D is necessary3D is necessary3D is necessary

    Automotive Application: Multi phase converters

  • 8/3/2019 Design and Simulation of Power Converters

    34/48

    Digital control is mandatoryDigital controlDigital control is mandatoryis mandatory

    Automotive Application: Multi-phase converters.36 phases

  • 8/3/2019 Design and Simulation of Power Converters

    35/48

    G(s)G(s)Continuous blocks: S-Transfer function

    Discrete blocks: Z-Transfer function

    Discrete Fixed-Point : Synthesized VHDL code

    Control Implementation: Alternatives

    11

    AnalogAnalogAnalog

    DigitalDigitalDigital

    22

    33

    G(z)G(z)

    Discrete_PID

  • 8/3/2019 Design and Simulation of Power Converters

    36/48

    Digital Control for multiphase Converters

    f = 3kHzf = 3kHz

  • 8/3/2019 Design and Simulation of Power Converters

    37/48

    Output Voltage

    Duty Cycle

    Digital Control Implementation

    Soft Start

    (Electric circuit)Simplorer blocks

    Analog PID

    AnalogImplementationAnalogImplementation

  • 8/3/2019 Design and Simulation of Power Converters

    38/48

    Output Voltage

    Duty Cycle

    Soft Start

    (Electric circuit)

    Discrete PID(VHDL-AMS block)

    Simplorer blocks

    Digital Control Implementation

    DigitalImplementationDigitalImplementation

  • 8/3/2019 Design and Simulation of Power Converters

    39/48

    2.50

    3.50

    3.00

    250.00u 450.00u300.00u 400.00u

    Output Voltage

    -10.00

    20.00

    0

    10.00

    250.00u 450.00u300.00u 400.00u

    ase urrents

    2.50

    3.50

    3.00

    250.00u 450.00u300.00u 400.00u

    Output Voltage

    -10.00

    20.00

    0

    10.00

    250.00u 450.00u300.00u 400.00u

    Phase Currents

    Digital Control Implementation: Simplorer Results

    Continuous time P ID (Analog)Continuous time P ID (Analog)Continuous time P ID (Analog)

    Discrete time P ID (Digital): sampling = 600kHzDiscrete time P ID (Digital): sampling = 600kHzDiscrete time P ID (Digital): sampling = 600kHz

    Digital Control Implementation: Simplorer based

  • 8/3/2019 Design and Simulation of Power Converters

    40/48

    Overshot and settling timemeasurement

    Performance evaluation(better when settling time is short)

    Fitness functionInitial simulations

    Tendency ofthe parameters

    Digital Control Implementation: Simplorer baseddesign

    S S S

  • 8/3/2019 Design and Simulation of Power Converters

    41/48

    Complete systemComplete system Power systemPower system

    The power system inv olves:

    involves:Losses

    Dynamic limitations

    Temperature issues

    Failures

    The power system can not beThe power system can not be

    modeled as an ideal systemmodeled as an ideal system

    System and Sub-System levels

    M d li h

  • 8/3/2019 Design and Simulation of Power Converters

    42/48

    Switch level modelsAre based directly on the structure

    Provide information for eachcomponent in every switching

    cycle

    Averaged models

    Switching information is lost butstructure is kept

    There are several techniques like:

    State space averaging

    Averaged switch modeling

    Behavioral modelsBased on the input-outputbehavior

    The model is a black box, the real

    structure is lost

    Modeling approaches

    Sim lation time

  • 8/3/2019 Design and Simulation of Power Converters

    43/48

    Simulation time

    Voutn

    Voutp

    Vinn

    Vinp

    Half BridgeRegulado

    28V/1.8V

    Vom

    Vop

    Vinm

    VinpBuck

    Regulado42V/28V

    +

    V

    VM2

    Voutn

    Voutp

    Vinn

    Vinp

    Half BridgeRegulado

    28V/1.8V

    Voutn

    Voutp

    Vinn

    Vinp

    Half BridgeRegulado

    28V/1.8V

    Vom

    Vop

    Vinm

    VinpBuck

    Regulado42V/28V

    Vinm

    Vinp

    SubsistemaBateria

    Vm

    Vp

    SubsistCargasReg2

    Vm

    Vp

    SubsistemaGenera

    Vm

    Vp

    SubsistemaCargasNoR

    Vm

    Vp

    SubsistCargasReg

    Vm

    Vp

    SubsistemaCargasNoReg2

    +

    V

    VMc

    +

    V

    VMc

    +

    V

    VMba

    A

    AMba

    +

    V

    VMin

    0

    43.00

    10.00

    20.00

    30.00

    0 150.00m25.00m 50.00m 75.00m 100.00m

    Simulation time

    -Averaged models -> 157 seconds

    -Behavioral models -> 29 seconds

    5 times faster!!!

    SMPS Lib PT l

  • 8/3/2019 Design and Simulation of Power Converters

    44/48

    Problems designing power systemsThe lack of models for each DC/DC converterThe lack of information on commercial converters

    Difficulty to develop the models

    Long simulation time

    All above problems multiplied by the number of converters

    Get optimized VHDLGet optimized VHDL--AMS models for DC/DCAMS models for DC/DC

    converters in minutesconverters in minutes

    SMPS Library: PTool

    SMPS Lib PT l

  • 8/3/2019 Design and Simulation of Power Converters

    45/48

    SMPS Library: PTool

    Input characteristicsInput characteristics

    Output characteristicsOutput characteristics

    Dynamic responseDynamic response

    Static responseStatic response

    Remote controlRemote control

    Thermal behaviorThermal behavior

    ProtectionsProtections

    Power sharingPower sharing

    Cross regulationCross regulation

    PToolPTool converterconverters features:s features:

    Simplorer S stem Le el Models

  • 8/3/2019 Design and Simulation of Power Converters

    46/48

    Simplorer System Level Models

    vi_n

    vi_p

    vo1_n

    vo1_p

    Behavioral

    Simplorer System Level Models

  • 8/3/2019 Design and Simulation of Power Converters

    47/48

    Simplorer System Level Models

    vi_n

    vi_p

    vo1_n

    vo1_p

    Behavioral

    0

    100.00

    50.00

    0 10.005.00

    Efficiency comparison

    Behavioral

    Switch level

    0

    3.40

    2.00

    0 520.00u200.00u 400.00u

    System Level and Switch

    Total simulation time: 700us

    Behavioral: 0.992s Switch level: 352.54s

  • 8/3/2019 Design and Simulation of Power Converters

    48/48