design model for the heat transfer in a short straight

368
DESIGN MODEL FOR THE HEAT TRANSFER IN A SHORT STRAIGHT TUBE BOILER Leo ¥. Vollmer

Upload: others

Post on 02-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

DESIGN MODEL FOR THE HEAT TRANSFERIN A SHORT STRAIGHT TUBE BOILER

Leo ¥. Vollmer

NAVAL POSTGRADUATE SCHOOLMonterey, California

THESISDESIGN MODEL FOR THE HEAT TRANSFER

IN A SHORT STRAIGHT TUBE BOILER

by

Leo W. Vollmer, Jr.

June 1981

Th<ssis Advisor: P.F. Pucci

Approved for public release; distribution unlimited

T 1 9 9 6

1

UnclassifiedSECURITY CLASSIFICATION OF THIS PAGE *nmn D;m Bntoro4)

REPORT DOCUMENTATION PAGE2. OOVT ACCESSION NO.

4. TITLE mnd Submit)

Design >bdel for the Heat Transfer in a ShortStraight Tube Boiler

7. AUTHORS

Leo W. Vollmer, Jr,

» HMOHHIiiO ORGANIZATION NAME ANO AOORESS

Naval Postgraduate SchoolMonterey, California 93940

II. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate SchoolMonterey, California 93940

'« MONITORING AGENCY NAME a AOORESV" dltloront from Controlling Olllct)

READ INSTRUCTIONSBEFORE COMPLETING FORM

t RECIPIENTS CATALOG NUMBER

5. TYPE OF REPORT a PERIOO COVEREDMaster's ThesisJune 1981S. PERFORMING ORG. REPORT N UMBER

• • CONTRACT OR GRANT NLMBERf *)

10. PROGRAM ELEMENT. PROJECT TASKAREA a WORK UNIT NUMBERS'

12. REPORT OATE

June 198111 "LIMBER OF PAGES

181IS. SECURITY CLASS, (oi tht, ripon)

Unclassified

ISa. OECLASSIFICATION/OOWNGRAOINGSCHEDULE

l«. DISTRIBUTION STATEMENT at tnf Rooort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol tho ombtrmct ontorod In Block 20, II dlllmroni from Hoport)

1*. SUPPLEMENTARY NOTES

» KEY WOROS (Ccmtlm— on roworoo • <<*• H notoooorr aw* imbntltf my block nummor)

'Taste heat recovervShort straight tube boilerStagnation boilerBoiling heat transfer

20. ABSTRACT 'Continue on rtrorto •!<*• II nocoookmr on* Idomittr br block numoor)

A design model for the Short Straight Tube Boiler with a segmented fin-tubearrangement was developed. This model was integrated for a single tube appliedin a computer program written in BASIC for the Hewlett Packard 9845 model B

desk- top computer.

Water-side Reynolds numbers were varied in order to investigate the per-formance of this boiler. For an overall tube length of 39.4 inches, a Reynoldsnumber of 840 (29.65 lbm/hr) resulted in obtaining 50° superheat for an

DDi

'am"71 1473 COITION OF I MOV •• IS OBSOLETE

S/N 103-014- 6401|

UnclassifiedSECURITY CLASSIFICATION OF THIS PAOt (9hom Dmim Kntotod)

Unclassified<•*«•• n*«« t««>»*

Item 20 continued:

operating pressure of 600 psig. With these conditions, saturated boilingbegins at 11.45 inches and superheating at 21.88 along the tube length.

Form 14731 Jan 73N 0102-014-6601

Unclassified

SCCU«tTV CkAMt'lCATtOM O' »•• »••«»«» ©•*• !»»•'•*»

Approved for public release; distribution unlimited

Design Model for the Heat Transferin a Short Straight Tube Boiler

bv

Leo W. Vvollmer, Jr.

Lieutenant, United States NavyB.S.E.E. Purdue University, 1974

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1981

ABSTRACT

A design model for the Short Straight Tube Boiler with a

segmented fin-tube arrangement was developed. This model

was integrated for a single tube and applied in a computer

program written in BASIC for the Hewlett Packard 9845 model

B desk-top computer.

Water-side Reynolds numbers were varied in order to in-

vestigate the performance of this boiler. For an overall

tube length of 39.4 inches, a Reynolds number of 840 (29.65

lbm/hr) resulted in obtaining 50° superheat for an operating

pressure of 600 psig. With these conditions, saturated boil

ing begins at 11.45 inches and superheating at 21.88 along

the tube length.

TABLE OF CONTENTS

I. INTRODUCTION --- -- 15

A. BOILER --- - 15

1. An Overview - 15

2. History -- 16

3. Boiler Types -- 21

a. Fire-Tube Boilers 22

b. Water-Tube Boilers 31

4. Water Circulation 5 °

5. Heat Source 52

B. RACER AND THE SST 54

C. OBJECTIVE 58

II. MODEL DESCRIPTION 60

A. AN OVERVIEW - 60

B. GEOMETRY 64

1. Segmented Fins 65

2. Pin Fins - - 65

C. GAS -SIDE HEAT TRANSFER/ PRESSURE DROP 70

D. WATER- SIDE HEAT TRANSFER - -- 73

E. OVER-ALL HEAT TRANSFER - -- 84

III. RESULTS AND CONCLUSIONS 90

A. BACKGROUND 90

B. DESIGN VARIABLES - 91

1. S.S.T. Operating Pressure 92

2. Frontal Diminsions 92

3. Gas Flow Rate and Temperatures 92

4. Superheater Outlet Steam Temperature 92

5. Water Inlet Temperature 9 2

6. Fin Geometry 92

C. THE DATA SET 9 3

D. CONCLUSION 108

IV. RECOMMENDATIONS FOR FURTHER RESEARCH -- 136

APPENDIX A: PROGRAM LISTING --- 138

LIST OF REFERENCES 178

INITIAL DISTRIBUTION LIST 181

LIST OF FIGURES

FIGURE 1: BRONZE WATER-COOLED TUBES AND WATER-COOLEDFURNACE CHAMBER WALL I 7

FIGURE 2: THOMAS SAVERY'S FIRST BOILER - 1698 22

FIGURE 3: THOMAS SAVERY'S IMPROVED BOILER - 170 2 23

FIGURE 4: DR. DESAGULIER'S WINDING FLUE BOILER -

1718 - 24

FIGURE 5: HAYSTACK BOILER - 1725 25

FIGURE 6: JAMES WATTS WAGON -TYPE BOILER - 1795 25

FIGURE 7: CYLINDRICAL BOILER - 1790 26

FIGURE 8: OLIVER EVAN'S RETURN-FLUE BOILER - 1800 27

FIGURE 9: RICHARD TREVITHICKS' CORNISH BOILER --- 28

FIGURE 10: VERTICAL BOILER TYPES 29

FIGURE 11: FIRST WATER-TUBE BOILER - 1766 32

FIGURE 12: BOX-SHAPE WATER-TUBE BOILER - 1793 35

FIGURE 13: JOHN STEVEN'S PORCUPINE BOILER - 1804 33

FIGURE 14: JOHN COX STEVENS' WATER-TUBE BOILER -

1805 - 34

FIGURE 15: THE FIRST SECTIONAL WATER-TUBE BOILER -

JOSEPH EVE - 1825 35

FIGURE 16: GOLDWORTHY GURNEY ' S CARRIAGE BOILER -

1826 - - --- 36

FIGURE 17: STEPHEN WILCOX'S BOILER WITH INCLINEDTUBES - 1856 37

FIGURE 18: FIRST SECTIONAL WATER-TUBE BOILER WITHINCLINED TUBES -TWBILL - 1865 37

FIGURE 19: SIDE VIEW OF HEADER-TYPE BOILER 40

FIGURE 20: BASIC "A'r TYPE BOILEP 42

FIGURE 21:

FIGURE 22:

FIGURE 23:

FIGURE 24:

FIGURE 25:

FIGURE 26:

FIGURE 27:

FIGURE 28:

FIGURE 29:

FIGURE 30:

FIGURE 31:

FIGURE 32:

FIGURE 33:

FIGURE 34:

FIGURE 35:

FIGURE 56:

FIGURE 37:

FIGURE 38:

FIGURE 39:

FIGURE 40:

FIGURE 41:

FIGURE 42a

FIGURE 42b

YARROW TYPE BOILER --- 43

"A" TYPE BOILER WITH UNCONTROLLED INTEGRALSUPERHEAT 43

SECTIONAL EXPRESS TYPE BOILER - 1939 44

SEPARATELY FIRED SUPERHEATER BOILER -

1930 - 44

"A" TYPE BOILER FOR GENERATINGSUPERHEATED STEAM WITH CONTROLLED,INTEGRAL, INTERDECK SUPERHEAT 4 5

"M" TYPE BOILER WITH CONTROLLED,INTEGRAL SUPERHEATER - 46

MODIFIED "A" OR GUEST BOILER - 47

"D" TYPE BOILER -- 48

NEWER 1200 PSIG SINGLE-FURNACE BOILERFOR POST WORLD WAR II DESTROYERS 49

THE "BENSON" BOILER - 51

SCHEMATIC DIAGRAM OF CONTROLLEDCIRCULATION BOILER -- 53

SHORT STRAIGHT-TUBE BOILER UNIT --- 57

SEGMENTED FIN PROFILE --- 66

PIN FIN PROFILE 67

MODEL TUBE LAYOUT 69

HEAT TRANSFER CONSTANTS - -- 71

SURFACE HEAT FLUX VS. INLET SUBCOOLING 7 5

METHOD OF ROHSENOW --- 7 7

TWO -PHASE FLOW DEVELOPMENT 79

SUPPRESSION FACTOR, S 91

WATER MASS FLOW VS. REYNOLDS NO. 9 4

SUPERHEAT VS. REYNOLDS NO. 96

STEAM MASS FLOW VS. SUPERHEAT 9 7

8

FIGURE 43: REYNOLDS NO. = 310 - 98

FIGURE 44; REYNOLDS NO. = 300 - 99

FIGURE 45: REYNOLDS NO. = 310 100

FIGURE 46: REYNOLDS NO. = 380 - 101

FIGURE 47: REYNOLDS NO. = 310 102

FIGURE 48: REYNOLDS NO. = 380 103

FIGURE 49: LOCATION OF ZERO * QUALITY --- 104

FIGURE 50" LOCATION OF 1001 QUALITY 105

FIGURE 51a: REYNOLDS NO. = 840 --- 109

FIGURE 51b: REYNOLDS NO. = 840 - - 110

FIGURE 51c: REYNOLDS NO. = 840 - 111

FIGURE 52a: REYNOLDS NO. = 840 - 112

FIGURE 52b: REYNOLDS NO. = 840 --- 113

FIGURE 52c: REYNOLDS NO. = 840 114

FIGURE 53a: REYNOLDS NO. = 840 --- 115

FIGURE 53b: REYNOLDS NO. = 840 116

FIGURE 53c: REYNOLDS NO. = 840 117

FIGURE 54a: REYNOLDS NO. = 840 118

FIGURE 54b: REYNOLDS NO. = 840 119

FIGURE 54c: REYNOLDS NO. = 840 -- -- 120

FIGURE 55a: REYNOLDS NO. = 840 - 121

FIGURE 55b: REYNOLDS NO. = 840 122

FIGURE 55c: REYNOLDS NO. = 840 123

FIGURE 55d: REYNOLDS NO. = 840 --- 124

FIGURE 56a: REYNOLDS NO. = 840 125

FIGURE 56b: REYNOLDS NO. = 840 --- --- 126

FIGURE 56c: REYNOLDS NO. = 840 127

FIGURE 56d: REYNOLDS NO. = 840 128

FIGURE 57a: REYNOLDS NO. = 840 129

FIGURE 57b: REYNOLDS NO. = 840 130

FIGURE 57c: REYNOLDS NO. = 840 - 131

FIGURE 58a: REYNOLDS NO. = 840 - - 132

FIGURE 58b: REYNOLDS NO. = 840 133

FIGURE 59a: REYNOLDS NO. = 840 134

FIGURE 59b: REYNOLDS NO. = 840 -- - 135

10

LIST OF TABLES

Table I. HEAT BALANCE RESULTS 106

Table 2. TUBE/FIN DIMENSIONS AND AREAS -- 107

11

NOMENCLATURE

English Letter Symbols

A - Area (FT 2)

Ab

- Frontal Area Blocked by Tubes and Fins (FT 2)

A,t

- Bare Tube Area (FT 2)

A, - Heat Exchanger Frontal Area (FT 2)

Af

-- Fin Area (FT 2

)

Af r

- Cross-Sectional Area for Fluid Flow (FT 2)

A - Minimum Cross -Sectional Area for Gas Flow (FT 2)mm

A •- Inside Heat Transfer Area (FT 2

)

A - Outside Heat Transfer Areaso

C - Maximum Heat Capacity (BTU/Hr-F)max * / \. /

C - Minimum Heat Capacity (BTU/Hr-F)min r / v

C ,- Specific Heat of Water/Steam (BTU/lbm-F)

pf

C - Specific Heat of Gas (BTU/lbm-F)Pg

df

- Fin Outside Diameter (FT)

d. - Inside Tube Diameter (FT)1

d - Outside Tube Diameter (FT)o

D - Pin Outside Diameter (FT)P

f - Friction Factor

F - Reynolds Number Factor

G - Maximum Gas Flow Rate Per Square Foot (lbm/hr-FT z)

max

h - Heat Transfer Coefficient (BTU/Hr-FT zoF)

H - Horizontal Pin Spacing (FT)ps

12

I - Enthalpy (BTU/lbm)

If

- Enthalpy of Saturated Water (BTU/lbm)

Ifs

- Enthalpy of Vaporization (BTU/lbm)

j- Heat Transfer Colburn j -Factor

ka

- Thermal Conductivity of Gas (BTU-Hr-FT-F)

I - Fin Height (FT)

I - Length of Cut from Fin Tip (FT)

L - Average Pin Length (FT)

LT

- Tube Length (FT)

N, MTU - Number of Transfer Units

N, - Number of Fins Per Inch

N - Number of Segments in One Fins °

ONB - Heat Flux to Initiate Boiling (BTU/Hr-FT 2)

P - Pressure (psia)

Q - Heat Transfer Rate (BTU/Hr)

R. - Heat Exchanger Inside Resistance (Hr-FT 2o F/BTU)

RQ

- Heat Exchanger Outside Resistance (Hr-FT 2o F/BTU)

Rh

- Thermal Resistance (Hr-FT 2 -F/BTU)

Tf

- Fin Thickness (FT)

T - Gas Temperature (°F)o

T - Temperature of Saturated Water (F)Sal

TTQ

- Outside Tube Wall Temperature (°F)

TT

-- Inside Tube Wall Temperature (°F)

U ., U - Overall Heat Transfer Coefficient (BTU/Hr-FT 2 -F)Ol' 00

VLg- Vertical Pin Spacing (FT)

13

x - Steam Quality

x - Equilibrium Quality

x~ - True Quality

XTT- Martinelli Parameter

Dimensionless Groups

Nu - Nusselt Number

Pr - Prandtl Number

Re - Reynolds Number

Re~,p - Two-Phase Reynolds Number

St - Stanton Number

Greek Letter Symbols

a - Water Surface Tension (lbf/FT)

a - Void Fraction

AP - Pressure Change (psia)

AT - Temperature Change (F)

z - Effectiveness

y,- Viscosity at Bulk Temperature (lbm/FT-Hr)

u - Viscosity at Tube Wall Temperature (lbm/FT-Hr)

r\- Fin Efficiency

n - Surface Efficiency

3Density (lbm/FT J

)

p „ - Density of Saturated Water (lbm/FT 3)

I

oy

- Density of Saturated Vapor (lbm/FT 3

)

14

I. INTRODUCTION

A. BOILER

1 . An Overview

A boiler is an apparatus in the form of a closed

vessel constructed for the continuous generation of vapor

under pressure through the transference of heat to the liquid

which is contained in it. The energy for most boilers is pro-

vided by the combustion of the fossil fuels - coal, oil, coke,

or gas. Coal is the major fuel, but most boilers are conver-

tible from one fuel to another. Other fuels such as wood,

waste gases from industrial processes, and solid wastes such

as bagasse (from sugarcane), sawdust, and even trash and gar-

bage serve as energy sources. An increasing number of large

steam plants built since 1960 for generating electricity are

designed to use nuclear fuel, which provides heat from nuclear

fission.

The simple term "boiler" ordinarily refers to the

steam boiler which utilizes available heat energy to convert

water into steam. Because a boiler produces saturated steam

only, it must be distinguished from the steam generator which

may include a superheater, economizer, and air preheater as

integral and necessary parts of the equipment. In their

simplest form, boilers are closed caldrons of water placed

over an open fire. Boilers range in size and function from

15

the compact units in domestic heating systems to 20-story

complexes that drive giant steam turbines for electrical power

production. They are built in many forms with rated steaming

capacities from 40 lbm/hr to 1,000,000 lbm/hr steam production

and operating pressures ranging from 2 psia to the critical

pressure of water, 3208 psia.

2 . History

The development of the boiler was initiated and has

been sustained by the development of the steam engine and

steam turbine. Early versions of both, more toys than serious

inventions, are referred to in the writings of Hero of Alex-

andria during the third century B.C. Contrary to popular

belief, the principles used in boiler design are not recent

developments but are of ancient origin. As early as 200 B.C.,

boilers were employed for warming water, heating, and house-

hold services. An example of this type of boiler is shown in

Fig. 1. In this boiler, found in the ruins of Pompeii, the

grate consisted of bronze water-cooled tubes and a water-cooled

furnace chamber wall. The boiler was internally fired, a

feature which did not appear again until the early 18th century

Water-cooled furnaces and water tubes also were innovations

not incorporated in boiler design until recent.

However, basic principles for boiler construction,

comparable to those set down in 1769 by James Watt for the

steam engine, were not widely known until the 19th century.

Beginning with Hero, the caldron form of boiler was used.

16

HINGED COVER

GAS VENT

FURNACE

ACCESS DOOR

TUBES

SECTION THRU

X-X

FIGURE 1: BRONZE WATER-COOLED TUBES AND WATER-COOLED FURNACECHAMBER WALL

17

It was not until the latter part of the 17th century that

boilers in a real sense appeared on the scene. During this

period, the greatest potential use for power seemed to be

pumping water out of mines , and a number of engines were in-

vented for this purpose.

These pumping engines, from those first successfully-

pioneered by Thomas Savery in 1699, to the engine patented

in 1769 by James Watt, were not true steam engines, but atmos-

pheric engines. Steam was used to fill a cylinder in which a

piston was mounted. When the steam was suddenly condensed by

a spray of water, a partial vacuum was created, and the piston

was forced down by atmospheric pressure. The steam pressure

that raised the piston, with the help of a counterweight on

each cycle of operation, was only slightly above atmospheric

pressure. The steam pressure was so low that without the

counterweight the piston would not have moved. Consequently,

the boilers for these engines were of relatively simple design

The wagon boiler, designed by James Watt, and in use

from about 1774, was hardly more than a long, riveted, metal

water tank placed over a brick setting or narrow brick oven.

The furnace was at one end and the stack of chimney at the

other. The combustion gases passed along the bottom of the

boiler to the other end where they were channeled back to

heat the sides before entering the chimney at the hearth end.

Although many odd forms were tried between 1780 and 1820, the

wagon boiler was most common until the invention of the

18

internal flue by Oliver Evans in the United States and, inde-

pendently, between 1800-1805 by Richard Trevithick in England.

In true steam engines, where steam does mechanical work,

it is advantageous to impart the highest pressure possible to

the steam before it is released into the pressure cylinder.

Both Evans and Trevithick saw the necessity of high pressure

engines for marine and locomotive applications and were chiefly

responsible for the adoption of higher steam pressures. Built

in two forms, the boiler was a long cylindrical shell with a

large internal cylindrical tube. In one form the flue contained

a furnace at one end and opened to a stack at the other. In

the second a brick setting was used. Hot gases from the fur-

naces were drawn through the setting, heating the lower surface

of the shell, and then returned through the internal flue to

the stack above the furnace.

With the addition of a number of small internal flues,

called fire tubes, operating pressures increased rapidly. The

usual pressure in the time of Watt was only 5-7 psi above

atmospheric. Evans, Trevithick, and John Stevens of New York

early in the 19th century used pressures from 50-75 psia.

Jacob Perkins of Massachusetts, in work done between 1823 and

1827, actually obtained 1400 psia. But in general, fire-tube

boilers are limited to relatively low operating pressures

because of the difficulty of constructing a shell strong enough

to withstand the high pressure required for efficient operation.

As pressure demands of steam engines and turbines increased,

19

the fire-tube boiler was supplemented by the water-tube boiler.

During the 1820's, steam pressures on the Mississippi steam-

boats and elsewhere in the United States had been raised to

100 and 150 psia, but explosions were frequent.

It was early recognized that the strength requirements

for increased pressure could be met if the tubes contained the

water rather than the hot gases. Two problems impeded the

development of the water-tube boiler. First, adequate circu-

lation of the water within the tubes had to be maintained in

order to absorb the heat transferred through the tube wall.

Without this circulation the tube-wall temperature and the tube

would be burned out. A second difficulty was the explosion

hazard of high pressure operation where relatively large

amounts of water are in contact with heating surfaces liable

to fail because of overheating. In the event of such failure,

liquid water at the saturation temperature corresponding to

a high pressure, flashes to steam with explosive force. If,

however, the total amount of water in a boiler flows in a

sufficient number of parallel circuits, as in a sectioned

boiler, a failure in the heating surface will not be serious.

Although these problems were recognized by Joseph Eve and

Goldsworth Gurney in 1825 and 1826, the only successful water-

tube boiler prior to 1870 was that patented by Babcock and

Wilcox in 1867.

The period from 1870 to 1900 was one of improvements.

The multiple drum bent-tube (Stirling) boiler, successfully

20

introduced in 1893 is actually the most recent form of boiler

construction. Subsequent improvements in materials and methods

of construction increased the steaming capacity of the largest

central power plant boilers from 30,000 lbm/hr in 1905 to

1,000,000 lbm/hr by 1935. In 1926, Iving Moultrop was respon-

sible for the increase in operating pressures from 350 to 1200

psia. By 1935 this pressure had gone to 1600 psia. Modern

plants are built to operate above critical temperature at

4500 to 5000 psia. The steam generator superheat temperatures

have likewise increased from a maximum of 550°F in 1905 to

750°F in 1925 and 950°F in 1938. Modern plants are designed

to operate at 1050°F to 1100°F.

3 . Boiler Types

There are basically two types of boilers: fire-tube

and water-tube boilers. All boilers that restrict the passage

of the hot gases through flues or tubes where they transfer

their heat to the surrounding liquid are called fire-tube

boilers. In the water-tube boiler the flue gases pass over

the exterior surface of the tubes while the water being heated

passes within the tube. Another distinguishing feature between

these two types of boilers is that the fire-tube boiler is

supported by the setting sidewalls or the fire box and the

water-tube boiler is usually suspended from the overhead steel

work and columns.

21

a. Fire-Tube Boilers

Figures 2 to 10 show a historical development

of the fire-tube boiler from the first boiler used by Savery

in 1698 to the famous Cornish boiler designed by Trevithick.

rrrni'T'iM; , ' ,1,U, {L.

rr T Y io o o o q r 1

r

FIGURE 2: THOMAS SAVERY'S FIRST BOILER - 1698

22

j:1;uvaww

FMO WATM TANK

-< — — .

AXVASSSSK

o3=fe

FIGURE 3: THOMAS SAVERY'S IMPROVED BOILER - 170 2

Modern engineering practice limits the use of

fire-tube boilers to about 500 horsepower and a working pres

sure of 150 psig. Designers of pressure vessels proportion

the shell thickness to the diameter and working pressure to

be encountered. Upon reaching the above limits the shell

thickness requirement becomes such that it is difficult to

fabricate. These limitations are also placed for safety

reasons; for an explosion of one of the larger fire- tube

23

FIGURE 4: DR. DESAGULIER'S WINDING FLUE BOILER - 1718

boilers can be quite disastrous due to the instant release

of large volumes of steam having tremendous expansive power

The Watt wagon-type boiler, Fig. 6, and the

cylindrical or flueless boiler, Fig. 7, are made up of flat

plates rolled to shape and riveted or welded longitudinally

and also circumferentially when several plate lengths are

required to obtain the desired capacity provided with a

24

FIGURE 5: HAYSTACK BOILER - 1725

VACUUMi«EAKE(

WATM GAGtSAttTV VALVE COCXS

FIGURE 6: JAMES WATTS WAGON-TYPE BOILER - 1785

25

water- inlet, a condensate return, a steam outlet, a gauge

glass for ascertaining the water level, and a safety valve

for the relief of excess pressure makes the simplest kind of

boiler when mounted over a suitable refractory combustion

box or chamber and entirely insulated against heat loss.

This elementary design is rather awkward and requires much

space since the tank or drum is limited in its pressure with'

standing capabilities. The use of this type of boiler is

restricted to a moderate working pressure and stationary

applications only.

n E ' :

. • »

• •••••• . .

1 • •

-«-:- :*-*.-

:

• o • «ail

FIGURE 7: CYLINDRICAL BOILER 1790

26

Cylindrical boilers function by burning fuel in

a refractory combustion chamber constructed under the cylin-

drical drum. The combustion products flow along the underside

of the drum from front to back and then exit through an uptake

to the chimney or stack. The heat in the flue gases must be

transmitted through the metal drum into the liquid in order

to preheat and vaporize it. Since the time element is short,

with the gases passing from front to back only once, then

exiting, the overall efficiency of this arrangement is low.

The boiler is a notorious slow steamer; however, once the

steaming action has started, it is a steady steamer. These

boilers are limited to small capacities, usually to 350 boiler

horsepower, because of their inherent tendency to explode.

v^ww^/'av/,'//^^;^/^^/'/';

',"AUUVUV\V\U\\', \\\\w. \\\\\^'A\^Y<

viSYVv'vMV^^'.^iimiv'.',',','.^'.'.'. gEBBmg^Spa

nzzzzzzzsagzaesaBcJ

FIGURE 8: OLIVER EVAN'S RETURN-FLUE BOILER 1800

27

sssgg

ill

tsscsse 3a?JvS.gVt.Tf*—r i =e=

3=V^vAA^^^^

FIGURE 9: RICHARD TREVITHICKS' CORNISH BOILER

The flue boiler is an improvement over the cylin-

drical boiler, see Figures 8 and 9, in that one or more inner

flues are incorporated for the purpose of conducting the flue

gases through the center of the shell, cylinder or drum.

There are many variations of design with some using these flues

as actual combustion chambers. The use of flues increases

the ratio of heating surface to the volume of water to be

evaporated; therefore, the flue boiler generates steam more

quickly than the ordinary cylindrical boiler. When the flue

boiler is arranged so that combustion takes place within the

flue greater savings in weight and space can be effected

rendering the design highly applicable to locomotion and

propulsion applications because of its portability.

28

The vertical upright fire-tube boiler, Figure 10,

is avialibe in ranges from 5 to 300 horsepower, and consists

of a cylindrical steel shell completely filled with tubes

vertically mounted over a fire box. The flue gases pass in

single flow directly through the tubes and into the stack at

the top. While the vertical boiler is not highly efficient

it has other virtues such as portability, a small floor re-

quirement, a large heat surface in a small volumetric space,

and an extreme ruggedness which has won it the name of "The

Donkey Boiler". The popular fire engine "pumper" of several

STRAIGHT SHELL BOILER

wrm sobmergeo head

MANNING BOILER

WITH ENLARGED FIREBOX

TAPEREO-COURSE BOILER

WITH ENLARGED FIREBOX

FIGURE 10: VERTICAL BOILER TYPES

29

decades ago used this type of boiler to generate high pressure

steam in order to motivate a reciprocating piston plunger

pump. It also found wide use in the inaccessible, mountainous

terrain of the Pacific Northwest during the logging boom of

the late lS80's.

Fire-tube boilers become limited as capacity and

pressure requirements increase. Larger shell diameters re-

quire thicker plates to withstand the temperature and pres-

sure stresses. Temperature differentials in the boiler create

high stresses. These stresses combined with the effects of

precipitates and other deposits have caused many boiler

explosions [Ref. 2]. Other disadvantages include long warm-up

time requiring up to 15 hours to produce steam for propulsion,

unequal expansion of metal parts at an increased firing rate,

faster expanding fire tubes tend to pull loose from the boiler

shell, heavy weight, up to 15 lbs of boiler and water to pro-

duce 1 lb of saturated steam per hour and inefficiency

requiring large amounts of fuel to produce a relatively small

amount of steam.

Fire-tube boilers tend to be dangerous at high

steam pressures. This is partly due to inherent structural

problems and partly due to the relatively large quantity of

water and steam contained in the boiler. In the event of a

rupture in the boiler, the large amount of water and steam

releases great destructive energy. With this ever-increasing

demand for more and more steam at higher and higher pressure

30

the water-tube boiler was developed. When steam and water

at elevated pressure are confined within a tube of small or

moderate diameter the thickness requirement is reasonable and

practical

.

b. Water-Tube Boilers

The water-tube boiler is composed of drums and

tubes which are external to the drums and serve as intercon-

nections for them. The drums store water and steam and con-

tain no tubular heating surface, thereby allowing for these

vessels to be much smaller in diameter than a fire-tube

boiler shell and resulting in resisting higher pressures.

This boiler may be a straight or bent-tube type, and in both

cases, the tubes possess the entire heating surface.

The principle of using water tubes is an old one

as shown by the use of the Pompeiian household boiler. Modern

development of the horizontal, straight water-tube boiler

began in 1766 by William Blakely who patented an improvement

in the Savery engine which included a novel steam generator.

The arrangement of heat transfer surfaces shown in Figure 11,

probably was the first step toward the development of

water- tube boilers, which has resulted in the modern high

pressure water-tube boiler.

Three men, James Rumsey, John Fitch, and James

Marlow, worked independently upon a box-shaped water-tube

boiler with horizontal tubes, as shown in Fig. 12. The dis-

advantages of this design were the weak box-shaped pressure

31

FIGURE 11: FIRST WATER-TUBE BOILER - 1766

vessels and the restricted water circulation in the horizon-

tal tubes. This was not critical since steam pressures were

between 3 to 7 psig.

In 1804, John Stevens designed a boiler for a

steamboat operating on the Hudson River. This boiler, Fig.

13, had slightly inclined tubes connected at one end with a

32

reservoir. The Steven's Porcupine boiler, as it is known,

marked a definite advance in design of high pressure steam-

generating apparatus, as its working pressure was 50 psig.

Again, lack of proper water circulation in the tubes was a

FIGURE 12: BOX-SHAPE WATER-TUBE BOILER - 1793

FIGURE 13: JOHN STEVENS' PORCUPINE BOILER 1804

33

serious defect. Stevens' son, John Cox Stevens, designed a

water-tube boiler in 1805. This boiler, shown in Fig. 14,

consisted of 20 vertical tubes arranged in a circle, connecting

a water space at the bottom and a steam space at the top.

The steam and water chambers were annular spaces of small

cross section and small volume.

FIGURE 14: JOHN COX STEVENS' WATER-TUBE BOILER - 180 5

Figures 15, 16, 17 and 18 show the development of

the water-tube boiler in the next sixty years. The first

sectional water-tube boiler with well defined circulation was

built by Joseph Eve in 1825. Sectional boilers have the

34

FIGURE 15: THE FIRST SECTIONAL WATER-TUBE BOILER - JOSEPHEVE - 18 25

water-steam spaces divided into small sections, none of which

is subject to disastrous explosion. Basically all water-tube

boilers are sectional in character. Figure 15 shows the

sectional composed of small tubes, practically vertical but

with a slight double curve. The tubes were fixed in larger

horizontal tubes called headers, which, in turn, were connected

to a steam space above and a water space below. The steam and

water spaces were joined by outside pipes (down-comers) to

35

secure a circulation of water up through the sections and down

through the external pipes. In 1826, Goldworthy Gurney built

a number of boilers for use on his steam carriages, one of

which is shown below. This boiler consisted of a number of

l- "'{ *' ' -££"3m^m^

FIGURE 16: GOLDWORTHY GURNEY ' S CARRIAGE BOILER - 1826

small "U" tubes, laid sidewise, with the ends connected to

larger horizontal pipes. These, in turn, were connected by

vertical pipes to permit circulation and also were connected

to vertical cylinders serving as steam and water reservoirs.

In 1856, Stephen Wilcox first used inclined water-tubes to

connect water spaces at the front and rear with a steam space

above, Fig. 17. The first to use inclined tubes in a sectional

form was George Twbill in 1865. Fig. 18. He used wrought iron

36

1

'•'

:•:.

•••:.:•...•,— ' :'.,.>.' "

FIGURE 17: STEPHEN WILCOX'S BOILER WITH INCLINED TUBES1856

A—o

I a I

»

'. 1 1 q E f\ a I » ii iji i- f;

UljijjJljjgijijiMjj

FIGURE 18: FIRST SECTIONAL WATER-TUBE BOILER WITH INCLINEDTUBES - TWBILL - 1865

37

tubes connected at the front and rear to standpipes. These

standpipes carried the steam to horizontal cross-drums at the

top, the entrained water being separated and led to the rear

standpipe. In the following years , development of water-tube

boilers continued with great vigor. Steam drums soon were

substituted for the nest of cast iron tubes and pipes origi-

nally used for steam and water storage. Steel replaced cast

iron for the generating tubes. Large tubes were replaced by

small tubes to increase heat transfer areas. The transition

to water-tube boiler design didn't arrive until the end of the

19th century when the triple expansion reciprocating steam

engine was introduced to the navies of the world.

The head type boiler was the first form of water-

tube boiler to displace the fire-tube type for use in steam

vessels. A header type boiler was installed in the yacht

Reverie in 1889 with a designed pressure of 225 psig. The

success of this and other similar installations led to a

decision by the Admiralty to use this boiler in the British

Navy. In 1896, the U. S. Navy installed this type in three

vessels, Marietta, Annapolis, and Chicago.

Although the Reverie design was an outstanding

success and proved to be far more satisfactory in service than

other boilers previously used by the Navy, combustion was not

entirely satisfactory. The shape of the furnace made it

necessary to slope the grates down toward the rear to gain

furnace volume. At high ratings, this furnace was not suitable

38

for good combustion. Also, the fittings and water gages were

not readily accessible from the firing aisle because of the

steam drum location.

To overcome these difficulties, the design was

modified to permit firing from the opposite end. Combustion

conditions improved since the furnace was enlarged in the

direction in which combustion took place. The grates were

relocated and the accessibility of the tubes for cleaning from

the fireroom floor was improved greatly. The steam drum was

now at the firing end of the boiler, where the water gage could

be seen easily and all fittings were more accessible. These

modifications, seemingly very simple, revolutionized marine

water-tube boiler design. The many improvements throughout

the years have resulted in the sectional header type boiler,

shown in Fig. 19, as we know it today.

The necessity for more steam brought on experi-

mentation with forced draft to accelerate combustion of marine

boilers. Although Robert Stevens tried in 1827 to supply air

by forced draft, it was not until 1880 before a successful

forced draft system was designed by James Howden. Interest-

ingly, his design also included means by which waste heat in

flue gases was used to heat the incoming air for combustion.

The increased steam pressures and rapidity of steam generation

led to serious trouble arising from overheating of tube ends

and tube-sheets, causing many breakdowns and explosions from

endeavors to work cylindrical fire-tube boilers under forced

39

ECONOMIZER TUBES

UPTAKEMEAOER

AlRINTAKE

»'R SPACE

STEAM ORUM

DOWNTAKE NIPPLE

GENERATING TUBES

OOWNTAKE HEAOER

SUPERHEATER TUBES

WATER SCREEN TUBES

JUNCTION HEADER(MUD DRUM)

WATER WALL UPTAKE HEADER WATER WALL TUBES

WATER WALLOOWNTAKE HEADER

•AIRSPACE

FIGURE 19: SIDE VIEW OE HEADER-TYPE BOILER

40

draft. The proponents of this boiler type, satisfied with

the partial solution of installing tube inserts in the tube

ends, argued that the generated pressures were sufficient for

their needs.

Then in 1894, Charles A. Parsons developed and

proved the superiority of the steam turbine for marine propul-

sion. The advantages of the turbine were immediately apparent

and within a relatively short time (1894-1914) almost all

important ships of the world navies were driven by turbines.

Higher pressures, greater steam capacity and utilization of

propulsion turbines concurrently accelerated the development

of the water-tube boiler. A major contribution to higher

pressure and greater steam capacity was the evolution of

treating boiler water to prevent scale formation and boiler

corrosion

.

From the days of the caldron boiler until well

into the turn of the 20th century there was very little im-

provement in steam generation except in the larger power-

generating stations operated by the greater public utilities.

At the end of the 19th century the new fast torpedo boats and

destroyers, demanding boilers of light and compact design,

brought forth the drum-type express boiler. The name "express"

is used in its sense "dispatched with special speed" and is

applied to this type boiler because of the "speed" with which

steam can be raised and with which this boiler can answer

steam demand changes.

41

WATER DRUM

WATER DRUM

FIGURE 20: BASIC "A" TYPE BOILER

The development of drum-type boilers as applicable

to naval vessels to present time is shown in Figs. 20-29.

Figure 20 illustrates the basic design of A-type boilers (so

named because of the shape of the generating elements resem-

bling the letter "A") which evolved from such early designs as

the Yarrow express boiler shown in Fig. 21. The A-type boiler

was originally designed as a coal-fired boiler (converted from

coal to oil during the decade between 1905-1915) and was widely

used for many years with only minor changes and additions.

42

FIGURE 21: YARROW TYPE BOILER

/ UPTAKES

SUPERHEATER\

PROTECTION AVALVES ±

WATER DRUM

WATER mU

FIGURE 22: "A" TYPE BOILER WITH UNCONTROLLED INTERGRALSUPERHEAT

43

REAR

INCLINED

HEADER

REAR

WATLi

SCREEN y0'\

CIRCULATE PIPES

STEAM

T^=^J DRUM

FRONT

WATER

SCREEN

DEU.M

SUPERHEATER

WATER SCREEN

FIGURE 23: SECTIONAL EXPRESS TYPE BOILER

ooooooooor°j %%%%mt

a o o o o o oO o a o o o

o o © o oo o o o

o o oo o

o

MO I HlHOgjj

^AiSbi

1939

^v

' \ I W *

WATCH WALL TUBES

SUSiGUNCEO 9/

lUFuaonr tils! JPl.»nl«'lD STtAM 10

CNGIKt ROOMS

U_l = SLTSRHEATER INLET STOF VALVE

S.0A SUPERHEATER OUTLET STOF VALVE

S.I.F. SU:>ER*Ea tE» IY-FaSS valve

SCHEMATIC ARRANGEMENT

OF

SATURATED i SUPERHEAT tOILERS

»UT FIAHT

WITH

O0SS-C0NNCCTI0N TALVI

Mno. i mitooM

FIGURE 24: SEPARATELY FIRED SUPERHEATER BOILER - 1930

44

World War II created a huge demand for powerful,

packaged, compact steam generators simple to operate and easy

to maintain for use by the armed forces ashore and afloat.

Under this stimulus , designs were developed that are capable

of delivering two to three times the output of earlier boilers

containing the same heating surface. In some cases this can

be accomplished in one-quarter the previous volumetric space

requirement at great savings in weight and with efficiencies

running on the average of 80% [Ref . 3] . This was extremely

important to offset the increasingly congested space conditions

aboard destroyers.

SUPERHEAT

TEMPERATURE

CONTROL FURNACE

DIVISION WALL HEADER FEEDERS

STEAM PRESSURE

DIVISION WALL HEADER CONTROL FURNACE

FIGURE 25: "A" TYPE BOILER FOR GENERATING SUPERHEATED STEAMWITH CONTROLLED, INTEGRAL, INTERDECK SUPERHEAT

45

The general design most widely used for combat

vessels built during WW II is shown in Fig. 26. The MM"-type

boiler, as this design is commonly called because of the shape

of its generating elements, was a two furnace, single-uptake,

controlled superheat type boiler generally designed to operate

at 600 psig-850°F. The modified "A" or Guest-type, Fig. 27,

had a separately fired superheater of the radiant-convection

type temperature control. However, this type superheater did

not prove well adapted to naval requirements for rapid load

changes and steaming at low rates for considerable period of

SUFOBEATQ

©©©©©©©!I ©@@©©©©I ©@©©©©@» ©©©©©©©

I

©©©©©©©'•©©@©@©©|©©©©©©©'

BCiLER MAIN

STEAM STOP

.-—AflV SATURATED

V \ /

GENERATING

TUBES

FIGURE 26: "M" TYPE BOILER WITH CONTROLLED, INTEGRALSUPERHEATER

46

SUPERHEATER INLET HEADER

KRttT SUPERHEATER

TUBE WALL

CONVECTION

SUPERHEATER

TUBE NEST

ECONOMIZER

SUPERHEATER

OUTLET HEADER

GENERATING

TUCE BA1IK

FIGURE 27: MODIFIED "A" OR GUEST BOILER

time. Another boiler used mainly in WW II destroyer escorts

is the single furnace boiler shown in Fig. 28. The "D" boiler

is the progenitor of boilers used in post-World War II ship

construction. Figure 29 shows the 1200 psig boiler which has

become the major naval fossil-fired steam generator.

47

,— WATER WALL

\ TUEES

WATER WALL HEADER

FIGURE 28: "D" TYPE BOILER

48

PERTINENT DATA

OPERATING PRESSURE -. 1200 PSIC

STEAM TEMPERATURE ~ »50° t

RATED STEAM OUTPUT 133.000 LBS/MR

TOTAL HEATING SURFACE 75»0 SO FT

^ FURNACE VOLUME................. 410 CU FT

FIGURE 29: NEWER 1200 PSIG SINGLE -FURNACE BOILER FOR POSTWORLD WAR II DESTROYERS

49

4 . Water Circulation

The majority of the previously discussed boilers have

depended upon natural convection for the water-side circula-

tion. That is, the difference in density between the water

near the combustion chamber being heated and the cooler water

in more remote parts of the boiler causes a natural flow away

from the combustion chamber which in many cases is adequate.

As boiler pressure increases, however, there is less difference

between the densities of water and steam. At pressures over

1000 psig the density of steam differs so little from the

density of water that natural circulation is harder to achieve

than it is at lower pressures [Ref. 6]. At high pressures

positive circulation boilers have a distinct advantage because

their circulation is controlled by pumps and is independent of

differences in density. The utilization of pumps to circulate

and agitate boiler water increases heat transference, thereby

increasing the output of a boiler without increasing the heat-

ing surface.

There are two main kinds of positive circulation

boilers; one type is known as a controlled circulation or

forced recirculation boiler and the other is known as a once-

through or forced-flow boiler. In both types of boilers

external pumps are used to force the water through the boiler

circuits; the essential difference between the two lies in

the amount of water supplied to the boiler.

50

In a once-through forced circulation boiler all (or

very nearly all) of the feedwater pumped to the boiler is con-

verted to steam the first time through without any recirculation.

In its course along the full length of the tube, the water is

heated, evaporated and superheated as additional enthalpy is

applied. The steam generation rate is numerically equal to

the water content supplied. Conventionally this type of boiler

does not require a steam and water drum. Because no excess

water is forced through the boiler, pumping other than that

provided by feedwater pumps is not required. The very small

amount of water that is not converted to steam in the generating

circuit is separated from the steam and discharged to the feed

pump suction. The once-through type of positive circulation

boilers include the Benson and Besler boilers.

Ditfributton Koodv

room ou^p* ^])

M iiflifM <«••'«

>

/j ^--^ - - .**<* .. ..:.. & j

• Feedwoior inlet ~^~bf] Q*

-Throttling vahw

FIGURE 30: THE "BENSON" BOILER

51

The Benson Boiler, Fig. 30, is characterized by the

complete absence of steam separating drums . The unit responds

sensitively to combustion rate changes and is therefore well

adapted for use with a special turbine design in which variable

pressure is used to accomodate a variable load. This boiler

was first built in England (1923) by Mark Benson, a Czechos-

lovakian, but was developed by Siemens, Inc., in Germany. It

has been built with capacities as large as 220,000 lbm/hr at

3200 psig.

Figure 51 shows the boiler circuit of a controlled

circulation (or forced recirculation) boiler. In this boiler

the water in the tubes is not evaporated to complete dryness

but only to the point at which dissolved salts and solids are

retained in solution. The mixture of water and steam passes

to the steam-and-water drum where the steam is separated. The

steam is passed through a separator where excess water is re-

moved, then passed to a superheater. The separated water,

along with feedwater, is returned to (or recirculated through)

the heating circuit through the downcomers . The quantity of

water passing through the boiler (circulation rate) is from

3 to 20 times the amount evaporated. This ratio requires

constant speed recirculating pumps in addition to the boiler

feedwater pumps

.

5 . Heat Source

The heat may be derived from (1) the combustion of

fuel (solid, liquid, or gaseous); (2) the hot waste gases of

52

DiWhJh—

I

oPQ

2q O< i—

i

r H-*

Qt

At <3 UJ

a 3 3o z U<

XUJ a:

o<

uj

z

-J

Oi—

i

u* UJ

< < Qo X

UJX W

IO UJ

QC-au a.

3a.

3 opiH

QC

a*u

UJa*wX

o

X

z

UJ

O

fto

UJ3<

UJa<

5uIT

O

»-

r>uQC

U<

X144

<J_l< <

* — =

I I 3 J

Ui—

i

E-<WXuCO

WOS

ti.

53

other chemical reactions; C3) the application of electrical

energy; or (4) the utilization of nuclear energy.

Items 1, 3, and 4 are the most prevelant methods of

supplying a heat source, but the increasing need for energy

conservation has necessitated increased utilization of waste

heat recovery. Wherever a process waste product or gas is

continuously discharged at a temperature of 1,000°F or higher,

heat recovery should be considered. In addition to producing

useful steam, the lowering of the flue gas temperature reduces

maintenance of flues, fans, and stacks. One proposal for

"by-product heat recovery" utilizes the hot exhaust gases from

a shipboard gas-turbine propulsion plant as the heat source

for a conventional Rankine cycle. This provides the means by

which useful work can be extracted from a once wasted energy

source

.

B. RACER AND THE SST

The realization of finite petroleum resources has prompted

researchers to accelerate the development of alternative fuels

and energy sources, the employment energy conservation methods

for short term relief, and the investigation of long term con-

servation techniques. The Navy, having made a major commitment

to gas turbine propulsion systems, is currently investigating

a means of fuel conservation without a reduction in steaming

Waste heat is a misnomer; a more appropriate term is "by-product heat."

54

time. The RAnkine Cycle Energy Recovery (RACER) system is being

developed to recover some of the heat contained in the gas tur-

bine exhaust gases.

The DD-963, FF6-7, and the DDG-47 class of ships are powered

by the General Electric LM 2500 Marine gas turbine engine. The

RACER system, an unfired waste heat recovery system, will func-

tion as a bottoming cycle for the LM 2500. Program requirements

specify the development of a high efficiency cruise engine that

utilizes hot exhaust gases to heat the working fluid (water)

and convert it to useful energy through a steam turbine. It

is intended that the design be compatible with the basic LM

2500 Marine gas turbine providing one shafts worth of power to

the DD-963 and FFG-7, U.S. Navy surface cambatants . Further,

specifications require provisions that will permit satisfactory

inspection and cleaning of watersides/steamsides . It is im-

portant that internal surfaces can be properly observed for

corrosion, scaling, defects, repairs, etc. Cleaning methods

and techniques should be simple, easy to use, and practical for

use with the proposed design.

The boiler, placed in the exhaust ducting, would by necessity

have to be compact and lightweight, have a high steam generation

rate and excellent response characteristics as well as simplicity

in design, installation, and maintenance. LCDR Combs [Ref. 7],

in his thesis conducted a feasibility study for propulsion

assistance on waste heat recovery as applied to the Spruance

class destroyers. Results of the study indicate that this

55

proposal provides for substantial fuel savings based upon

operational considerations. The proposed Rankine cycle in-

cluded a once-through (O.T.) boiler having an optimal operating

pressure of 600-800 psig.

For this application, the O.T. boiler is particularly

attractive due to its small size. A special class of once-

through boilers, which provides a possible design alternative,

is the Short Straight Tube (S.S.T.) boiler. Also known as

the "stagnation" (non-flow) boiler, it has excellent perfor-

mance as a steam generation unit. This boiler has the same

components as the O.T. boiler; however, in contrast, its

construction consists of short (1-2 meters) and straight tubes

with toroidal headers, Fig. 32. Due to boiler water level

control and water chemistry problems, the S.S.T. boiler all

but disappeared since the early 1900 's. With the advancements

made in water chemistry procedures and with the development

of automatic boiler control systems, these problems should be

alleviated, allowing present day application.

When compared to the normal forced or natural convection

boilers, the once-through boiler is more desirable for waste

heat recovery on the Spruance class destroyer. The O.T.

boiler is lighter and safer, since no steam drum is required

and the total mass of water is substantially less. However,

a reveiw of its construction reveals, Fig. 33, a complicated

arrangement of headers and long "serpentine" tubes. This

leads one to question its applicability, especially in terms

56

TOPHEADER

TUBES

BOTTOMHEADER

STEAM OUT

D

W WATER IN

FIGURE 32: SHORT STRAIGHT-TUBE BOILER UNIT

57

of simplicity. In contrast, the S.S.T. boiler has a charac-

teristic which makes it very attractive for this purpose. As

it is the simplest of boiler designs, it lends itself to lower

fabrication cost and simplified maintenance.

C. OBJECTIVE

The S.S.T. boiler is undergoing a resurgence in Japan for

industrial usage due to its performance and construction

[Ref . 8] . These industrial applications are for steam supplied

up to 150 psig. In order to employ such a design at higher

pressures, it is necessary to obtain some essential information.

In general, this need for information arises from three

sources. First, the designer recuires detailed information in

order to provide for an optimal design. This entails a de-

tailed quantitative study, for example, of heat transfer co-

efficients and two phase pressure drop. Secondly, operational

conditions must be evaluated to ascertain the optimal steady

state and transient operating conditions. Inclusive is

casualty control data to diagnose faults due to the departure

from the optimal conditions. Finally, and most paramount, is

the requirement for the precise maximum safe operational limit.

For these reasons, experimental investigation to ascertain

design, operation and safety criteria is necessary. Firm

establishment of the characteristics unique to the Short-Straight

Tube Boiler is required to provide the means by which performance

evaluation and comparison with other evaporators can be made.

However, a lack of design and operational experience doesn't

58

allow the engineer to anticipate S.S.T. characteristics a

priori. Therefore, the logical beginning to experimentation

is having a model from which predictions can be made.

The objective of this thesis therefore, is the development

of a suitable model and computer program to provide the means

for analytic study of the S.S.T. principle.

59

II. MODEL DESCRIPTION

A. AN OVERVIEW

The Short Straight Tube Boiler is modeled as a cross-flow

heat exchanger with one fluid mixed; the other unmixed. The

model is applied in a computer program for use in heat exchang-

er analysis for a phase change, or boiling situation. The

same program could be easily adapted for general cross-flow

heat exchanger performance study.

The two basic tools required to perform any heat transfer

analysis are the first law of thermodynamics and the applicable

rate equation.

A first law consideration of each fluid with mass flow

rate m, for an incremental area AA of the exchanger, yields

AQ = (MCpAT)gas = (MCpAT)water (la)

Another expression for AQ is achieved using the rate equation

and writing an expression for the conditions at AA; the

resulting equation is

AQ = UAA (Tg-Tw) (lb)

where Tg is the gas temperature in °F, Tw is the water tempera-

ture in °F, and U is the overall heat transfer coefficient in

BTU/(Hr FT 2 °F). For this analysis, U is assumed to remain

constant throughout the incremental heat exchanger. Equations

la and lb can also be written as

AQ = (MCp) AT = UAA(Tg-Tw) (2)x v ^'mm max

60

which can be written as

ATmax UAA

(Tg-Tw) r« , (3)

v * } (mc ) .

p mm

For the incremental heat exchanger area, AA, the number of

transfer units, ANTU is defined by the following equation:

ATAMTTI max UAAANTU =

TTFTS) = 77— (4)** ° (mc ) .

p'min

The number of transfer units is a measure of a heat ex-

changer's ability to transfer heat. For a number of heat

exchangers in series, the number of transfer units for the

system can be written as follows:

let C - = (mc )Din v p'mm

MTU = UlAA*

U * VA * +UnAA

j

C C *' ' ' cmini min2 minj

orN U.AA.

NTU =I J L ^

j=l minj

where N represents the total number of incremental heat

exchangers; AA .

' s are the incremental heat transfer areas,

and U.'s are the overall heat transfer coefficients for the

j— elemental heat exchanger [Ref . 9]

.

For a particular type of heat exchanger, a mathematical

relationship can be calculated between NTU, the number of

transfer units; e, the effectiveness of heat transfer; and

C, the heat capacity rate ratio. If two of these quantities

61

are known, this mathematical relationship can be used to cal

culate the unknown. Reference [1Q] lists this relationship

for cross-flow as follows:

C

C = mmmax

N = NTU = UA

min

C ov mixed, C . unmixedmax mm

E = (1/C)-N

1-EXP -C(l-e ) (6a)

C unmixed, C mixedmax mm

E = 1-EXP I 1(1/Cjl-EXP(-NC) (6b)

If the hotter fluid is a condensing vapor or the cooler fluid

is a boiling liquid, the heat capacity ratio C = 0. For this

case, Kays and London [Ref. 11] show that equation 6 reduce

to

c = l-EXP(-NTU) (7)

The proposed model utilizes this procedure to determine the

overall heat transfer coefficient for the straight-vertical-

tube cross-flow heat exchanger used as a boiler.

In the development of the model, the following assumptions

were made:

1) A tube could be modeled as a group of N heat exchangers

connected in series. The value of N is determined from fin

geometry as the product of tube length times the number of

fins per inch.

62

2) Each "elemental" heat exchanger has an overall heat

transfer coefficient which can be considered constant over

the segment area. With this assumption, equation 5 can now

be applied to find the tube NTU.

3) The "elemental" applied heat flux (Q /A .) is con-

stant for each individual tube segment with Q given by

C) = £ (mc ) . (T -T ) (S)xs p mm v

g w^ ^ o;

where Qs

is the segment heat transfer rate in BTU/hr, and

£ is the segment effectiveness.

4) The water side pressure drop is negligible.

The SST model is divided into three principal sections:

heating, boiling and superheating. The specified initial

conditions for the model are: (1) gas temperature into the

heat exchanger (T ); (2) minimum average gas exit tempera-°in

ture from the heat exchanger (T ) ; (3) gas flow rate (m )

;

°out °

(4) water inlet temperature (T ) ; (5) water/steam pressurem

(P ) ; (6) amount of superheat at the tube exit (T , )

.

w s n

Since each tube is separated into N segments, it will be

possible to determine axial temperature distribution of both

the gas and water. At this point, a simplification should be

noted; that is, what happens for any particular segment of

any given tube is taken to be representative of the entire

tube row. This varying gas-to-water temperature difference

across each row of tubes is then utilized to determine a

possible profile for the non-uniform gas temperature distri-

bution across the entire heat exchanger.

63

B. GEOMETRY

Two different fin-tube configurations were selected for

this model. The fins can be either segmented or pin fins.

Tube banks can be arranged with either in-line or staggered

tube rows. From heat transfer and pressure drop measurements

made on in-line and staggered banks, Weierman [Ref. 12] stated

"it was seen that even tube rows in an in-line layout produced

about the same heat duty as four tube rows in a staggered

layout for the same pressure drop." He further stated "in-line

layouts should be reserved for those cases when a serious

justification exists. When cleaning lanes are required, a

staggered 45° layout should be considered." From this infor-

mation, the advantage of staggered layout is obvious, and it

is for these reasons that in-line banks are not considered.

The tube length, LT , and the number of tubes per row, N

are chosen by the designer. For this model the tube length

and heat exchanger height are constrained to that associated

with the S.S.T. boiler, that is, 3.2808 to 6.5616 feet (1-2

meters) in length. Additionally, it should be noted that the

maximum width is limited by shipboard space to 12 feet.

Since this model dissects a tube into N "elemental" heat

exchangers, all heat transfer areas are those associated with

one tube segment. These areas are essentially entire tube

areas divided by N; therefore, the following equations repre-

sent "elemental" heat exchanger areas.

6^

1

.

Segmented Fins

This fin profile is shown in Fig. 33 and the descrip-

tion of the segmented finned tubes is as follows:

d. = tube inside diameter = 1.86 in.

d = tube outside diameter = 2.00 in.

Nf

= fins per inch = 5.94

I = fin height = 1.015 in.

I = length of cut from fin tip =0.82 in.

dr = fin outside diameter = 4.03 in.

tr = fin thickness = 0.048 in.

w = fin segment width = 0.17 in.s °

N = number of segments in 360 degrees = 38

In order to establish the minimum gas flow cross- sectional

area the total "blocked" frontal area, A, , of the "elemental"

heat exchanger must be calculated from:

LT d + 2L^N,£t.

\ " °N

(9)

The fin surface area is

Ar . = [N (2£ w + ItA + w tA + l({d f -2l}2 -d*)] (10)

fin L scs fc s f 2v

f c oJV '

and the bare tube area is

Abt t c 1 - W cu)

2

.

Pin Fins

This fin profile is shown in Fig. 34 and the descrip-

tion of the pin finned tubes is as follows:

d- = tube inside diameter - 1.86 in.l

65

FIGURE 33: SEGMENTED FIN PROFILE

66

/

-/

v

;

a

i/7

V PS

JO D,

D

L,

FIGURE 34: PIN FIN PROFILE

67

d = tube outside diameter = 2.0Q in.

d = fin root diameter - 2.00 in.

Nf

= pin groups per inch = 2.00

I = average pin length = 1.015 in.

d = pin diameter = .125 in.P

N = number of pins per group = 12

V = vertical pin spacing = .375 in.ps

h = horizontal pin spacing = .20 in.

The "blocked" frontal area is

L„d + 2L_,N r d 1

(l = T ° Tf pp n2i

The fin surface area is found from

A,. = TTd N (1 +dp/J (13)fin p s p v

' ^ K J

and the bare tube area is

ird.U d 2

a (1 - Ne -5-N.) (14)bt N ' s 4 f-

The previously determined areas are those which are particu-

lar to the given fin profile. With this information, the

minimum gas flow area is

A • = A, - A, (15)mm f b

where Af

is the frontal area. The inside area available for

heat transfer per segment heat exchanger is

TTd- LTAsi -IT- (16)

68

and the outside heat transfer area is

Aso

Afin

+ Abt C17)

Finally, the cross-sectional fluid flow area is calculated

from

Arr = x d.f f 4 1

(18)

For both segmented and pin fin-tube configurations,

the center- to -center tube spacing in the transverse direction

is 4.5 inches. Following Weierman's suggestion (45° staggered

layout) leads to a spacing normal to the gas flow, S , of 4.5

inches and a spacing parallel to the gas flow, S , of 2.25

inches. This tube layout is shown in Fig. 35.

f© .© '

K8i '8;

1 © '\ © / \ © I

[0i ;©» \e) ;0•©) >>; <

s©)

ve) ,©; >©} ;©;

Sn

Ts,

A

FIGURE 35: MODEL TUBE LAYOUT

69

With the mass flow rates, terminal temperatures and

heat exchanger geometry established, the remainder of the

model may be solved for the number of tube rows or passes,

actual iterim temperatures, and gas side pressure drop.

C. GAS -SIDE HEAT TRANSFER/PRESSURE DROP

For both the segmented and pinned- tube profiles, the gas-

side Reynolds number is calculated initially using the gas

bulk temperature to find the gas properties. With this Reynolds

number, the segmented fin, j -factor, is obtained from a poly-

nomial fit to the data for tube layout number 5 in Ref. [12].

The j -factor is related to the heat transfer coefficient ha

by the following relationship.2/3

j = StPr

By introducing

\'uSt =

RePr

the previous expression can be written as

Nu D2/

3 Nu

^7^ Re Pr 1 / 3

and1/3

Nu = j Re PrQ Q& &

whereh d

Therefore, a relationship may be written for the heat transfer

coefficient as follows:K „ */ 3

h = j _JB. Re Pr'

. (19)a a a o

O ° °

70

For this equation all gas properties are evaluated at the film

temperature

.

For the pin fin, the gas-side heat transfer coefficient

has contributions from the pins and bare tube, Equation 6-14

of Ref. [10], supplies the pin heat transfer coefficient

(20)Kf \ 1 / 3

h = -r±- C Re Prg dp g g

where the constants C and n are listed in Fig. 36.

'

Rea

C n

0.4-44-40

40-40004000-40,000

40,000-400,000

0.9890.9110.6830.1930.0266

0.3 300.3850.4660.6180.805

FIGURE 36: HEAT TRANSFER CONSTANTS

Properties for use with the above equation are evaluated at

the film temperature.

Eckert and Drake [Ref. 13] recommend the following rela-

tions for heat transfer from tubes in cross-flow:

o-5 o . 38 1 Pr

Nu = (0.43 + 0. 50 Re ) Pr

for KRe<10 3

Prw

• 25

(21)

71

0.6 0-3!Nu = Q.25Re Pr

D-r i 0.25f

WC22)

for 10 3 <Re<2 x 10 s

For gases the Prandtl number ratio may be dropped, and fluid

properties are evaluated at the film temperature. The presure

drop for flow of gases over a bank of tubes may be calculated

from

Ap =333.4 f '(G )

2 N„ #yv max ; T / w

1 h

(23)

Ap = pressure drop = inches H 2

Gmax= mass velocity = lbm/(FT 2 -s)

p = free-stream density = lbm/FT 3

N~ = number of transverse rows

The emperical friction factor f ' is given by Jakob [Ref. 14]

as

f = 0.25 +0.118

L (Sn

- d)/d 1 . 08

0-16Re

max (24a)

for staggered tube arrangements and

f ' = 0.044 +0.08S /d

E

[(Sn

- d)/d]0."+3 + 1

0.15Re (24b)

.i3 d/s j

max

for in-line tube arrangements. For pin fins both friction

factor expressions are required. Although the tubes are

arranged in the staggered tube arrangements, the pins are

essentially an in-line configuration.

The same equation is used for the segmented fin profile

with the friction factor, f, obtained from a polynomial fit

to the data for tube layout Number 5 in Ref. [12], (Fig. 5).

72

D. WATER- SIDE HEAT TRANSFER

Water-side heat transfer involved the heating, boiling and

superheating of water or steam. A multitude of correlations

are currently available to describe each individual mode.

Although not prohibitive, a literature review resulted in

several being chosen to represent the S.S.T. model.

With little known about this boiler type, four heat transfer

correlations were candidates to represent the heating mode.

One could reasonably surmise that the laminar situation is the

most probable; turbulent correlations however, are also con-

sidered. An empirical correlation based on experimental data

that takes into account the effect of varying physical proper-

ties and free convection is listed below [Ref. 15]:

This relationship is valid for heating in vertical upflow for

Re<2000. Water properties are evaluated at the film tempera-

ture; Pr , at the wall temperature.

The work done by Sieder and Tate [Ref. 16] , resulted in

two simple empirical relationships which take into account

fluid property variations. For laminar heat transfer in tubes,

use the following equation

,„.^'/' /di W 3

/u

Vo * l 'M k (RePr) 4/ -,) (26). 1 <

ford.

RePr r-i >10LT

73

and for turbulent heat transfer

k *8 1 / 3 /n \ • i *

hH 2

* - 027 37 Re Pr (H (27)

for

.7<Pr<16.700

Re>10,000

For both situations, all fluid properties are evaluated at the

mean bulk temperature of the fluid, except u , which is evalua-w

ted at the wall temperature. Recommended by Dittus and Poelter

[Ref. 17] for turbulent flow is

, k ' 8 '*

i

hH 2

=- 023

d~Re Pr t 28 )

The properties in this equation are evaluated at the fluid bulk

temperature. This variety of expressions allows the designer

to study a greater range of possibilities.

Consider now the conditions under which boiling will be

initiated in the vertical heated tube. No boiling can occur

while the temperature of the heating surface remains below the

saturation temperature of the fluid at that particular location.

It should be realized that fully developed subcooled boiling

is not initiated whenever the heated surface first exceeds

the saturation temperature. As shown in Fig. 37, a region of

"partial boiling" exists between the subsaturation zone, A,

and fully developed subcooled boiling, B. This "partial boil-

ing" zone consists of comparatively few nucleation sites and

in this zone, a proportion of the heat would be transferred

by normal single-phase convection between patcher or bubbles.

74

A

Fully developedsubcooledboiling

(Region B)

Non-boiling(Region A)

aUiOJUL^UULLailLLUlInlet subcooling

Partial boiling

FIGURE 37: SURFACE HEAT FLUX VS. INLET SUBCOOLING

For forced convective flow, Bergles and Rohsenow [Ref. 18]

developed a criterion based on analysis by Hsu [Ref. 19] and

Han [Ref. 20] for the incipience of boiling. In this work,

Bergles proposed a convenient numerical expression to determine

the wall superheat required to initiate boiling. This expres-

sion is for the steam-water system in the 15-2000 psia pres-

sure range.

1 • IS 6

. = 15.60 p (Tonb K - T )wall sat'

, -231+

(2>3

/p ) (29)

75

whereQnb

(Btu/hr.ft 2) is the heat flux to cause nucleation

at a wall superheat Twall

- Tsat

and at a system pressure p

(psia) .

As the surface temperature is increased further, the whole

surface is covered by bubble sites, boiling is "fully developed"

and the single-phase component reduces to zero. In the "fully

developed" boiling region, velocity and subcooling have little

or no effect on the surface temperature as observed experimen-

tally. Throughout the partial boiling region Rohsenow [Ref.

21] suggests that

^Total=

SPL+

SCB

where X . , is the total average surface heat flux, isTotal & ' SPL

the average surface heat flux transferred by single-phase

convection, and 0o rR is the average surface heat flux trans-

ferred by boiling. This method of superposition, shown in

Fig. 38, utilizes the single-phase component given by

cm = h (T ,, - T, ,, )SPL c v wall bulk'

where h is found by the familiar Dittus-Poelter equation.

The boiling contribution was successfully correlated with

the experimental data using the equation suggested by Rohsenow

[Ref. 22] for staturated nucleate pool boiling

g(Pr-o J 1 2 fc (T -- -T )

= w i [

gC°fVI

2

[VW "'sat -

^SCByi

fgI g c

a J [ Pr C g£Ifo

(30)

where Cf

is a constant described by the liquid surface com-

bination. The data reduced and correlation used a value of

C c = .006. The surface-tension is calculated from [Ref. 23].st

76

Single-phase Subcooledliquid boiling /

(Region B) /

Non -boiling

•^(Region A)

Fully developed ' 5/tff—

Partial 7

E Single - phase-^^ / 1 *oo forced convection -^ /y'X_3

component

0spv

*"""""

^y4'i®*- y^ 1to

I -0ON84> _y/^ ' /O10 y^5

i A/ Fully

-0c- s' z. .• / developed

'SAT1

Jfa* boiling curve

b^' L_._--*''

i0SCB

Surface temperature, 7*

w

FIGURE 38: METHOD OF ROHSENOW

77

a = 58 x 10""*(1 - .000142T) lbf/FT

with T in °F

In their introduction to Chapter 8, Hsu and Graham [Ref.

24] delineate the metamorphosis of two-phase flow typically

shown in Fig. 59.

A fluid enters the heating section as a subcooledliguid. Some distance downstream, subcooled boilingbegins on the wall, but the bubbles do not leave thewall. Farther downstream, the bubbles begin to growand depart into the main stream (low subcooled boilingregion) . As the fluid is near the saturation tempera-ture, enough bubbles are generated to populate thewhole cross section (bubbly flow) and finally coalesceinto slug flow. However, slug flow exists only overa narrow range of valid fractions . As the void frac-tion is increased, the flow pattern quickly undergoesa transition into annular flow with a dispersed mistin the core (dispersed annular flow) . The annularfilm is gradually depleted and thinned out. In thefinal stage, the flow is a mist flow with dropletscarried by the superheated vapor. The wall regioncan be dry.

This excerpt from Hsu and Graham should raise the question

of when do these individual changes occur. Reference [24]

states that Haberstroh and Griffith found that the transition

between slug and annular two-phase flow occurred at the void

fraction between .8 to .9. The void fraction, a, can be

determined from

1 -\ =( 1 - xj (u^p

with the vapor velocity found from

Gx rmTOTAL

u = —; G =

v REA

and the fluid velocity is

_ G(l-x)uf p

f(l-a)

78

Dry-wallmist

Annularflow

lugflow

Incipientboiling

p^^

\

Increasedquality

andvoid

Saturatedinlet

FIGURE 39: TWO- PHASE FLOW DEVELOPMENT

79

where x is the mass quality, and is defined as

x = 1 - x = —mTotal m

Total

Now provided both liquid and vapor are in thermodynamic equi-

librium, i.e., they exist at the saturation pressure and tempera-

ture, then an alternative definition of mass quality x can be

given on the basis of thermodynamic properties.

1 - lf

X = —T

e I r

Only when the thermodynamic equilibrium exists are the values

of x and x identical,e

However, this result was obtained for the adiabatic condi-

tion. Some important features of flow patterns in boiling

two-phase flow and differences between this and the adiabatic

case are discussed in Hsu and Graham. Furthermore, it has been

suggested that the Habers troh-Grif fith criteria for this

transition overpredict the flow quality. According to The

Handbook of Heat Transfer,

[Ref . 25] , Rohsenow observed that

the slug- to-annular flow transition occurs for qualities

between 5-10%. In this thesis a local true quality of 10% was

used as the accepted transition.

Slug flow occurs when the flow equilibrium enthalpy is

near saturation, the actual quality when x = can be

determined by using the analysis for the subcooled boiling

regime. Based upon Hsu's [Ref. 19] postulate, Levy proposed

a criterion for bubble detachment, and therefore, a condition

80

for fully developed subcooled boiling. He showed that the

true quality can be related to the equilibrium quality through

the expression [Ref. 26]

xT = x a - x, EXP (x /x,T e d e d

1) (31)

where

-c (T . - T, .. )p sat bulk 7

Tfe

Using Levy's approach, the fraction of heat flux used for

evaporation can be determined fromev

=0"ev ^Total 1 - EXP (x

T/x

d- 1) (32)

At the present, a workable analysis of annular two-phase

heat transfer is not available; therefore, empirical correla-

tions must be employed. References 24, 25 and 27, contain

expressions derived from the work of Dengler and Addoms

,

Schrock and Grossman, and Collier and Pulling, for example.

Chen [Ref. 28] compared the existing correlations and found

while the expression obtained by a particular research group

represented their own data fairly well, it failed to represent

any other groups' data with any reasonable accuracy. In

general, none of the existing correlations appeared satisfactory

for general use. As did Rohsenow, Chen postulated that two

basic mechanisms take part in the heat transfer process for

boiling of saturated fluids with flow.

The macroconvective mechanism, or single-phase convection,

is described by a modified form of the Dittus -Roelter relationship

81

h = .023 -r^ Re* 8 Pr"* Fmac d

.

1(33)

In this expression the factor F is the ratio of the two-phase

Reynolds number (ReTp ) to the liquid Reynolds number (Re)

,

where ReTp

is defined by ReTp

= ReF 1 ' 25. Chen reasoned and

verified that this ratio is a function of the Martinelli para-

meter, XTT , given byA

Vx. M

f / v

The work of Foster and Zuber was expanded to include the

previously neglected effective and wall superheat difference

in order to obtain an expression for the microconvective , or

bubble nucleation and growth (boiling) term; . A suppression

factor given by

AT 9 9

S =AT

where

AT = Twall sat

AT = effective superheat with flowe r

1-25was defined and later verified to be a function of ReTp (ReF )

Manipulating S through the Clausius and Clapeyron equation and

combining with the modified Foster and Zuber expression, Chen

obtained an expression for microconvection in terms of the

suppresion factor and total superheat, AT.

hmic

CT>

Pf g C

' 2h " 75

0122 2 i E AT AP S

f fg v

(34)

82

where a is the surface tension of water previously defined,

and

AP = pressure difference between the saturationpressure correspondint to T , n minus thewailbulk saturation pressure and is in lbf/ft 2

.

The total heat transfer coefficient is then obtained as the

sum

Total mac mic

This correlation was tested with available data for water

and organic fluids. The average deviation between calculated

and measured boiling coefficients for all (over 600) data points

from ten experimental cases was +_ 12%. They include those for

water in the pressure range of 1 to 35 atm with liquid flow

velocities up to 14.7 ft/sec, heat flux up to 760,000 Btu/hr.

ft 2, and quality up to 71%. However, no substantiating evi-

dence was found to refute using this correlation up to a quality

of 100%.

Computation of the water-side heat transfer coefficient

from a true quality of 10-100% is accomplished by the utiliza-

tion of the Chen correlation. Both the Reynolds number factor,

F, and the Suppression factor, S, are obtained from polynomials

fit to the data of Reference 27, Figs. 6 and 7 respectively.

From the point of 100 percent quality to the tube exit, the

evaluation of the water-side heat transfer coefficient becomes

a choice of the previously discussed forced convection heat

transfer correlations which are obviously dependent upon the

Reynolds number.

E. OVER- ALL HEAT TRANSFER

Newton's law of cooling may be written as

Q = hAAT

It is often convenient to express the heat transfer rate for

a combined conductive- convective problem in this form with h

replaced by an overall heat transfer coefficient U.

The primary objective in the thermal design of heat ex-

changers is to determine the necessary surface area required

to transfer heat at a given rate for given fluid temperatures

and flow rates. The utilization of U facilitates this procedure

in the above fundamental heat transfer relation

Q = UAATLM

where AT.V

, is the average effective temperature difference

known as the log-mean temperature difference.

It is well known that the primary purpose of fins is to

increase the effective heat transfer surface area exposed to

a fluid in a heat exchanger. The performance of fins is often

expressed in terms of the fin efficiency, r\~

[actual heat transfer]n = 1 J

heat transfer if entire fin wereat the base temperature

Analytical expressions for rir are readily obtained for several

common fin configurations.

For this model, both segmented and pin fins are considered

to have ends that are at the free-stream temperature. Using

a corrected length L (as was suggested by Harper and Brown)

the insulated tip fin equation can be utilized, as follows

84

tanh(mL )

nf

=~1rL

~(36)

c

where Lq

= L + ll. However, for the fin dimensions utilized

in this thesis L>>t which allows Equation 36 to be approximated

by:

tanh (mL)n f " iL (37)

haP

where m = r-2-^

k A

h^ = gas-side heat transfer coefficient

P = "wetted" fin perimeter

k = fin thermal conductivity

A = fin cross-sectional area

L = fin length

Now in terms of n^, the heat transfer rate is given by the

simple expression

Q - h (Afct

n£Afin

)4T

remembering that A, is essentially

bt so fin

allows the heat transfer equation to be rewritten in terms of

an "elemental" heat exchanger efficiency as

Q = hn A ATxs so

Awhere n = 1 - (1 - n f ) fin

s rAso

Using the tube wall resistance, together with the gas-side and

water-side heat transfer coefficients and the "segment" effi-

ciency, the overall heat transfer coefficient can be found as

follows

:

85

(a) in terms of the inside area

H2O tube s so s 2

(b) in terms of the outside are a

Uo = I C39)uoo A A ln(d /d.)

~

so + SO V O lJ

1

A • hu n 2irk. u L n hsi H 2 tube s 's 2

Using the effectiveness - NTU method, an average "segment"

effectiveness is calculated from equations 7a or 7b; if a

phase change is occurring, equation 8. The expression for e

is now used in an iterative fashion. Each time an effective-

ness is calculated it is compared to the previously found £

until a difference of less than .001 is obtained. This differ-

ence represents the convergence of the "elemental" heat exchanger

effectiveness. During each iteration, the gas and water

temperatures are determined in the following way. The total

heat transfer rate is, per segment,

Q = cC . ATxs mm max

then the outlet gas temperature is

Tg = Tg. - Q /C (40a)5 out °m x s gas

and for the water/steam temperature

Tw = Tw. + Q /C„ n(40b)

ouy in x s H 2

or if boiling is present, the outlet enthalpy of water is

found from

I #= I. + Q /mu n

(40c)out in s H 2

86

where I = enthalpy in BTU/lbm

With these segment terminal temperatures, inside and outside

tube wall temperatures may be calculated as follows:

Tg + TgTcr out &m TTg

bulk 2 T§b

Tw . + Tw.Tw - 0Ut ln TTw

bulk - 2 = Twb

Now performing a heat balance upon the "elemental" heat ex-

changer

T S b "Tw

bQ s

= (41)Rth

with R

or Q

th A .Uo. A UoSI 1 so o

Tgb

TT0

TTi " Tw

bRo

Ri

here TTQ = outside tube wall temperature

T T . = inside tube wall temperature

1R

R

o n h Aaa

1

s g SO

i A . h„ nsi H 2

Combining to find the outside tube wall temperature in terms

of the overall temperature difference asR

TTn = Tg, - ^ (Tg, - Tw, ) (42)TO °b LRth

and for the inside wall

TTi " ™b + 1^ (T?

b " Twb)

C43)

these wall temperatures are then utilized to find the gas-side

and water-side film temperatures

87

TSf

Tff, + T°b To

i

andTw. + T_.

T«£

-b

,Tl

which are used in calculations requiring fluid property evalua-

tion of the film temperature.

This completes the required calculations for the "elemental"

heat exchanger. The final values of the water-side variables

are used as the inlet conditions for the next segment, and the

whole of the aforementioned procedure is repeated N (total

number of elemental heat exchangers per tube) times. This re-

presents the end of the tube.

At this point an overall tube heat balance is written based

upon enthalpy considerations. The total heat transfer rate is

found fromN

xTotal xj

and QTotal=

™H 2

(I exit " Xinlet 3

solving for the water mass flow rate yields

^Total lbmmH 2

" I .«. - I.~

hr* exit inlet

Obviously as the gas transverses the rows of tubes in the

heat exchanger, its temperature decreases, producing a corres-

ponding decrease in the gas-to-water temperature difference.

The heat transfer rate being a function of this temperature

difference also becomes less, however, the inlet and exit

conditions are specified design parameters which remain con-

stant. Since one of the assumed parameters was a water-side

Reynolds number, this step allows for the actual mass flow

rate, and Reynolds number to be compared with the original.

If the relative error defined here as

mH 2 calc

~ mH 2 INITIAL

E =r m

H 2 calc

is greater than 5%, the entire set of calculations is repeated

using the calculated mass flow rate as the initial mM p. In—— *"H 2

this manner, a profile of the water mass flow rates is found

on a row basis for this type of heat exchanger.

A matrix of the segment outlet gas temperatures is utilized

at the inlet of the next row. The total number of rows is

obtained when the following condition is satisfied

N

I3-1 "J

1

Design outlet gas temperatureJo = ^- V Joa o N °out

89

III. RESULTS AND CONCLUSIONS

A. BACKGROUND

The foregoing model was applied in a computer simulation

program witten in BASIC for the Hewlett Packard 9845 model B

desktop computer. Inclusive are a set of supporting subpro-

grams for the determination of water, steam and air properties.

Finally, one subprogram was included to provide a choice for

the thermal conductivity of both the selected fin and tube

metal. With the establishment of the design variables to test

the model and to develop an understanding of the behavior of

the S.S.T., the program was activated to produce a heat ex-

changer design.

A review of the initial results revealed that the proposed

model required modification in order to produce more realistic

simulated data. The problem arose from the attempt to match

Rohsenow's and Chens correlation at 10% steam quality. It is

well known that boiling heat transfer is associated with rather

high heat transfer coefficients, and these results reflected

this fact up to the 10% quality point. The heat transfer co-

efficients were of the order of 20,000 BTU/HR FT 2 °F. However,

upon program transfer to the Chen correlation for the

determination of the water-side heat transfer coefficient, these

values were of the order of 6-20 BTU/HR FT 2 °F. Obviously,

this tremendous difference in magnitudes is definitely not a

90

real simulation of the probable actual situation. This mis-

match in heat transfer coefficients no doubt arises from the

suppression factor, to utilize in the Chen microconvective

term (Eq. 35), way below the lower limit of approximately

18,000 for the Reynolds number as shown in Figure 40.

i i—i—i i i r

j 1 i''''

105

Re=ReLxFL2S

I0«

FIGURE 40: SUPPRESSION FACTOR, S

Therefore, the proposed model was changed to utilize the

Rohsenow method for the entire range of 0-100% steam quality.

The single phase contribution was calculated by using a value

for the heat transfer coefficient, h , being determined by the

local Reynolds number. Remember that initially h was cal-

culated from the Dittus-Boelter correlation. A listing of

the final program appears in Appendix A.

B. DESIGN VARIABLES

The following set of design variables was selected to

produce the basic set of data.

91

1

.

S.S.T. Operating Pressure

The previous work of Combs [Ref. 7] indicated that the

optimal operating pressure ranged from 600-800 psig. For this

simulation, 600 psig was selected.

2

.

Frontal Diminsions

Space constraints for a DD-963- type engineroom limits

the maximum heat exchanger width to 12 feet. To be consistent

with this constraint, the frontal dimension of 3.658 m x lm

(12 "x3 . 2808' ) was selected for the design.

3

.

Gas Flow Rate and Temperatures

The outlet from the gas turbine was taken to be 145

lbm/sec (522,000 lbm/hr) at 900°F under steady state and steady

flow conditions

.

4

.

Superheater Outlet Steam Temperature

The target superheat at the outlet was specified to be

50°F. At 600 psig this corresponds to 536°F. This amount of

superheat will vary with water-side mass flow rate.

5

.

Water Inlet Temperature

The water inlet temperature was fixed at 50°F subcooling

or 436°F.

6

.

Fin Geometry

The segmented fin profile was selected for the gas-side

heat transfer.

92

C. THE DATA SET

A set of data was produced for the combination of design

variables just discussed. This data was generated by varying

the inlet Reynolds number, or if one prefers, the inlet mass

flow rate, and was the result from the investigation of 60

different such numbers. The following set of output variables

was considered.

1. Gas bulk temperature variation

2. Gas-side heat transfer coefficient

3. Overall heat transfer coefficient based upon the out-

side area

4. Tube wall temperature variation

5. Water/steam mass flow rate

6. Water-side heat transfer coefficient

7. Overall heat transfer coefficient based upon the inside

area

8. Inside surface heat flux

9. Water-bulk temperature variation

10. Thermodynamic quality variation

This investigation included a Reynolds number range of

75 to 1650. Figure 41, shows graphically the water/steam mass

flow rate corresponding to each Reynolds number in order to

provide information concerning the range of mass flow rates

involved. It should be re- emphasized that these Reynolds

numbers are those associated with the water properties at the

tube inlet temperature of 436°F. The outlet Reynolds number

93

!0S9I

0SM

-0921

if)

P-Ioz>uX.

in>

o_i

CDcnCE

Ld

050 T

0S8

oz0)n_joz>-

uOS

i—

i

-059

0St>

092

sin

toCO

s _0S

(JH/ujq-|) M01J SSUW

94

becomes simply Re = Re.out in

y INLETyEXIT

A logical expectation is the decrease in outlet superheat

with an increase in mass flow rate. This trend is displayed

in figure 42a. Point A corresponds to a Reynolds number of

310 and a superheat of 61°; whereas, point B, 380 and 91.

Figures 43 and 44 show that there is very little difference in

the water-side heat transfer coefficient for these two values

of Reynolds numbers during the preheating of the water toward

the saturation temperature. However, the value of h represen-

tative during superheating for Re = 380 is approximately twice

the value of h for Re 310 (Figures 45 and 46).

The logical question to be raised at this point is why

this difference exists. Outwardly, there definitely appears

no logical explanation. Although not a specific part of the

data set, the Reynolds number variation with axial position

should have been plotted. It was observed on the CRT of the

computer that in this "transition" region the Reynolds number

gradient steadily increased along the tube for the inlet

values of 310 and 380. This observation revealed the greatest

magnitude of the Reynolds number was obtained at the point of

100% steam quality inside the tube.

For a Reynolds number of 310 the maximum value obtained

was approximately 2100, whereas a Reynolds number of 380 the

maximum value obtained was approximately 3300. The effect on

heat transfer is observed as the water-side tube flow trans-

verses from the laminar to turbulent regime, with the steam

95

T0S9I

-0SM

n_joz>-

UJC£

>

CELdXauQ_D07

cd

WOS

oMft

(j,) iy3Hd3dns

96

1002

S<il

CCuIa._CL3in

as i

-S2I

CD>

O-JLi-

enCDcc

CE-

0)

001

H(EIdILiCL30)

WPI—

I

(uH/wqi) Mou ssbw

97

t3

- S'Q

00

II

ena_joz>-

u

- s

9'*

s'e zoMH-Mtn

e oa.

S'2

-ICEt-i

X

W

Ui—

i

-2

9'I

9*

inCD

CD inin

<n en

(jx/^j-bs/viH/nia) h 3ais-a3iuM

in

en

98

"3-

OSaI—

I

(J,/%J-bs/v»H/nia) H 3aiS-d31dM

99

-lB*

se

—CO

I!

o

COQ_Joz>u

ae

zo1-1

h-i-«

(0S2 O

Q.

_l<TMX(E

WOSDui—

i

-02

SI

in toM M• M

cu in Ul.01

(jy/^j-bs/^H/nia) h 3ais-d3iyM

lao

-?0t

sGD00

II

o

ena

Ida.

S6

ee

zo

in92 O

0.

-J<r

XCE

-02

SI

(U

in

(U (U

CO

(U

cu

(U

.91

(U

(J./^J-bs/UH/Tlia) H BCIIS-dSlUM

101

T0*

t~~

wpiD

(jj 3anioa3dW3i >nna mium

102

oo"5J-

06

i—

i

s s O s s s o a s ao IV. (0 in T pi (U *4 s 0)in n n in in in in in in T

(j.) 3anibd3dW3i >nns asitiM

103

-ass

10S9I

-esu

-0S2T

-esei

ozenQ

z>UJ01

en

wOS

a

0S9

-est*

-0S2

(ui) Nomsod nuixu

104

-ess

-iess i

-esu

-eszi

-esei

oz

o_1oz>UJ

o

w

i—

i

-ess

-est>

-ess

(<jo Nonisod nyixu

105

bulk temperature variation reflecting this fact. In figure

47, the change in steam temperature is approximately 24.4 F/FT

whereas in Figure 48, it is 38.6 F/FT.

Figures 49 and 50 show the axial location of initiation of

boiling (zero percent quality) and that of complete evapora-

tion (100 percent quality) as a function of the inlet Reynolds

number.

The target of 50 degrees superheat was obtained with an

inlet Reynolds number of 840.

Table I. HEAT BALANCE RESULTS

Inlet water-side Reynolds number

Outlet water-side Reynolds number

Overall water mass flow rate

Total overall heat addition rate

The inlet water temperature

The saturation temperature

The outlet steam temperature

The amount of superheat

The inlet enthalpy

The outlet enthalpy

840

5180.19

29.648202 lbm/hr

24621.249 BTU/hr

436.21 °F

486.21

536.22

50.01

414.867

1245.314

op

op

op

BTU/lbm

BTU/lbm

Figures 51 through 59 graphically represent the data

obtained from the model simulation for Re = 840.

106

These figures show the axial distribution of the associated

variables under the prescribed design conditions for the seg-

mented fin profile.

Table 2: TUBE/FIN DIMENSIONS AND AREAS

The selected fin profile is the segmented-f in

The outside tube diameter

The inside tube diameter

The tube length

The total outside tube area

The total inside tube area

The fin root diameter

The number of 'fins' per inch

The number of 'segments' per fin

The fin height

The fin thickness

The transverse tube pitch

The longitudinal tube pitch

The fin outside diameter

The fin segment width

The length of cut from fin tip

The total integer number of fins

Actual tube length will be

The fin thermal conductivity

The tube thermal conductivity

2 Inches

1.86 Inches

39.37 Inches

1.71889 Square Feet

1.59857 Square Feet

2 Inches

5.94

38

1.015 Inches

.048 Inches

4.5 Inches

2.25 Inches

4.03 Inches

.17 Inches

.82 Inches

234 Fins

59.394 Inches

144 BTU/Hr .Ft./F

20 BTU/Hr .Ft./F

107

Calculated heat transfer areas in square feet:

Total heat exchanger frontal area 39.394

Total fin area 26.950951

Total bare tube area 1.228802

Total outside tube area 28.179753

Single fin area .115175

Outside 'elemental' area .120426

Inside 'elemental' area .006831

'Elemental' frontal area .005261

'Elemental' blocked area .003015

'Elemental' minimum gas-flow area .002246

This data shows what would reasonably be expected. That

is, relatively low values for heat transfer coefficients and

heat flux for the preheat and superheating sections and high

values for the boiling section.

D. CONCLUSION

The short straight tube model and the accompanying graphi

cal data provide the basic framework for additional study of

the stagnation, or S.S.T boiler. This model, as formulated,

provides a fairly reasonable estimate of the possible perfor-

mance for the fin-tube configuration considered. Performance

estimates are encouraging even considering the assumptions

involved.

108

T0*

se

ae

SQD

05Q_JOz>ua:

S8 C

zo

CO02 O

Q.

_1<Ti-t

X<r

91

CO

i—

l

mos

a

-01

9 CD a> Pw CO in •* tn cu v4 S CDS 0) CD CD 01 CD 0) CD CD CD CD CD0) a> CD CD CD CD CD CD CD CD CD CD

(j.) 3aniya3dN3i >nna shd

109^

-|2l

sOD

II

O

enQ

S"ll

8*11

i*n

- 9*n

eng*n o

a_

(E

wn*

- e*n

2*11

i*u

s o> 03 IN. CO to T CO 04 m SB 01s 01 CO 0) 0) 01 o> 01 en 01 01 03<n OB CD 00 03 a> CD a> CD 03 03 03

II

(j,) 3anibd3dN3i >nna suo

r—

I

LO

wPi

I—

I

110

-tB'll

S8MT

- 8*11

Si'II

i'TT

Zo

enS9-TIO

GL

_1(E

H9MI *

UrH

W

ai—

i

SS'H

S'TT

Sfr'II

1i i 1 1 1 i i

s at CD rs. CO m T en (U «* CO0) • • • • « • • • • COco a> 01 en 0) CO CO 01 CO 0) CO

CD CD CO CO CO CO CD CD CDCD CO CO CO CO CO CO CO CD

fr'II

(jj 3aniya3dW3i >nna shd

hi

n0>

- se

as

63

00

II

o

toQ

Ld

S2 C

WZoh-1-1

W02 O

-Jccl-H

Xa.

si

0i

CO

rsj

LO

W

i—

i

tin

in <M inis.

in mcu

cjx/^j-bs/JH/nia) h 3ais-sb^

112

OD

n-joz>u

-il

s*

- 8*

l%

- >

- e*

9* wZoMh-

0)s* o

Q.

X. CE

(SI

WPCS3

i—

i

2*

I*

inCU (U cu

(UCU cu

OJ

(J,/%J-bS/^H/nia) H BCIIS-SdD

113

tG*22

63

OD

II

*

O

enQ_lOzLd

- +% ZZ

u

M •« M a

Cd^/'VJ-bS/viH/nia) H 3QIS-SU9

114

nBfr

9E

ae

CD

ODS2 C

O-z.

inn

i i i i i i

zo

l-l

0)82 O

a.

a:

Xa:

91

03

Oi—

i

at

- s

(j,/"ij-bs/viH/nia) n 3aismo

.a

115

101

- 6

CD

II

OzV)Q_lOz>-

ua:

zo

tng o

Q.

- t»

X

1 1 1 • >

CO OJ OB f\. to n1

• M M N M ru

(j,/^j-bs/^H/nia) n saisino

P4OS

I—

I

tin

116

n0fr

se

eg

OD

Q_JOz>u

zo

enae o

CL

CE1-1

XCE

u

a:Di—

i

92

(S in n in(U in M <r

• M • (Ucu

in<ncvi

02

(jz/^j-bs/JH/nia) n saismo

117

-10*

se

-iae

IS

00S2 C

OZwQ 02

zo

inoQ.

MXCE

SI

LO

W

i—i

PU

ei

s0>

s sin s>o a

sin

53COis.

Sin

est

toCO

sinin in

srm

(J.) 3aniHd3dN31 TlbM

118

-|2I

II

ai

-s

OD

Ozif)

Q_lOzLd

o

M0)

9 OQ_

_1£En

j s X<r

OSD

i

CO a M inCO • CD • aCO M

COCD

CD V4ODCD

CD

(j/) 3aniya3dW3i tihm

119

tSMI

S8MT

SMI

S^'TI

stOD

II

o

03Q

Ld

(j?) 3dniya3dW3i iihm

zot-l

h-

in99*11

O

GL

_l

SMI tC

-SSMI

SMI

S*MI

S ID• s in

•(VIsa m

Sto (Us in

>MI

u

wOSDi—

i

120

-10*

SE

06

IS

CD

I

o

S2 C

Zo

if)

a

>-

uDC

02 OQ.

_J

X

SI

as

w

i—

<

-01

9 s ss

8 S5

ss 8s i Is s B s s CD

CO to T TO (U *-«

-#

c%j-bs/JH/nia) xnu 1H3H

121

-t3!

in

WOS

uI—

«

p.,

1

si

SI

oi

sI

S Sin s in s in SM M wi WM s 9M W (V M M Ml

(T-j-bs/viH/nia) xnu iosh

122

n6MT

- SB'TI

OD

II

o

0)n

Ldat

m

n » w

c*j-bs/viH/n±s) xnu iobh

-S*MI

>*n

u

w

ut—

I

123

10*

IS

GD

O

COn

Ld

T3

m06

i—

i

3 §at is.

(Lj-bs/JH/nia) xmj 1H3H

in

124

10*

se

06

C3

OD

II

O

Q

U

S2 C

zo

02toO0.

-JtEi-»

Xa:

91

vO

WOSD1—1

01

-i- X — a. -L. -i_ -i.§9999 9 8s 9 sto s in 8

o s s(9

85 §m s in

125

-|2I

W

in n -r ^(j./^j-bs/uH/nia) h 3ais-a3iUM

126

nS'TT

inm

§noi

A.

ea s9 Ss 10s IS.

» w

§in

01

-S8MI

sin

H 3aiS-a31UM

§

uvOLO

wOS

ai—

i

127

n0*

CD

GO

Oz

Q

Id

se

zoMI-

to06 o

Q.

-IIE1-1

X<r

T3

W

I—

I

S2

n m02

<j,/*j-bs/wiH/n±a) H 3ais-a3ibiM

128

n0fr

98

-06

sCD

inQ_Joz>Ld

92 C

zo

tn03 O

XCE

03

mOS

ai—

i

01

s m s in (B inin w s IN. to « iP

(j./^j-bs/uH/nia) n bqisni

129

CD

WQ_lOz>-

uDC

t2T

TT

01

O1-1

H1-1

en9 o

Q.

_ICE

scc

wDi—

i

n09

0) toCD

inis.

(jx/^j-bs/^H/nia) n 3Qisni

130

10*

-se

CD

COQ_JO>u

zo

0E OQ.

X(L

u

W

I—

!

PU

92

in CO ru02

(j,/^j-bs/-«H/nia) n bqisni

131

!0fr

se

<S

OD

II

O

(0n_ioz>uDC

06

- SI

32

ZoI-l-H

to08 O

Q.

_1CE

XCE

oou->

WQi

01

8 sw COin in

smn

CD CD— 8in in

o01

8as

8is.

8to

8in

s 8m

(j.) 3aniuy3dN3i >nna asidM

132

-aCO

wOSDi—

t

(j,) 3dniua3dW3i >i~ins a3ibM

133

aen

w04

i—

i

•* S3 *-*

cjo Aiiidno iyoo~i

134

-|2E

U) -Qo CT>

Q. LO

_1 Wen CSi

t-< 3X C3

£E rr

-»o>OBrwcoin-TC»)aj-<m Aiiiyno iyooi

135

IV. RECOMMENDATIONS FOR FURTHER RESEARCH

Investigation of the Short Straight Tube Boiler model in

this thesis was essentially the adjustments of the water/

steam mass flow rate to determine some possible operating

conditions and heat transfer characteristics. This investi-

gation was conducted upon only one tube under steady state

steady flow operation. Additionally, the model consisted of

preheat, boiling, and superheat with accompanying single

phase flow.

In order to increase the precision of the model and lead

to greater insight into the possible performance of the S.S.T.,

consideration must be given to the inclusion of two phase

heat transfer; in particular to "frothy" flow correlations.

Possible sources of this information may exist in research

and experimentation conducted in "flash-type" water distilla-

tion systems

.

Secondly, consideration should be given to apply enhanced

heat transfer configurations to the inside of the tubes;

helical wire inserts or helical vane inserts. This enhance-

ment would be required to increase the heat transfer in the

preheat and superheat sections and would be very important

especially as gas temperatures decreased.

Finally, the program should be transferred to the IBM

3033 computer in order to more efficiently process an expanded

136

program to determine actual heat exchanger size. Although a

powerful tool the HP 9845-B lacks the storage capability,

especially, disk storage, to handle a complete heat exchanger

design analysis that would be required in order to make a

reasonable comparison with other heat exchangers.

With the aforementioned analytic changes implemented, the

calculated heat transfer coefficients should be compared with

those coefficients obtained experimentally. The single tube

experiment should also include the capability for the obser-

vation of the boiling regime in order to gain possible greater

qualitative insight into the most probable flow patterns in

existence in the boiling regions within the tube.

137

APPENDIX A: PROGRAM LISTING

i a COtj UJ CJ + +: + * + :+ * :+ :+ :* + * + * + + + * * :4c

CL CL •_•• * V* •—

<

o + +CO 3 2 :* *

T •3 ». +! +-1 1=1 UJ .•-. * +

• ^_-- <X •^r + ** CO * *

,- \r> _J CJ * +3X Ol _l •_ + 05 *

• 'X "l .-^. + 0"| UJ 1=1 1=1 *« < x \r.' * Ul PQ Ul Ul +

w- /"\ h- ~ i- * MJ _' CO CO +* 3 3 .'•. V * ' 4— 4- •X 'X +"••

Cl. r}- iii * P T n PQ •+•

CO u. ^ '1*1 CO Ll * U. UJ 4— *

N '•-•' i—

i

1—1 ci o * u. c h-

1

4- 4- +-H * .^-. CO >_•* n * <__ CJ Ul X T :+:

_ "I CO O >- •— ~. * .. 3 1—1 >-i Ul UJ +•

T • 4- _J x u:> * 05 '. O u. l_ 1—

1

1—1 +• Ol cc ,. TJ- * ;- l~ ' CL Ul u. 1— l_ i X c i :4:

-_l < Q£ T .-. w- + 'X CL CL Ul Ul U_ y— U ' X +

LL \ U. 1- a CC 1- :4c CL X i CL 1 1 U U. CL u Ul +-• "•• 1=1 4c co i— CO L. * CL X 4- X 1 Lj u U. X u CL *o CL _• ro CO r CL CO 'ii 4c 'X "^" X 4- l_ i ui LL X *

-• * •' IS CL Ul - r-j # c i o CL 'X X ' CL £_ i o ui c +_l 'J • • UJ ijl .- » * U. i— a UJ Cl UJ l__> 1—1 l_ Ul *

f\ * Q CO < Cl T ~i y\ * i i u. UJ Ul _l U. LL y— L-l +^H .* CD _l \ CL Cl o X -U"5 * UJ Cl . Cl U. 05 u 1 Oi 05 Cl -• ++ o* 00 4c ~ * •w' X - -t + i_3 Ul CL Ij > Ul X T u Ul 4- Ul CO *Ol <o '0 'O N^" v^. Ul o -t V * *y CL — i (X. 4- 4- U 4- X p.r U. X u :+:

4c • :o DO < 1=1 .-v X x co *•• * *—i X 1— X' 'X H X CL : co o i.r i-^ *t iT, S l>- ."\ ' /-\ 1— Ul CJ * 4- H X 4- Cl _l u 4- I +^v to in '£" T a •j5 •-•• "D * 05 •X CL X Ul _ _ 1 X u. X L CC UJ *X -r ~H -r • 4c w U"> CO 1— Ci X * *—> Cl Ul CL LL X _ 1

1— H - Cl X LL X *I + •fl" 00 CL * *^ 3 <r x> ~ ^^. * _J U Cl Ul X 3 : a u 1 X 1- 1— 4- 4- +:

'•^ *— |>- •-U ul w- r<- • l_^ LU •k /*>l

N- * u . LL LU 1 j '_ LU r— .:— :*

a. v/ T ~H ¥ 4< — -H -I X ..-..IJ-) w- * Ul s Ul X 1— Ul 1 X . X X 4- H 4- +

X * ,--, CJ GO .•"S • < _l 1" T •~+: ";- Ul 1- Ul tfi UJ u U X o X o l-H +

UJ UO .-- —

^

• 1=1 II Q. •r Ul CO -• — + »—

»

4- 1— 3J PC LL'

Ul X • u CL U Cl _l *+ T 3 r- -

4c Cl CJ c Cl # 4- ^~ _ 1- i X t=i I 3 X 3 'I *n, .••-! S r» CL iL r— <o 2 ':- •-•• 111 - +. LL . Ce 4- ~

1 t- i_r !-* u 1 3 #X • • •S * •^ w. m 'X 1— .ii a /v. :+: i—

l

_ 4- i—i PC i u i 05 PC _l _ C3 *•_•• ,yy 1 • f*. * > \n CL '—" 3 'JS * CL

• ^ * ~.K i= u Ll V — _1 _ *a. If) 00 i Q •jj * ^^ 'J CL -05 '•w' 4c '_j PC LL Ul LL L- i— CL i.r X X s; *X - —- CM \ •X PQ ^-/ a UJ •> rn * CO Ll 1

0" — ^~ Ul 1 Lt ii •X +Ul r. ~* / • > CL _l -r •-•.

'1> * UJ y; Tj" ij't H 4- C/ m" 1— i_r u i u Ul *w CL *'"i 01 ^w' *-« lj a Cl i—

i

CO \r> >/) # 1—

1

i 'I 'X X 2 X •i ;: 4— *.. 4c CD U"5 4c II "Jl -.• Q cj rr - + 'J IJ 'ji

. C ^ 1^

3 i_: c c >s> +,s S 5 <- ,--, /S •» + Ul pq -r- ^-' ^-^ * 'X +X s •o o 01 _l -n i— X X 'ii T* * • • +. r- -r C9 •>CL ii 1— r "CL •-•• 4c 05 • • +CL T —

01 • CL *> 4- ^-s - c * »—

«

• • *: -r GO II X o u. CO 1- -^ — * • • *

UJ -. T> CO /--. Cl_ •. o CO CO 1- u. * •JJ • • +ii ii K"J —

'

CL - — r— •'•J CO » •T- X • • +/*. /~K a • •» 1=1 h- I -• CJ /^ * 1—1 • • +:

x a. • •4 a. - CL a. y 3 -'" CO * T • • +^ •. ii II j. > •^• UJ 21 4^- CJ •w + a • 4:

x i— ,->.. /-S a i=l * £ CL - 4- IjJ * _i • • +C **' Of CL 2 » i/i •J O —

1

^^ *. Jj + _i 4:

'A L w' •.• ^ - iL 'i> Ui u. T /^ 3 * o r ri ^- CJ :c •^ •T •^ i~ c 1 x +:

4— — rn Cn B « w' •s *i >f> CL Ul CO T 4- + u. 4- H 4- H G X i — *Z U Ii >v > '•w' »— ^4

i

UJ CO CJ CO - * *U. M ii \>* £ 1

. ^ T CO Cl cc •-•• CO r—

i

* Ul *£ —_ . •^ -1 ii r-- 1—1 M rti •^ Ol + X +

U. Lt. '_j U Q _l CJ .---. PQ — X ^ 4- -< 1—

1

+ 4- +2 "^ T* CM

*7"• 4- 4— 2 4— « * +

a u. — u. Ll u. u3-*

u. Ol'75 CO

a1—

1

4- -CL -

21 *+

4:

4:

.. u. u. u. u. U. 1. u. II Ul 4— a *r T * * * * * # 4c 4. + * * * 4 * + + * * * +:

.ii uj LU UJ UJ Ul ^ 1— UJ 'J _l a. X CO i—

X 1—4 i—i 1—

1

1—1 1—1 1—1 * 1—

1

"J — — MM — o 05 CJ 1=1 —a. « 'X •-/

— * 1—1 •«-

r J CL 31

"J 09 09 X G9 '3 Q « 09 '3 'Si '3 '73 O Q >Z '2" <Z i!I G X 89 s cs 3 c 3 '3 C2> 09

>Z> <ZJ C3 69 09 3 '3 4« 09 s 1^) T* :> cm CO rf ,-•. in '0 r- CO CT- 'S >- c CO 1 U" (X r-- CO iT •'Z t-l C CO 'I- UO 'ill

~1 I-.J CO T in £> r-- O'J CO c* t-4 -r-4 ^H »H -• T i— ~* ^^ •^4 i—t CO O c CO Ck o c >:-i C\ •r CO C! CO |"Y CO CO

138

00m. --. _' 3

- •::• Cm .-.•^. -' cc u_ •--

-T = h- ». iT,

k m m .--•- •-••

3 (i-S, r r-- c~ 00 u. CM —

..-n i.jD y- •-• U_r- -•• 3 CM «CJ « w. x -•

•-•' X .•~\ 1— CM« i— CO ... r-cc - CM .---. •-••

1— = ••-•• CO Cm• •k .-•. in v X= r-- 'X C 1—

CO

n T 3 3 CO c.--*-. liO •V 13* 4-t •-

CO ••-• .•-. _J '•-•• u.CO 3 ~^ Mi >T- 3 Cm •k

Ul w- X 4-4 r. X .-•u

/% 1—1 oo Cm H ••_' .- 1— CO-H .-. \— Ul X • n UM CO •t '£'

3 S^ "•j IX X 1— 3 X r^-•-^ ••-••

CO * _• Ul CJ mm. ^. 1— w- CM Cm

Ul 3j 'i' a. 2 3 'Jj Cm w- XX 3 X) o l—l .•-s NJ- 3 X c 1—

u f— 3 ce: CM 3 CO 1— •^

CO X M 1— Ql 13 ^/ •> 3 u. .•^.

UJ 1-^ --. » »—

i

3 .---. 3 3 t r-—

!

(9 .~. Q •k If) * CO -•-. •_••

1— T If) (9 .-^ x; Ul '"< -r .- 3 'T. •3

UE 1—

1

--/ UJ '.*.• 'j_ LC y^ ••-'il 3 ^-

•F-

UJ CQ s^- -• 'X w- Cm T-l n Cm U.u_ Ul X Cm 01 0^ iXl X •w- .^. X •k

O ct >- £ £ "7"CO X 1- pq 'I- K- .-•.

ix X •at 1— 3 o UJ 1- . •> X '£' • w. Tf

u.Cm Q£

*• 1—

CO_lCm

*....

i—PQ _ If)

A Ul UJ QL .•-•. 2 X y^ no 3 ac •-'• Cm

2 iL 1- Ul CS Ul >—

»-• w U. H c XX

—iLU 1— IT) ^ 'X

s^ = z * 1—

CO '3 r 3 Cm y-% A _^- n .--. n u_ n .•-•.

T UJ i—

X r /-^ .'^. «.o .-\ 1—

1

,-: IjQ

o ix 3 cm —

«

»— --« T 2 »M 00 OJ 3 4-H ^w'

•— '3 ^M •> ••j ••-/ l-H t-^ 3 '•_• w- w- M •-' cCO fj"f m LU 3 —

w u. u. (9 PQ Cm Cm S\ Cm ^~T 3; 00 —> Jj X s

% 2 •k X X X If) X LL

UJ o u. *~* Q 1— /^. •> 3 d Cm 00 1— K h- If) 1— •k /-k.

T 1—4 • • CO >-i J —

<

0t"7**

Ul UJ U- w '">• <«» —

«

i—

CO yu 1 r— .'"• ^. w Xi « i— r— • -1=1 T* Cm XI 3 2 UJ k 3 u. 2 T LU 0» 3 2 ~Z_ 2 X 3 ^r Vw' CM

Ul _> r O — _J XI 4>» 1 UJ Ul UJ Of i-M >—

i

i—

i

1— --• •* c -H

Ul T" t— 1— 3 ^£ A 2 E '.'"' CO H Ct: LC CK • <H IX Cm •r- *PQ >—

1

3 Ul UJ LU t- n Ul •J IJ) r 2 a. a. LL. 3 LL. X u. •'<-

Xi Q — Cm -•J Cm II CJ ''••J v< 1— Ul UJ ^-* l-H U- 1— II 33 1— O • 3 Xi X' O ^4 —

%^ ~7"CO CO O -. Q£ 3 3 2 co 3 m '*_ *

UJ 3 Ul I— •4 h- 1— 1- n s \ •/I UJ i— —

1

a> Q- UJ LU LU 3 LU /-^ 3 w-

PQ 3 I— CC| * .v^ y-\ »— T* 1— _l * >i* X X X M X If) _J3 1-4 3' 3l ^4 ^->. s*. /-\ '•J

'"'(tf IJ 3^i _J T—

1

>.o 1— t- 1— .^S 1— ^w- v^-

1— U. u_ 1— 3t Q — C.J '70 >^ ••^ -• Ul Ql X ^ c^ ii 3 3 3 3 '•£< 3 c h-3 3 2 3 r 3 3 3 '11 UJ lb /> ^ 3 X 3 3 3 'T-. tT> /^. 3 CT* 1" 3 'X t- 3II II >—

i

2 UJ <Q Xi -i- 3 - —

*

3 UJ •»-II II <7' II

^II u. 1—4

•%. ,^. 1— U q: f— 1— 1— 3 3 s II 1— "J Ct U. 1\ h- 1— "1 "I '•^ \— "i Cm h- i/l •k II

«

01 2 — 2 3 2 1— 1- _j = ** 2 *—

*

'T> ,T1 3 3 u_ U- 3 3 a. X 3 LL. .-•. cW \4f i—

i

(0 i— <—

«

t—1 •—

i

II II _i II c •—

CO 1— 1— II>— —

^-» •t i—

i

1— 1—4 IJO •^

w — Ce: to r ix' Q£ OC 'D w- * X «» •— a: CO X X 'ji iLL IX U_ LL *+. IX u. . m, IX U. CO .. "4-

— 0. X ix Gl LL.

IT

1-

{=» _l CJ u. u. — a. X a. Ml OL 0. t—

i

CM U_ •—

i

CO

LL i—

i

CmX1-

U.

© 9 S (9 o s (9 'Si B3 19 <9 3 9 <S 63 (9 o •9 CD '31 o '3 19 '3 C9 '3 <!j 19 '3' CS 'X '3 '-' b 'D '!J >rj or- 9 Of. O — CM CO -T j

-.' 'u r- 'X» ? '3 —-* CM CO * U"' 'D r-- 00 >x. '3 i—t CM CO T IT' '•Jj H IS. jj .•--. 'T. (9 y--. -H C.J

>--> .""I PJ f *r *r T T -r * i- t rt U" ID If) UO uO uo If) no I/O IJ-' '!} 'O 10 'C' 'Jj 10 'Li M '£> 'D f'k. 'Jj N T r-- is-

139

i- CO

UJ LU 3

UJ 3 X CO3 u. CO •Ui 2CO = 3 UJ zz i—

i

UJ CO UJ 3 CO X 3 1—

1

u.X LU u. 1— Ul iU CO 3 3

!^j X •X Ul 3 I 3 Ul •k •k 3

T CJ 3 UJ CO CJ i—

i

X 3 .-"\ .-v. CO X1—

1

2 Gf u. UJ"7* 3 l-j ijll U'i Ll'i Ul ,T1

= I—

t

CO X 1-1 r. X Ul IT' in X 2k 3 3 UJ CJ 3 .- — X \s- -•

i.

rt k m. LL 2 3 •k uo 3 CJ Ul Ul 2 *lo .•-\ s .-•\ X i—

CO .•^. no k 13 X X »—

-7-

uo in CO in ] 3 .-->! LU U"' w- y\ »—

4

1— r- 3 -•-•• U

~UJ m C2J n CO 3 X in Ul LlXt 3 . Ik •k 3

PQ -- X ^ CO /-•. _•• CO iU ^.' X m - ^•-\ c /-: COac i '_' » = J"' .-•. c Ul 3 Ul 1— •.• y\ 0- 1- in 1—4

i— X •y X k U"' ^—

<

••- X >—

4

X . ^ « no ••_••^f- u-i

••» 1— i—

i

i- .--% w- •_•- u l'3l 3 K- .•-•. X uo c 13 -•• zz** .---. • n = ••>, J"' LM ^ m, 3 *. vo 1— -• •1- » Ul •Z'

c •-^ .-•. •» o IT' X •»- .--s i—

i

.--*. .^. V • - U) u .•^ X LL•- •_• CM .-•. * -? h- u. CM 3 U"' UT c -• X n v—

i

1—

u. •i>-••

U"> XI CQ n •t 1- m in ••.' •r- IV 1- .•-. T • k ;-k -LJ •jj U"' CE X .•^. .~. •_' .--: •w-

~ u •-_ • w. -T - CJ 3.-\ 3 Xi ••-• •> 1- — 1"'"' LM y-.' Ul •r- •k C •"'• T Ul T-l 'Xr> 1— 3 uj .•^. ••_• 1- X \r.< ac LL .•^. •— 00 •• 'X *co •k K- 'X CO •1- a'

^ I— -^ H •k ("•"l U- •-' Ul I— *-• X•-' .^. m. 1— 1- * -U n K LM • •> .--s * " IkZ '3 . ^ _l 1—1

m CO .*. •> •-. XI 17 X s X /-*. '"•"i w- .^. «- 1- 3 ««

'X <» CO .•-. UJ •r Y- i— CO H rt t Ul CO u. CO ^-^ 1=1

i- •_.• f 00 X M m> . n i—

%m •'^ w' X tT - 3 1—

1

CM Ul• n n •^ w- 1— y-v. ,-\ 3 ,-\ C Ul 1- -•• .-% CO 1- ^.s ac a; 1> mm. I'm >y> CO 2 f"'*i -t- X . n ui •*• 1—

1

CO ••_••

UJ i— X Xl 3 -r rf 1—

1

i—

»

V U H 3 x i- 3 M _la. •k 1— J 'J.'

^_-- w u. 1_ -. k 1JI r— -^ UL i—

•X —

1

f-to

H 1—

X XX1^1 Ct LL T il^i

^—*

= X1—

1

1—LL 1— X

•10 >—

<

CO ^-x X t- 1— T" Ul •» t i—

i

X CO 1— U 3 CO•—

<

LL

h-4 CM UlLL

•—

i

LL•y< Ul X 1-

1—' a«k

^ o UJUl

LUu.

UJ UJ C£ •w- X ',0 CO LL" •* X 131 1—

LL CO U LL Xi-I 1- UJ « t—

t

>—

'

Ul 00 •w- y- 1— IL UJ i—

1

Ul _l 1—1—1 Ul f- X Ul u 1— U( . m >—

»

1— 13 Ul -I

u. ?"Lti 1— J4 Ul Oti 13 X 3 CL Ul Ul X o 3 1—

1

LLo ac •^ *•» 1 l-M Ul N 'jj 1— CO Ul X 1- LL 3 1 zz

ll i—

I : h- Z' 1— '.>:' 13 •n 1—

1

UJ _' X 1=1 U 13LL

.--x 4^nQ

COLLl

1— UJ^^

'3

Ul CO CO

Ul1

1— 1—1 —

*

1=1 X \- LLX1—

IXLU

"7*in ID UJ —1 Ul X u. CO »—

1

CO 1— _l i Ul 13 »t—

|

i 1 n LU X >—* 1—

1

1—

Ul X Ul H CJ 13 2 ZZ.-. Ll m 3> >J4 1— CO 1—

I

U4 1— 2 Ul 3 i—i X UJ Ul XCO ** t» i— ~i '-T h- CO u u X 1^; CO t—

4

i—i LU u 1— _l 31 a _l _l H X i zz 1— o < 1 13 U LL' Ul CO X >_' 2

ui 4* ^r- UJ LXJ 'X »—

(W rm r—> uu 3< r— -3 I-* UJ X:«_ 1— o — 1=1 UJ _J a LL IX* Ul X 2> 1— X UJ X Ui X2 CJ i=i <=> »—

*

i—i _J _l LL Ul Ul X 1— CO —

*

|_> • CO 1- -1 31 13LU * (j~f i—

i

Ul X X iM LM 3 '3 13 X h- 1—

1

^ _J i—

«

1—

1

y- CO MJ 1— I— 1^1 ZZ 13 3 3 X 13 2 X "7* h- X— UJ a. a. —) X Z' '=' a i—

i

X 3' i—

i

i—

»

LL o k—4 t—

«

Ul _l U) X.<_ -•J <\J CM '-1 •-•j cm s co ••.• v O HH 1- 1- i— u. z 3 LL U 1— _) LL U _l 1— X *^ £ zz

2 CM Q o *"l CO-/ •-4 \ \ \ \ \ \ 'XI UJ 2 T UJ UJ Ul Ul UJ Ul Ul UJ Ul Ul Ul Ul Ul Ul Ul Ul 1— CO x Ulu3 •^ y\ •^v .-\ y^ /^ />. 1—

1

X 3' X" X X X X X X X X X X X X X X X X CJ •—

*

CM fl XZ (V '-1 ,-k. T in •£> r- 00 ON 3 3 1— 3 o i_> 1— 1— 1- ^- 1— 1— 1— I— 1— 1— h- h- 1— 1- 1— V- X 4-1 ^ H-x — \*f ,--, >• \^ ••-' ^ ^-^ *• CL - 3 z z LL C£ z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LL II i. 3

O \ z \s~

r* 2 3 c C UJ 0. a. UJ )<* 4^

C£ ~ ._ £ ..- •_ ._ r- — .- l— H 1— h- 1— II ii t- 1— 1— 1— 1— h- 1- 1— H h- h- K 1— h- 1- 1— h- v- ,71 13 H0. _l U. -<- U. U. ll. U. ll ll 2 X XXX •.- 1-4 X T zz zz IZ 2 2 2 3 3 3 13 2 X 3 13 3 2 i II 13

II II 1 U. II II II II II II

** +* "1 II -*- r o '-— ft 'J IX Oi u£ C£ ut£ XI Xl L Q£ u: en. UL LL LL LL LL LL llL LL LL LL LL LL LL LL LL 4-- 4-" llL

_l -I z _i H- CO [fl a 13 _l a. a. a. a. a. cc •X - a. a. a. a. u u 0. a. LL LL a. LL LL LL u a. U LL X X 0-

i^i O >3 >3i i3i Xi X' X' 03 '2) "Z0 G)O O 00 03 O GO CO O O O '3 '3 '3 '3 00 GO '3 '3 GO GO GO 63 "3 X> GO G3 GO '3 «h CJ CO -I

- U0 '-O f-- CO 'T- '3 •-«

co -r in <x> f- <x> >t> o •-• cm o t in '-o r^- co >y- <s •-* cm w * uo wo r- 00 ct» >x x< go o ct go © <sf GO GO 4^ »h(\_ (<._ fv_ f^_ r>. r>_ r-_ 0) iOO CO CO CO Oj> CO 'XI CO CO CT» OS 'T- <T> iT, .X. 1J1 iir. ilT\ iir. —4 -^ -h —4 »^ -r-4 -^ -^h -h -^ ^h -h

140

U. I

U. i. --\

X -^

\ cmx x <

H O3 Ji O Ci- =

I

wi - Oj £= < Cu x •- CM~ in> .-^ _£ ». i—

i

•-

if) i_i •.. .-v •-• uIf) w _l iX CM i.i iii

ID » * « m iv 'Zl

X CM - •- Q. COMi i— I i^ 1X1 CO »X • •- •*- If) O X «• =

K • O r w- "I — <«- J]h " •--

jj -' n <-> x mi x x - lli

c 3 - h- .r x - x ~ » = ct: o ••-••

- •- # lu t- *» » •-• ~ /> ••-•• co x lu co— -^ CM LU •-> jj "• CM <"s C'J CM I-" I— CO -•

- Ul = x (9 in •:•] u"i in x \ u— CC > If) -• If)- - X Ct E 'li

CM Cl LU LU » f\ - £ « - Mi ui Ul LU H) Q,-h -r + Ct liCrtfl-ifli X Ct Cl _l CO-r w - ir x •- ir> x •'*- y- x i— i— x z

« ul 3 v vhl .«h .. • ~ LU -• =

» cc z c3_jccm«t •>=••>= =3 i—X H— + CO X » X s .--n CO = CO CO O LUI— •— (- <-s I- CO CM »-. CO — i— -I it I— X••.= t— z z © • » •—* if) "-i u_ i it i—

i

- CO + h OIO: v X X XI 3 Ct! COi.O «-• '_i CJi -' CO X PQ LU X LU f\ LU CO m"i LL«-' —I '.'.' LL M-l •—

I LU IJ. LL LU LL MJ LL U- _i> * x x ct: i- x ct x i x a i- o -••

> H- •••* LU ll h- X CC •» CC » LU _lI— — CO I— Li UJ..U : \ J : liZ _l LL LU~ > X * '"•• X IJ = it LU CO _J • X — LU 3 X ct;> ~i LU 0<J M) X CO I w i-i I J I- '* it X >-i CO X-4 h- Ct + I Ct X <-• _ I— X X X '_' i-" CO COt— CJ X '.'I - LU X LU (— X X I— O \ O X CO X CO'_> ~< X C*. ~ ll O CC « LU LU X Lt •-• _l i-i X X LUX <=» Ct * t- U> CO X UDUCtZtUU.'*- Mi X IJ Ci£

lj X LU 'j + IZLUCtl— =4XLUZI— LU CLX O LL _l /"» X X i-i _J LU ••- * liJ MO O CO * i=i ijj s\ *\ ui I— LU CO X LU _l _J _l _l _1 "

J

—> LU>_' X CM * I /> '- 'O Z I- I I Ct h h •. LU X * X X X CO Cl

cm _i x - hi >u> a m) I -^ lu >-• x x ll. •• t— c i— i— a; i «v* _l X u£ * 1 C I (O I .d. I— I Lu « O LU X — XX LU CO CO•* X X I— "I * — m I * i. Z X LU 1=1 LU LU -i- ~- LU LU > CC I

x x ct zc<^*»«c«** lu jjjjjmoezwez x ij coCt LU h- -w- •«- X J3 C — X i. X • CC CC CC CC (J CO i-i LU * I LU LU X

Z. ui Z '-t *• *C "|p" *• * r i* r* r* Z i" iw J Cii *J J Cu ul w- X I— LU 'ZX^ + '*-XCX 1=1 OOOOi-iXXLU + jjLULU lulu•<- I— X — I C <-> X \ 0"J -^' LU I— I— I— H- CO O •-!•• +> X • f

1- H- ll'

it LU •'* *" C '. — * \ H- = = s = = = = = _||== XXLUZ « LU X * ' — O > * 'i> X *••»»»«.»*<».»• LULUI—

N -• 3 I- v jj I '» ^ jj J i _1 ,-. ,-. ,-. *** y. ,-. ,-. .-•. OlA" MJ = = X^ O Ll. h- X i=i X -^ X X X -' '* X '3 © © O >2> 'S O '3 1=1 ^ © © ~i LUui _j ZvavvvOC CJ i i i i i i -i -i -- 1=1 i —

I— I— =

— CO LU LU X X i=1 Z i=) Q i=l X ^ _l %• \y w -w- ^w' w- --^- -^ •-•• z '^' '^' CO X X•i) •-< X X O OZXZZZXO X auifflwLiiwfliJjMjwMJ i—ill.li.1—^ h- !- : _l Ct X O X X X O Z = O = X X X X X X X X X O X X = = XXXiiLt= = = X Q-OCt©©OLtX= = = l— f-l— l-l— (— I— I— XCth-l— : : CC m h fl.

X LU i x Ct it Lt li u u ll LU X-I— I— I— LL II CL LL LL II Ct - I- h- H- I- i- h- I— I— K- 1- Ct II h- I— I— I— I— ....—•

_!__ „ « V^^OO^XII IMMMMMHMMMMl^MMMMHJ)*,.,,X 0C tit. Lt Lt '* JJ. '* ** u'l ul '-•- '— Ct Ct Ct \jL Ct Ct Ct Ct \jL uL i£ jj) £ Ct Ct Ct Ct Ct — £ 0.cj a. a. o. a. — x x x x x x x x a. a. cl cl cl cl a. cl cl cl cl x x ll q. a. a. a. u> »\ m

x i_n "J

© © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © ©<M CO -T ITi - ID I

s- CO 'T' © ~* CM CO -1" If) M) T-- ij3 •T-' © — CM CO 1" IT" MJ r- CO iJ-- © -< CM CO * If) UJ IS- CO^^ rt _ll«^^^ r.j ,:,j r ,j cm ™ C4 c-ij i>j c-j cm co co co co 0*1 co co coc'co-f-f-J--rtttt-r

141

;_ i_i .-"•- '_' LU lii

T LU 'ii •T- z CL h- 1— .-1

•"- 'X IX ~i * . Cu 3 CO'O l_l to •w s iTl X. 1 3 m.

- 1— r. » • ^ .•^ O Q .-•.

IJ l"_l"l <™i T .-^. X 'A "1 'O z 1—1 '•O

'i' LU N LU in t— •r-.-

u-< X 1— U"i

i. ii -•• CL \n • at i.i'l s •_•• X •_••

CO ~i i_i lu •-• .--. "1at LU z IX LM

•• (— t LL. « C.J ; .-. X X 1 Xz X •i. LL. o X ^ at <z> h- 1— 1—- ix to 1—

<

£ i- IJ .^ + • •V 1=1 X at

Lu LU •k P ":-. z . -. >u —1 •-• = LU CO :\ a. : •i> • • : 'i "fr PQ CO _l 01'

'w"

LUtoi.i'i

Ll.

oIX to to

»—

I

i.O

nX I—I LU

X1—

1

LJ i— LU s LU .^. X • n LU l_j 1- COX z CL Q 1— CL T t- .--^ IX LM to1—

I

xl LU LU LU LU LU T .w. T 1 1 \— LU_l _1 ":- M h- ~. z i_D •.' .•^. •_•• r- to X "7*

- l_l —

i

i—

?" X U"' X z Mj 00 u* X LU*r X1 lm 1— X u •_• IX X X •_ '1' CL to CO ;:-

- CJ CJ 3 >-H '.I 'X X 1— l-l iL LU CL CtL h-i

>j lm a LU l- 'il d. CJ mm 'ii to Ci. LU LU 1—

tt X1 i—i Ll. 21 05 il. 5^ z •t z h- 1— 1^1.-.

to 3 ll.~

"i U '.'"' LU to to .^. LU z 3 LUto _l LU T^ ":- > T —

1

». in 1— LU LU LUm 1- Ll. i—

i

^ = IJI 1— .-. CO Luz LU IX' X (—i CL »—

«

X LU CO '-- "7** CL CL LU_l

*—

4

LU XIf) LU

LU toLU

LUX

1—

XCO

'X ^—

1

LU1—

LUIX

x i—

T •* -u z i=l IX tfl (- H- X 'X LU<—> LU 'X LU 3' Q 3 X 'X z z IJJ

CO Lu l_? X X CO o z h- i~i 1— = X zCL

:o

ac

'_' 1— ** 1-

CO>=i

LU LU_lIx

• * to>—*

1 LUX

LUX

XX

-- toX,

i— X LU CO LU LULK

Q_j

—IX -> UJ

toLUXij.i

1— 1— '-'

Ul a * X 1— Q i—i X '3' I—I h- /-^ to IX .•-•. .•-•. LULfc i-t *> '_! LU •r — 1- 11 '_' X 0.J X LU _' L3 ITi UT'

x 1- If z I LU 1— to ;- LU CL 1 z CL CO "Z. = = h-/ i—

1— X 1— X X LU n LU <±. LU B __i CO f-a H n Xto a c 1— ~z_ _i ii: >S) IX S-: _l to 'XI l=< .•-. .•^. LULU T 1— IX m _l — o i™i T" .---. X to CL z eg O XCL o LU LU >x z xT LU LU LU /*. 1— LU IX ^H •-t

LL. o ~ 1—_ 1— _l

1—

X LUX1—

X1—

1—

I—CLIi. LU

CuCO LM - LM

1=1

LULU h- 3 : Ul CO •—

1

iX 1- 1.1 1=) LU X • X z—

.

LU i—

i

: CO z LU tj 0L IX U 'I' LU LU —

1

IX H LU 1— X'— _l s a 1— LU I—I 'J LU 1— Q o _l ~i 1-4 1—1 to IX 00(0 T 1=1 Q —

h- z X >— z X z CO 1—1 1—

1

1 1— a H- CO a a1

•—

<

LU LU a X LU a IX X LU to w ^w' >J) ij.i IX 1 1 X^ t z i a a

ui _l — 3 IX > LU o u IX LU LU ^-'1 1 LU 1—1 ^. I—I

LU 0. 3 X Q z <—• z K- —

LU 1 -J 111 ii <s> to *- LU CL r^ CL LU 1— 1—t— LU Q a. '_! C-

1

t— ~l CO 1— U. -J _l X = X X X X = IX u:i CU X z zX 1— O X '!_> to to Ll. 'X X i_n ii i-3 IJI X H- • •w ^- 1—

1

1—

—3 i»_ ** i— i

X ui •Jf JL Ul —

i

O IV 1"-- ^ Ui- X HH X LX- UL •M

3 3 X LU LU U. 'X '.'' > Q .—1

: ^. ** s\ '-• <^s LU X LU .-*. Cu IX CJLt 'j'i CO -1 X Ll. »—

3 IX LU 'Tl -< ,T1'.'••J CO * = X h- X 'O

-J LU il II Z 1— LU 3 n .—

!

;- 'i» X o 1— : CO = = z s 1— • > h- z z z z1- _l •Z> — i—

X z LL 1— XT z a m m •b /~. .«. t UJ LU LU2 « r ~z. o -J X X i-h •^ LU s\ /-: S-: /^i T = L0 a .---. X X X-j i-^ CL 'S X ii: »— ca z o a: LU QL '3 %• '3 'Si 'Xi O 'O ^^> *-> O 1— h- 1—a CO LU : LU I- LU X IX •p-l s uj i-^ ~H —

—1 *-/ z j z ^^ ato —

II z t— LU z ~^T H \- •s • X w- -,- v_' •w' LM II n' II w- = X' O X' -J1— a z ** LU z ~ X o ^^ ~Z. n U. X' — « LM LM X <t> 2, *»> LM a .•^. /^. •\ -J3 IX LU _• ;:- LU i—

i

o X II UJ *-^ = •r •» X 'X X X 1— > CO +^- X a -' - -' XIX a z : : 'il *—

1

s = = c : .-•\ • • = i— : IX 1— f— 1— 1— (V m >u 1— at c c c ZJ2 .

i_n 3 c r?> •> CL .•-v. 1

s\ .

.-•. 17 3 3* a

i—

i

eg h- h- t— h- c H H X 1- ac 1— 3 C i— >— ,-*.II 1— : 1— h- 1- '"J c ,-•- c h- ^-i

II

ii z z z i -• ~i X o r 3 IX — ~^~ -7* 3 *> X z z z 11—

1

\i~.< i-< = z '£' (J cj *«i

• • <j —

i

1—

>—

i

Q. LL. 1—

1

1—

«

U_ IX IX - i—i >—

«

'Ci ill I—I J *-l 1—

1

1—1 ^ LU 1—

1

w- 5,

a <* di ui Lt z Ll. t-. T CL X 2 O z Ix '/i IX CL s^ "1 cc .11 CL X IX - LU LM ix LL CL LM IX u. LU -J

I »— a. CL a. — MH — — Z — i—i IX 1^ *—

Ll. —i 1-^ ••- IX IX MJ 1— IX O') LU IX IX 11 i-« X 1—

1

_' Cu X 1—

1

1—

1

1—

1

O3 -

to_l X

1— g"1 h- 1—

X1—

s s s © o o S a s U. Xi (9 X' t-l 3 'S •s> C9 O X' • m O '3 XI O O X' 'w' •3 3 O IX O /--. X .-j Xi ai s _• CM to * in •o r- •:o ct» s _l *^ CM CO T Ul 'C' r-- /-*. 00 'T. _l 1S1 i-« CM 1=1 CO 1- LU in r- 'O p*. CO 'A•* ID in in LiT tf) ID lf) LO LU in if

'

'O o 'jj CD '£| '0 yj '£> •o ^* U) o = {- r-- r-- = f-- LU r-- (X r-- w r-- r- r- N.

142

2

3>.•-\ .-.

.0 .-.

3 •*

t— •«

-w-

mi

m r. /^. m. i- ». 3 CO£ .•^. * S\ ••^ .•-•. ~: "7"

*> 3 .u 3 "w* 3 CJ Lli| a. "1 a. u u_ * *CO •-- 1- •-• Ml -< 2: 3t ••^ "^^ ••_' -^ •^ J1 *£ 3 -/ 3 > 3 Q i^i

^ u •— u 3 -•-•. LJ -n TH

rt * Ml Ml * ^-v~ E E

i—

i

~ X ••- D 'V ~.'it II

m. LU"7" > •yj C7* CO 3 3

,-: u. X 1— - ^>y^. ** x>. _J II -1 Li- •-' _l 4. s„

£ '11 OJ _l «- -1 ii Tf w- _l'"• o

— Ml 1 X 3 X 3 \ o X .fl ,n

C|. 1— B CJ .—

i

o ^> 3 .-• '_J '-J i i

^^v 2 -.• 'J > »L,

"^ '. 'J T^ — •i^

—* «^ \y i. ^ SI. 1— aJ LU LU LU c X LU LU LUII 'J W c*. 3 .•-v 1 X X X X •^ T" X X Xw 00 •V 2 C7> Q. /^. •* t- 1— * h- 1- 3 ;X 1— 1— 1—~ —

o •_^ h- •^ *> ,11 3 'U He

3 CO v w- U Ml s : ,} s z /-\ u: o r s =

O © rj\it y^ * C •w' £ Ml h- •3 ~* 3 <S 1-4 in ft a- (S •X —

<

CJ C LU ^N ••- a •i- a. «* 1— 3 y^v \^- = s t- s s -./ w- 4-> ; s = U"i

•y> •V- •— — rno C* o ^\ •^ •A •w N* kO p II II c 1 II II >j a II II II~* •

>—

** 2 ••^ t- CO J. ^ oo ^r JJ ••-*•1 ^ T *n M •»- •^ *» (* *n <u * c XI Vt *«t *n i t-H

.

.

« *—

>J .- •w* CO ••^ ••» V w £ »— g J -' *} *-> •»- 3 ••- 3 ,i1 * «» a •—

i

•t- E +- ; »- c 1

7A Ui »- l£ >u o> •i- •~ II II E 0E u 'J o 1/1 * .y a 'U ju 3 ^-i 3 »— "i •» .i> '1' CO a_ 3 II a» 'ii 'ii — oiUJ _l a. a 1— o> ?< -^ —

ii Z to H' CJ X 'M a Lt. —

i—

i

II l— II 1— 3 r— W— II ii •ii Ol ,

p— — a- ^H- CO II t— — 1— r- cn li-

h> a .i—

CO a. c ^ II »- ll _. II h- C ^ c 3 IX * •~ c '3 i— 1—i_i "X O II c ii II w *> II 07 CO _l LL II II ii .—

1

*—

II t—

H-4 •^ * II < >—< .—

i

»

n II

-6 — 1— •• •- •»- •^ Xj I— £„ O C7> II ii _l II C' ... *- »- -*- •V -U 3 3 Q. o ••-

i. IX" o — 9 o> C* C" X <*. 13 Q. CJI 3 X 3 '-^ ifi 3 Ll. U_ 3 3 3 3 •t- 3 u. U- <u XI .^ .ii U. LL Ll *- ^.n a. 'J .A l- I— I— ^- F r~ E CJ Q_ Ol CJ •—

^-1 1— 1— >—

i

i-h »—

*

^h 1— H a l— >-—

»

t—

1

cm g IX >-J —

*

t—

1

•—

«

i— 1

X CJ

<z> >x» 5 s S >3 O s s S S S S <3 £> 'S <s '3 S o 'S> (S 3 (9 IS IS <S •x> IS (S (S O G3 X IS 'IT1 (S '3 'S<z> •« 01 00 T ID '0 rw 00 CT> s — -J [•) T W UJ r- 00 ff* G3 ^H CM r.-i -r in "O r-- 00 i-r. IS —

.•J 00 * m 'D r-- co00 CO 00 9 00 D oo 00 00 (0 'T. CT> OA CTv 'T. CT» 01 T. Oh 0A S> O S •Xi (3 s o ._j IS <s «-• ^-« t—« *—

*

•H *—t T^ »—< ^^

0-d 0-.J 0-J

143

.ti

o

.11

I-

3J-

i.

Q.•TI

o\._'

3!+

-

3Q.

1\Ml

O

Q II

,Tl +^"

o 3o

Ml

h-+

w- UJ

3 X

.tj

•x

3S

in

2.

— '— rn _|

XKJO

II

oLU

¥ CJrji

XX

3 LUj. x.. ujC CO

otj

II 0)

X C •» ~C .TI

o* * •-a oiTj -n

CM

s s(M CM••J CM

_j .*

—I u.3 'TI

X u

II -

«X ujLU XX h-

= =>I- UJX f-LU 'X =

I LL MCt Xi UJiju r"~ XLL 'X >-•

3 co zco = x= y\ X"II V I

+* «* X<v mj XX X CJ

4^

Ml

CO-T

I

CMI *t I

a x'A XCJ CJ

m . II

..ii

ai

oUJT>

X.TI

o» s*» *i. i=l

a +•U £O •-

II ££ CJ— II

£ Ml

u a

a.

ill Q TCJ .fl Ul•-' O XX -• I—>-h ri>

X ** •"

I

1-

I I

- -n

I

II

X

S O (9 O (9.--I -r in '0 r-CM >M C-l CM CM"J CM CM CJ C-J

a>, Q O QI— 05 .J-, .Si

- CM CM CO3 CM CM CM

3 '3-i r-.j

00 COCJ CJ

z «> — « aX — so .fl

o — CJ •-•• CJ0£ .Tj X II

CL 3 • OC Xn cs x x .n

•» •» Ii s3 O — X O

H- 'J 'Tj

C> O '1 £ U.i— •j a cj —

.TI

(9 '3 O 19 3CO ^f I/O '•£' NCO '"0 00 CO 00CJ CM 0.J CM CM

.Tl 3CJ *\ oi/l TJ

UJ I NX C Ul

i— o — aUJ Cr. +

3 -T- r— £* X •-' -~

s. -n 1=1 3

4 •> 3 II

CJ i=l O *^

II * OC zX C CL O.Tl — II 3

LU a.

X 3 I

h— ** fl> 3'3 'Tl Ml i-»

'Si X 'i'l I— I

(9 Xii

* -1

II o ••

U. '.'1 rji >

U.II

/•. ** ti <_) i-i

3 j3 iTJ .Tl | \sM 3 ^| 1.0 'w' '--^

i i- i— x a as i it a x x«- > .-\ CO 3 3'.1 'TJ -U X O Ol—

I mi 3 Ii. OC ULii i— t— ii a. a.en 3 ii ii

'-•- U. Li. Q.TJ >l>

»-i i—i >-> CJ X X

I

Cn h- X•* X 'Xt-i LU

. X •-•

I

TJ

3 LU•-I a.

I X'*> CO

O II

J- w»—• >xi

UJI

IV

3MOI—O|J

nLU

-J'_'

oo

3o

\L CO

H-" II

LL '!>

:': 1= u.

-3 '3 O '3'X' 'T> O »h

CO CO 'T '"T

CJ CM CM CM

3 C9 3 03 C9 '3 (9 '3 '3 '3 '3 '3 '3 3 i3OJ 00 "t \T) 'O f-- 00 0"". '3D « CJ CO ,T UTi '£i

T T "T 1- -t -t -t 1" I/O U0 U") U0 I/O U0 U0CM CJ CM CJ CM CJ CM CJ CM CJ CJ CM CJ 0-J CM

144

.11

i.

3

Tl

CO

LlI

«-• IJ1 »;

3 ~CO

o *—

1

3 -1 2t— H-4

oLuX

T* Lii 1—LlI = £_

X II /-*. •Tl /^ £H

tfl

'3<p-

2*

XI13

,n

'-•. ^ CM £ •n 4-> >*- CM #— .Tl o iTl Tl

tl LU II ^- _l r- CO COM o XI ;.' CLt— -n 3 'J ^ •> 3 x..•V -• S to £ LU £ LU LU«a = ** LU ^ _u * _u -U3 1=1 CO •-./ CO 1- <A 1— 1-O LU fj)

3 1— ~ Q 3^ i_ .•-•. m. .••^. .•:

h- " .--\ •-. 'X LU 13 LU 'H S is .'N •S) Xi- CM

I

CJ1

«• 3*X1—X X * •s

•"J ••1 .Tl

•3 'Xl-'.J

1=1 - /-\ .-^. a* t- .--. ii OJ ^ 1-4 Ml •3 •••1 -^ /-\

X CM CM CM CJ i— /-•. X ^. S» ,-^II •Tl K 1- -—4 II -U 3

X 1 1 w- .-^ /->.J"' 3' (9 D ji V" i. ••I .^. * II — 3 ,-•. a. -"^L

- .-"^. •* » •_•" .•- o. -: : (S S> X' hi 3 to 1- w /^ OJ J* 3 t— 3> 3 CJi .'-:

"•• c •z cm 'J •i.••-•

LL. H"1 CM C3 3 to •t- s\ >-» m .•^. y\ T 1.0 3 Hi n it m. *

: — — "\ u e^ .^. v^ * -t 0J II CM * QC <— /-* a. i.O /^ +* -r-t •- HI LL j y*. •> y-\ ,T1 .•->.

=1 3 rr.,-. /\J* m •n a t— to /s. .-'v / •-> ^-r ^ +* /^ 1- * 1 3 Tl CL ••m/ > JJ y^» Xl >f\ s--.

LU t- 1— — — 1— €» /^ -'- •i 3 3 3 •t- o T) 3 '•w' Tl .0 3 CO ••w' ,n 3 JJ 3 1— />. +t

_l + + * * x ^w' 9 rf,

l•-' _\ to 0» i' Q =< CJ •» Cu Hi (rt 1— <S 1=1 CO s 1— 3 h- ••^ /-s. .Tl

a ~ *> i— 1— 3 /v V I— o> — 1- Ct: LU 0£ 3! »— V^ /«l »- %^ • 2 i-J 2 LU. ^w' h- V •^r * "1

a 3 3 + + li./-. .— ^ I— «* •w w- \S •w 3J r zz w' ''-/ 3 ••^-

'•w' /^.1 LU 3C X 2 1 n w- n J 'Tl :—

•_' .u X ii — - •s w' -n JJ Lu = •^- 3 0. ••-• O '^w- *-H X •X LU 1=1 y^ •> /-s. Ml "1 w=• J- »-» w Z Lk. •—

«

•= =* _i_ _»_ r— J w w 3 C *- w (

-i_ - 3 f % 3 *t— H" ^-r

x t— l— 1— \- n h- *3 trt i. •Tl !-• 31 3J 3J h- CD 1— X •I'l ^» V*' * ^. •Tl * .~. X H- II LL 3 LL z> V 3(0 '•-' .• ••-•• S^ _' V •Tl ••— •- ^ X X X 131 CO ••- O £ ,Tl -L Ml I"-! 'X X" s +* ••^ LL •*s 3 Sj' ^--

I \s '-• -^^ N^ •-/• ^ 3 ,T1 Q. • O (9 •9 a 3 '_'- *» Ml 3 1- 3 1 cs x> X 'X X ••-/ •^y •^ * •J • Tl

II CI 1=1 1=1 n U a ^ Ci ^ "1 /-^ yv. •% C9 CM S II 3 Zl Ml jZ ; -^,

*—

<

LU 'X CM OJ 'X 3 w- 3 .rl -*- </l

*t X ~ 3_" 2 • • «* < -.—~ t- •il —

«

** ^ '-•J II eg *t ^ LL JJ •i. .Tl ^-y1 CD CD CM II CD .. u 3 '-• J^ CO 3 —

>u X x x 3 hi L -»- -X LL. E t- II II II CM A CM X <Tj £ CO CO — £ • i—1 /\ /*». CM •^ A ij—

Zl. 2 > 'X

£. O •_• a O to ••- E 2 2 ~T ** /\ ^ A wj\. 3 '••y' CO —

i

~T ~z HI •» u-../"\ 3 3 / •i) — 'j i Xi Lu 'Tl CO

:, cl UL Lt: 0£ — C 2 u. Li. li.t *» *- > 3 m —

~T II (J) U. LL. X Vt II ^ ii •ii 3 *> > l— CO i= II '.0 21— LU LL. LL. Cl •* 3Z U. II II II 11 x X x a' CL il> 3 LL. 3 il II 3C *—* ,TI 'li LL LL •i' I— jj 2 LL.

•^ II II II II £_ u. II CT> CT< 3 Q. w- w' w CL w JL O II o -I 3 3 LL II ^ ll; ^ •_•••^L 'i> -I -1 _l a 3 u. II

-U X) *- •<_ tl II o> •/» Q o> o •»- 3 jZ _l.-.

^, II Tfi CTl _l _l _) h- ~:-ii 2:

Lu 3 0> 3 o> Z_ 01 •^ -.- <—^, ^. Lu Lu Lu LU LU Lu «-- 3 i. X 'J a 3 <t- ••- u. LU U. li. XI X X X o 3 .-.

>- 1— H- h- 1—

Z.

i.

•X

•j£ LL IX 0.

to

Ji

i—

i—

»—

4

*—

«

.Tl

3

•Tl

CO

CL LL •_j LL LL *—

i

»—

4

CO i—

«

'•I

=(

'_' i . l_l IJ?

-Lj

T!0*

Tl

'.0

CJ

'X X X> 'X 'X 'X X> O 'X 'X 'X 'X X 3 O O Q CD X iX CD 'X CD 'X X 'X 'X CD CD 'X 'X 'X CD 'X >X 'X CD 'X 'Xf- CO CT' X —• CM CO -T U~> 'O r^- CO '?• X <-« CM CO -^- ITl y) ^ CO iT» X ** C-i CO * ID 'Ci T-- •» •T* 'X »h CM CO * li""

\r.< \r> \i~) 'O 'X> 'Xi 'X '0 'X 'X 'X 'X 'X r^ r- r- r- r- r^- i\- r^- r-^ r- oj co co co -x> ix< co co co 'Xi it- ij> -t. •?•• 'T> it-

CM CJ CM CM CM CM C-J CJ CJ CM CJ CM CM CM CM CJ CM CJ CM CJ CM CM CJ CM CM CJ CM CM CM CJ CM CM CM CJ CM CM CM CJ CM

145

"i <(\

ii il>

•^ r-*> *s. J_

0J •Xi ^-^. .•-•.

Zl -. /">. .'N a ^»L /-:(ft. 3

/^ jj 3 3 .•-•. .-•. o ^. 3 r\ ,—. 3 33 ^ 3 .^ 2. 3 ^-s 3 i. 3 3 (*• 3 r.'

"/% a *> /^ .-. > 3 O >

ft> '-. /^. -. ^-•. S\ o z> 3>- 3 3 i^ji \_jy x^u

/"N C_i 3 J i. ^ » - •TJ '•\ /^ O 3 JJ ^ m. «. — _^ n •. .^\

JJ -ii 3 to .-% «. •>. .-^ Ml .--v .--^ JJ jj «. ii 3 Ql '-• .^s. * n ^-s. .-^. '--

3 /•^ > <_ jZi /"\ jj •~ - .•^. /-*. 3 3 .---. m 3> *> <+. •^ .*. s\ Vft. •»- 31— -1 .». • .fl 3 jj 3 *> '-.• .-^ *- ••- h- »— ±j ^N # iD 3 ^ '-^ w- 3 * 1— .--.

-^ 3 X) •— . 1— 3 1— I— -V /^ ill * ••^ ^/ 3 Jj ^ 31 1— H- 3 «» h- 1- •wf /-:

m 1— 3 a Vw' 1— w> v <J ^ Ifl 1— ^ a H- 3 3 ^ •j- >^ 1— 1— 'Vj' •^• ••w' ft.

-: -• 1— 3 * *7" m •-^ rt n H- ^ .•^. ^. •-/ 1— :s£ # T n, K ••-' •w- ft, >. u ft>

3 « w' X, —

LU Ml ~- « •^ - •>->.n

•-^ •w' 3 3 3 » ••-' \ —

i

UJ M| z^- /^> «• •» /^ .•-•. «> 1-• uw m \ Mb X i. 3 .• v 3 3 IV r— w 'J 7JI LA. ij» n 3 u. _u i_ 3 3 - % 3 3 3 wE w' 3 s^ 3 -•-' f- LL. 3 a. u- 3 •w' 3 iA t- ••J v^ 3 >^ Q •-' 1— s a. ii- 3 3 U- u. *> '•w^

— ^ a. 3 -\ ft) s •-^ CL '•w' ^w" +* •^ «> ~ co '•w' •^, 0. 3 CJ •» _l ^ ••^ Li_ a. v ••^ ,Tl 'J

CO '•1 „- 0. O 3 •3 '-' 2 •w' v \y >^ ,71 U 4 "> • • ^ •)» •-/ a. * 3 '3 1 1 -I ••^ •w- V ••_!' •-W*1 '•** CO ft*

u -.• N-' * *> 3 flj r 3 \s 3 3 i. CO * A 3 f £ u IJ •'w' •1^ JJ * 3 T| '_> 3 3 'w' •^ 3 3 3x "T 3i « •A /) ^ a CM <ft. -I J 3 lj <j •3. z 3 .— »• Cl X </) Ml M •^ 3 'M <*. '_' o 'j 3 3 •j U 3 U- «-

a 1•— ~

Ml 3 TJ CM < s M| •j~

ul 3 ti- * Q. Tl s _l w- «- £ Ml j> XI CM L : 'I Ml "J u r -. 3 II ,Tl

o — 3- & IJ 3> E v' •ft- II •^ 'J.- — iT) ll * CO CO D 3 Zz~ > Q u II T~ /S •»-

II — — «J J i .- 3 '+- CO—

1 U.

CO H- II

jj 11

X •n

x> 1— CO > _l -3 CO

iT u__l II

LL iTCO »— jj *

-r lb

XX

3>- z> 1— h- CO CO i^i 3ii

o * II _l _l 3 II CL o _l _J _l _J o 31- u. ii 11 o cc II II _J _J S. II L£. a _l _l _l _i _l _l '3 ii

I— x JJ _J -1 i. 3 H • • -1 -J _J _l 1— II 3 -' H- -U 3 _l _l a. 3 H _l _l _l _i _J _J 1— 3o 3 r r u. i> U. •_» i_ X x x x o 3 Q 3 a 3 3 •X •X iu U- o ^ X X X X X 'X '3 — —;

"J

to

u CJ

1

CL •—« •J n

4-J

o •_> o o IJ

•1)

CO

u. o > <j

CO

3* Z> CJ CJ

Tl

I

LJC —

I

l_T •11

oo

CJ '_> o CJ CJ o 'JIJ

'J

,rl

^

S S '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 CO '3 '3 C3 3 '3 O >3 >3 '3 '3 '3 '3 '3 '3 3 3 3 '3 >3 3 3 '3 3 '3 >3 '3<4) T- CD C* 3 »h CM >~r

> 'T LO 'jj T-- CO <?< '3 •-« CM '"0 T If) >.Q r^- 'X' 'X- i3 -^ CM CO *f LD 'ij Tv- CO <T- '3 •-< CM CO 'I"

js .J-- 'T- 'X '3 3 O 3 3 3 Q 3 O O rt rt H "^ H ^ •* -< -< CM CM CM CM CM CO CM CM CM CM CO CO CO CO CO'"J CM CM CM CO i*0 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO CO CO CO CO CO CO CO i."0 CO CO CO CO

146

a>

'il «. \QL '*- .-•.

•> 3 +-1-

XI 3- 'Tl

3 ». li_ •4 1-

a. w- 1

-. Ci' —t- m •^

1=1 ~ t-»>. i_i '•-

3 3 U ••-••

Cu -i ». *ix" '*- (0

*.

z\

-J*>i'

ij3*;

xi 3 *CM

1=1 -••

3 5

IX h-* *LO »l

O •-

cn

."\ /% .•->..

^ r~-. f\

* 33 3

CJ '_)

. -v .-.

'*- 3i=i

^ « «. — C*.

3 ^ ^ 3 *- - 3 *»

* Xv ll a. s

-> j> •-/ •j <* <* ' < -^ hk«-> *> >rt in • /">l /^. 3 3 •w '•^•

,11 'tl — — _i 3 3 CL a. •-/ -.•

" • PI 3 3 -i a. ix -• 'W '.0 Ml

_Z c 3 3 D\. o v ^- -.• •w* u Ui. — »* «* g o >-*• •*s '0 >rt •ii An CO t» tl g s irt <f\

~ £ ••— •—

2 ~(0 (0 3 II u 'J

-^l 3> :>

H, u. 2 t~ Q ~» l— »- CO CO T -7-

H II U. u. •X U. u_*- 3 ii II O _l _J -J _l II II

2: 3 3 '-*- *— .. _l -1 _l _l 3 '-^

0. Q 3 3 O — C X X DC 3 3a a 3* > "J

•J

CO

cj CJ CJ O :--

3 3

o o

> > 3v—2 Z = II

X

3 3 <•- a zQ 3 3 * UJ+ ji ^ « I

3 3 \ '3X 2. 2. 3 3QC O O •» 3•„• + + o CVI

-? 3 ••. TJ II

3 3 2I .A

_l > > * 3II II II TT <v

'Tl 3 <•- II ix'

* 3 3 3fr £. £. Of U.n cl a. q£ •-«

O 31=1 :=-

Li.

II

JX

,-. jj.

CO 1=1

Z LU

•--II

'J

cnx

Xrn .•-.

X uiII <-»

cn <w0, rn

U- 'J

'.ii

• • '"I

I CJ^_ "t

U.** II

+: UJa-x'H 1—

Q£* Q^ iS)

* CJit* CJ

II 3*> in

rt 3 Qj>

-•• X u.(U 1—

1

Of

X

cn >u <i>

>u o'.1 'J 'j

•'* i. 5_

C_< i'u iu

ill x x11 > ^Li. 'Tl ill

— CJX X

X

HI

>l> IJ "*

U- Lt. if- l.l'l

n •-• I— '.'1 •X1— r f •X +1=1 ^-. in «z

K 3\ 'Tl x z •1-

'*-- 'j i •-' •^ X3 *z cn * '^

lii •i'•- •^. CJ X 1—1

•-• ••- CO ^ •- * *^~ (j 'Tl IX' .^ • 1—

— -t- .-•. ill C3 •v "1

O 1 1 •-•- £ 1- CO •Tl Xrji I C|. +.'

1 * +*

X II 'i) Ill r- CJ LULl c z i^i *-• 1 Ml

II— •- ~ 1— /% .

*-• X'J X li. Q£ w- 1^1 y •w- •w-

X 1 * 1=1 \ 1 \3 T" 3 JJ 1 /•v. ^^ ^H

3^ Ld Lxl X c*. .-^ II II

LU X X X + •• 1=1 — l/l O

'3 I—j3 '3 X3 C3 COI— CJ =

I V A

X ixco a

j.1 #*

I- IXII

•^ U.

*/ •/ 3«•>-** 3X X ix

II

U_ U. Xl1—

1

QmmmJ

O O O O O 'S 'D '3 O '3 '3 69 C3 'Z> '3 '3 C9 '3 '3 '3 '3 C9 3 3 '3 3 '3 3 3 3Ul 'i) r-- GO 'T' 3 — CJ CO T LO i-O T- 'Xi >?• >3 -^ CJ CO -t LO "£i "- CO '7'- 3 -< CM CO TCO CO O O CO f t t t t I- t t t ^ IT' IT' U") U"J IO LO LO \i~> M~> \T> <D 'D 'O 'D 'v CJCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO /% CO CO CO CO CO <

— I X XI — Z '4-

r- «» 'Tl O

I— •-' '-• Z U L.

•^ \ Z U. 'W 'l>

:+t 13 li^ II .^_ .V,.. II » *. '^. XX Z 'j lTl 'i> >> ^fc

II — — » Oj X -^G I '* HI ij — 1/)

•^- ill .Tl .Tl

'ii <* i. w-

Z i_ 'ii LU— 3 3 *U_ CO o »i

3 3 3 '3 3 3U"J 'O T-- CO i.T. 3 Xco <£> 1.0 >.& i.jj r-_ wCO CO 'Ti 'Ti CO CO '"••.

147

LU

o

II

lj.1

'Tl

: - .-^ LU LUoMl

--. X X1— in

x3

3.~.

%.-.,

QCS

— - z *-s z CSmi X + 'D \— CSx 1

i^j 13 r ll"!" •

+ '! --I CO IS II

-o> X -•• O : .•-. IS 'Tl

c c X Ql CJ •••. — CS ^— n LU X V '.'• Tl CO .

•-. jZ 1 LU jj ¥r O . 111

z.,_ '11

«—

*

1

*—

r-X "

JJII

.Tl

1=1

•^ M •M * -1

.-->. .•^. j 3 *-' T_l 'X 111 J * _• <=\ Jj X ,TI 1— t— LU+ + ~

1 a 'Tl X 3 3 Ml 1 '11 X in'11 — X w- \ s\ Ml X 1— t— H X =1 1— -r-4 O.J Ml

jj UL ~* .---. 1-1 1

•^• C' ro 'X' Ml

3 —

1

"7" X i•^ ^ .•--. Xl X •V 1— "7"

.-•X '3' '9 'H

(j + LfJ LU •w' Tl C9 Ci c< /^ •w- LU s 19 '9 cy l_j I 1 LL. C3 a © h- K- 3 * X K- (9 Q '1'

* "1 1— •-< \.* -• T • •-•• ^^ IX x^ I— X '9 '3' >

»—

<

'J.•- LU .^. i u. 'U :* * ••-• * CJ • • •p-

Ol ¥ 3 * 1 c .•->•.>r.j

~ r •^f a. 3 3 II II ^* o A CJ —-t /% •^ +* .-•. v »- * +* n II 'Tl 'Tl IJ

CM l~l LU II o d. ,T1 C9 XI fk Of Ml to LU *t «> *> to-•• 13 1— — •<_ Ml z '.'I ii 3 to jj _J 'X .— i— («_'•. - Z 11 C|_ r 1- .x 1— Q •^ *j 3 o •-' 1' '1' <^- * ex (f. LU * _ •^ JJ 1 LL iX r— •» Q =l 1= LU— •~ ~i v*. i» -1 •k 3 +; 1 + *- iX .

. Q1=1 *" i—

•xLU

LU3 *

31—

1

<Tl X"3>

jQ oLU

+ nX LU LU LU

i*i '_! |.

1

"1 T X y-% r: JJ LL. _ 1— 1— H 2 +-- OT* X X X /-..

i=i i i OJ 1— 3 * 3 ^' 'Tl 'w- II II ti- I— 3 /i» 1- 1— 1— .•-X -rw •w-. it I *> hi *> •rf' Ml •t- ll II II 3 CM .^•.

l

•J ft ** 1— 3 3 ,n .•' *> 1— 1=1 *^ *> — o *n 1=1 3 3 ,Tl1

/-•. .->. /•-^ T S-: no llO i.' Q 1 t» « "1 ••^• T 1— H- > *-' to LU LJ 1— * «. '•'J T •xf 1 -* •^

_l . Q. s LU X^ LU •—

to -/ X 1— t- c —

1

LU 'X »— > 1.-^.

1 1 w. 1"1

+ II ; N a X LL. •^» a. * X 2J ^s i_" 1— LU to 3 m *r m. t J- t X— 3 H- LU •— j'.* \ * »— 1=1 .•^. LU LU 35

~~h- o X X O JQ l o I- 3 c

Ml •* X E •iv LU »—

*

CM <- X a X X LU LLl JJ u. IX /\ CJI 3 -. l~t — M'l

•3 X LL. 1—

1

2 «_> i ii w X ii i

r— -i_ _i_ u_ --» 2 -u ^ •.

+ ~ 3 3' 3 ^H \ LM .••\ p- 1— 1—

1

3 1— LL. '*. w- ••-' x w w- •v>- -' •^•

£ 1 I ifl II K ^-v.~7~ ..--. XI : 3 CO X 1 .^_ III uj =4 •^ i=i LJ 1=1 LJ LJ

— .. • • x yt -v- I* ^ ^ — u. > 3 1— I— 3 3 • • 3 CO CO LU j__; T" T" =4 ~7~13 2 _3 T

X mi •/I <n r X ft Cn ^^ — 1=1 II 1— 1— X X H H * II z 3 1 + X' X "*•' X' . 3' .

\ «j Ml g £ T^ — LU •— >i \ > II 1 CO CO X 'X "1 *n II II Q .— '_' Q X' a o .3' 3' a—

H

— <u o _ u >f\ 'A X o 1— /\ > 3 3 CO CO to 'li * *n LU "1 lX X O X X X X X..• to • • X + =1 — T) y\ •\ 3 3 ^ Q, to to

--^ •» X X X X X X X X3 m c II II LK ^D • • • •- \J •^ *- Ml ''./ V II II to 3\ Cl Q. 'jj * * II II X II II II II II

—. ^ ^ •»- *» ~» o to c o •J 'ft • • 1— 1— 4* M *^ *n j 1— l7\ ^v. LM *» 3 3 >-•. .~. II.•-». /-K x^. s\ /-:

II 'ii•.- 2 O o O ^_ j •^ _' o I l/l •'w' -•• X X X X c \^ 1— 1— 'X C3 o .— .

.-^ r— t— ^~ — —— •^. «j. O — ,T1

~ X ••^ _l \ ^ a' II 3 3 'Tl 'TJ .

.Tl 'Tl .Tl I 'Tl

X >j II u_ u. o _2 4 •_• \ II rt 5 Li. LL. LL. LL. u. LL. 01 LL. LL. LU LL. i— f- i—. •^ •r- .Tl w •r- r- •w- •r-

3 ^ >u (J -^ —

»

•J 'J •> —

If C3 to —

1

>—

»—

«

<—

i

H^ H«4 c —4 »—

i

>—

i

I—. ,Tl II II x x •^ X X x X'ii (,. to VI —1 II JJ ii 4-> to _• c c X 'X x X •X X X Xjj 0* Ml — II _c 3 ~ »— z> i_T* •^ ~ \*> ^ X •w' J w- '•w' -?

2 o> ifl 'II »- ^ ** ni

c ** 3 3 c-.j 3 •-• •r- o -- Ill

3 to/•

0» OL c^ a: C3 .Tl o .-•: 1— »—

|

1- 1— x —

1

X' X X '3*

2 CO Lt Qi 3 CJ

S CS S •3 (9 CS s •S O <S s 553 •3 O CS '2> Ml 19 9 <s cs> IS s CS CS CS (9 CS 3 9 '= 'S 'lJ CS 'Xi '3< '3'

.

CM CO -r Li"' 'O rw 00 C- C9 pH CM i"*i *r \r> yj u r-- 00 •T- C3 ^-» c-j CO -t Ifi 'U r-- 00 'T. 1^1 -r^ '"'i CO <! J"i 'ur- r- r- r- r-- r- r-- I

s- h- GO 00 cc< 00 00 00 'X< — cc« LU 'jj CT* •T' 'T. Cft iT- 0*1 'X' 'T. '?•• 'T' <z> CS CS >3i '3' 9 '3

« --•- CO .-•-, .--, co co (!) (•),--, ,--, 00 ,-.->

•r> CO CO = CO * CO CO CO CO CO CO CO CO CO CO CO '"0 CO -r *r -f- *T T *r T

148

coI

5.*

"i

o

IX i=

m W-= Ml

«-%

»i~

CO iXh w.

i £^ ~

ii to

i-h COn b

.--. £^ w-

3 Ml

O *^

3 •t

(- ••-•

••• »>

•t •Tl

•-•. "1

.s h-•H lL •- /"N

-.- -' m. XI3"

33

31 > a. O-J »i -• TJ

x Xl '-' zz *h- •~~- ^ .= .=

.-[

3O .-^

= Z:- —

t

l_*l Ml ^ .^N 3 ^ ^v 3•-• m X) 3 3 ^ c Xi 3-3 /^ .--•. .•-\. _l r N* O -~ 3 *

--'. .~. II w- w- ^ -1 3 1 TJ ^ * •t-

1

CMI

~W

31— t— ,T1

X(J

'_' <—

i

II * 1

a. o i=)

•m H <» •w' ^ Ml _l - '/» Xi 2 T~ l-H

— — — m t— /^ 2 -1 w 1—. 3 LU + a.^ •j :'.. •z ss '- V <^ LiJ •X "i •w * X 3 ^s

i

3 — 3 3 w ** 2 (J ~— \ O r— -^- *N

s vs a. a. 'J J I— ^ T3 O 3=• n »— u. w --^ o> Ml Ml 2 2 ilj ^ to TJ •^

2 2 X >—

1

V v c w- »— *-* UJ LlI •^> -w- IS ^ OZ> 3 111 3 3 •^ 2) •-• <^ X X ^ • v XI

a a 2 • • 'j u — 3 'O' *> I— »— * CO V * X •^

IX iX — mi *- — *» ^ X o OS _i If) * — •^ 3_ a. •T> -- —

.1} '71 "1 —

»

II a: 'J • * 3 3 h- •^

II ii •> Xi 3> LU '_> CO X u. II V X) n CU II II r— i—

i

II 3/"V /-^ c ^ 3 2 '—

1

** i' 3 x. _^ 3 .-II II tt H— — '11 .Tl _l —

1

a Li. u. y Z'Z *> i_i CJ ^ f- X c 3 II

n •fl cj '11 _l _l i— II II • • o ii O 3 •- •- Xi— ••-

~'X X o 3 3 aiu. u. n j^ Li. XI ID 3 3 3 3

X ' • w— o o u > v—

c •—

t—

3 o —

zz. 'X h- i—^ - 1—

£ 'X III .H ••-

w "-^ w i_ • • i~-^ X ii /I —

3 3 <i> z »- <TJ

3IX

CO 'i'

•-•• IX .-

1=1 •w- CO2 O 1

—i 2o 3' 3IX o U.I

u. IX IX

IX i

LU QM IX

? IX~

IX10 UJl=l 1=1

LU ;:-

IX LU 'J.'

IX 1=1

LU _li—

i

LU Qi^ 1—

1

Tij*i —

*

;:—

1 CO LUIX 1 IXLU iXh- LU LU

2 'X

iX 1—1

LU LU H iX•3 n _l LU LU— s •?• _J 1—

3 X' 1—

1

2 'XWJ X —

*

X3 ix 1=1

O II 1=1 LU _l 1— 3•— ^-v (S IX TT* 'X LU —- 3 o ~l i _J 3'Tl 3 '/i CJ ''.'*• (— 1— <i>

L iX >—

i

LU CO CJ ZZ> iX<l) •w' = s IX r = iX = •X = O II =U«»Q|Q£sss3S3S =

— >-i LX LU-H'T)

I— I— I— I— I— I— I— I— I

1 «*0«"2ZZZZZZZZ|| O H" ** *~* H< 1-^ »—4 I—I I—• H-1 I—I *-

1

* •» O 3iXiXiXiXiXiXiXiXiXX '3 ij OiXiXiXlXiXiXiXiXiX

QL

IX X MJ IXix iX (X iX

'3i '3< '3« '3» O O O © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © ©r-_ CD CT> S w* '"•! P) "T Li3» 'Jj T-- >'£> >T> © —« CJ CO T U"> '•£> T-- CO |J\ © -^ C'.J W TT LO 'O f- CO «7- © ^ r-.j CO "T- LO©©©—•-< -h -< ^ -^—•—« -^ — CJ CM CJ CJ CM CJ CJ CJ CM CM CO CO (0 CO CO CO CO CO CO ffl t t t t t t^*^ + Tr*^^ + + rrTt^*rt't**Ttrf't'tTr't*TfTfTt*'r*'t** + *rl-Tf**r -r »r t -t rf Tf rf T -rf ttttttttttt

149

COI

x <~>

X' IX'_' ixix »•

LU i

.--\ LU IX >

"•J Ct -' *^

1

-

1

1— iTl

».i

X ill

t» X IX y-.Tf IX" LU i

"1 LU a. •-•

i—

i

'Xz IX

o ;

IX II

IX LU~ 1—

i xII otLU

x luLU I—

~ CO

LUI—•x

_ oix "O IX CL IX IX" IX" IX' J. Ix

IX ->

xLU

LU\- X LU LU _l— '_' IX LU _l r—IX i—

3 Q£ H-— t— —

i

~i o3 >—

X 1— Q'_> 1—4 IX X LU_l I—

1

LU IX LU X!x X IX LU X 1—

T" IX 1— ;

1— LU ?" :

0} x 1— LU 1—

I LU 1— 1— XT_ X IX X" i—i

LU XT •—

IXIX _l \— 1 1 u£ IX

UJ _l X 1—

1

IX1— X 3 1— XTx ix" X ~-

LU3 XI LU h- IX LU X

w > LU X 1—

_j »# <_ _j i—

i

_i XT X ~*

E -n _l i— <s> ~* II

IX xT X •-./ /s

UJ II \- LU LU s\ .•-

>• .•^ o X X c £o t~ - 1— : 1— = 1— = — —

Xi-i

itco

a••J

i

s s (9 s 'Z> (9 o •-- 8 s ^ ,3

CO r--- CO a-. !0 *-* (M CO ^r U"> CM COT * *r -r in n j~ iT> LO LO 1 lO-r t T * T T T T ^r *r ~T

'J > I—

CM XiI— I CO CJX - LU I-LU *> IX +X 'Tl

ix' in ijj hi

LU I— Xix I —< »*

3 «-> 1-5 I—CO 3 ix -^

O *Lx 3 CJ Li"

OH- LU

5 5 i_- s: 5 cd oo oo a> oo oo oo 'X> oo co o< 3 o ^ 'U _-

S ui ij) m d. ct ~ .« 71 71 .» .~X ix •* ix' X ix 1920miXhOOmX££C£££

II ix II 1-1-2 3 '3XXX"X>= 333333LU^- CO O '" BS33SSSS3 fl£ QC IX" Q£ u£ Q£X £ _..!_„ O « » • » » «

s H- 3 s = i.n ^ O OOOOOOOOH--* CM 00 T lO 'Or : Ui: = u! .* i C« I— I— I— I— I— I— I— I— I— ******

w LU — II I— —> OI— I— i_ I

I— I— 3 •- HM(OYni0N(OCft«4KI-HHh-hXX 'i' XXX Ml • I— **********XXXXXXI—* I—I Q. I-* —« I—• I'y IX' v"C *-^ I-1 " HH »-H I—

»

CtIK 3KKIK LO UiZZZZZZZZZZKUQiKKCI!a. ix co a. a. a. T3 ix x 'J >j> ij 'J ij ij ij ij ij u a. a. u. u. a. a.

O CO Ci"j CO CO CO CO CO CO CO if) I— I— I— I— I— I—ij CO CO CO i/) CO (O '10 CO CO '10 'X X X X 'X XCu 'X X X X X X X X X X X X X X X X

s\ cm

I O 'S> (9 O 'S '3 '3 '3 9 (9 'S 'S '3 03 '3 03 O 03 03 '3 03 '3 03 <S> 03 '3~ r- co oft o "^ cm co •* li"j 'O r- co >> '3 —* cm oo ^r u

-' co r--- co 'j'- 03 —• <>i

~ lo lo u"j 'j5 'jj CO CO •o CO co 'is co CO r- r- r-- r-- r- r-- r-- r-- r- r- co co co

150

X••-••

1

•'-. .-•.

y> •^.-v. +•—

<

i—

••_•• w-

:: xi w-

3 '-.

ULLL

lCOClco

x LLX

o o -

3 j 3 CCcl- u: cc •>

« ~ C3r-- co .j-. —

* Xz 1

t~ ~** •-'

x +\ H^

CM W-

-~* ** £*-• ••-

_l •*-

II

£. \Ql CMN «-i

'J **

_l _lII

x 'ii

LU C-L u1— •-

-_l

3•\ x.•-\ LU

-

ij}

'T>

3LU ,-.

h- C X

cc cc ct ulCL LL u. LL

3II -•— II

1) H-

19 +

OS v/

*T X

Ul 1=1

X XI- cc

/-. II

CC CC X X "O *>

II CO w X

LL. LL. /*« LL. LLX X X X X '3 ll. ** *—* •—

' '—• *—•

3 3 '3 3m -t no 'oco co co -:o

*t -* -r t

3 '3

rrs .7-,

— co»• LL.

:o •

.. oLU —Ct X

jCi .

LL CO

LL CtX LLl

co i\i

-ce:

v o<» LC LU

O N

o o o o

-h cm C") *T

3Li.

L3 iJ 'J iJ

'3 '3C-.J F)'T- C"-

T T

3 '3^. -t |i")

•% I*ft l*T>

LU01 COCO COX X

3 '3CO <?-

CT. 'X.

<* -1-

CO COco cox x

•3 eg

3 '3

tfj If)

i=i

Xo

LU LUI— LUX LL_J CJX LU

X X

Xcc

= o•4 lc

LLX" L I

LL *» <V O• • u & i. « X111 II Tl ~". in ~ fj)

Z0SS0) N OO .~ aataabaata* LL

o —> oj co •# m i—— * * a * -* LU0*i

U"? I— I— I— I— I— =•

>—

I

!_• hH I—

1

>-l LU •—

I

X LL LL LL LL LL X'_" LL LL LL LL LL • t—-. .TJ

CO I— t— I— I— I— rri

CO X X X 'X X <u

o3 '3 3 3 '3 '3 3 3 3CM co *t no '0 r-. >x> <t- o3 3 3 3 3 '3 3 3-—'U0 ID ID If) IT) LT) U0 LO HO

LULL

CCLLLLl

LL

M LUir~

LU

u

CC

X X

LL

1-M

X LL":— i—i

1=1 XO l-X •~| Cl'

LL LU oLU X LLX X1— LU ":-

LL t-LU X —

i

X X ~r-

1— LL i—

*

XCCLUX

LUX

c-.j uoCO CO 1

LU CO LUi

.""• "-

X •T- '£»

_l ij-. ^-t

3 CM --<

CJ —• h-_l 3 •

X • CMl_) II II

3 X \»IJ II

+^ i.

i_ f—— AX iC

CC' LULU — a — — —(—1

h-LL '3 C9 3 3 (9 3 3 3LU -i CM CO t If) 'L' r- COu_ »-^ -^^ ^H ^^ ^—

«

^h -^-« •~-t

Q UO if' ID \t~> in IO ID \l->

151

it.

X

'•O

<1-+•

U+IO<.

1-

*Li.

+•*-

<1-

*LU+CO^

Ho •

T CM o'.-- — •»« Cw 1 +1 -< 1 -* LU 0\J

LU 1 LU 1 1^ < •~-

•~* ui J — • i i— i—-H CM -r 1^- rv- * ••^

CO in CM rv- |S- o —01 — r- ro cm + i_ «->

• © • n • h- •- x>«4 •

'-• •H * •I

i—

1 CM i CO 1 « &£ 4II II ii ii II + i_

u Q LU u. •J XII

2u£_>

UlOf

1=1

xu.

u.

ce:

LU

x3

xXU_

LUXI-

coLU

CJ

••O

I-*

+LO

+T<

t-*LU+oo<

h-*

C-l 1=1

t ® -r-^ in •T" +i CD ~H

1 ^* —

<>i*-> LU i 1 LU i 1 <r- CM LU Ld CM LU LU 1—

•O jj» \<i lO 1*- C'i 00 'T

IO *—

»

<T» CM go IS- Lfl oa in »* ^1 'O r>- -f + s_

C* -•-I —

^

m ~ •3 i- •-—

*

• • in • ~* • * iTj

|S- ^* ^ • ~* • 00 « J.

• i 1 <T» i^*

1 + O.•3 II ii II II ii ii II •xII <r n o i=* LU u. |J< ii xi_ L Lt•t- — _JH 4 h-:L, i. LU0. U_ LtL

IXXI-u.

_l

<r

Li.

o

in

u.+

<

A\-

*LU+OO

r

5 u.

lu u.X — LU

OO *o s ao T—

-T +CO -r h- 1

i—

»

CM1—

1

I i LU 1 'II

> 3N LU LU r-w LU it) —CO j . •r-i •i 7-w *m H" 3^

LU CD f C9 in *r C9 * «X CM CO 1- Cf> CM CM >_' -r1— OA • CO ^—

<

L0 in r- + 1

L0 CM r>- CM <T* • CM ,Tl LULU • P) -r • • *H • 1— LO1— 0* 1 • in OO 1 CM He •

'X in II ii it II II II Mi 00_J » X n o 1=1 LU Ll + II

_> •3 + cc £.

Cj II i— II t-

_l <fi ii l/l 4•X — m f- 3

(9 <9 <9 69 O '3 '3 '3 3 3 3 3 3 3 3 3 3 09 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3T- 3 -* CM 00 T LO '-O T- '30 'X- 3 •« CM 00 -I" LO "Xi f'- CO 'T- 3 — CM 0O rf LO LO T-- CO <?> i3 —

CM OO T HO 10 T-~ CM cm cm o^j cm CM CM cm cm cm oo oo oo oo oo oo co oo oo co i- rf rj- rt * rr i- rt rr n- io lo in lo in io uo mLO LO LO LO LO LO LO IO LO DO LO IO LO HO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO IO LO IO W LO LlO LO LO LO

152

X>

x«_i\xt-

'J.

CLO

xLU

c_t

c_>

LUa.CO

LUX

LU

ro

id

t-*

+

*LU+CO

in

*1=1

+CM

'O

a LDII T1. +

LDI

-* LU^ <j

'£> CT-

'Xl Tt r-* •

• I

II II

r «

»H -. CO

I I LU I

CM CMCO '3<a id

in • -*

a.cj

s sid

£. ck:

— ->

,Tl >-

Q.U1CJ LlC

coCOLUCLQ.

i=i

xLUclx>i-xCLLUa.

LU

Xo

xct:

xCO

LU

LU

LU

Xa:i_T>

OCc

3Cm

LU

GLS

Ji

S2.

Cc

COCOLUCca.

xLU>>—

i

U•r

Cto

LUCL

I—xCLLUa.

LU

XCL

'XCO

LUX

LUI-Xxcj

m

*U-+

*LU+CO

LUXI— CL

LUI—•r

>n

co 'XX cj

'X' *IP

CM ^ COi—i

+Z T CO -H r»- CO T-* CM .•^u

LU '0 ^* 10 CM t-. 00 Q..^ ^^ •Z' C1 si CO Z* •i*

1— /^ • • r- t IS r- * >Z>

LL If) kO • m Cfi (9 o ~-t

<9 w' f CO rv CO 'I' CO + V• IJ m CO r-- 10 • N > 'J!

•3 a -—

«

CO *r CO •0 • ¥ olO _j ~*

1 CM 1 CM I iQ -1T ii ii II ii II II ii + C9 II

O II > X rt CJ 1—1 LU Ll. X LP Z:_

II V II (9~ CL ** 'DD >n

ul ll. VI oi— i-i H- 1—

o

>S> '3 S SCO 'X- '3 —

LU X Ll.

X — — X — LU — —Ll. i=i

CL(9 (9 'X1 *_' C9 19 O 03LD '£> T-- U. CO 0* C9 -^

LP LD 'C> LO '£« ID '£> 'U 'O 'O 'O '•£• f-- t- f- f'- T-- r-- !">. f-. r^ r^ co osu"> id ld id iDiDinmiDinmiDioiowiomin ut id lu \r> \r.< id ip -^

C9 '3 Q C9 Q 19 O '3 C9 C9 <S O '3CJ CO -t ID 'Jj IV 'Xi CT. '3 -< C-i CO TCO 'XI "XI CO iXI <'X> 00 CO CT' cr* cr"- 'J

-- CT*

ID ID If) ID ID ID ID If) ID ID LD ID ID

153

Luill

•x

UJ

UJ

COOS 00

00m I

CO LUT> T CJ in o-j

'O r- t s- ix>

is. cm cj t -^ co co<?> co -* rr ~* toin ~* •ft is. oo '-o

— oo m co coTf a m -^+ m •

M CM I • I COII II II II II

if) 9

if)

00II

: - j Q iy ll

CO

#

+r-

*x+\0

*•J+U0

*U.+

*UJ+CO

+1=1

+OJ

Lt

Ul

I—*

IJI

•r

i i

u.

•n

UJIX='

COCOUJii:

ccLL.

xco

UlX

•/I Ulto H-

x•2. _l* _l4co _iX XLl. O

X

-aI-\X*/>.

y>

X*1=1

+CO

s\:: .-«

K •_'

1=1 \+ CDco

• —

*

'O 1-1 w-

•-* •^ #• \ ^.

CO co "tr-- m <

0-J i-t X+ •w- *^ CO # UJ2) "O J-\ UJ +

• oj CO 00 CO CM CO0* sjO

00i

Ul1

UJ xcb

C\J

'T*

1

1

Ul X3 T -r 1 Oh O.J + CO 1 UJ »—

*

1 *• UJ *-* Ul IS. up o ij CO Ul f CO UJ CJ u.

if) j. 'jj XJ *.v j T u. •^ CO 03 •*i vj -rw 1— is. CM CM 00 X * '••-1 -~H 1- -r * 5C CO* w 00 S |S- + HI sO —1 in Ch T He -4l«l S i- 'u (S- 00 m u. T •<r t-4 |S- 10 m \CM IS. • CM CO —

^ + II CO -.^ in 00 1J-I + U• r-- '£> 'O IS • • • • 'X »> or o_

CM CM -.-« 'T. s 00 in .-« Od -/• ,rt oo -r IS. r^ 'O v/ *00 • • 'Jj J£ CM II ii II ii ii Ml (9 II II ii II II ii in

9 1 IS. CD • t- II 'X n CJ 1=4 Ul CL CO X n o Q Ul U. u.II h- T

CM-T

'J 1—(V)

11

,11 II II

uII

0.

II

4Q.

1—II U.

1—Ml

u.

3 O '3 O O <Z> O O '3 '3 '3

If) ifi r- CO OS iS — CM CO T U">

'T- OS 'T- OS CT* '3 O '3 CO '3 COuo in in if) no '-o '-o 'o •& vo '-o

UJ UJ

O C9 CO '3 3'O N. CO <T- COCO O Q '3 ^'.jj 'Xi 'jj 'O U)

O CO '3 CO '3 CO '3 '3 'S CO '3 '3 CO CO '3 '3 CO CO '3 CO '3 CO** OJ CO T m 'O IS. 'Xi '?s CO »-« OJ CO TT Ul 'O IS. CO 'J» CO »h 0>Jrt rf rt rt rt rt h h h CJ aj r-.j CM CM CM O-J CM CM CM CO OO CO>.£) U) '.£( i.jj '.£ m U) 'O U) •£> 'O 'O 'O '£> \0 IjO 'O 'O kO SO 'O 'O

154

U_

O

xCL

Z ui'X I- 2:x —

O UJ

X LH LL.

LU

a.

LtLUX

3 COCO LU

5 °-

x n»- - X

1=1

LU UJ I—

ui

3(J

•X

(0LU

'X CO

UJ

X

LUue.

x'X

uiUJ

LO

•n

a.

3UJLE.

XUJ Ul_l UlO uiO uiU L3pq ui3 1=1

if)

X Ulx a:ui 3'.0 x— UJx a.x x

UJa; 1-

UJi— xX UlX >

'JO

UJ —

oUJ

>

C9

+

*UJ+co

t=l

+CM

'-3 X

CO

UlX

Ul(—X

3 .

II <3

CD OhX) LO—

.

'3 CM• I

II II

X —O 0-

Ul1=)

'3

00 I

I UJUJ -•

r^- -«

>:o COO CJCO •

"T I

II II

O 1=1

C9OJ•jj

'jj

I I

Ul Ulr-- -rCO c-j

r-- T13 .

• C\J

C\J I

II II

Ul u.

*

+I—+pq+ccII

'3

CJ I CO I COt LU I HI -LO Lf) UJ r

-

I

T 3 T Jj Ul3 '3 CO 'T» CO

>3(30* '3 <3i*- in •

•o cj 11

o a.

2.0 u.CO 'J •"•

'jj T CO '3,3 •

1- I

II II

CJ 1=1

I*-«

Ul I

r- uiT CJN CO

CO • »H

UJ '3X COI— <T-

•3 LO

O u_I—O U.n 1—1

I COUl I

LO UJiJS *—

1

CO CO3 ,3

•~< '.jj »-<

3 ^*

I CJII II

* CJ

CJ I

~H UJI r--

uj -<

10 cjCO

CO I

II II

1=1 Ul

I

UlCOCOOS•

01II

I

LUCOTr--

3COr-'Jj

U. IJ

"J

13 13 13 13 ui 13 .3 13 3 13 13 3 13 '3

CO -rt LO 'jj Ul r- CO <T- '3 -« CJ 00 T LOco co '"0 co a. co 00 co ^r t t *r *t •*

'a 'o 'o 'u a 'jj 'XJ 'O >o 'jj •& 'o •o u>

'3 '3 '3 '3 3 '3 '3 >3 '3 >3 '3 <3 <3 '3 '3 '3'xi r- CO Cf* '3 -* 'M CO 1- lo 'Jj r- CO 0* '3 -^

t t tt 111 111 IO IO U0 LO LO LO LO LO ' jj 'JJ

'.jj 'O '.£> 10 'Jj 'Jj 'Jj 'Jj ' Jj 'Jj 'JJ 'D '.JJ 'jj 'JJ 'O

'3 '3 "3 '3 '3 '3 '3 '3 '3C\l CO "I" LO 'JJ IV CO <T' '3<JJ 'jJ 'D MD 'JJ ' JJ 'JJ 'JJ r-'Jj 'D 'JJ 'JJ >0 >D 'JJ 'JJ 'Jj

155

_i\x>I-

«

UJ ct:

LU

+IP

I— UJ i=i

* t- 1- UlU. x * h-+ CL u. XT +

-1-CLX'

1— •X ? 1-

* CO 1- XUJ * CO+ u. UJCO o +

00u.ou 3:— <

* Q. h- >a _l '3 GO * 0_ S>+ 'X -r >>J IN- T|- —i CO 1=1 o -^

cj X <T» OJ 1 1^*

1 r^- 1^-1 + Ct CM

< 1— <D LU LU LU ^-1 Ul i LU 1 CM K N-i' —

^

CO '••Lf r— .^ s£ '•U u~' r<- i ilj VAS UJ v.' LU \ ^_oo i 00 —

«

—* —

«

o * UJ z o C\J CT 1 to LU s T >T. ID IN- in H- UJ XCO UJ i 1 1 1 CM o uj N o CD LU I--. ID —

CO •X- '"•1 r-- •—-» * LU-r UJ uJ UJ Lu 1 + 3 Ul X ~H CO CO * in -r Oh CO ID 00 00 n CJ Ul XS T —

*

CM »-• CO 111 1— p— X i— ^4 CO in t ~~* CJ r- CO ^H CO -^h 19 + 3 X 1-

o —

T 'X ^- T * O 1— t r- r^ •N CO CD ^H 00 W in «D in 1— * 1-

'•X) co in — <3 V* m m ^ 3 3 '0 CM ^ co <D • o --> in CO CO * ,11 '3^* • <-o • 1- • 9 + Q. /^ Ul • • • • T • IT) CO CM IS • 00 • '0 n M f\ Ul •

'3 •J . 0D • --« • x CO i— t— eg Qh co ^r • —• • (S>"r

i • ^* • r- • + —

i

1— 1— O. 1

roI—

«

1 CD n -/ cc s ID 1*+

i T' 1 * S 1~*

1 *r i Oh 'X w' X C9 inII II II 1 II II II 3 ~"* — _J II .--i II II n II II II l>- M II II ii n II n 2 •— _l II -r

en n O — UJ u. •J atai—UJ

UJ

Ul

Xu.

u.- UJ -

1—

1

_»CJ_1ccu

3

.A

i—

u.

X « u Q UJ U.o1-

ou

x m o Ul u.

,T1

"/I

Ofi

HLU

0£1-4

LU

Ll.

VI

COXu.

u.- UJ -a

1

u_JX

3

i/i

V1-

i—t

S S '3 S S SOOSSS '3 CO 09 CO 'Z» CO 'D CO '3 CO CO ©-h CM CT * LO 'O t- CO >T» O •* CJ CO 'I

-U"' 'X> T- '35 'J* '3 •*-« CM CO

r. r- r-. r-- r- r-- r- r - r^- co co » co ijo » co >x> co co '> >t- 'j*

ID '-D '-D 'i) 'i> '-D 'JD '£> '-D 'i) '0 ID '-D 'X> *-jl> '£> 'O 'O '-D 'J3 '£> '-D

CO O '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3t in id r- co 'X> 3 ~* cm CT * in id r- >x> <t>

ij^ <T* 'js 'T* 'T* '7^ 'T* '3 "3 CO CO *3 *3 CO '3 *3 '3<o 'D <o id 'O 'O id N r^- r^. r- iv r- r-- r^- r-- n

156

rt

«

CO COoo oo i i a co

I I LlI ui i I

OJI OJ 00 00 CMLU I I I I 'M

'3. .3

(9 •

10 C9UO —

I—

11 II

CM IV

3 CON osis- com o.j

•* COuo I

s-

-. o.j

i i

ii ii

UJ u00 00II II

33 '.0

-* oooo I

IS. II

x> '0~* TI/O 'OI/O 0*

o is. r-. uo •o

C*oo

t3 ~*— UO

^j* is- oo co oo ujos os oo uo <?• uoOS '0 oo oo oo uois- -« cm o in 'oos uo is. r- oo <«

UO OJ >3 <0 '3 00. T • • i>i CSJ

Tf • 'JJ OO • •

I I — —II II II II

n-i

Z 'I » O Q UJ U.

+

<

r-*IJ+uo<

-Cl

+

<

*Ul+00<

t-*(=1

+

*

+

I—*

+XII

o'J

4

3 Ct*> 3Tl t-i.n UJCO 0£

UJ

x

UJ

'JO

Ul

r- *•r L3Of +

i UO»— :.

'X H-CO *

U0£ +o M"u. <

1— *<E UlUJ +X CO

<

CJ r-—

<

*u. 1=1

1—

1

•0 +CJ '3 ** CMUl IS. •N CO 1 <

u. u" i i" uj r—

co ,--l1 UJ LU 1 00 *

-r UJ CM CM Ul •H O^\ Ul —

«

—-* -r i~i ffi OS '3 +1— X OS in en CM CO uo CO h-•-.• h- r- CM 'o CO '£' *r ts. *3 T uo 00 'T-. CM uo '3 «> Ul .:o '3 • ~* • CO • +•D \- 3 |S- '3 T m uo • oo <rIi •r II • • 1 -'•J 1

'£'i ii~

_i 3 n II ii II II II 11 3Q. 3 ** X « CJ 1—1 Ul U ij a.OO o <tf ij

X _J "i _>

u'_p i—

<

uUJ - — —1=1

'3 '3 '3 '3 3 3 3 '3 S S O 3 '3 9919 96) 9 O C9 CO '3 3 '3 '3 '3 '33 -* CM OO Mr U"' 'O IS- 'Xi Cf» '3 ^ O-J CO T UO 'O IS- CO OS 3 -^ CJ 00 T UO 'O IV^ -* —i — «« — -+ —• ^ -^ oj OJ OJ CM OJ CM CM CM CM OJ 00 00 OO OO OO CO OO 00r- r-. r-- is. is. is. r- is- is. is. fs. r*- is. is- is. r- is. is. r- p«- r- r>- r- r^- iv r- r-- is.

'3 '3 3 '3 '3 '3 '3 '3 '3 '3 '3co os '3 «« cm oo -rt uo 'o r-- coOO OO 1- T T tj- rj- rf t M" M"r-_ r-_ is- is. is. r-- r- is. is. rv rv-

157

U.

\

«

LEi

LU

CtUJ is.

t- <

r i-x *

XQ +LU SOt- <

x t-<£. *X> 'JH- +•r in•j>

1-

Lt *O Li.

Li. +

<

Of 1-

LU *uO LUz +x» CO-

1-

-I *- 1=1

1=1 03 in +x — -r 'T> ••J ^. 00 CM

3. x 00 <£> 1—

1-< < 3

^ UL C-T» CO <+ _ 1 UJ 1 r— i_

u f\ a. is. is. 01 — 00 LU in LiJ * Qz> 1— <T* y) co in 09 (1) is. '£> O >— 3 •_• LU —< ~* U) s Oft —1 U) S + £ 3M .- X s s s s CM T is. in 1- >—

\ -u•~ t— >T> 10 s s «—

1

s U" en * \ in

O '0 ^_ T in s Oh IS '"0 ^ iQ IS m• a ft LU s s s s • U) • CM + • *

-• cj 3 1— © • s • s ... • CO • X »H a.11 ^ •X II 1 • 1 • 1 CO 1 *H II II

3 z iU _l 3 II 11 II II II II II II 3 3 z* a: to 3 ** r MJ =4 LU u. U X ^ ~ 024 X> X U •1> a ,11 3>/» i- 1=1 Li. _1 ill ^ rt 1—

Q. LU 35 x i_ c £_ UJ'_> Lt UJ

u_

ULLU— 1=1 -

u 0. H^ a. OL

t=l

LUH-ac

~>

H•rCO

Ci.uaLU

*Ui uO +U. m;_ V-1- *1—1 Li.

> +I—

1

rf1-

\—-' *a UlX +O CO

1-_i *oc 1—

1

•S21 T + SOi -.^ CM •

LU CD in CO s 1 < (S^L> 1 l

h- ^4 LU LU LU 1 'D * IS.^ '£• IS. r- Oft LU CO '_' —

LU y) CM CO1-.-1

CM U"' *r +S*\ X CO in 00 <T> CO ~H '0 1— CO _: ;

1— 1— <r IS CM CO 00 CM <o * IS 1^%--' • 9 \r>

1-0 CM -* CO n CD ,T1

U LU -r s • in • eg • + f—

1

Ml

^ 1— •T. • m • N • in cc 3 JiL.

3 X © CM *—i1 CM I

~h1 II

'.-'

*> _l II 11 II n II 11 11 11 >:j 11 T*"

.A x 3 cc LX| '_> i=i LU U. u (S 3 OfCO ** IS ** _l

3S _l Tl —

t

id t—u. X 'li 3 LU 1—

1

u.LU -

LU

O O (9 S '3 O '3 <S '3 (S '3 '3 '2> (S S SB C9 © C9 (S O Q S '3 © IS ©'X. © — cm w t in vo r^ » >t- © -^ cm co t in y) r- 00 Cft © — CM CO <* in^r in ii"> in in in in in in in in u> l£» 'O 'O 'o y) kO vo 'ii y) r>- r- r^- r- r-- r-Pw r•- n r- 1^ r- r- r- r- r- is. is. r- i^- iv r>- r^ i^- r^ ^ r- h- r- 1^- r-- r-- r--

C9 © © © © © © © o © © ©y) is. 135 17s © ^ o.j co i- uo y> is.

r„ is. is. r- » i» » <z> •» » >xi 'X>

is. r-. iv i^. r. r^ rs. is. is. is. rs. r^

158

X\X

OfLU

r-<

x+

<

*'J

X m0£ <

n i—i- *X u.CO +

Tli. < <

o i-*

1—

#> LU LUt- + +1—

CO COc/> 3 IS '3

o 3 UT T h- CO h- Oh 'rt

o s 3 1 « —

H

iv S * 1—

«

in r- •-

<s> r^- CD LU C* CM 10 Q 00 T i*—< i—

i

oo i 'U -r 5-« ii ^i r-- r<- 1

-" ^ + i _i_» i T uj •~'••i ••i^

*> t— T" go CO i LU 1 1 CM 2 >T* LU 'T. LU CM 2 in ~-t CM u:i in T/^ LU (V- ^4 CO in LU in LU LU < LU U" CM •T* o> >T< < LU r-- r- •— < kO |S- V«fc •o1— LU 2 X •0 00 Cf> co 00 |S- (V in t- X r-- U) r- CO —

i

1— X co 0* f-< 1— OJ (S h- CM 3V X LU 1— 00 rw C3 CO IS r- 'O en * h- IO CO *r Oh —

<

* h- in >o CO * r- '£' •%• 00 w>J t— X w CO f rl s 'T. n CM O 00 Lfl <3 r-- 00 CJ in t CM CJ in in U3 in ,TI

"1 t— •3 r- <x> — is- •^ r-* fy- Oh + '3 r<- 0* 00 r- 00 + <s CO 03 '3 + • • O i—i ill

•- LU • • • CM • W • ea • 1— 03 • • 09 CO • CM h- es • • CM • K GO (S 'D _i •^ 35 t— If) eg CM —-4 CD <i-4 • CO • T * CJ 3 r--- • • CM • * CM in 00 o CM * CJ T CO M • T^~

3 X •3 0* c- 1 • 1 o* 1 ID 1 CQ CM 3 —

i

1 CJ 1—-< U4 CM o* i • 1 U} CJ CM 1 iXl ii

** _l IS. CM II II II II II II II II + 00 •o ii II II II II + 00 •o ii II II + •33 II II + 3 ~z_

D 3 .^N S y\ X m CJ o LU u. U X X •X X eo o i=i LU X /s. X 00 CJ X X m X +^- atCO CJ 1— ii 1— II a 1— II o 1— II O II ,TI —'

X _l n Ml i— '/I h- Ml 1— ".«* "1 HLu X

ou.>

u.2>a u.

•—4

'"™ o•J

Lu > oIJ > £

LU I—

I

U- LULU — — _ z« Lu

O O O >S q q o Q ij) Q IS (S '3 Q © IS >S CD O '3 C9 GO 03 >3 '3 >3 09 Q '3 O '3 'S> '3 (S <3 '3 (S >3

,X>"• '3 ^ CM (0 T UO 'Jj r-- >» >? '3 «^ CM CO T \T) 'it r- 1X1 >!• '3 »h CM CO T UO 'J3 T-- CO <T- <3 »h CJ CO -* U~>

f%) fQ ij; rjs ij% iji lis ijs ri\ 'T- C* Cf* 3 '3 '3 '3 "3 "3 '3 '3 '3 '3 »* »h ^-h i-> --h »—i ^-t ^-h «_ —< r-.j r-j cj oj CM CMf•-. r. r. r^ r-- NNNNNN ^ » CO GO CO CO CO >'S> <10 00 '33 '33 '33 GO GO CO '33 '33 '33 03 GO 03 GO '33 '33 CO CO

159

Of.

X

mxxuit-

X 1=)

'X UlUJ 1-t- XCfl u:

-•1=1 1-

UJ u-H COCECt u.z> o1-

x Ct..-•

•t-

Ul

u. < XO

*3

> UJH + _J•-h CO CO CO H-CO CD 3 /^ S) < CO < i=i

o DO T —— t— >o 1— w i- UD TCJ C"J i r*- I * -T CO * in * CJ •f- X(.0 9 in UJ i UJ n 00 1 CM Q CO -r a CM CM > Of—

•."•J i"1^ UJ r-- '.'J JV I-1J

-~ 'r i r*- + ^i CO •ik UL~:- z 00 y- -^ •-• CM Z 1 1

•T.i CM T LU i CM -r in T

*N UJ ^0 l*w 9 T OJ UJ Ul 1^- UJ < Ul CO UJ < 9 10 J.-V. 'D ."->. Ult- Ixi z to T 00 00 1— X '-0 fl-l 'T> ITji Ul 1— X 00 00 * —-4 1— 0* LO 1— CM vn 1— X>^ X 1— >s -~^ •o —

* 1— 'T* IS. v-4 IS N * (— '0 •T. m IV- * —

H

in T^ 00 * ••-• 1—

'J 1— 'O -i- >J 3 CJ T in OH r-- CM O 00 *t -—

*

'0 o • 00 13 IT- ,n ol/l <z> CM pH '£< CM + •3 00 '9 T * 00 + '9 • 00 U) 10 + IT" r-- O <—< ii

•~ JO— UJ • CD en ^" • 1— 9 • •—1 • a • >T. h- 19 • 'TV 00 • t 1— •9 in • _i r-H 3 i_ Ul> t— s pH • • CO * •0 in T CM • —

*

• + '0 <3 in CM •* m * 0 -^ 00 * z Q 1- '9<» <E s • j co 1 MJ IT) •f m 1 j* I 09 n in (9 i • I CM UM m i CM m II Ml X 11

•* _i rt !l ii II ll + CO '0 II II ii ii II + 00 IV ii II ii II + 00 ii II + 'It T ^ _l (A.11 3 8 •\ x « o =1 X A. X « o P UJ X /\ CE * O n 'X X m IE ^' u: iTl -J *to U II h- II o H- ii o I— II o ii A ID CO o ii)

T .-I M '/I h- "i h- l.'l H "i »i H T^ _l '/l

U. <c •«- li- ••- '_> U. •- O U. — '_' -^ I1 UJ i—

i

u. X i_

o I> t—a > •J -^ ;> IJ *—• 1> U 1> E u. ~z. CJ u.u. Ul u.UJ - — — T" -- Ul - — —1—

1

u. 1=1

D S (9 '9 >9 S 9 9 O '9 O '9 '9 O '9 '9 9 '9 '2) 09 09 C9 (9 '9 'Si 09 '9 '9 '9 09 i9 <S> 09 '9 C9 '9 09 C9 CD'O r- CO 'T-- '9 — CM CO T m 'jO T- CO >T- '9 -^ CJ '?0 T U~ji 'D r- >X> iT* i9 -< CM CO 'T UO VO T- 'B O"-- i9 «h CM CO rr>J CM CM CM CO CO CO CO CO CO CO W CO O t -t t t t t * t t t W Ul Ifl U~> U~) U~> IT) U") UO If) 'O 'O kO '£> '£>

'» 'JO CO 'DO CX> '50 00 'XI 'X> 'Xi 'XI 00 'XI 'XI CO CO CO 'XI 'XI 00 'Xi 00 'Xi CO CO CO CO CO CO CO 'Xi CO 00 CO 00 CO CO 00 'XI

160

A_l\3

ccLU

LU

r 'XLU UL1- i

co h-\0

1=)

ID; CO

f- LU t-* r- + lit:

"J cc u *—

'

+ Lt + Llin 3

1—in

;_

H- oc i- 1—

* '.0 * —

1

LL, LL.":-

+ IX + M*r o -I- r-y

LL, < o1— 1- ~i

* 1- * OLU >r LU *y

+ LU + o•.o X CO o:; <1- CJ H- _i* >—

1

* r CM1=1 LL. 1=1 £ '^1 1

'D + —

CO + a: r-- LU 'Deg — C-J M| o is. eg 94 •o CM <.n LU C9 '.JJ in 1

»« o 1 < i. LU jT) ID i ~H 1-~* <' Q. i ON 'Li c.j OJ LU

^j <£ •jj i »^ iu r— ^- u. r*- 1 uu I LJJ 1 i— w r— K'f •j Oj : ii

i i 1 LU 1 <—

i

* 5 to If) 'ii' LU id LU 'T, LU * ^ 2 ^ •-I VO 1"

'J -Li LU LU If) -J CM o c ~i 60 CO -t IT' T t-- o c LU LU IS. * as ko- a * 1" LO is. 'x> + i-^ o /> LU CO rs. id GO 'LI T C9 + —

t

l/t X X r"-"l in rr CO'XI co * w* If) is. .-"I 1— \ * 1— X CO 00 G9 T 'L> »-* in 1- X 4* <f\ 1— 1— (S i—

*

r^_ os 00 t in —^ CD + o D s r- •^ -* in 00 CO CO IS * '3 ,11 1— r- -r-

D o-^ '0 is. ..£( -« —

CM « co Ml >fi -^ cs •D CM —

*

CM *—

*

-M '3 <A •-• i=l CO '"•j 'u cs co'-J m • co • o • + • < * LU CO •3 T- • IS • CO + • o IJ LU • • m •3 •

• 00 C\J « — • — cc — cH "1 r- eg • • • »—

«

• CO • CC •-H U * 1— 09 t r- CS —4^* 1 1 "J i o-j 1 II II '0 r ii '-J 1

^

1 CO 1 ^H 11 II rt <X •3 IS »-»i • 1

II II II ii ii ii II VI l/l—

F

jC _i M II II II ll II II II •A /I ~T w _l II -t ii n II II

•r m O 1=1 LU u_ "Ja. 11)

Mlt

LL.

or.

_'

r-LUuiaLU

o

LI

Ll.. LU -

1=1

3'_)

_lCCo

"Ii-i

i-j

<r LU O LJ LU LL. IJ

'J ,n

M|

IX

3LUix

LU

LL

ll)

to

Ul

U.LU -

1=1

3CJ_l•Xll_l

1)

i/l

1—

LL,

h—

1

OC pq CJ 1=

CO CD 60 CD CD 'S 69 60 '3 '3 60 '3 '3 60 60 60 60 GO 60 GO 63 GO 60 GO 60 GO O GO 60 60 60 '3 GO GO '3 O GO GO 60U"» '£» r- CO T- CS — CM CO T in '-JJ N- 0? 'T> '3 "-* CJ CO f UO '£i Pv CO iT* GO ~* CM CO T If) \D T-- CO CT. GO -* CM CO'u 'x> '£> 'x> 'xi r^- r- rs- iv is. r^- rv- r^- is. r- co <%> <x> co co co co co co co cr> <?• <t> cr> os >t- cs ij» as cr. o GO go goX) '» CO CO CO CO 'XI CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO '» CO CO CO OS OS CT> OS

161

uiX'•-.

XXUl

<

*LI"

+

t- 1— CO +* c 1-

LU Ul u. <

+ + o H-co CO CO *< < < > UJt- 1— 1- 1- +* * * —

t

COo S n <3 a eg CO 3 CM+ lf> + CJ + eg o ** eg 1—

V> CM —

^

in CM CO CM N • CJ t in ¥1 < •T* 1 CO < CA eg —

*

^V '5 CO <T- T» o> -r r- oui i

LU i r— ii" r— CO *— r— cs *^ r*- \i *-* »—

*"^ TCO * -y

,-.-i T Ul + 2J CM 1 * CM 'i' •*.• eg > X CM '3 ~*I 1 CM

t CJ uJ r- u> 'U T CJ LU in Cf* LU CJ CM CD IJ ^-< UJ Cft in CD eg i LU Ul <

T + X -r co ~T S •o + X • CO ~~* P) + • r- O \ *\ UJ X CM in eg '3 LU 0* ~« 1—

3 H h- —- "j PI 1* 00 I— 1— -r Cf» CO -* h- 10 <g -I eg *S\ 1- X 1— 'D in CM '3 ^* 'T. -« +s * 3 3 CO s :o * r- in ID '"0 * 00 • * eg *» 1— •o "•J eg eg CD r- <* o•x> m 3 • h- -.J 00 3 n 3 vo T CJ CM m T IS. uj eg >n u. '3 CJ eg '3 eg '3 CS uo +r- + •3 . •Tv . •^ • 3 + S • <i) • —

<

r- + eg eg a** ^H »i '<-• LU QTl •3 eg eg CO • '3 1-• cc J" •3 CJ n s ^4 • 0E 10 "3 -^ 0* • • X in *r •—

t

X M i£ >fi t- 3 • eg eg • • -r . +-< n CJ "3 T i • 1

<

II CJ IS i rw i 'D ii CM 1 io II S£ >j 'X UO i-H • • i >o l -< «II eg CT» 'O II ii ii II II '3 •T. r*. ii ii n II eg CT> n ii eg II 21 Ml _l II II ii ii ii II ii II +uj s x\ r ^j u n LU S s\ X « CJ i—

I

eg X M-l eg (rt 0j£ •- ~l eg s\ X pq CJ i-4 LU u. IJ cc•3 O »— •3 o 1— eg O 8 •> x> 1> CJ ii u. II— — «* 1— ~* H —

i

,T1 1— *y _J Ml '•i

i/i _ U. "1 o u. ul o m >A LU <=> U. •X — U. •—

ii 'J -^ -^ J —

L3 ^£ 'j£ <JL xUl U.

- LU -

CJ »—i 1>

eg eg eg eg egt W) 'D r-- ao>3 3 eg eg eg 3its rr. ij. .js ij* 'T< CA

eg 3 3 3 3 eg eg eg 3 3 3 3 3 3 3 3 >3 eg 3 3 3 eg 3 3 3 eg eg eg eg eg >3 3 3 3rr, ig _i CM CO t ID '-O N CO >T> '3 •< CM CD ^r V.i 'O V- >'£> <?• >3 — CJ CO f UO 'O N OT 'T* 3 -^ CJ

.h ^ ,4 ^ ^ M ^ ^ ^ ^ r,| nj (\j fj i^.j r-.j rij r-.j r,j (^j iyj f»j,-.-, co |iri ro (») iv> >ro >?0 T ^f ^1"

ijs iji rjs i?. >js iirs iJn >T< CT> >T* "T" 'T- 'T- >T* iT> 'T» iji rr> ijs ijs ijs ij1. ijv ijs ijs i_t\•T> 'T. CT" 'T- >T> T.

162

ilf

CM_l\x>

-

LEI

LU

UJ

o1— o* ou. CM >:-.j 0»J

+ XI is T* in —i * 1^- vH 'lj •»—

<

T CO co |S- »-»1 1

t-H —

i

in 1 s 1 iO 1 CO —<; -^

i i i UJ UJ CO 1 I i UJ •^-« UJ •^h UJ 1 1— u. UJ LU UJ LU |S- CO 1 UJ UJ UJ iT.i m l OS UJ UJ

• '_' CD ~r in r- T 'iJ a> UJ IS in m C9 UJ ^H UJ CO r-- i-UJ C9 .'I CM •o CD CO CM Cfs CM —

«

r-- CD -r T CD CD CM Ij-j

+ > iT- CM ~* in 1- in m IS 00 00 n i-'-t ^h IV CO -1- iT. iJS

co a. '0 ,-^i CO co 00 s CO CO (S- to ^- 00 —< CM CO co cs -.

\ _i CO 'O JS CO CO CM <o CO CD 'O 00 ^-t 00 -r kO CD CM co r--

\- •n 'X CO -—

«

CO CM in CM OS ^r in <} 00 CD CO 00 CO CO 'jj •^ IS.

r- CO f • ~ /^ X OS 00 T bo •s '£> •» T-. CM OS —1 —

^

in 00 'jj CM -^-» CO ITi

csj i—

v-4 A > 3 I— Oft CO <s -r <o CO T 00 <Xi r-- 00 CM T •r-4 fl- in CO >o -.

u 1 UJ i i T <i> Si ^. CO ii" co Cm _*• -^ u 1 *^i '-0 0u r^> C«i "/•i CO —

^

'"• :-^

00 en r- UJ lU CsJ T 3 UJ •^. 3E ^ CO Pi O —

<

cs •s r-- f >".J CM -H CO CO Gf*1- ^ <s

CM (S- -* * kfl •o O in LU • OS r<-, IS- • IS • T • •JJ CO • CO • Os • —*

«H u ao 'D in IS. 1— •••J »j UJ *-H m X CO • • • v^ • ^-1 • CO • • 00 • —

«

• ^H • COT CM cm CO -.J J- * CO £ >—

i

X in »- 1 CM -* OS 1r—| 1

^-<1 CM CM 1 OS i CO 1

—• 1

in n —

<

CO 'D sfl O in —- 1— UJ sy II II ii II 11 II II II II II II II II ii II II II II

"J CO s 25 co OS + — 'ft h- CO pq CD S*i y^. r\ /-: J«W /^. ^•%. /*K /-* •^ y^. /-< .«. ^% /->. /-». /^. >^3 r- O s • 'D • t- —

<

j UJ X ~ 0£ • ~^ CM co T in —

CM CO rt in —

CM CO T in —

H

CJ 00—

.

• • (9 CM • T * •S F Q. \- IJQ /-\ UJ '3 COm IT) 1 • 1

—1 « • -/ CE in N 11 in —

*

-»—i ~. •—

1

t—

CM CM CM CM CM c"-| pi) CO CO CO fl- 1- 1-

0* II II n II II II + II ~z_ 3 _l x \j» ii 3 j "w» •-w- w* ^-/ •w- •-.• -.• \^ •-/ v J ^ J •_' w- ^-x ••_•• •_••

ac m a R ^J U. X £ K u _i a z r Q. s/ n pq n pq Mj Cm M M pq pq 0Q m n pq Pm pq IJQ CmO II *> _' * a ^ £ a.—

'rt 'jl 1— c _i i- s i- OO •— 3 UJ C5 UJ r a. »—

1

cc 'j u.i_J I> s ui

UJ CMCJ o n — *—

i

~^

s s eg COm 'o

-t -r t t>3i S 19 O 8 19 9 'S O '3 CO CO CO CO CO CO CO CD 'Si

r- go 0" o -• cm co -r m 'O r- co os >3 «h c-.j >r* -r v>*r t ^r m in in uo in in in m in uo to u) <o '-o 'o so

(9 CO '3 CO 'X' CD >Xi

<D IN- CO OS "S -< CJso 'O so so r- iv ^-

'Si 'X> 'Xi 'X* 'X1 'Xi 'X1 'X>

-t in 'o N co os o »<

r_ r-^ r- is. iv iv co coOS OS >T> <T* 0> 'T» 'J> OS >T> OS OS •> it, .x. C/s ij-. 'J* os '7> CIS as o1

- OS OS <?< OS O- 'js 'T> OS 'Js OS OS "js <r. <?, <j\ (j\ cj\

163

is. ,'-i CO,••-1 CM CO 00

T *4 —

i

<

I- OS •<r 00 — T » ca —i 00 ca ^^ in OS -^^ -^ r-i

1

1

LUS i in i

LU rvj i

1

LU i

1

LUi

LUkO

i

i

LU

-^1

LU

'Li

1

1

LU 1

1

LU

IS.

1

1

LU i

1

LU i

1

LU i

1

LUin 1

LUCM

1

-L, <* 1 f i 10 i LJ m LU CM 00 LU "* LU in LU -•-4 LU 00 LU -t LU 1- LU 'O LU .--ii 00 CO in LU

r- —

«

111 '•J LU -2) LU "•J rs. cr. '-'•J in kO ca 'O CM IS. os in 00 -«—

CM •T. S kO 'O CM OS r- —

LU CO 'Jj in CO -*

Ifj CO Oh 3 i'"- 00 00 m —

1

<r |S- CO ON -r 3 fs. Oi 'i' OS CO -4 «li".' f- OS 00 'D CM •o ^ in CM CO >J

<-<'"•J TO n •3 'j3 kO in -t T CO kO co ca T IS. T 69 CM in IS. T ca 00 0* ^H IS. CM ca '"•"> OS r-- k0 00 ON •3

in r S co IV 3 00 in is. kO 00 co co co in in in •* IS. CM '•J in o» OS 'L' OS -*~* r- -r T m 03 CO IS. ON C-.J

in j- '0 00 j- 09 in 19 3 is. in (9 in IS. t ON 00 <3 ca in IS. in in IS. ^^ T CO in ^H kO 00 ~* ca -^^ 00 'D in« •'0 00 •o in in r-- eg 00 CO OS m in X) co CM '£i OJ r- — CO |S- kO .•* T in IS. ^H CO 0» CO CO *T |S- m T

T in t is. CO is. 00 r4 00 CO CO (S- 3 -* "j ON CM IS. ca 'Li 'jj -r >JN CO 00 r-- 10 IS. 'D Csj r- CM r-- IS. m in CO>?• id 'O QO u> 00 ^r (3 ON is- '£> op in go go •:o in •* -* 00 —

^

n OS CM 3 C-i OS (S. kfl 00 o » 3 f-- :: CO IS.

. . V.' JJ i ^- ~m '•if !•• p* j «i 3 ••i ^j --^ ». *5 "j U .' w •-0 ^ r^- j' j"* ^ GO •j • ^^ u i - •-W M .'_» •jj ii~ •7' *i"

3 T r-- 00 G9 s —

• is. CM T n —« OS k0 CO .^ OS 00 3 •>j OS *^ CO IS. •~* OS i-.-i 09 30 *-* CM • CM CJ IS.

in m •3 • —

.

• "•J 13 CM CNJ • ^H • •3 • 00 • -1—

«

• ca • 00 • CO • * • r-- • 'O • fH • CO *r CO '». —

• —~ • CM • LU i---i . —« • ^^ • '"J • — • •—

<

• * • CM • CM • ^H • —4 m -r • CO CO • • •

CO 1 T 1 *i 1—

«

I 1 ^4 1 is. i-~*

1 CM 1 CM 1 T 1--^

1 OS 1 CM 1—I

1 -t I C.J 1 1i-*

1 C>J

II II II II II II II h- II 11 II ii ii II II II II II II II II ii II II II ii II ii II II n II II II it II II

,-.. /\ y^ yV. y^. y^. y^. •3 ys y^i y^i y^L y^ y^. y"v y% y-< •% •^ ,-*. s>. s^. y*v y^ XV /^ y^ s\ y\ y>. y^. y^ y^v ca y^. y^. yv yv* in *-• CM 00 T in '-•J 09 — CM CO •* in —

'

'-.J P) T « ^* CM CO T in vH CM CO -r u-i ^H CM CO 1- m CM ^-1 CM CO T*r T in IT) m in j- a in «»* ~* ^ —

1

— '"•j CM CM CM CSJ CO m-i C") CO CO * -r T T *r in in in in in o 1-4 t—

»

w—t ^-,

w' w- •-• _-• •.• N^ \s —

—-• "•-' w- '•w' \^" >w^ •w' w v* ••^ \s -w" >• >^ 'w* '•^ ^* v>" •%• ••^ •w' •-.- ^ ^-* ^rf• •y ••^y -•

Cm Cm m « m m moi—o'J

V

LL.

co a n Cm m Cm m m Cm UM pq PQ LM LM LM LM LM Cm CM Cm m Cm Cm Cm «o1-

Q

Cm Cm Cm Cm

3 3 3 3 3cm CO -r in voCO CO ^ 00 COX. .T- 'T- 'X- OS

3 3 3 3 3 3CO <T> 3 »* CM COCO '33 OS OS ON O*.

ON 0*> 'JN ir. 'T* OS

ca 3 ca 3 3 ca3 3 (9 O 3 3 (5 -h CM CO -1- in-r in 'o r-- co or* ca ca ca ca ca caON <?• <T- CT. ON '3N >2i 3 'Si 3 C3 3ON ON ON ^ ON 'X ~* -* •-H ^4 -- ^H

3 3 3 3 3 3 3 3 3 3 3 3 3 3 CD'o is. oci O1

" ca ** cm co t in ko r- co os ca3 Ca 3 3 *~* *-* *"• *~^ i~* ^^ **^ "H ^-» i-H CM3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

164

U-

OtX\X>1-

«

LUt-X

LU-I

oou-<

CO

LLo

t o.j oo co 'O uo r- co -• iii i oi i in i co f uo i uo i /) i oo i oo oo or- i

LU LUILUILUIIILUILUILUILUIIILU ll.

'.""I 'DO LU 'T> til GO 111 LU 111 '-O LU 00 111 00 Ul CO UJ UJ 111 0/* *00 'o cr» oo r^ <o —. -. ^ w 0"> -• >?• co *r CO CD >T> CM t ^ .~.

'.0 'O -* uo rv 'O o co r-w co r^- uo on co r^ r-.j cr. cm <o co r- •-»

— T- T '30 0* '3 IT' T 'T> 'O >T» CD 01 '00 0\1 T >T- <T> ** CD 'T.

* uo -r cj >oo -• <z> -+ — ~* cd r^- -• no co oo co >ro -* .-.j .3 -•

•T> -T CO CO I/O '7) P-- — CM UO CO 1- CD CM Is- *-« ^T -* CD 1^- CO w

r-. >oo -< no '00 co co co cm co cm 10 if) co n- u) -* o* cr» r-- nco -oo o rv- cm cm or. r- <o r- -t t 'oo >t> >t> i^ id cm co o* .-h +T — CD CM CO CD UO 'T« CD 'JO CM S (9 0*» CO CM UO r^ r- 00 >! <^

C-j « CM 00 CO '.

-,j i/0 «-w uO --j ~^ 'jt/ C'j CO '^/ w Cu CO *# v 1 u# iiO ^-»

*r CM N O* 1^- UO '.JO ' JJ T CO -* UO <?< C-J N N - i.M IO -^ CO. —* • i}\ . O • iT- • '00 • UO • '00 • '2D • 'T» "00 • >_J 'X

CO • CO • -* • CJ • f • «h . -* .00 • 'T> • — • CO h - ||

I -• I — I UO I — I CO I CM I T I ~ I 'JO I -* I I/O I ~.

II II II II II II II II II II II II II II II II II II II II II — - —

.- .—. AAAA/%AAAA/\AA f\ '~*. /~\ /-^ /">i f\ f\ Q II II~--^ *?

UO -< CM CO T UO — CM CO T UO -< 0»J CO rf UO -~ C\J '00 -* I/O I- •-> ^ OC»...»...•..••..»...»... I—-< CM C'J CM '"'J 'M CO CO '00 "00 CO T rr rj- rr *r UO UO UO UO UO -^ Qi ;<^- w- w ^- --^- •-• vy %• ^ s^» -^ w- ••-' v->' \^ -w ^ w- •-' nc %y || O LU

ou.

<

CJXi1=1

ou

'X ix+ .•-•. LU3 3 X& Urn p—

s £ .•-.

o O LU ^ru <J X *—i »

UOII

i£ 1— UOLU -

o 3 i— i=i OO CQi— •»-• i > LU X -

1 £ LL. 1— iC* '-^H i—

»

o •j- X UO-• II II u —

«

3 _l X -^

h—

*

i: >—i i_t Xi O X1— h- 1—

1

'J CJ 1—

1

X QC ";.;- T 1— _l 1— XLU O LU LU X LL, >-•

X LL. J—3OO - 00 -

Lj O i=t

S C9 O C9 <9 09 O C9 >S C9 C9 C9 <9 (9 © O C9 <9 CS> C9 OP O CD-< cm |V* t uo 'O r>w 'X' o*> o »- oj co ^r uo uo I

s- oo cr« o ^ cm oo

CM r 'J CM CM CO CM C'J CM CW '00 CO CO CO CO '00 CO CO CO' CO "* *O '3 S O O '2) CO O '3 'S O '3) C9

'3 '3 '3 '3 '3 O '3 >S C9 '3 '3 "3 '3 '3 C3 'S1- UO >0 N OO '0^ '3 •*-< CM CO M" UO >Q V- >00 'T-

+ t t t t * W 111 Ifi IT) UO UO UO UO UO UOO 19 (9 '3 CO S 19 '3> (9 '3 'S © >9 (9 C9 CD '3 CD CD CD '5 C9 '3 '3 19 '3

165

in3 rr. ,T>

OJ >?> 0*J -<

r-- co oj —3 3 -* CM

LUz

s0*LUN '3 SII || ^ vX '3 /"•

eg a.h- egr •-« u_^ j^ i-i

<

« 3xseg(9

•x

oj en —w w ||

x x -•

O

3 3 3 3 3 3 3 3s — cm en t m 'i) n'xi '-XJ Xi '£> 'X> 'X> '£> Xi

3 3 3 3 3 3 3 3

3

00 -«

O II

I- — 3I 3

*-* 3II ~-«

XL -Z

333

COi^-

CM COin -*•

m 'T>

'"0 ~*

en eg — in GO r--

3 3. 3

ID •

I I

II II

I

UJIN. CM

i r-lu o.j

k cmo>j r*-

00 'O

•6 is.

• en•* i

n ii

LP -^ CM * COr-.j _ | _ .^ ^

II II II

'. /-\ .-^ .--*. .-^ f\ /-: /^. f\ .--^. ^"-. S\ S"s.

•h -* 0'j co •* ~* o>j co ^ -^ c\j co "*• —

<

II

3

•X> 00 CM X>

•* ~ cm

#

Mi

+

COo x\— —• ii

U0 I -~- in

O II II -' —> oI- •"> ^ X h-

^« *« *« «« cm i-.j (y cj i-o ro « i?1) t t rr ^ m m m iii w ^^ •-/ •w' W S \S -S \S wp

Srf» j' Srf' •-/ •w' \.' W '•^' •- -' -,|| O LU i-i ||

X O «Ul 'J D^: ii /)

3 3 3 '3 3 3 3 3 3 3CO 'T. 3 *-

OJ CO T IP 'X> r-'O >o N r- r-- is. r- in. r-- r-3 3 '3 '3 3 3 3 3 3 3

3 3 '3 3 3 3 '3 i3 '3 3 3 3 3 3co o* 3 — cm co rr m uj is. co on 13 ^is. is. co co oo co co co co co co co it- on>3 3 3 3 3 3 13 '3 3 3 3 3 3 3

QL 2C LUo LU au. ^ u.

3 '3 3 3 3 '3 3CM C«J T LO '£• is. CO'X. iT. 'T. 'J. iT, >T> >3 3 3 3 3 3 3

166

_l\

n

lk:

LlI

LU

OCJUJ

XCO

a:ou.

x< <

ii X 1- 1-

< * *1— '_' y-. .--^.

* >-^ *T C") i—

i

CO H-

1

.-"\ Li. o T in 'jj IS ~« _' <o CO 00 ^ \J•—I •3 .--\ >—i ir> CD ^-»

1 —

1 X Tt CT» 1—

«

1 Xs • 3 CJ CJ '0 "0 00 LU i LU + r-- -r LU ^H LU r- +x o t LU -* •'r

' CO m to LU 'J 3 CT- 09 00 *—

1

1•^ ^-« 3

T s G u_ — *-• •^ C*i Gu r*. •j« 3 f <— ^i itj ±.> UJ il» ss s 'j >J0 |S- •3 ^4 CO •:o r-- Oh LO '3 ON 'T. ^-« UJ3 ^-t *> z 00 —I IS '"•J T Qh u -r IS '3 r-- '3 :o '"•J l_l

s \ O LU •^t LU CM eg •D CM Qh CM a. -~* cs C9 s CM i- •J>"'

W+ 3 X I 'D 63 ca • S • 'Jj u IS '3 63 • LO • '£> IS. oJZ (9 I— t- LU 1— • • 'Z> IV- • CM ii • • o CO • -~* • II

ii 3 CO -~*i m 1 CJ 1 o 3 -^

1 • 1'T.

1'Ts O 3

.

s <•-• ft. UJ X K '3 II n II ii II ii 1— *-* 2 ii II II II II ii II f- —

<

£1 s ^ .• (— « •D •% UJ • x\ •% ^v y< y^v /% 1 O ^v y^. /-s XV /^ /^. ^V

1— 3 II 3 c ii r*. N s — CJ CO I- W 'O f-# 1—

'j 1— ^ '-J CO « ITi 'D r- »-h (—

*

l_l

II —4 >—

1

3 'j _J X 3 v II o %*/ V •w' w V v IJ II •i. 1—

»

»—

«

V •w' w- •w' w' •j ^II II 2. -•

-Z1—XUJz

£o'J

oyUJ1X1

XIto -

oCO

m- CO -

_>

_l

a.—

i

I—u.O

o

a.CJ

CE

Q

xi—x

a.

u.

X X X X 'X X t—t

oLL.

^c CJ1—

LU

XLU

3CO

X X X 'X X X X

Oli.

'zL oXUJ LU

_'

CO

3 63 CO 63 3 63 '3 "3) '5 '3 '3 '3 '3 '3 '3 'S '3 'S '3 '3 '3 '23 '3 '3 '3 '3 '3 63 63 63 63 63 '3 '3 63 63 '3 © 63,t. S -« CM CO •* LO I jD h- 'X> 'T> '3 -< C>J 00 V) CO IN. 00 >T- 63 -^ CJ 00 T LO CO N 00 CT> 63 -• CJ CO 'T LO CO Is-.^. 60 '3 'S '3 '3 '3 '3 O 'S 'S> -^ — *+ ** ~* -+ •-• —« ^ •-• CJ CJ CJ CM CJ CJ CM CM CJ CJ CO CO CO CO CO CO CO CO

167

I\->t-pq

UJi-(j)

aU.

>1-

i=i j£, ID

O I— CO lT» I lO «—• »• 03 -i »h t *h_> * cm r-- wnujnn i i i i i uj i

--v i.OI Xl I 'X> *h I UJ UJ UJ UJ UJ -h LU

_| © its t-i its p-_ ui 03 '-JJ Ul CM 'Xi UJ ID 05 Oh '*' 'O •?• CT>

3 'DO w ID 'T> CO IT' 'Xi Oh 01 CO 0"- CM '.'0 -f ID T "* 'X> »h

e '-d i- id -r r- en © 'x> ^ o xi s go cm >s> r-- cm •* y) 03 cr» c* ®ct ~> -* o »« «• -4 + o + in iii t in >m in r- « r- y) cm <S go <t> cm tUl h CO^S •* I I '33 • CS I

s- O ^JJ CO ^ »« IO ^ •* ID 'X) CO »* ID CM CMX v § 03 03 C£ i uj uj »-i/ '3 iD i-j Ci ^ C*> w Cu CM '3 ~^ *^ :X» ^^ :-jj iij uj 0~"

s>. t— /">> -X Oh CO CO O 111 •* •»* 03 Q ID 'X> C2i -T "T CS CM >T» '3 CO ID U"J CM 1^- —• CO rv-

£ T Ul * 'Ti o q id i.|) n ** Q P- Ch 09 •* »* 03 CM C9 ^" • CM • • • r»-

ft ui w* » lOOSS^^C) >»"i »h • (9 • • O • • «« (9 • »* • "I- CO CM CM •

,» x ID I— 0* ~* O '3 'X> • CO N. it \ 05 • I t I CM I • 'X> I CO I I I I-~

«i h HJv • iS> O • • ID II O II II II II II II II II II II II II II II II II II

m. if} |2Q o <7^ * I N I *^ O CD CD ^v y\ s\ s\ ^s ^. ^* ^"s x\ .-^ .^. •*. ^-^. .--^ ^^. ^-^. ^\i— uj 'X - ck . it ii ii ii ii ii ii i— -+ is C9 — cm 0") -<r "* cj co -t ~* cm >ro -t ^ cm co * ~*

h- a) '^ LU '3 O '^ ^ '^ A A A '">I O <r4 i»»»«i»«w»«»»»»k«k»»«w«i

O. 'I NN I lO^MCO^IDUNvM^ in i— ^ -^ -^h -h CM CM 0-i CM CO CO CO CO 1" rf T 'T ID^ _| X w || © || W W -• ^ w •- -^ || || IJlM^H w w- W -~' V V -^ .^ •-_.• :^ \J :j :j :^ ^ V -.w-

mi 3 o I i o a i i i i i cc i « ^ x iixnnAAflflMHflaAAflnflneaij o *-• <9 o_ I— s ui

i— i i— xc i— -^^ oi x •> nI O. •-• 'I '.0 U. O Ul Ml Z)

M O O O £ ^ »-" U. 2 ii «GO — _ —

S 'S O '3 SSSSOS9SSS GO (9 '3 >S> '3 C3 'S O C9 O (S C9 CO '3 C9 '3 '3 G9 C9 '3 C9 '3 'S> "3 '3CO ijs O -< CM CO -T ID '£" is- CO 0"» iS -^ CM CO T ID 'D r- 00 Oh C9 «i CM O -t If) 'O f^- CO 'T* 3 «<• CM CO T UT' MJnntttttiftTtTifiinifiinyimifi u"j u

_j ut >-o 'O '£> iu <o <o >o 'O 'Xi U) r-- n n n n r. r-^

168

Cm

M4

X

.0

o

u. ii •XH : UJ rw CM 'O

T 'Xi •T> /^ 1— X ^H —< <t in 1 IV h-

1 1 I

—>

CJ COCO

CDCDinmin ID

i

UJUJr--

1

UJi r--

LU 1

LU LU UJ •—I >—

•—1 'S in CM '"J iv CO CO CM 'jj r- T CM r^ luT t in •^ w Li. •T> 10 CM 'T, 'T. -^H 1- CO 00 >* i--| *-H •H COIV T j- pa X i—i ~r CJ in *t Lf< LP (S IS CO —4 'io in CO 03co r. *-• + + (9 CJ CJ <L< 0} in Q 1- —1 iv *-l •o CM k0 'U '^T — GO /s 9 • ^ LU -^ 'T- L0 CO 3 *r CO •H cs CO CO c-j CM Q"j i

y~ >j »-* 5 5 3 u. "J ."'j \i _*' w «-! •^*» 'Jfc- •i VJ •. u \t> "^'

CO T T ••w- a O » CO s~± —

F

CJ <S s eg (9 •3 (S oa r^ CO 'u co inT S '3 O ac -H 3 UI in UJ CM CO '3 (S '-j '3 IS (S '"0 • m i30

• • • 1— V4 ii Ml —

Q. 111 -< * X -r IS • • IS s • • • ^H --H -»—» •

in cm lO in | /x in \ CJ X r-- - • • 1 i • • 1 i—-*

1 1 i •«

ii ii II— •"> •-^ II S m. 1— LU V II II II it II II 11 ii ii II II ii ii

/% /-\ ••>. o II II v/ <-> o '3 S h- CO n cs s*. .•N y^ /^ s^ y^». /-\ /*. /^i /*. S\. /> x>

CJ CO * t- >-> <r i— —

.

<s S m LU <E t Q£ 0£ • -- •-•J CO *r LO *-H CM ,-.-. * m -— CM COt- i 3 ~* a. 1— CM /^v UJ UJ Q

in in m —O

-•/• •* "-• *—

1

Ml \S X_l

r<- NII

NII

ISn II

~H -»—

«—

»* ^« CM CM CM CM CM CO '30 '."O

-•ii uu ii it i.O '.'"I

sw^ '%*' \s V '•^ '•-' ''J

CO CO « —

IKO

U.i—

LU

c&o

1—X

II

«->

'/I

2a£

i=)TUI«CO —

aCO

nCO _

CJ_JXCJ

OI—*

I—0-o

X

i—

«

cj

Xh-X

cm

X

4=

*-

"i

Q

(X

u.

« Cm Cm Cm CM Cm CM PC| Cm CM (Q Cm Cm

S (9 S S S O S SIV CO >T» '3 •* '"•J CO Tt-. IV fv. -X» -Xi CO CO CO

O '3 <S '3 '3u-i 'u r-- co <T>

'X' CO 03 CO CO CT

'3 S '3 3 '3 3 '3 '3 9 '3 '3 IS '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 '3 >3 33 «i CM CO -t LO '£> IV CO 'T> 3 -« CM CO 1" LO '-0 T- '35 'T^ >3 »h CM CO * LO

ij\ it. ijs ij'i yj: i?i ij* ij\ ij^. o iSi o >3 '3 "3 >3 3 3 '3 '-i »-<-< -^-i ^-< •^-i

^ ^ ^ ^, ^ ^ ^h -< -* C.J CM CJ CJ CJ 0>J CJ CM CJ CJ CJ CJ CJ CJ CJ CJ

169

co U0 in h- GO •T>'-•j

'"••J—

*

^ H in «-• 10 ^^ C* --^ 00 ^^ S i£l

o>j I 'M <—

i 1 LU 1 LU i UJ 1 LU 1 LU 1 LU 1 U.•3 'T> cs ~-«

i LU LU CM LU 0-J LU •H LU r-- LU '"•J LU CO LU *r- 00 —

^

ON 1—

i LU ON 1- CM 10 in —

09 Cw P) '•£> * 00 eg OA X^i ii 00i 1 1 1 LU 1 LU 00 00 in CM T to T in 00 <^-t <T> (S. ^^ 00 m •-) < '£>

1

in -J LU -U |N- LU '"J —

»

s *—

i

T 00 -t n 00 Ch •^-« 00 U) 00 in 'T. •v 1- O.J CO LUr-- T '0 CM ,-, 'jj T in fs- CT* Cg * CM 00 is- 00 •^ *r 00 10 'jj N l—

* eg CM CM —

<

CO0-J v T> —

4

m in -r CM 'jj rv- '0 *r -r r*. 'T. CM 0> ffi r>- in r- ^4 w' s\ jj CM » CM U"

r- ••J ON VI -j •4 CM <^> V) 00 ,--.r>- ~* '£> CM in —

<

jj N 'Tn -r kO m >—

<

00 'jj f—

i

<~> 'T.

T r- S 9 co t ~^ «-• —

«

-r 03 00 *0 r^- -T eg vo rw P) •D 00 cn + ••j- oj ^ eg >T- r>-

<0 69 pj -j <-p 'ij <o 69 00 M" « S> CM CM r- 'jj U3 •T. ^—

«

CO ^- iT> '->•. 'X ^H in cr» CM 5"Cm U*J> •7' u • »j. 00 K'f in CM p* 55 CM •^^ r^- !*- u~ '-^ T _*/ •»-* -*' v»T '"•J D © ~— 1—

«

GO in 00 O ~« P) IS 00 T is- s CM r>- G3 oo CM -• £ 3 ** rw eg •^i

m — • j" • ,--1 • 7- • — • ,-.-, • 00 • f • o • »* • in o •r > s\ LU !- 09 eg •

~

• in • OJ • P) m in • 'T. • CM • 00 • in • --« • CM • I— —* n •A t X T eg eg —1

1—

i 01 i m 1—

i

i -r 1 o 1 m 1 r>- i hw i**

1—i rw 1 /> m Q. m. h- • • • 1

'1 II ii II ii ii II II ii II II II II ii II ii ii II ii II II ii —> «-7» i-^ O 'O II n ii II

•^ •^ s\ y. y^w /^ ^ v^ ^v •^ s-\ >^. /*. ,--v ^n /^. xn f\ >^ XN y^. /** o II II \-e" •-> o II •^s O /^. /^. >^ •*N

-T in •** CM ,-•", <*• in "* '^•J m T in ^* 'M 00 •* in —

+

j PJ T in i- •-> -i. •XH

i—1 •->

OfLU 03

~H CJ 00 -r

r- pj *r T T m- •* m in m in m '£> 10 10 <i> UJ r-- i>- IN- |S- r^ •H ll: X ^^ •—

1

/I »— rj in ^^ ^-t —

^

i—i

^ ^z •w- •^ ^^ ^• ••s •w* ^ -/ w ^ -^ -• \s •^ \rf* ••*?• ••-/ >^ ^• V II o LU •—

i

ii II a •—

i

*—*ii -r^ \^ •%.' w- "w"

« « £Q » -u » m m A jj MJ « iC, n 0) pq PQ UJ U4 pq PQ »

O

U.1—

LU

4

o

u. c_»

i—

LU

LUpq

i

Mi

a.pq pq PQ ff!

2H OT* *^ »—

09 S 69 '3 '3 O S C2 i3 C3 O O >3 69 69 O '3 69 69'O r- co 'T- o — oj oo f in u> r-- >» >t- o -^ cm CO *_«*«*«* (M CM ^J (M CM CM CM CM CM CM CO 00 00 CO CO

CM O.J CM CM C-J CM O.J CM C\J CM CM CM CM CM CM CM CM Cd CM

69 CD CS 69 69 69 69 69 '3 '3 '3 69 C3 69 '3 '3 CD '3 '3 CSin '£> r-- co ca 69 ~+ oj co * in 'O r^ 'jo ca & <-« o-j co •*CO 00 00 00 CO "* * -^ •* -f ^J" T T •* * OT ll") IT" IjT' mCJ OJ OJ 0.J 0>J CM CM O-J Od >>J I'M OJ O.J CM CM CM 0-J 0-J Od CM

170

'"•J CM kO u.uo N ~- ~< -* CJ UO 00 ~* Qh ~* * * t-4

00 1 i s vo 8 1 'X. — I to ^* in —

<

*

i •50 —

«

"•J s-. y (-•- -^ uo"•J LU w —

1 «< OJ 1 i LU -~Hi—

I I LU —

*

1 i -> cr> ^- 11-

%

<ZJ CT\ "£> 1 LU 00 1 in LU LU 00 1 LU i LU lU OJ i LU LJ m, h- ^H i LU CJM yj —

-J <£ 1 Ld 0% -r ~4 T. LU 00 LU is- 00 09 LU 'O r- 1—

4

* -T 00 '"'•J LU 'T. COT T -* *r IS. LU m C\J S -* 0> 'JO —

<

'ij is- 'jj f-- ON Q C3 '•^' .•N 09 '£ 03 n in 'jj IS.

oo — '•J 0/> CM CM in 09 |\- ff> -—

*

00 '£) -i—i <D |S- « IS- 'T» « H-

1

'Zi —i r-- >jj i-- ~H CO3 -r *r T *r in is- 'O uo 'lO 03 »-* ~-* 00 s *T in 09 C' C>J + W -r 'jj m CM iT> 'jj uo•-•-> 00 — <o — 00 |N- ,-.-i 0> '•JO in 'J 8 m pj •D * m in |S- <^ r in 'jj •- ff» •3 •jj OJ03 3 nv CO us ~Zs *^> CO •j C«i ^j u0 -J. u" V • jj mi U .' "•i Ou -j F^ "T* 41 •i 'Z> CO •70 *-• '-V

o w uo !- s —

«

00 —

«

r^, ro in IS. in Ps. 10 <T> ~H on 03 T '•-^ £ ^^ 09 <s --H |S- 'jj '3D • • 8 T in © • • • • CO o* • CM • • 03 • '?0 o r ^ /s • in 09 00 • -H '£>

• 001 1 1 Mf J^ m >T.

•J1

CM1

001 i * *4

CM1

^-<1 1 IS- i -i-H Lfl

h-1

ii

^ a.in 00

1

031 O.J 1

'3

1

II II II II II ii II II il II ii II II II II II II n ii II --* •-) —

<

cj in II ii ll II ll II II

s\ .'s ^. /*> /-v. /-: ."V. •^ /-\ ^\ /^W S*i /^ •^. s-^ /•>* ^\ XN ^ y*. O II II'•.• •—

.

o ii •v^1 ^^ ^-s. ~. /"\ /-k ^v ^\•** C'i 00 rt •* OvJ n TT — 01 CO T — 0.J

,-.-1 •* " cm 00 *T 1— •^ — 'Xi-

1—1 5 LU

^^ CM CO T in ~ CJ

CM 0>J CM 'I 00 00 00 n -r T "<r "t in m uo UO 'JJ jj Id '•jO — Of X •*+ »—

'.n 1— r i 1—1 —

a

-* ^ -H CM CMw' -w' "w* •w' sy V •-.• •^ y '•*/ •w' •* •^ w •^ •w' •*s •-w' ••-• •^

II o LU i—

t

II ll Q —t 1—

t

ii'•^ ^_^ ••^ •^/ ••_." ••j •.•

ixi n « « PQ m « PQ pq pq M pq PQ pq pq m pq pq pq »

OU.

Ll.

»—

LULC'_'

Li.

-i- (J1-

LUIT

LU«if)

h-

'X

m pq PQ PQ m MJ rt

C9 S 8 8 '3 '3 '3 8 '3 'S '3 O '3 Q (S 8 8 8 Ca> '3 '3 '3 'S © 8 8 S '3 'S 8 8 CO S 8 8 '3 '3 © 'S»

UO •O rv- 'JO 'X '3 ~* 0>J CO rf UO >0 N CO 'T. 8 — CM CO T UO >Q r- <X> <T* >2 n* <>1 CO T UO 'D IV. CO "X '3 »-i O.J 00uo u~i uo uo uo mo '0 vo '-jO '-jo

' jo '-jo 'jo 'Xi 'iO r-- r- rs- rs. r^ r-- is- rs. is- rs- >oo <oo oo oo oo co oo co co co <t- >t> >t- <?•

CM i>J CJ OJ CO CM CM (SJ CM C\J OJ <>J CJ CM Cd C^J (M CM CM Od CM CJ OJ CM CM CM OJ O.J CM O.J CM O.J 0*J CJ OJ O-J CM O-J CJ

171

«

—I

pq

•_'

'-..

—I

I-

xuHTO

IXOLi.

to

LU

'X '-•J

.—<

ii IX_» 1-

IX £ IX C9TO 00 TO CM 'O © CM LO CM TO X' CM + ^ Q

1

- l-o1 i-< ^* ^n —i -* TO — ~^ ^* TO C«J .*. ii "I IX 19

r*-

i

-J

J'

*-*

1

in ivi

LUT

1

LU1 00

i

1

LU LU1

LU 1

I

LU1

LU1

LU 1

1

LU

>-) <(-

CO 1- IV00

- 'i> Ui 00 LU J- IV in UJ TO ^4 T LU T T rv LU T -• * 3 LU 19c* © '£i N j- CM TO iv ~+ T .--, -T '"•J ' u uo |V TO «9 ••.» ^-v -> TO00

~~Lfl to © iv ea TO TO IV 00 00 ••—

t

'-J CM TO IV ••J PQ i—

i

ui n wN 00 T co — m to cm ~4 -H —

1

(9 -T r- rf —

IV IV + v^- i—

j- :

«

— iv s CM CJ '? s <L> WD TO T ->—

t

cm © yo © '."'•J/^. CC •^ IX C9

~^ v ^^ C* X» u ^ •3 «> X> TO ••j 5 \'t V* "•i iV Cu w u~* ^-< -r VI «J Cm"•J — -r 9 W J- IV •j> IV Oh eg OS >-o T ^H ea T LO •-,• £ ^- 'X m 19—

»

9 >9 r- • CM • IV • TO • —

• CM • OS • O >r *> h- X m ^-4

• •^4 • • • «H • TO • TO • pH • 00 • * • CM 1- —

<

ii 0 n \- ^-H in *X) 1 in 1 -r 1 CM 1 '•J 1 *H 1 00 1

--*i in 1 in 1

/^ in Q. .Tl T f\ Ii"' 'T. HII II ii II II II II II II II II II II II II n ii II

•^ —

i

i—

i

U a. LU . LU <:} U">V

---s ,--. s*. >-s ~. ^"V .^ s^ /^ /N /^. /^ y^. /^ y\. /-S /-. s\ o II II w- *" o II ^, 1- 01 + OS CMen T m ~* CM TO f LO ~* CM .•"I T in —

*

CM CO Tj» in h- •-> ^ Xi—

i—1 #^ *^

LU IX 'X CD 'XI 'O

cm 1 •I--•

TO TO TO TO -r •* T •* -r in in in m « -^ tx- 2C <—

«

»—1 H| >rt •X 3 -^^ -1- i-H

•w' ^ ••.• w- 'w- ^w' %• •w- V \s wr _•• -w' •^ ^ •w- ^w' ^^ II O LU 1—

1

ii II 2. >-H XI _l O IX ^H *wU pq « pq rt m pq pq pq pq 0) LU Ui pq pq PQ pq LM i—i

IX

U. z1-

«

ui

Li Oh- iLtj O

CJ

i

CJ_l pq

o1—

1

1—

"i

1—,T1

IX

'ill

CMII

O lu a UJ LU X _i IX II II^-1

LU ^ IX n LU LU CJ O H- IX kM

TO — TO — — —

15 © >S >9 C9 O O '3 C9 <D '9 C9 O © © © © © © © © © © © © © © © © © © © © ••-• © © © © ©t m 'Xi r- to to © -h cm to rr in <o v-- co to © ^ cm to t \r> >o r- to to © — cm to i- in wo rv oo os © —

TO TO TO TO TO TO SOSSSSSSSSxHHHMHHmriH CM CM CM CM CM CM CJ u_ CJ CJ CJ CO TOCJ CM CM CJ CM CM CO CO CO TO TO CO CO TO TO TO TO CO CO CO TO CO CO CO CO TO CO TO CO CO TO TO TO v

- CO CO CO CO CO

172

3S'O-Tc-j

•D

iim

3ST.U)

CM

••j

_i*inco•Dco

+cm<

i-*

'O

•-•j r-.j

+ >L>

c-.j -«

< isI- 3\ '3•3 •

• +(S HCM *•.j -.£

CM CM CT>

< is- cm~. co coh- ^ 'O\ * .

-* < 0- -•

II

— — —

II

ID o— —

\ *0. CM* \o oft mii ii

,Tl ^— —

*oft*

If)

ftI

ft

*11

in ftft +k coo ftft I

is-

ft

CMI

.-\

U">

ftI

T|X|

+Oft

+Oft*xj«+'£>

ft

pq

*•if

ft+9-. ,3

* *CM OII ftr-- ii

— —

«

* \

ft *+ TUL -3* in

o in

COOS*—

CM«s

I

r-inininCO

\'jj

CM

•-•I

Jj V-ft ** CMr- inft Q* COCM -h

+ <sCO 3ft C3

I

'.>J -t-

ft -

+ ••.•

h-ft U+ _l'£> +ft -«

1 3w co* COjj inft CM+ •

u. I

O t—

T * 'JJv — n- _i* o in +in > m -^

co s CO i?>

*-« IS I" 'JL»

Q • C3 CT>

y) ~« . is-* II + COiD £ U. •

> » II II

II M S £.— o <-> *^

X /» '/i

3;- ij£ hh CO

1=)

LJ

3CO

3a•ii

a.

ft

CO

xxft

LU

ftLU—IOao

I

ft

CO

>I-

(0•_•

QCO

LUX

LU

•r_i

CJ_ir

U") -1- '30 CM CO »h -r CO COO ». CO "T (V 'f <?0 CM '-O CO '3 CO >?<

iri >x» oj -x» r^ >t- >o -r •» r-- >io colu ^' m ko cm 'o »h in r- in oj >>j 'T-

co m —

i

rv- in co -3 co cm -*- -3 •o co•x •>• co r

%- 3 cs u~> <>i • ~* • f* h-CO'^. *-i «4 «-• is • • i "i ••

-T <3 '3 3 • II II II II II II II

Z •-' Q 3 • • •! '-- -^ ••-•• " -~. -• <-

•3 OC II II II II II II 3 *- CJ CO * O hi-. -. i-.j /-.. ,^. .-s .--. »•...,..»— X 2 3 3 *^ CM CO 3 3 3 '3 '3 «h --h

i. " 3 3 w -w- -' -w --j- •_• •_' ••-• -^ •-' w-

O i—( CO CO I I I I ft ft w W w w *

3 3 3 S 3 '3 3 3 3 3 3 3 3 3 3 3 3 «-> 3 3 3 3 3 3 '3 3 3 3 3 3 '3 3 '3 3 3 '3 '3 3 3cm co *r in •o r^ co cr- 3 — cm co t io ^ n co hi cr* >3 —

«

cm co t in *o r<- co C- 3 *-• cm co -t u~) kd r^- co •?>

co ,;•-! en co co co co co -t -r *t -t * t -t t ^r « *t \r> u_j u

_j un in in m in in in <o 'O 10 'O 'jj 'O us uj 'jj 'jj

i"0 CO CO >"0 CO CO CO CO co co CO '"0 CO Cr> CO CO CO + CO CO CO CO CO CO CO CO CO '"0 <"1 ro ro CO CO CO '"i CO r CO CO

173

»-> s< eg.•-'. '£•

i

CO*

u COIX eg•\ COLL CM••_•

* COMH \'.. 'Oyy. t^-i eg

CMH-\ O.J

'_' *^ 1- Q< •w- eg^. + '3

->. 1— .-»> egQ. \ ^> Q

u> s •J X. eg—

i- CO 1- 1—

<

^—

i

1- ^/ •-' \CO M 00 # uj .-v

rs- >A eg s*-. + jCM <v CO -JL.

-^-» O.J £CO Cw j z* U .' + •^ C'j w e •*i ^ 3

'X- >T> x> fl in CM ."•"I eg cr. in T- CO r- CM Cf- 00 ex. • 'X 3 3 '.'".'

.--,IT* CO in m IO IS. iv- ON in t 'u 0> —i U) 00 t in CO P) '•O CO in • Vrf' rr, + CO o O'ji *

\n •"•J pj pj •o -r T r-- .—

in PJ 09 CM —

i

'D eg in CM T co CO •T. CM T—

3 * f* \ 1— It ij

pj w4 in s "O CJN CM <o CK r- is- T CM *—

<

eg is. rs- CM IP -r CM CJ eg \ >j 'O CO ^ J«W in C-.J (X'

-r •-1 CM '"0 co IT) r>- oj P>- eo 00 pj <:o in rv. <T. eg eg '£> 00 in on CM J**. >— v\ T 3 <J eg 3r- <x> eg —

4

N. cr> T s S CM o —i eg in 'D -r •^ kO T eg 0> eg eg CM CO j = & o CO h- o ii 3 — IX• •"j . • • CO • CT> • m CM • • eg • -~H eg ~* • ~* • • i:r' r>- 10 > s O.J 1— II \ f- -. CO V

i • i 1 . i > 1 • —

^

1 • i i • I • • • i • i i i '".i r-- 2 3 • •^H 1— 1— Q.ii ii it II ii ii II II 11 ii II II ii ii ii ii II n II ii II ii ii SL • • U. a CM 3 1

•yS eg Q£ 5C Xs\ r\ yx. y^. /-: /y. /^N. f\ /-s. •% /V. ss. .~. r\ yv. S-*. <*N ^\ yy. /^ A y^ /-: ^: is. rs. II \ II 3 "S^ ac n Q UJ *—

UJ>>i

-"T eg ~* CM CO rt CO — CM CO •» eg 1—

<

'-•J CO -r eg •" CM PJ 1-

'X> CO—

ii

O ii l/>

h-QCO

»—

t

LL =h-

*

w* —

~

— CM cm CM CM CM PJ CO CO CO pj m- T ** -r -r in in in in in y^ ii II= ce; Lt yc II Q£ X n

s \^ S^ •w' •-• ^w' ••.• •_•• •-/ •_• \s V <w» *.• ~- •'.• w w' w' *w^ \s ••^ •-I' II u L» 3 -.ii o LU a UJ II

-M PQ « m ja --i a n « « 0Q « m « « M m m w lij n UM U4 H- 1- ce: n LL. oj: u_ z _l u. ^ 3

D '3 CO 'D (9 CO IS co co (9 eg •3 eg CO eg eg eg eg eg eg eg eg ^D eg <ZJ eg eg eg "S eg 'Zl eg '3 eg (9 CO •3 3 egS ~- 0>J CO rr in Id rs. 00 C/> eg i—

CM pj -r in 'X' r- 00 •TS eg *-H CM pj T in 'D r--- CO a. 3 ^H O.J CO -r in 'jj r- COiv- N r- IS- fs. r-- r-- rv- r-- r-- 00 GO 00 03 00 00 00 00 00 •:o cr> OS 'T. CJN <T> CR 'J. •T. >T- (T> eg eg <Z> eg eg •3 eg eg es(0 CO CO (!) CO co co co pj co co .-'i CO <:-> CO CO PJ CO pj CO pj CO CO P) P) >:

r> '"•"I CO CO CO T T \t T •* T T T 1-

174

LU

3 Lt~ X

LU

E xLt'

m -;_

M H— —

B t y

X: u.~ >r

.-: u

i—»> •i3 LU

I

pq

CO

4

.

oLU CM inI—

i

-r 01>—

~H tCO •j — -

1 _• _^ H^UL UJ x luLU 3 X LU 1—

t— t— t— x x'X 1 i- Lt3 t» •3 3

it /\ s i-LU '/I 0. • 'X(— (— •— -* cox II V ii =

_i •'•«- 3 ^ ii

LtLUX

Lt.

LU

LU

i i

LU

LUCO

- i.LU3 CJ _J

n— CO

— CMD X3oj u.x ~ Li-

~

uL * o\s 3 Ow' «-> '-J

3 «>J TJ Xi.— X COn

II =

10 3 II

*> ^_J I. 4;

_J - aX fl _\

a. 3

5, Xf _*i LU# X3 ae,

•> LULL.

TJ 3

X LT>

x x oo

ooii =

3 II

i. 'ii

3CO

lu ac

3CO

LUA

XI— 1— t— 1— I

iZid »—* !—i t—

i

•X Lt CL Lt

++ '.0

K _l+ X+ 1—

* LU* s** CO* 1

+ o* 1—

<

* Lt+ X* 3>+•

* LL

* o+:+: s\

# Ll.

•+:

+: •

* H-fc U_# >

* Lt+ X*+ "">

* H-* n* •_•

+* 'j-

* h-+• 1—4

r- J>* 1—t

* 1-

* CJ* 3* 1=1

* x* o* CJ** _l* X+ y* Lt* LU* X* 1—

#* "T- ^+ :

** .-•.

* '3* *-H

+ W* id+ = X

it LL LL LL

CO — CO

3 3 3 3 3l^( ^-H *—| <-* t-4

T T -t T *r

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3T IT; '£> 1^- CO Cft 3 *h CM 00 -T Ift 'O r-- 03 T- 3 —

" CM 00 1" U0 'D r- CO 'T- '3h ^h<4 wh(\| o.j CM CM CM CM CM CM CM CM CO 00 00 00 00 00 00 00 00 00 -^r

rl"

LM

XI—

LUI—

LU_lLU

Lt

COCM

X

LU

X

1-

x

i Ct

CO

X3 3 •—

'

CM 00 Cli

t * LU

175

* -- oo 3 3 '0 I— 1- 1- .B 4—" 4-4)

* PQ "J CO Q OO ... 3 3 3

* X = O'j OJ : = z = r*i B B* h- B 3 3 k r- *T ^-< <

i .--V .-•

* • b .^ a •k ..^. CM CM ••J z r- 1-+• 3 h- .--\ .-.. h- z 3 3 B T U"J

* u. T 1- T rr B B B .---. w' •-'

* V. s^ in UO v ..^ ..-k ..^. -T PQ Mi>: CM PQj w- w- pq T rl- 1- liTi X Xf QPt X iXt PQ X m m lf' ^j- 1— K-* C") 1— X X I— •_•• w- •w- Mi B •B* : • •> i— 1— . a PQ PQ PQ X 3 =

* b 3 •k •> 3 X X X 1— CD rt* ••"v •3 3 3 'T- 1— 1— h- 4—4 OJ* f- CO t —

.

f'"l • B. B = 3 4—1

1 T 3 OJ CM 3 3 : 3 OO B 3

« w- b 3 3 •k o 'V ^H 1—

«

.•-k £ B* Mi ^ k •k .•^. OO OJ CM 3 X' jii

-•.

* 'X a .-•. .•^. '3 z 3 3 B -t B N* (— = -t r- r- ^1-

# B B B .^. ••-•• 3 -+

* a Li.-, T T •_•• .--. -k <«k r- Mi 5- •-••

* : PPJ-- •-•• ^m r-- r- r- -r X 1- pq

+ U. '-••J X PQ CQ X rT -3- tt •_ 1— i—

i

'X* r>- 1— X X 1— •_• •_• \^» PQ . B *;- i—* '"•J -t •i 1— 1— • •k PQ Mi PQ X 3 i—

i

B* •»-• —

i

= .w. • k 3 ; X X X 1— T 1- 3

* OJ = »1 3 3 OJ CM (— 1— 1— • 3 o 'T>

* 3 B 00 z m »-l T 3 O1- U"' ~l 4^4

¥ - -. 3 CO >j OJ 3 3 3 *^ 3 z 3 '"'*' 3 — Q 4—

|

* -\ in •k •4 3 3 •k CM •k CM CM 00 OJ -^ B 3 z 3

* X' rw ^•^ 3 •k •k .•^. • .^k. 3 00 l-"j CM 3 .-"V B o B* T •*/ * M ^V f\ T 'jj -r •k 3 3 3 B *r /*k 3 3 (J •--•.

* ••.• PQ 00 ^^^ ro •3 PI 3 oo .•^. B B B f-^ 3 00 ll"' rw T •ID

* lii X S*" in ^J- * >-^ •k w- U"' /^. .-•. y-. X' 3 i—i ••-' r- • -• _l **

¥ 'X h- » r- •_• _•• PQ .«. pq hw G> X' <D *T —4 lii -> CO IN. X •_•

* 1— »a 3 X w- m iij X T X •_• * -T T w .". 3 X Mi 3 3 zr PQ* •a = i". 1- pq X X 1— OO I— Mi w 'W •w- PQ B 1- X B B u: 'X: 3 u_ ••> u. i

r— • •k w- u. M4 M4 M4 'J- _l .-k (— /-k 4*\ LU i—¥ U. *? 3 V- • •k mm 3 PQ 3 1- X X X 1- UI T 3 . -k t If X B* '••J

;• •B 3 3 ,-.r X Jlf . B 1- I— (— . n !^B OO /^. 3 OO '."'"' k- 3

• CO «-< in 3 Li"' ^H 3 3 1— 3 . • B 3 O \s '""' •w' S^ CO* 'Jj —

4

• uo •3 '•i 3 r-.j z •3 ^^ 3 'S •k 03 00 3 3 3 00 •—

»

Mi 'X -r^ Mi Mi Ul •4—1

¥ z -^ -^ • OJ 3 hk. 3 'O II ^H 'vO CM 3 II CM in 03 OO —1 3 z X CM 3 X X Mi 1—1

* m s ii II 3 •k •— k ^* t—t 3 3 3 .\" Ct 3 00 3 « 3 CM 3 3 T 11- > B 1— 1— ~> 3

.~\ B • o > /-^ 3 .^. 3 "7*•k •k •k CJ •k 3 0"* 3 CO 3 r- B T-i UI m ^k . n h- B

* T /k :

:

/^. 1- •k rt m /^k j^. rf«k '£' S*i B ^H B -~* B »—

»

/™k 3 £ 3 w CO 3 3 /"».

• 00 00 x _l 00 C) /> CO s\ -1 T T •* '"•"' -1 GO .•-•. 3 .•-k. 3 s--. 3 I" B o »—

t

li) p—

»

4—1 Ul Tf* \y 'D £ UJ J> ^^ in •_-• in UJ '"O 00 00 II UJ 'jI' rt B * B T B 00 ^-k. ii z •—

N^ z z X OO¥ PQ -, UJ sy « is. PQ r- aJ >^ •J w* •— UI ^ '"''' .->. '"'1 /^. OO S\ w- Li-i X *7" Mi »- 3 ••-••

* X PO u K- i( X \y X •w- 1— Mi Mi Mi z 1— Mi •w- Ll"' \S UI s^- \r< PQ (•- •u o X LO X' PQ 3

¥ h- x co X \— PQ 1— ^4 00 'X X X OO X PQ is- Mi IV PQ rw X ^^ ^4 CO h- 4—4 OJ a; s 'X T* • b i— •w" I— mm X •> X 1— 1— »- . n »- X V X y*' X w- 1— Mi V • B i_i 3 i— ^r¥ 3 •a 3 • •k z 1- 3 H- -1 • - . UJ • •k 1— PQ J— Mi I— Mi • B X • B 3 B ^ U. z 1 B 4—4

¥ _l S _l o 3 1-t • •k ;-.* • •k UJ 3 3 3 Li. r~ 3 • B X • B X . X 3 1— k—

4

a. ii: 1-* Lt ii >— 3 3

¥ X U. UJ pq -* : 3 ^ ,\* Jk" ^k? X o CO 3 1— 3 f- 3 h- .•

. m z o i_t -H CJ t_t UJ S" UI B¥ 1— s UI QL OJ •D •T* in 00 o 7J> Oe. 0J ;•-• • ^ is* • ^ •\" • B 3 1

= I X' Lt "*

T- Ui IV w • r— »a. - •^ • — •—

'_*• '_*» _^ X ^_ - > - - X ki UL U~' 00 B wtf u" —

1

»

' 'Ju

¥ XL7. in vo oo CJ •k •~- 3 vH 3 z ''•J "t CO —

o •k ^< —^ •>J 'T. m f'- CM ^^ CJ ^H 4—4 /^k CM CM r X li '^)

¥ 3 rw * 3 3 .-*. 3 •k 3 •k 3 3 3 3 3 3 /^ 3 CM 3 -M 3 ~« 3 3 3 3 3 4-4 3 3 ~;- 3 3 ^^

¥¥ .--v •> •s w^. <o ^-s. CO ^-\ 00 /^ /^. y-k. /^k S\ ^-k. Ik0 v^ B ^. B /Wk B .^. /-\ >-k. /^. v"\ w- 4^ /^ X /^k ,-, .r¥ HO ^. 2 —

«

00 •s^1

in 'ij in •jj CO J-i UI J-' OO 00 v-- U"' /«k in /^. LO >^k in •30 00 U'J UO Mi U"' \r> 4—4 OO 1—¥ w" v4 lil w** '-.• PQ •./ ^J' y^ ^^ s^ -w* •w' *^ ••w- w- Mi •_•• CO v CO •wr- CO w- *X) S>" 'w*' V X 4W«* w' Lt kv <W IB¥ n u> X pq UJ X PQ PQ m UM kX4 Mj PQ « Cm PQ X Mi l£ PQ kO Mi 'Jj Mi •w' Mi Mi Mi 1- Mi Mi UI Mi PQ 3

¥ 3 s X ^• — r r 1— X X X X X X X X X X 1— X •w- X s^ X •w' X Mi X X X . B X X (- X X OJz * 9 »— PQ t— i— • •k 1— I— I— 1— 1— 1— H \— h- 1— . B h- Mi f- Mi 1— Mi ^- X t— h- h- 3 t- (— z h- 1- OO

* in E —

^

3 . 3 X 'X X h- -* UI 1-4

1— 4c H t— /N — i— 'D 1— 3 — 3 r- M- H H y- 1— CM H H- h- H h- h- i— . B H H- 1- r^ W- H- 3 h- h- 1— 3

z * i— Z ... h- — z OJ~ ~* 2 O^ T" ~T T "7" X X OO z .B "7" .m ~~

• B X 3 -r z n 3 ^ LZ »—

»

z -r m—

»

• —

»-^ 3 —

-^ : —• CJ —

1

4—

«

i—

i

»—

i

»—

<

t—

<

»

1—

1

3 »—

i

3 k—

1

3 k—

<

3 *—

<

-r k—

t

—I B »—i i—

i

h- ^:<* 4—4 —< y%

it * X it U. U. it lL a LC = i 3 C£ Of UL ii: Ot. ii: B Q£ T Lt; ''J Ot. Cft a: -^H at Ct: ii! •^ ct: ii _' UI It Lt »H

LL.

+**

x u.cm

in

|

0l li.

in

0.

—*

li.

•n

0l 0. li. 0. a. Q.

in

li. CM a. CM u. ^H LL "" u_ a. LL.

Ll''

Mi

LL. Q_ LL.

XMi

'.'"'

Cl_ ii_ ' Jj•^

PQ'X

s ¥ (9 O 3 O "X> 3 ^j '3 ^ CD •^ '3 '3 o Hi *s IT' Mi 3J —i 'Hi ^ 03 -- •3 'lj •D 'ij 'X X 'X X X' 03 'X 'X 1-* ¥ j- 10 a IV CO a. X >S> Cm —

H

ij "•J oo *r in IJ3 r- X CO 'U CT> IX) X' 'JI' i—i ^ CM oo «J- H- U" '£' r- CO 'T. <z> .--r « -r t ^k. T * ^r »— in X in X Ll"' U

-' 'j-> in liT' Li-i 1— U"' •w' in \s '•0 W 'd Mi ID li) '£ .B y) 'L> '£' y> 'Jj r- s

« ¥ 1- -T "* •* T 'T . n *• 1— -t i— 1- *r T rt T *r . ^ * Mi i- Mi *r Mi -r X T *r T 3 T *r •* t -T 1- T— ¥

176

>>J

•H : T ^—

1

'"•J U") .--'.

r GO -- T" = m r Ul— b X CO '._'

N iyi

-* pq-r N . B ^H X-• "* r z i—« -• H ^ • B'X : 'Z' ..-^ =1— X N «—

1

1^- <o• ai 1— O : 'T= • B *—

i

B \S CMIT' : z .•^ pq•Z> CO m Tw X B--* r-- - T 1— .--.. —- = r-- - IB r-- V« » i- pq : -d-

-• •-•• X 'T- -_- -

S <S PQ t— 'Zl pq ;_* T X •B rt X 1—- -" h- ; : H- i

*

m iJO • B F-- ,. .B ^.x X ; 'T- .^. z i—

i

t- t— •M : o <?• h-• b . B '3 B T ^^ i^i

z s s --* ."V •._^ PJ ~i

uo UO : (9 « i^i

_l 'T- •o b T X B 2E z - i*S = ••-•' K .-- a

~ B 3 b A • B C3 o^-•. •-N : T _l X r r

>T- * T ~ •-• X 1— CM ^^ -i1 CO co _i pq B •3 pq IET - - -• X X s : = *—

i

X s'.'' U4 - kM 1— '-U l*j B i— Lt.

X x r^- ._ | 'T> 'J B B u->• i— z: 1- 'XI = CO : 7~ .~. : I

• ~ Z' • b in Is- -. -r CO 1-

Z ; »—

4

: .~. 'Ti .•-^. •~* CO C>J

1

'J? _l u Z f\ t ^„- CM 2E x I T" T m CO m A ; —3 T •-• - _l _•• _l X B U.— uj O 'T> X * -• 0) X (— ,-\

E ,_, ce: 1 Z> PJ CO X • B *r UJ— 'X CJ in _i -' X) 1— r-- : CO Xz cl :- HH rt _l .m. •T> T ,^- 1—n 1- X b ..0 X X Z g : « =

_l H- «—

<

t—* • • X T a.--' B W X «- 'J") if) bH h- a i_p

~l = 1 Oi • bO»J U.z> '_> '_"> UT» ^^ »-H 1—4 :•] L3 bUJ : z

oi m T

0> 051 1

CO CO1

-•J

i I CO Ll-

UJ B

_j i _J »* aj CO j 3 _j o -J -jO ^>r ",

,r iT. IX — X cm X -• o Q. 10 X

/--. .--v •-*. --s /-\ •^ •*. /^v •-\ >^k ^. ~- X X••-'

U"' PI in co in co in 00 \r> »h CO 1-\^ -/* -/ 'w* w' "^s ••-• -• •w' ••-/ --^ V/ »B ct;

CQ pq « A bCl bCi M * O) pq £4 pq s UiE X X X X X X X X X X X 'Z> i—

CM UI

UCCL.LLULCLiLCL.ClL

•Z> 'Zi '3 'D >Z> 'Z> 'Z> 'Zi =-« cm co t m '-o r- co >r>

r •. r. ps. r-- n r-- r-- r- o

i. 0. IX 0. ^-t Zi UJ(JL a. a. u. '0

as

X

u_ pqzCO

o s 9 C9 i— O •Z/

T. z> »—

<

"•J "?0 -rIV- 00 -j:i CO 3 00 00-r -r T -r CO T T

177

LIST OF REFERENCES

1. Babcock and Wilcox Co., Steam, Its Generation and Use ,

Babcock and Wilcox Co., New York, 1963.

2. Shields, Carl D., Boilers: Types, Characteristics, andFunctions , F.W. Dodge Corporation, New York, 1961.

5. Latham, Robert F., Introduction to Marine Engineering,

U.S. Naval Institute, Anapolis, Maryland, 19 5 5.

4. Croft, Terrel, Steam Boilers , McGraw-Hill Book Co., Inc.New York, 1937.

5. Fryling, Glenn R. , Combustion Engineering , CombustionEngineering Co., Inc"! New York, 1966

.

6. Principles of Naval Engineering , 3rd ed., NAVPERS10788-B, p. 255, Training Publications Division, NavalPersonnel Program Support Activity, Washinton, DC, 1970.

7. Combs, R.M., LCDR, U.S.N. , Waste Heat Recovery UnitDesign for Gas Turbine Propulsion Systems , M.S. Thesis,Naval Postgraduate School, Monterey, California, 1979.

8. Egusa, Tatsuo, Short Straight Tube Boiler - S.S.T. ,

Lectures presented at Naval Postgraduate School, Monte-rey, California, 23-27 June 1980.

9. Holland, F.A., Moores , R.M. , Watson, F.A., and Wilkinson,J.K., Heat Transfer , American Elsevier Publishing Co.,Inc. , New York, 1970.

10. Holman, J. P., Heat Transfer , 4th ed., McGraw-Hill BookCo., Inc., New York, 1976.

11. Kays, W.M. and London, A.L., Compact Heat Exchangers,

McGraw-Hill Book Co., Inc., New York, 1964.

12. Weierman, C, Taborek, J., and Marner, W.J., Comparisonof In-Line and Staggered Banks of Tubes with SegmentedFins

,paper presented at the 15th National Heat Trans-

fer Conference, AIChE-ASME, San Francisco, California,1975.

13. Eckert, E.R.G., and Drake, R.M. , Analysis of Heat andMass Transfer, McGraw-Hill Book Co. , New York, 1972

178

14. Jakob, M., Heat Transfer and Flow Resistance in CrossFlow of Gases over Tube Banks , Trans. ASMR, vol. 60,p. 384, 1938.

15. Collier, J.G., Convective Boiling and Condensation ,

McGraw-Hill Book Co., New York, 1972.

16. Sieder, E.N., and Tate, C.E., Heat Transfer and PressureDrop of Liquids in Tubes , Inc. Eng . Chem., vol. 28,p. 1429, 1936.

17. Dittus, F.W., and Boelter, L.N.K., Heat Transfer in Auto-mobile Radiators of Tubular Type , Publications inEngineering, University of California, p. 443, 1930.

18. Bergles, A.E., and Rohsenow, W.M., The Determination ofForced Convection Surface-Boiling Heat Transfer , J. HeatTrans, vol. 86, pp. 365-372, 1964.

19. Hsu, Y.Y., On the Size Range of Active Nucleation Cavitieson a Heating Surface , J. Heat Trans., 843(3), pp. 207-216,1962.

20. Han, C.Y., and Griffith, P., The Mechanism of Heat Trans-fer in Nucleate Pool Boiling, Part I, Bubble InitiationGrowth and Departure , Int. J. Heat Mass Trans. 8 (6)

,

pp. 887-904, 1965.

21. Rohsenow, W.M. , A Method of Correlating Heat TransferData for Surface Boiling of Liquids, Trans . , ASME , 7T,

p. 969, 1952.

22. Rohsenow, W.M. , Heat Transfer with Evaporation , Universityof Michigan Press, p. 101-150, 1953.

23. Sucec, J., Heat Transfer , Simon and Schuster TechnicalOutline, Simon and Schuster, Inc., New York, 1975.

24. Hsu, Y.Y., and Graham, R.W. , Transport Processes inBoiling and Two-Phase Systems , McGraw-Hill Book Co.,New York, 1976.

25. Rohsenow, W.M. , and Harnett, J/P., Editors, Handbook ofHeat Transfer, McGraw-Hill Book Co., New York, 1973.

26. Levy, S., Forced Convection Sbucooled Boiling-Predictionof Vapor Volumetric Fraction , Int. J. Heat Mass Trans.,10, pp. 951-965, 1967.

27. Tong , L.S., Boiling Heat Transfer and Two-Phase Flow,

John Wiley and Sons , Inc. , New York, 1965

.

179

28. Chen, J., A Correlation for Boiling Heat Transfer toSaturated Fluids in Convective Flow , ASME , 63-HT-34, 1963

29. Afimiwala, K.A. , Interactive Computer Methods for DesignOptimization , Ph.D. Thesis, State University of New York,Buffalo, New York, 1976.

180

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron StationAlexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate SchoolMonterey, California 93940

3. Department Chairman, Code 69 2

Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 39340

4. Professor Paul F. Pucci, Code 69Pc 3

Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93940

5. Professor Jack Stadghill 1

Dept. of MathematicsDickenson CollegeCarlisle, Pennsylvania 17013

6. Lt. Leo W. Vollmer, Jr. 1

Rural Route HVincennes , Indiana 47591

181

Thesis 1 93736V877 Vollmerc.l Design model for

the heat transfer ina short straight tubeboiler.

ThesisV8T7'

c.l

193736Vollmer

Design model forthe heat transfer ina short straight tubeboiler.

thesV877

Design model for the heat transfer in a

3 2768 001 92811 2

DUDLEY KNOX LIBRARY

f