design of fully differential two stages operational...

39
1 A Report On Design of Fully Differential Two Stages Operational Amplifier Submitted By Raj Kumar Singh Parihar 2002A3PS013 B.E. (Hons.) Electrical & Electronics Submitted To Prof. (Dr.) Anu Gupta EEE, BITS - Pilani BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI, RAJ. - 333 031 May, 2006

Upload: others

Post on 05-Sep-2019

5 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

1

A ReportOn

Design of Fully Differential Two Stages

Operational Amplifier

Submitted By

Raj Kumar Singh Parihar 2002A3PS013

B.E. (Hons.) Electrical & Electronics

Submitted To

Prof. (Dr.) Anu Gupta

EEE, BITS - Pilani

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCEPILANI, RAJ. - 333 031

May, 2006

Page 2: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

2

Design Problem:

Design a Fully Differential version of Two Stage CMOS op-amp with the following specifications:

Sl. No. Specifications Value1 Technology tsmcmm0182 Supply (Vdd) 3.3V

3 Load Capacitance (CL) 1pF (differential)4 Power Budget (PD) < = 2.5mW

5 Differential DC gain (Av) > = 95 dB6 Small signal BW (UGB) > = 130 MHz

7 Phase Margin (PM) > = 55 Degree8 Output Swing >= 5V (Differential)

9 Slew rate (SR) >= 100 V/µs10 CMRR >= 125dB

11 PSRR >= 125 dB12 ICMR >= 1.5V

13 Linear range of operation >= 1.5 V

Theory:

Operational amplifiers (op amps) are an integral part of many analog and mixed-signal systems. Op amps with vastly different level of complexity are used to realize functions ranging from dc bias generation to high-speed amplification or filtering. In an Op amp the cascoding of transistors increases the gain while limiting the output swings. In some applications the gain and/or the output swings provided by Cascode op amps are not adequate. In such cases, we resort to "two-stage" op amps, with the first stage providing a high gain and the second, large swing. In contrast to Cascode op amps, a two-stage configuration isolates the gain and swing requirements.

Here the potential problem of stability comes into the picture. Each gain stage introduces at least one pole in the open-loop transfer function, making it difficult to guaranteestability in a feedback system using op amp. For this reason op amps having more than two stages are rarely used. To make these op amps stable we need to have some phase margin. There are various techniques which can improve it. I have implemented RC compensation technique to get the desired phase margin of 55 degree.

Page 3: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

3

Design Steps:

1.Power Budget:Vdd = 3.3v; PD < = 2.5 mW;PD = Vdd * Itotal ;Itotal <= 2.5 m/ 3.3 ~= 750 uA

This is the total current from rail to rai . This current is divided into five branches.Current Distribution == (150, 50, 50, 300, 150) in uA => 700 uAThis division of current has been considered after taking SR and good UGB into account.

2.Output Swings:Total output swing >= 2 (Vdd- Vod6-Vod7) 2.5 V >= Vdd- Vod6 -Vod7Therefore, Vod6 + Vod7 <= 0.8 VGenerally, the overdrive of PMOS should be higher than NMOS as mobility of PMOS is approx. 2.5 times less than NMOS.Let us assume Vod6 = 0.3V, Vod7 = 0.2V

3. Input common mode range: (ICMR) >= 1.5 V

Vin,max = VDD - Vgs3 + Vt1 = 3.3 - ( 0.3 + 0.7 ) + 0.7 = 3 VVin,min = Vod1 +Vt1+ Vod5 = 0.2 + 0.7 + 0.3 = 1.2 Vassumed Vt of both nmos and pmos 0.7 V, also assumed overdrive voltages of all transistor according to their current capability. Vod3 = Vod4 = 0.3V Vod1 = Vod2 = 0.2V Vod5 = 0.3Vwe set a Vicm = 1.6 vfor which the output DC level is 1.59 v

4. Calculation of (W/L): The initial W/L values (in um) can be get by using the current expression in Saturation region operation assumed un* Cox = 150 uA/v2 and up* Cox = 60 uA/v2

After Calculation: (for L= 1um)(W/L)1 = (W/L)2 = 50/ 1(W/L)3 = (W/L)4 = 55/ 1(W/L)5 = 45/ 1(W/L)6 = (W/L)8 = 55/ 1(W/L)7 = (W/L)9 = 50/ 1

Page 4: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

4

After taking into account the Rout of the transistors for high effective gain the new sizing is as following.

Av = gm1,2 * (Ro2 || Ro4) * gm6,7 * (Ro6 || Ro7 ) ----> {1}

Ro = 1/ (Lmda * ID ) ----> {2}

1.Lambda of PMOS is half of the NMOS so the L of PMOS should be roughly double of NMOS to get the equal Rp and Rn for maximum possible gain.

2.To get the high gain the Gm of input transistors should be high, thus the W/L should be also high.

(W/L)1 = (W/L)2 = 50/ 0.72(W/L)3 = (W/L)4 = 70.6/ 1.44(W/L)5 = 60/ 0.72(W/L)6 = (W/L)8 = 88.5/ 0.9(W/L)7 = (W/L)9 = 22.5/ 0.54

Size of Current Mirror's Transistors(W/L)mbn1 = (W/L)mbn2 = 10/ 0.72(W/L)mbp = 24.5/ 1.44

all (W/L)s are in uM/uM

5. Phase Margin: Because of High gain the phase margin was 3 degree. To improve this I did employ an RC compensation technique After many iteration the values of R and Cc which gave around 53 degrees Phase margin are as following: Rz = 5.2 Kohm and Cc = 0.9pF Here the notacible fact is:

Increment in Cc value improves the PM, whereas Increment in Rz value improves the UGB

To realize the Rz of 5.2 K a PMOS transister operating in linear region of size (7.3/ 0.72) um/um has been used.

6. Tansient Analysis: For calculation of Acm and Adm a sinusoidal signal of small Mag. (10uV) has been used, which was having an offset of DC input bias.

Page 5: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

5

Specification Obtained:

S.No. Specifications Value(Sepecified) Value(Obtained)1 Technology tsmcmm018 Used2 Supply (Vdd) 3.3V 3.3V

3 Load Caps (CL) 1pF (diff.) 1PF (Diff.)4 Power Dissipation < = 2.5mW 2.288 mW

5 DC gain (Av) > = 95 dB 95.278 dB6 BW (UGB) > = 130 MHz 135.34 MHz

7 Phase Margin (PM) > = 55 Degree 52.8 Degree8 Output Swing >= 5V (Diff.) 5.9 V

9 Slew rate (SR) >= 100 V/µs 131.74 V/ uS10 CMRR >= 125dB Inf.

11 PSRR >= 125 dB Inf.12 ICMR >= 1.5V 1.4 V

13 Linear range >= 1.5 V 1.55 V

Model File: rf018.eldo; TT_3V ; NCH3 and PCH3Vicm = 1.6 VVocm = 1.59 V

Symbol: two Stage Op amps

Page 6: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

6

Schematic: Two Stage CMOS op amp

Page 7: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

7

DC Analysis:1.ViCM = 1.6 V; VoCM = 1.59 V2.Power Dissipation = 2.288 mW

Transient Analysis: Asig = 10uV ; fsig = 1KHzAv = (Vout2-Vout1)/ (Vin2-Vin1) = 1.1611/ 20u = 58055 V/VGain (in dB) = 20log(Av) = 95.278 dB

Page 8: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

8

CMRR:Adm = 98055 V/V => 95.278 dBAcm = (Vout2 - Vout1) = 0 V/V

For a fully differential topology ideally the CMRR should be (inf.) because if there is no mismatch the output differential gain would be zero.

CMRR = inf.

Page 9: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

9

PSRR:PSRR = Adm/ Avdd = Inf.Because any flactuation in Supply is same and in same direction at both the output

when output node voltage crosses the Vocm a glitch is introduced which has peak value of 652pV.

Page 10: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

10

Slew Rate:

SR1 = 1.29 V/ nSSR2 = 131.74 V/ uS

Page 11: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

11

FFT Analysis:

Here the input and output's frequency components are exactly the same. This implies that there is no signal distortation.Also the signal component at 1KHz is more than 50dB from noise components.

Page 12: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

12

AC Analysis: (Without Compensation)

UGB = 219.4 Mhz ; PM = 1.74 DegreeSingle Sided Mid band gain Av1 = 89.46 dBDifferential Mid band gain Av= Av1 + 20 log 2 = 89.46 + 6.02 = 95.48 dBTo improve the phase response a compensation technique should be employed.An RC compensation techniques has been employed here.

Page 13: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

13

With Compensation Technique:Cc = 0.9pF ; Rz = 2.5 Kohm

new UGB = 135.34 Mhz new PM = 52.8 degree

Page 14: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

14

Now Implementation of these compensation resistor will consume a huge area on silicon. The other alternative could be possibly implement these resisters using mos. Any MOS operating in Triode region behave like a resistor. This particular nature will be utilized to make this circuit more compact.

Revised UGB = 133. 50 Mhz; PM = 50.5 Degree

Page 15: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

15

Schematic with RC Compensation:

Page 16: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

16

Layout: Without Compensation

DRC Report

All the errors are density error, which are not critical from design point of view

Page 17: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

17

With Compensation Capacitor

Page 18: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

18

Schematic for LVS: made in Cadence Schematic composer

Page 19: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

19

LVS: Results

1. Opamp_lvs.cdl file

************************************************************************* auCdl Netlist:** Library Name: sche_opamp* Top Cell Name: opamp_schematic* View Name: schematic* Netlisted on: May 8 12:19:27 2006************************************************************************

*.EQUATION*.SCALE METER*.MEGA.PARAM

************************************************************************* Library Name: sche_opamp* Cell Name: opamp_schematic* View Name: schematic************************************************************************

.SUBCKT opamp_schematic GND IREF VDD VIN1 VIN2 VOUT1 VOUT2*.PININFO IREF:I VIN1:I VIN2:I VOUT1:O VOUT2:O GND:B VDD:BMM12 net48 net48 VDD VDD P W=24.5u L=1.44uMM11 VOUT1 net22 VDD VDD P W=88.5u L=900.0nMM10 net22 net48 VDD VDD P W=70.6u L=1.44uMM8 VOUT2 net60 VDD VDD P W=88.5u L=900.0nMM7 net60 net48 VDD VDD P W=70.6u L=1.44uMM6 VOUT2 IREF GND GND N W=22.5u L=540.00nMM5 net67 IREF GND GND N W=60u L=720.00nMM4 net48 IREF GND GND N W=10u L=720.00nMM3 VOUT1 IREF GND GND N W=22.5u L=540.00nMM2 IREF IREF GND GND N W=10u L=720.00nMM1 net60 VIN1 net67 GND N W=50u L=720.00nMM0 net22 VIN2 net67 GND N W=50u L=720.00n.ENDS

Page 20: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

20

LVS: Report

********************************************************************************************************* OVERALL COMPARISON RESULTS*********************************************************************************************************

# ################### _ _ # # # * * # # # CORRECT # | # # # # \___/ # ###################

----------------------------------------------------------------------------------------------

INITIAL NUMBERS OF OBJECTS--------------------------

Layout Source Component Type ------ ------ -------------- Ports: 7 7

Nets: 11 11

Instances: 46 7 * MN (4 pins) 45 5 * MP (4 pins) ------ ------ Total Inst: 91 12

NUMBERS OF OBJECTS AFTER TRANSFORMATION---------------------------------------

Layout Source Component Type ------ ------ -------------- Ports: 7 7

Nets: 11 11

Instances: 7 7 MN (4 pins) 5 5 MP (4 pins) ------ ------ Total Inst: 12 12

= Number of objects in layout different from number in source.

Page 21: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

21

PEX: Net list

* File: 2stageopamp_no_cc.pex.netlist* Created: Mon May 8 12:26:45 2006* Program "Calibre xRC"* Version "v9.3_5.11"* *.subckt 2STAGEOPAMP_NO_CC VDD GND VOUT1 VOUT2 IREF VIN1 VIN2.connect GND 0.include input2stageopamp.txt

mM0 GND IREF 2 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=2.4e-12 PD=5.54e-06+ PS=1.096e-05 NRD=0.054 NRS=0.096mM1 IREF IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM2 GND IREF IREF GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM3 2 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=2.6e-12 AS=1.35e-12 PD=1.104e-05+ PS=5.54e-06 NRD=0.104 NRS=0.054mM4 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=2.4e-12 PD=5.54e-06+ PS=1.096e-05 NRD=0.054 NRS=0.096mM5 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM6 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM7 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM8 9 VIN2 3 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=2.4e-12 PD=5.54e-06+ PS=1.096e-05 NRD=0.054 NRS=0.096mM9 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM10 5 VIN1 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM11 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM12 9 VIN1 5 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM13 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM14 3 VIN2 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM15 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM16 9 VIN2 3 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM17 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM18 5 VIN1 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM19 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM20 9 VIN1 5 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM21 GND IREF 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06

Page 22: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

22

+ PS=5.54e-06 NRD=0.054 NRS=0.054mM22 3 VIN2 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM23 9 IREF GND GND nch3 L=7.2e-07 W=5e-06 AD=2.4e-12 AS=1.35e-12 PD=1.096e-05+ PS=5.54e-06 NRD=0.096 NRS=0.054mM24 9 VIN2 3 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM25 5 VIN1 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM26 9 VIN1 5 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM27 GND IREF VOUT2 GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=2.16e-12+ PD=5.04e-06 PS=9.96e-06 NRD=0.06 NRS=0.106667mM28 3 VIN2 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM29 VOUT1 IREF GND GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM30 9 VIN2 3 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM31 GND IREF VOUT1 GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM32 5 VIN1 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM33 VOUT2 IREF GND GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM34 9 VIN1 5 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM35 GND IREF VOUT2 GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM36 3 VIN2 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM37 VOUT1 IREF GND GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM38 9 VIN2 3 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM39 GND IREF VOUT1 GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM40 VOUT2 IREF GND GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM41 5 VIN1 9 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM42 GND IREF VOUT2 GND nch3 L=5.4e-07 W=4.5e-06 AD=1.215e-12 AS=1.215e-12+ PD=5.04e-06 PS=5.04e-06 NRD=0.06 NRS=0.06mM43 9 VIN1 5 GND nch3 L=7.2e-07 W=5e-06 AD=1.35e-12 AS=1.35e-12 PD=5.54e-06+ PS=5.54e-06 NRD=0.054 NRS=0.054mM44 VOUT1 IREF GND GND nch3 L=5.4e-07 W=4.5e-06 AD=2.16e-12 AS=1.215e-12+ PD=9.96e-06 PS=5.04e-06 NRD=0.106667 NRS=0.06mM45 3 VIN2 9 GND nch3 L=7.2e-07 W=5e-06 AD=2.4e-12 AS=1.35e-12 PD=1.096e-05+ PS=5.54e-06 NRD=0.096 NRS=0.054mM46 2 2 VDD VDD pch3 L=1.44e-06 W=4.9e-06 AD=1.323e-12 AS=2.352e-12 PD=5.44e-06+ PS=1.076e-05 NRD=0.055102 NRS=0.0979592mM47 VDD 2 2 VDD pch3 L=1.44e-06 W=4.9e-06 AD=1.323e-12 AS=1.323e-12 PD=5.44e-06+ PS=5.44e-06 NRD=0.055102 NRS=0.055102mM48 2 2 VDD VDD pch3 L=1.44e-06 W=4.9e-06 AD=1.323e-12 AS=1.323e-12 PD=5.44e-06+ PS=5.44e-06 NRD=0.055102 NRS=0.055102mM49 VDD 2 2 VDD pch3 L=1.44e-06 W=4.9e-06 AD=1.323e-12 AS=1.323e-12 PD=5.44e-06

Page 23: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

23

+ PS=5.44e-06 NRD=0.055102 NRS=0.055102mM50 VDD 2 3 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=3.3888e-12+ PD=7.6e-06 PS=1.508e-05 NRD=0.0382436 NRS=0.0679887mM51 2 2 VDD VDD pch3 L=1.44e-06 W=4.9e-06 AD=2.352e-12 AS=1.323e-12+ PD=1.076e-05 PS=5.44e-06 NRD=0.0979592 NRS=0.055102mM52 5 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM53 VDD 2 5 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM54 VDD 3 VOUT1 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=4.248e-12+ PD=9.39e-06 PS=1.866e-05 NRD=0.0305085 NRS=0.0542373mM55 VOUT2 5 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM56 3 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM57 VDD 5 VOUT2 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM58 VDD 2 3 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM59 VOUT1 3 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM60 5 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM61 VDD 3 VOUT1 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM62 VOUT2 5 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM63 VDD 2 5 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM64 VDD 5 VOUT2 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM65 3 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM66 VOUT1 3 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM67 VDD 2 3 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM68 VDD 3 VOUT1 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM69 VOUT2 5 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM70 5 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM71 VDD 5 VOUT2 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM72 VDD 2 5 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM73 VOUT1 3 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM74 VDD 3 VOUT1 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM75 3 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM76 VOUT2 5 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM77 VDD 2 3 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12

Page 24: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

24

+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM78 VDD 5 VOUT2 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM79 5 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM80 VOUT1 3 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM81 VDD 3 VOUT1 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM82 VDD 2 5 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM83 VOUT2 5 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM84 3 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM85 VDD 5 VOUT2 VDD pch3 L=9e-07 W=8.85e-06 AD=2.3895e-12 AS=2.3895e-12+ PD=9.39e-06 PS=9.39e-06 NRD=0.0305085 NRS=0.0305085mM86 VDD 2 3 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM87 VOUT1 3 VDD VDD pch3 L=9e-07 W=8.85e-06 AD=4.248e-12 AS=2.3895e-12+ PD=1.866e-05 PS=9.39e-06 NRD=0.0542373 NRS=0.0305085mM88 5 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM89 VDD 2 5 VDD pch3 L=1.44e-06 W=7.06e-06 AD=1.9062e-12 AS=1.9062e-12+ PD=7.6e-06 PS=7.6e-06 NRD=0.0382436 NRS=0.0382436mM90 3 2 VDD VDD pch3 L=1.44e-06 W=7.06e-06 AD=3.3888e-12 AS=1.9062e-12+ PD=1.508e-05 PS=7.6e-06 NRD=0.0679887 NRS=0.0382436c_6 VDD 0 23.1279fc_14 2 0 11.3793fc_23 3 0 11.2717fc_32 GND 0 7.83297fc_43 5 0 9.46231fc_52 VOUT1 0 6.17945fc_63 VOUT2 0 4.72688fc_72 IREF 0 6.24896fc_81 9 0 3.86165fc_90 VIN1 0 3.043fc_99 VIN2 0 3.1124f*.include 2stageopamp_no_cc.pex.netlist.2STAGEOPAMP_NO_CC.pxi*.end**

Page 25: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

25

//Parasitic capacitances* File: 2stageopamp.pex.netlist.2STAGEOPAMP.pxi* Created: Fri May 5 00:08:00 2006* cc_1 2 VDD 2.60572fcc_2 BOT VDD 0.352415fcc_3 4 VDD 4.56372fcc_4 DBNET2 VDD 10.4814fcc_5 GND VDD 0.789815fcc_6 TOP VDD 3.63598fcc_7 DBNET1 VDD 0.366703fcc_8 BOT 2 5.33201e-22cc_9 4 2 0.683196fcc_10 DBNET2 2 0.516903fcc_11 GND 2 0.534262fcc_12 TOP 2 5.22283e-20cc_13 IREF 2 0.0885317fcc_14 10 2 0.185337fcc_15 4 BOT 0.0164608fcc_16 DBNET2 BOT 0.474315fcc_17 GND BOT 0.12921fcc_18 TOP BOT 33.3156fcc_19 DBNET2 4 4.45561fcc_20 GND 4 0.0855438fcc_21 TOP 4 1.61354fcc_22 DBNET1 4 0.234346fcc_23 10 4 2.87903fcc_24 VIN1 4 0.00453565fcc_25 VIN2 4 0.536808fcc_26 GND DBNET2 2.32399fcc_27 TOP DBNET2 1.33687fcc_28 DBNET1 DBNET2 32.6917fcc_29 IREF DBNET2 0.217726fcc_30 10 DBNET2 3.92038fcc_31 VIN1 DBNET2 0.550561fcc_32 VIN2 DBNET2 0.100904fcc_33 TOP GND 1.507fcc_34 DBNET1 GND 0.05647fcc_35 IREF GND 2.36169fcc_36 10 GND 1.93426fcc_37 VIN1 GND 0.00690254fcc_38 VIN2 GND 0.0056187fcc_39 IREF TOP 0.157043fcc_40 10 TOP 0.645347fcc_41 VIN1 TOP 0.0306985fcc_42 VIN2 TOP 0.0273583fcc_43 10 IREF 0.429806fcc_44 VIN1 IREF 0.0202838fcc_45 VIN2 IREF 0.0026828fcc_46 VIN1 10 0.864314fcc_47 VIN2 10 0.939272fcc_48 VIN2 VIN1 2.52638f

Page 26: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

26

Appendix1.Opamp with Slight Modifications in (W/L)

Page 27: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

27

New Sizing of transistors:(W/L)1 = (W/L)2 = 50/ 0.72(W/L)3 = (W/L)4 = 70.8/ 1.44(W/L)5 = 60/ 0.72(W/L)6 = (W/L)8 = 90/ 1.08(W/L)7 = (W/L)9 = 22.4/ 0.54

Size of Current Mirror's Transistors(W/L)mbn1 = (W/L)mbn2 = 7.5/ 0.54(W/L)mbp = 8.2/ 0.54

AC Analysis

Page 28: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

28

Schematic for LVS:

Page 29: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

29

Layout: (2 Stage Op-amp)

Page 30: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

30

2. Differential Amplifier Design

Page 31: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

31

SCHEMATIC SIMULATION RESULTS

Transient Analysis

Gain Av = 32.99/(0.1) ~= 330 V/V = 50.37 dB

Page 32: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

32

AC Analysis

Av(Mid Band) = 50.368 dB; UGB = 443.44 MHzPM = 75 Degree ; F3dB = 2.348 Mhz

Page 33: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

33

Slew Rate

SR1 = 394.23 V/ uSSR2 = 664.21 V/ uS

SR = Min (SR1, SR2) = 394.23 V/ uS

Page 34: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

34

Symbol: Differential Amplifier

Page 35: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

35

Semi Custom Layout

LVS REPORT:

Page 36: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

36

Schematic for LVS

Page 37: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

37

POST-LAYOUT SIMULATION

AC Analysis:

Av(Mid Band) = 50.357 dB; UGB = 452.17 MHzPM = 74.35 Degree ; F3dB = 2.9 Mhz

Page 38: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

38

Transient Analysis:

gain Av = 32.95/(0.1) ~= 329.5 V/V = 50.35 dBConclusion:After Postlayout simulation the results of AC and Transiesnt analysis are consistent with the schematic simulation. The discrepencies are less than 0.1%.

Page 39: Design of Fully Differential Two Stages Operational Amplifierparihar/pres/Report_two-stage-opamp.pdf · In contrast to Cascode op amps, a two-stage configuration isolates the gain

39

REFERENCES

1.Behzad Razavi, " Design of Analog CMOS Integrated Circuits ", Fifth Edition,TMH Edition.

2. David A. Johns & Ken Martin, " Analog Integrated Circuits Design", John Wiley & Sons.

3. P. E . Allen & D. R. Holberg, " CMOS Analog Circuit Design, Second Edition, Oxford University Press.