design automation for aircraft design – micro air vehicle application

18
Design Automation for Aircraft Design – Micro Air Vehicle Application David Lundström, Kristian Amadori

Upload: vernados-karan

Post on 30-Dec-2015

53 views

Category:

Documents


4 download

DESCRIPTION

Design Automation for Aircraft Design – Micro Air Vehicle Application. David Lundström, Kristian Amadori. MAV – Micro Air Vehicle. DARPA definition: Physical size lesser than 15cm “General” definition: Size

TRANSCRIPT

Design Automation for Aircraft Design – Micro Air

Vehicle Application

David Lundström, Kristian Amadori

Flygteknik 2010

2

MAV – Micro Air Vehicle

DARPA definition: Physical size lesser than 15cm

“General” definition: Size <0.5m, Weight <500g

Unmanned aircraft small enough to easily be carried and operated by one person

Police, civil rescue, agriculture, meteorology, military

Flygteknik 2010

3

Department of Computer and Information Science

Department of Management and Engineering

FluMeSFluid & Mechatronic Systems

Flygteknik 2010

5

MAV Design Automation

Flygteknik 2010

6

Design Automation Process

Performance Requirements

a.

b.

c.

Component ListComponent List

Sensors and autopilot

Objective

Flygteknik 2010

7

Design Framework

Weightwetted areaetc.

Geometricparameters

Optimizer

Obj. function

Control variables

Parametric CAD model Aerodynamic model

Spreadsheet model

Geometry meshcD,

cm, cL

Propulsion system database

•Motors•Motor controllers•Batteries•Propellers Database contains 300 different “off the shelf” components

Database

Componentspecifications

Flygteknik 2010

10

Parametric CAD Model - CATIA V5

Model incorporates External shape

Internal Structure

Internal Components

Key requirements High flexibility

Robustness

x

AvailableThickness

Component

XMINUser Def.Min. X

Total Allowed Range

x

Component

XMINUser Def.Max X

Flygteknik 2010

11

Optimization Mixture of discrete and continuous variables,

high coupling between variables, large solution space, numerous constraints.

Genetic Algorithm

Flygteknik 2010

12

Sequential Optimization

Step 1Fast

Simple geometric and aerodynamic model

Fast

System and performance models

Geometry (continuous)

Step 2Expensive

Complex geometric and aerodynamic model

(Step 3)

Fast

System and performance models

Geometry (continuous)

System Parameters

(discrete and continuous)

System Parameters

(discrete and continuous)

(If geometry changes

significantly)

Flygteknik 2010

13

Sequential Optimization

Step 1Fast

Simple geometric and aerodynamic model

Fast

System and performance models

Step 2Expensive

Complex geometric and aerodynamic model

(Step 3)

Fast

System and performance models

Geometry (continuous)

Geometry (continuous)

System Parameters

(discrete and continuous)

System Parameters

(discrete and continuous)

(If geometry changes

significantly)

Flygteknik 2010

14

Multi-objective optimization

Multi-Objective Genetic Algorithm (MOGA II)

Software: Mode Frontier

Objective function:

Constraints on: stall speed, max. speed, CG position, thrust-to-weight ratio, component specifications

b

REF

a

REF

Endurance

Enduranceand

Weight

Weightmaxmax

Objective 1

Ob

ject

ive

2

Pareto

Front

Flygteknik 2010

15

Design Framework - Mode Frontier

Flygteknik 2010

16

Optimization Results

Example analysis with real components database

2.8155E-1 3.8155E-1 4.8155E-1

Weight

1.4657E1

2.4657E1

3.4657E1

4.4657E1

5.4657E1

6.4657E1

7.4657E1

En

du

ran

ce

1.6888E4

1.5023E4

1.3159E4

1.1294E4

9.4298E3

7.5652E3

5.7007E3

3.8361E3

1.9716E3

1.0700E2

ID

4147

8748

9035

9466

9520

10008

10278

10424

10681

10888

1213312162

13804

1451414573

14911

15201

15518

15740

1579316377

16386

164431681216840

2.8491E-1 3.8491E-1 4.8491E-1

Weight

1.4505E1

2.4505E1

3.4505E1

4.4505E1

5.4505E1

6.4505E1

7.4505E1

Endura

nce

1.8750E3 1.6669E3 1.4588E3 1.2507E3 1.0426E3 8.3444E2 6.2633E2 4.1822E2 2.1011E2 2.0000E0

ID

1727

2.8155E-1 3.8155E-1 4.8155E-1

Weight

1.4657E1

2.4657E1

3.4657E1

4.4657E1

5.4657E1

6.4657E1

7.4657E1

En

du

ran

ce

1.6888E4

1.5023E4

1.3159E4

1.1294E4

9.4298E3

7.5652E3

5.7007E3

3.8361E3

1.9716E3

1.0700E2

ID

4147

8748

9035

9466

9520

10008

10278

10424

10681

10888

1213312162

13804

1451414573

14911

15201

15518

15740

1579316377

16386

164431681216840

2.8491E-1 3.8491E-1 4.8491E-1

Weight

1.4505E1

2.4505E1

3.4505E1

4.4505E1

5.4505E1

6.4505E1

7.4505E1

Endura

nce

1.8750E3 1.6669E3 1.4588E3 1.2507E3 1.0426E3 8.3444E2 6.2633E2 4.1822E2 2.1011E2 2.0000E0

ID

1727

Flygteknik 2010

17

Pareto Frontier Designs

Mission Requirements:

Cruise speeed = 70km/h

Stall speed= 35km/h

Payload = 60g video camera

T/W ratio= 0.7

2.8491E-1 3.8491E-1 4.8491E-1

Weight

1.4505E1

2.4505E1

3.4505E1

4.4505E1

5.4505E1

6.4505E1

7.4505E1

En

du

ran

ce

1727

Flygteknik 2010

18

Automated Manufacturing Test using FDM 3D printer: 270mm MAV

Benefits:No ”craftsmanship” is neededGeometric complexity – no influence on costGood accuracy and repeatabilityAllows easy validation

90g 60g

Flygteknik 2010

19

Validation and Flight Testing

Root Chord 208 mm Motor Turnigy C1822Tip Chord 56 mm Battery FlightPower EVO Light 3s350MahWing Span 270 mm Propeller APC 4.5x4.1LE Sweep 38 Deg ESC Turnigy Plush 6ATwist 1 DegNose Length 31 mmWeight 185 g

Geometrical Specs Propulsion System Specs

Predicted Measured Error

Maximum Speed [m/s] 26,4 25,0 5,3%

Endurance (VMax) [min] 6,1 6,0 1,6%

Weight [g] 185 187 1,1%

Flygteknik 2010

20

Conclusions

Automated MAV design has been demonstrated and proven to be realistic. Current modeling is a balance of accuracy and calculation speed. Propulsion

system has highest impact on performance Method can be seen as a stepping stone for improving conceptual design

methods for larger UAVs and manned aircraft.

Key innovations to achieve automated design is: Discrete propulsion system optimization using COTS-components Unique composition of design framework Sequential optimization process with increased model fidelity Usage of Multi-objective optimization Efficient method for internal component placement and balancing 3D printing for fabrication

Flygteknik 2010

21

Future Work

Validation of aerodynamics and propulsion

Flight simulation – Control system design

Increased model accuracy (CFD)?

0,0

20,0

40,0

60,0

80,0

100,0

120,0

4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000U (V)

P(W

) /

n(rp

m/1

00)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Eta

Pin

Put

n

Eta