design of user interface for heating, ventilation and air ...772402/fulltext01.pdf · design of...

119
Design of user interface for heating, ventilation and air conditioning systems Design av användargränssnitt till värme-, ventilations- och luftkonditioneringssystem Viktor Karlsson Ejwertz Faculty of Health, Science and Technology Degree Project for Degree of Bachelor of Science in Innovation and Design Engineering 22.5 ECTS credits Supervisor: Lennart Wihk Examiner: Professor Leo de Vin December 2014, Karlstad

Upload: others

Post on 03-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

     

Design of user interface for heating, ventilation and air conditioning systems

Design av användargränssnitt till värme-, ventilations- och luftkonditioneringssystem

Viktor Karlsson Ejwertz

Faculty of Health, Science and Technology

Degree Project for Degree of Bachelor of Science in Innovation and Design Engineering

22.5 ECTS credits

Supervisor: Lennart Wihk

Examiner: Professor Leo de Vin

December 2014, Karlstad

     

     

Abstract The project was carried out at Karlstad University during the spring of 2014 as a degree project for a Degree of Bachelor of Science in Innovation and Design Engineering and consists of 22.5 ECTS. The supervisor was lecturer Lennart Wihk from Karlstad University. The examiner was professor Leo de Vin. The project was conducted for Swegon AB and dealt with developing a user interface for systems regulating climate parameters in indoor environments, such as hotel rooms or office environments. The area of focus has been on developing the user interface with regard to end users, giving it the right functions and making it easy to understand. Suggestions about how user interfaces of this type could look was to be delivered to Swegon. The project started with creating a foundation. This was done through literature studies, benchmarking and interviews. The information gained here was used to put together a list of requirements which was later used as a guide when developing and evaluating concepts. Idea generation-methods were used to generate concepts and the concepts were developed further to later be voted on by employees at Swegon. The votes were evaluated and two concepts were developed, based on the the voting outcome. The concepts are inspired by wishes from the end users (expressed in the interviews) and are developed with regard to principles of design. The concepts were made into prototypes, in the form of 3D-printed models. The results of the project, in short: • Two image boards. One with thoughts about functions of existing climate related user interfaces written on it, and one with thoughts of different ways of illustrating air-temperature written on it. • Explanations of and reflections about functions of four different types of user interfaces for heating, ventilation and air conditioning (HVAC) systems. • Four product semantic analyses (PSA). Three of existing user interfaces for Swegon HVAC systems and one of a concept for a user interface for HVAC systems. • Interviews with six potential end users, written down to a large extent. • A compilation of the six interviews, written down in English. • An interview with an employee at Swegon service, regarding installation of user interfaces for HVAC systems, written down to a large extent. • A functional analysis, which in this project works as a requirements specification. • 10 ideas of concepts. • Two voting-systems which are developed for use when voting for several elements which can be combined to make up a holistic concept. The voting-systems are inspired by the "morphological analysis" described by Johannesson et al. (2009). • Two final concepts of user interfaces for HVAC systems with thorough descriptions in a table in this report. The concepts are developed with respect to end users and design principles. • Simplified versions of each of the two final concepts as CAD-models and as 3D-prints.

     

Sammanfattning Projektet har gjorts vid Karlstads universitet under våren 2014 i kursen Examensarbete för högskoleingenjörsexamen i innovationsteknik och design och består av 22,5 hp. Handledaren var universitetsadjunkt Lennart Wihk från Karlstads universitet. Examinatorn var professor Leo de Vin. Projektet gjordes för Swegon AB och handlade om att utveckla ett användargränssnitt för system som reglerar klimatparametrar i inomhusmiljöer, såsom hotellrum eller kontorsmiljöer. Fokus har legat på att utveckla användargränssnittet med hänsyn till slutanvändarna. Detta i form av att ge gränssnittet rätt funktioner och att göra det lättförståeligt. Förslag om hur användargränssnitt av denna typ kan se ut skulle levereras till Swegon. Projektet började med att skapa en grund att stå på. Detta gjordes genom litteraturstudier, benchmarking och intervjuer. Informationen som kom av detta användes för att sätta ihop en kravspecifikation, som senare användes som guide för att utveckla och utvärdera koncept. Idégenereringsmetoder användes för att ta fram koncept och koncepten utvecklades vidare för att senare röstas på av anställda på Swegon. Rösterna utvärderades och två koncept togs fram baserade på resultatet av röstningen. Koncepten är inspirerade av slutanvändarönskemål (uttryckta i intervjuerna) och är utvecklade med designprinciper i åtanke. Koncepten gjordes prototyper av, i form av 3D-utskrivna modeller. Resultaten av projektet är, kortfattat: • Två image boards. En med tankar om olika funktioner på befintliga klimatrelaterade användargränssnitt nedskrivna på och en med tankar om olika sätt att illustrera lufttemperatur på nedskrivna på. • Förklaringar av och reflektioner kring funktioner på fyra stycken olika modeller av börvärdesomställare (användargränssnitt till HVAC-system). • Fyra semantiska analyser. Tre på befintliga börvärdesomställare till Swegonprodukter och en på ett koncept på en börvärdesomställare. • Intervjuer med sex potentiella slutanvändare, nedskrivna i stor utsträckning. • En sammanfattning av de sex intervjuerna, nedskriven på engelska. • En intervju med en anställd på Swegon service, angående installation av börvärdesomställare, nedskriven i stor utsträckning. • En funktionsanalys som i projektet fungerar som kravspecifikation. • 10 konceptidéer. • Två röstningssystem som är utvecklade för att kunna användas vid röstning på flera element som kan sättas ihop till helhetskoncept. Röstningssystemen är inspirerade av den "morfoligiska analysen" som beskrivs av Johannesson et al. (2009). • Två slutkoncept på börvärdesomställare med utförliga beskrivningar, i en tabell i denna rapport. Koncepten är utvecklade med hänsyn till slutanvändare och designprinciper. • Förenklade utföranden av de två slutkoncepten som modeller i CAD och som 3D-utskrifter.

     

Table of Contents Abstract  .................................................................................................................................................................  3  Sammanfattning  .................................................................................................................................................  4  

Appendices  ..........................................................................................................................................................  8  

1.  Introduction  ....................................................................................................................................................  7  1.1 Background  .............................................................................................................................................................  7  1.2 Problem questions  ................................................................................................................................................  8  1.3 Purpose  .....................................................................................................................................................................  8  1.4 Goal  .............................................................................................................................................................................  8  1.5 Delimitations  ...........................................................................................................................................................  8  

2.  Method  ..............................................................................................................................................................  9  2.1 Project planning  .....................................................................................................................................................  9  2.2 Research  ................................................................................................................................................................  10  

2.2.1 Gathering information  ...................................................................................................................................................  10  2.2.2 Benchmarking  ..................................................................................................................................................................  11  2.2.3 Product semantic analyses (PSA)  .........................................................................................................................  11  2.2.4 Target audience  ..............................................................................................................................................................  12  2.2.5 Interviews  ............................................................................................................................................................................  12  

2.3 Requirements specification  ...........................................................................................................................  13  2.4 Idea generations  .................................................................................................................................................  14  2.5 Early concept evaluation – trimming of ideas  ........................................................................................  17  2.6 Further work with ideas - generating concepts  .....................................................................................  18  2.7 Presentation to supervisor at Swegon  ......................................................................................................  18  2.8 Breaking down concepts  ................................................................................................................................  18  2.9 Presentation to project group at Swegon, followed by voting  ........................................................  19  2.10 Evaluation of votes  .........................................................................................................................................  19  2.11 Development of final concepts  ..................................................................................................................  19  

3.  Results  ...........................................................................................................................................................  21  3.1 Project planning  ..................................................................................................................................................  21  3.2 Research  ................................................................................................................................................................  21  

3.2.1 Gathering information  ...................................................................................................................................................  21  3.2.3 Product semantic analyses (PSA)  .........................................................................................................................  30  3.2.4 Target audience  ..............................................................................................................................................................  34  3.2.5 Interviews  ............................................................................................................................................................................  36  

3.3 Requirements specification  ...........................................................................................................................  36  3.4 Idea generations  .................................................................................................................................................  36  3.5 Early concept evaluation – trimming of ideas  ........................................................................................  36  3.6 Further work with ideas – generating concepts  ....................................................................................  36  3.7 Presentation to supervisor at Swegon  ......................................................................................................  38  3.9 Presentation to project group at Swegon, followed by voting  ........................................................  46  3.10 Evaluation of votes  .........................................................................................................................................  46  3.11 Development of final concepts  ..................................................................................................................  47  

4.  Discussion  .....................................................................................................................................................  58  

5.  Conclusions  ..................................................................................................................................................  62  Recommendations  for  future  work  ..........................................................................................................  63  

List  of  words  .....................................................................................................................................................  64  

Thanks  ................................................................................................................................................................  65  References  ........................................................................................................................................................  66  

     

Appendices Appendix 1 - Project plan Appendix 2 - Interview guide - end users, ver. 1 Appendix 3 - Interview guide - end users, ver. 2 Appendix 4 - Interview answers Appendix 5 - Interview compilation Appendix 6 - Interview regarding installation of user interfaces Appendix 7 - Requirements specification Appendix 8 - Pictures of the 10 concepts

      7  

1. Introduction This is a project made in the course Degree Project for Degree of Bachelor of Science in Innovation and Design Engineering (MSGC12), at Karlstad University within the faculty of health, science and technology. The project was done during the spring of 2014 and consisted of 22.5 ECTS credits and 600 work hours. 400 for doing the work and 200 for writing the report. The project was done for the company Swegon AB. The supervisors were Lennart Wihk from Karlstad University and Kristian Pettersson and Lina Nygren from Swegon AB. The examiner was Leo de Vin.

1.1 Background Swegon AB is part of the Latour group and is one of the leading suppliers of air handling units, water- and airborne climate systems, flow control, acoustics and residential ventilation products. Swegon is based in Sweden, but their products exist in many parts of the world. Swegon has six production facilities, three of which are located in Sweden; in Arvika, Tomelilla and Kvänum. Swegon offers solutions for indoor climate that are supposed to be discrete. With their components and system solutions, they try to contribute to energy savings and create indoor climates where people feel good. Swegon was founded in 2005 through the merging of the two companies PM-LUFT and Stifab Farex. Stifab and Farex was originally two separate companies. Stifab was located in Tomelilla and Farex was located in Arvika. At Swegon in Tomelilla, the focus lies on air diffusers, while in Arvika, the focus is put on induction units distributing air, heating, cooling and combines air with waterborne systems. In September of 2012 Swegon founded the group “Room Unit”. The purpose of the Room Unit group is to work with the parts of Swegon's systems that are visible to the end user. Since these products are about the only ones visible to Swegon's end users, they can be seen as the face of Swegon. Part of the units that the Room Unit-group is working with is user interfaces used to set climate parameters in an environment. These are often found mounted on the wall in, for example, hotel rooms. Some of Swegon's currently used user interfaces for heating, ventilation and air conditioning (HVAC) systems are shown in figures 1, 2 and 3. Swegon now wishes that an investigation is made about how to optimize the user interface for their HVAC systems to give value to their end users or to Swegon.

Figure 1. For adapt parasol. Figure 2. Luna. Figure 3. Conductor R.

      8  

1.2 Problem questions What functions do end users want in a user interface for HVAC systems? How can a user interface for an HVAC system be interacted with in a user-friendly way?

1.3 Purpose To help Swegon get a clearer picture of what their end users want out of an HVAC system, and how they want to control one. This is to be done using the design-process and other knowledge gained during the study programme Innovation and Design Engineering in a practical project.

1.4 Goal To present two concepts in the form of CAD-models and 3D-printed models, suggesting how a usable user interface for an HVAC system could look. The concepts should be developed with regard to studied theory and interviews made during the project. The concepts should also be combined with the project of another student, developing capsulation for the interface. To present interviews that can be of help, trying to understand end user-aspects while developing new user interfaces for HVAC systems. To deliver a report, describing the results of the project and the working process behind it. The report should be written in English, since it is Swegon's internal language. The project should be presented and the results should be displayed at a showcase at Karlstad University on the 21st of May 2014.

1.5 Delimitations • Delimitations have been made to not make any deep-going research as to the age of the target audience. • The user interfaced that is to be developed cannot use a touch screen, because of the cost. This is a demand from Swegon. • The project is not to look at the physical attributes of the capsulation as a whole. Neither should mounting aspects be focused on. • The project caters to end users. It does not address the needs and wants of the installer of the product. • The project does not thoroughly investigate other countries symbols and colors for showing climate-related things. • The project does not investigate the cost of developing the winning concepts.

      9  

2. Method This chapter describes the phases that the project goes through and the methods used in the development process. The project takes inspiration from the phases of the product development process, described by Johannesson et al. (2009) and the project flow described by Lilliesköld and Eriksson (2004). The project flow for this project is shown as a flow chart in figure 4.

Figure 4. Project flow.

2.1 Project planning Project startup The project was started with a meeting with two representatives from Swegon, who were to be supervisors during the project. Supervisor and examiner from Karlstad University and another student were also present. The meeting was held to introduce the project, which was divided into two parts. One part, focusing on developing a usable (having useful functions, and being user-friendly) user interface, and one part, focusing on the material choice, shape design and modularity of the user interfaces visible enclosure. This project is the usable user interface-part. A mission statement was written by one of the supervisors at Swegon. This was used as a base for starting the project. Project plan After the meeting, a project plan was to be made. The project plan uses elements described in Eriksson & Lilliesköld (2004). The mission statement, written by the supervisor at Swegon, was used to make the project plan. The project plan consists of a background-description for the project, preliminary problem statement, purpose and goal.

      10  

It also contains: • A work breakdown structure (WBS), which was made to get an overview of what steps were to be done in the project, described by Eriksson & Lilliesköld (2004). • A Gantt-chart, which was made to get a perspicuous timeline of in what order phases in the project was thought to come, described by Johannesson (2009). Although the first Gantt-chart made in a project rarely resembles the reality of the project to great detail, it helps to get a rough approximation of how much time the phases of the project can use. • A brief risk assessment was made in the form of some risks pointed out. • An overview of the organization in the project with contact information to key-people for the project. The project plan was presented to the supervisor from the university, examiner and class-mates. Feedback was received, which lead to things being edited. The Gantt-chart was changed to more resemble the reality of a projects working process. Weekly status-checks A decision about keeping a weekly status-check in the beginning of each week, inspired by pulse-meetings (Pettersson et al. 2009), was made. The weekly status-checks were held to keep track of where the project stood and what was to be done during the coming week. It was written down in a document. Problem analysis The problem questions were redefined as the understanding of the project grew. When formulating them, keeping them open and not locking was kept in mind. For example, nothing in the problem questions indicate that the user interface which should be developed should be mounted on a wall or interacted with through use of hands, etc.

2.2 Research Research was done to collect information regarding what has been done earlier in the area, what exists on the market, guidelines for designing user interfaces and to get a picture of what end users think should be kept in mind regarding functions available and ways to set values when designing a new user interface. "The feasibility study should result in a first requirements specification, which mainly sets the functional requirements, WHAT the product should perform." (Johannesson et al. 2009) Later on, during the development process, HOW the product should meet the requirements is decided. (Johannesson et al. 2009)

2.2.1 Gathering information Literature studies and internet searching In the beginning of the project, focus was put on literature studies and internet searching. This was also done on and off during the project to find methods to use in the process, to gain knowledge about how to create a good interview guide, and to gain knowledge about human-machine interaction, etc.

      11  

Theory regarding Swegon's systems A supervisor from Swegon explained the theory about setpoints when setting a temperature with a user interface for HVAC systems. A figure was made to conclude some of what the supervisor said and drew, to make it easier to understand.

2.2.2 Benchmarking Image boards The internet was searched for images of icons used to display heat and cold, and also for varieties of looks of user interfaces for HVAC systems and other similar user interfaces or displays of different sorts. The images found during the internet-search-part of the benchmarking were put together in two image boards, inspired by moodboards which are described by Kenneth Österlin (2010), though modified with comments added to the images which were found, making the boards more like summaries of the material found during the benchmarking. Through this modification, thoughts that occurred in the making of the image boards, about good and not as good things about different solutions could be saved in a way that was perspicuous. This was used as a method to get an overview of previous ways of controlling climate parameters and showing heat and cold with symbols, so these options could be kept in mind while developing concepts. The image boards were also used as places to look for inspiration. Nordbygg fair-visit A visit was paid to the Nordbygg building fair, held in Stockholm. People from different companies were talked to about their companies user interfaces and what their take on which temperatures (of current temperature and the two setpoints explained by one of the supervisors from Swegon) should be shown was. User interface-products from different companies were tested. Photos of user interface-products were taken and use of products was filmed to use for inspiration and as topics of discussion with supervisor from Swegon when later visiting Swegon's production facility in Kvänum.

2.2.3 Product semantic analyses (PSA) Product semantic analyses, described by Monö (1997), were made on three of Swegon's existing user interfaces and also on a user interface-concept developed in a prior project (Fritzon et al. 2014). The method is used to examine what a product describes, expresses, exhorts to and identifies with through its visual design. The product semantic analyses were made to draw inspiration to the coming development-part of the project through detecting what are good and bad characteristics of a user interface. The analyses were made together with the student having the project focused on the capsulation design. Since both participants in the analysis-session had been part of the group that designed one of the user interfaces that were up for a product semantic analysis, help was brought in from a person not related to that development process, to get more objective (but still subjective) views on that particular user interface. The product semantic analyses were documented in excel documents.

      12  

The products that were analyzed are shown in figures 1 to 3. The concept from the earlier project (Fritzon et al. 2014) is shown in figure 5.

Figure 5. Concept developed in earlier project.

2.2.4 Target audience Employees at Swegon were asked for previous surveys defining their end user target audience. They did not seem to have anything that could be of use, defining their end users. Statistics Sweden Statistics Sweden was contacted to see if they had some sort of statistics of most common ages of people staying in hotel rooms or working in office-/school-environments. This was thought to be used to get a better idea of which people to interview, by narrowing the group down a bit, through age. They did not have any hotel- or office-statistics where age was a parameter. They did, however, have accommodation statistics for Sweden, with percent stays in Swedish accommodations from different countries. These were studied to see if any target audience-pattern could be found. Target audience assumption Because Swegon did not seem to have any research regarding target group, an assumption about the target audience was made, based on a mission statement from Swegon and to some extent inspired by the information gained from Statistics Sweden.

2.2.5 Interviews Color interviews: A hypothesis that blue and red are the colors that most people think represent heat and cold best, was made. To see if the hypothesis could be confirmed, a simple interview question regarding what colors people thought represents/symbolizes heat and cold best on technical devices was used. Six people were asked the question. Semi-structured interviews Interviews with end users were made to get an understanding of what they wished for and if they had any demands regarding semantic and technical functions in an HVAC user interface. The interviews were also made to see if the end users had any viewpoints of how one could set climate parameters in other ways than the ones that are common today. The interviews were chosen to be of the semi-structured type (Osvalder et al. 2010), since it gives room for both qualitative and quantitative answers. Semi-structured interviews mean that an interview guide has been made prior to doing the interviews, with areas to cover in the interview, without limiting the interviewer from asking follow-up questions. Quantitative answers can be good to generate statistics on peoples takes on certain questions.

      13  

Qualitative answers are more open and can give inspiration in ways that quantitative answers might not give. Both these qualities of answers seemed valuable to this project. Prior to, and in the making of the interview guide, a compendium called "Brukarbeteende" compiled and handed out by Lennart Wihk1 during a lecture in interviewing techniques, was studied in order to gain some information about how to create a guide that would help make the interviews provide relevant information to the work. The compendium contains some pages from a book on interviewing techniques, called "Som man frågar får man svar" (Andersson, 2001) and some other sources of information regarding the subject. Six people were interviewed. Three of them were people who had user interfaces for HVAC systems in their offices. Three of them were people who just occasionally ran in to user interfaces of this type. The idea of interviewing both these groups was to cover a broader segment of the end user-group, even though the interviews were not conducted on a large scale. When doing the interviews, the answers were written down on printed interview guides. Four of the interviews were also recorded. The answers from the recordings and the printed interview guides were then written into a document on the computer (appendix 4). A compilation of the interviews with interesting quotes and statistics on the answers was later written and is attached as appendix 5. After the first two interviews, the interview guide was slightly edited, since some questions seemed too alike judging by the answers they generated. Some questions were formulated in other ways, some questions were removed and some others were added. Interview regarding installation of user interfaces A Swegon employee who works at their service department was interviewed to get input on aspects regarding user interfaces for HVAC systems, that could be of importance for the people installing the user interfaces. This interview was also semi-structured, but leaning more towards an unstructured interview than the semi-structured interviews mentioned earlier.

2.3 Requirements specification Before the solving process began, a requirements specification was made to be used as a guide in the concept development and the concept choice-process (Johannesson et al. 2009). A functional analysis was used as a requirements specification, since it seemed like an appropriate way of showing the requirements and wants in a perspicuous way. The idea of the functional analysis is described by Landkvist (2001) as a method to think and express ourselves in terms of functions and not in completed solutions, and also to think first and act later. A modification of the functional analysis was made, so that the idea of the weighting of wishes, from Olsson's criteria matrix (Johannesson, 2009), was combined with the base of a functional analysis (Landkvist, 2001), because the weighting of the wishes felt like a good way to know what to prioritize during the coming concept development process. The functional analysis was based on interviews with end users, talking with employees at Swegon, mission statements from Swegon and theory on human-machine interaction from

                                                                                                               1  Lennart  Wihk,  lecture  in  interview  techniques,  2012.  

      14  

"The design of everyday things" (Norman 2013). Main function of the user interface was noted with "MF". Necessary functions, requirements, were noted with an "N". If six out of six people would answer they wanted something, it was put down as a requirement. If five out of six people would answer they wanted something, it was put down as a wish, weighted five (W, 5), if four people would answer they wanted something, it was weighted four (W, 4) and so on. When talking to employees at Swegon, a wish about the interface to show if heating or cooling came up. This was weighted a 4 (W, 4), since the employees opinions coming from experience were seen as worth regarding.

2.4 Idea generations Three idea generation-sessions were made to generate a mass of ideas that could inspire concepts to be worked further with. The methods "random word-association", "slip-writing" and "6-3-5" were used. During all the idea generation-sessions, the group was told to leave all criticism out, since it hampers the creative process, according to Michanek & Breiler (2004).

2.4.1 Random word-association The first idea generation-session consisted of the random word-association method. It was made with a group of four people of the end user-party, including the author of this report. The method is described by Michanek & Breiler (2004) and the basics of it are that a list of random words is generated. Questions are then presented and the participants are asked to generate ideas while thinking of one of the random words. The thought of it is that thinking of random words while generating ideas can inspire ideas that would otherwise not have been thought of. At first, questions about areas to treat during the random word-association-session were formulated. Thought was put into formulating the questions in ways that would not lock the thoughts of the participants too much. For example, none of the questions indicate that the concepts that were to be developed had to be mounted on a wall. First, one person was told to say the first word he or she thought of, then the next person said the first word he or she thought of and so on. The words were written down as they came up. This went on for about 5 minutes. After a chain of words had been created, the questions were presented, in accordance with what is described by Michanek & Breiler (2004). The questions are not presented until the random word-list is done, so that the words that are generated do not revolve around the questions that are going to be treated. The questions presented were: 1. “How could one interact with an HVAC system?” (Meaning of HVAC system was explained to the group) 2. “How could the function adjustment of temperature be conveyed?” 3. “How could the function adjustment of air-flow be conveyed?” 4. “How could the function increase of air-flow during a certain amount of time be conveyed?” The question about increased air-flow during a certain amount of time was asked since

      15  

Swegon want their user interface to have this option; in the form of a function they call AirBoost. Each participant was given a bunch of post-it-notes to draw or write down ideas on. The questions were then presented in the order one to four and to each question; words that were meant to inspire ideas were called out from the random word-list. The participants were asked how the question presented could be answered in relation to the random word that was called out. If an idea was thought of, the person who thought of it was asked to explain and develop the idea, so that it would get more substance. After the idea was presented, it was drawn or written down on a post it-note. As soon as the group seemed to run out of ideas when thinking of a certain word, a new word was presented. Figure 6 below shows the collected ideas sorted by question, the list of random words, the book, which was used as a guide through the method, and a paper with the questions on.

Figure 6. The book "Idéagenten", questions, random-word-list and post-it notes with ideas generated during the session.

2.4.2. Slip-writing Since the random word-association method felt like it sometimes tied the ideas to the word in an un-wished for way, instead of just being inspiring, and a larger base of ideas was wanted, another idea generation method was conducted. Slip-writing was tried, because it seemed like a good way to get out ideas with no restrictions at all. The slip-writing session was conducted by two people, and a third one who joined for the last

      16  

question. Four new questions were formulated, putting a greater focus on the looks of the functions of a user interface-device, to generate ideas regarding how signifiers for different functions could look. The questions presented were: 1. “How can a user interface for an HVAC system, with the functions increase and decrease temperature, and increase and decrease air-flow look?” 2. “How can it look if a function increasing air flow for a certain amount of time is added?” 3. “How can it look if the user interface shows the current room temperature?” 4. “How can a user interface look, having all the functions described above, having no screen?” A bunch of post-it-notes were handed out. The questions were then presented one by one and ideas were scribbled down for five minutes per question. After each question had its five minutes of idea generation, the participants presented their ideas and made them understandable, so that the result would not just be a bunch of post-it-notes that are really hard to make any sense of.

2.4.3. 6-3-5 Since the two previous idea generation methods had given lots of small ideas on post-it-notes that were really far from worked through, the 6-3-5-method was used (Michanek & Breiler 2004). The method is built on that every person in a group of six people is given an A3-paper, and is asked to draw a matrix consisting of six rows (one for each person in the group) and three columns (one for each idea, enabling three ideas per time period). Then the question is presented to the group. When the question has been presented, the participants get five minutes to draw or write down three ideas. After five minutes, each person sends their paper to the next person, who gets five minutes to draw or write down three new ideas inspired by the three ideas above, or just three new ideas. This is repeated until the papers have gone one lap. (Michanek & Breiler 2004) This method was thought to generate more worked through ideas than the ideas that came from the slip-writing and random word-association methods. The questions used in this method were almost the same as the ones for the slip-writing-session, though two were slightly changed. The 6-3-5-session was conducted as described above. The questions presented were: 1. “How can a user interface for an HVAC system, with the functions increase and decrease temperature, and increase and decrease air-flow look?” 2. “How can it look if a function for increasing air flow during a certain amount of time, "airboost", is added?” 3. “How can it look if the user interface shows the current room temperature and the setpoint-temperature/temperatures?” 4. “How can a user interface look, having all the functions described above, having no screen?”

      17  

Two five-minute turns were given to the first question, because it felt like it could bring more ideas. One five-minute turn was given to the second question. Two five-minute turns were given to the third question. One five-minute turn was given to the fourth question. Figure 7 shows a picture from the 6-3-5-session.

Figure 7. Picture from the 6-3-5-session.

2.5 Early concept evaluation – trimming of ideas A mass of 190 notes with ideas had been generated from the idea generations. Trimming of ideas was done to get a more manageable number of ideas to work on with. Since there were so many ideas, and not enough time to work further with all of them, the first four steps of a method called the “Idea-method”, described in Michanek & Breiler (2004), was used. To decide how many of the ideas were to be taken forward in the development process, a percentage number was decided through an assumption based on the time left in the project. Then it was basically a subjective picking out of the ideas which seemed good, with the percentage number as a cap of how many ideas could be taken further. The post it-notes were put up on display, so that they were clearly visible and overviewable. Percentage number of ideas to be taken further was chosen. Since there were so many notes with ideas at the moment, trimming the ideas down quite a lot was needed. Far from all of these ideas would be able to be worked further with due to lack of time in the project. About 35% of the notes from the random word-association, 65% of the slip-writing-notes and just above 35% of the 6-3-5-session ideas were taken forward, meaning that a little more than

      18  

40% of the total amount of ideas were taken forward. After this method was used, there were 82 notes with ideas left. Step four of the idea-method was to find the central judging criteria to use when developing the product (Michanek & Breiler 2004). One of the supervisors from Swegon was asked to define the five or six highest prioritized judging criteria. The two criteria prioritized highest were put as wishes weighted 5 (highest weight) in the requirements specification. The three criteria prioritized next were put as wishes with weights 4 in the requirements specification.

2.6 Further work with ideas - generating concepts At this stage, the ideas were scribbled or drawn on small notes, and needed to be concretized, combined and developed in different ways to get more tangible concepts. For this, a modified version of the “Konkretiseringsverktyg #1 - enkel”, a simple concretizing-guide, described in Michanek & Breiler (2004) was used. A guide was made for writing comments next to ideas in the form of a working name for the idea, a short description of the idea and some advantages and disadvantages of the idea. Next to the comment section was an area for sketching the concept. When sketching down concepts, the 82 notes with ideas on that remained from the trimming earlier were used as inspiration and were also combined in different ways to make concepts. The requirements specification made the guidelines for which functions were used in the concepts sketched. This lead to 10 concepts sketched down in the concretizing guides.

2.7 Presentation to supervisor at Swegon A phone meeting was held with one of the supervisors at Swegon, presenting the 10 concepts via a PDF that was sent to the supervisor. When the concepts were presented, an opinion about splitting up elements of the ideas was expressed, so that the voters would not have to vote on a "package" of ideas and lose good elements, like symbols, from other ideas.

2.8 Breaking down concepts The phone meeting lead to breaking down elements of the concepts into separate parts. It also lead to the development of two voting systems which allowed the different elements to be combined by the voter, to enable them to vote on their own idea of good combinations of elements. The different symbols from the 10 concepts were sketched separately. Internet picture searches like "flame", "heat symbol", "cold symbol", "temperature symbol", "temperature", "thermometer", "cold", "istapp" and "ice" were used to inspire new symbols when sketching. The image-board with the symbols created earlier was used for inspiration as well. Different ways of making settings and displaying settings shown in the 10 concepts were sketched down. When the concepts had been broken down into separate elements, they needed to be able to be voted on in a good way. Discussions with the student who made the thesis work focused on the capsulation lead to the idea of using some kind of matrix, to be able to vote on separate elements and combine different elements when voting. Two voting systems were developed, which were inspired by the morphological analysis; a way of combining partial solutions to a problem into more complete solutions, described by Johannesson et al. (2009).

      19  

2.9 Presentation to project group at Swegon, followed by voting A presentation of the voting material generated was held to seven people from Swegon, who were part of the project group. The 10 concepts which were broken down into pieces (elements) were presented holistically first, to give the group a sense of what could be done with the different elements they were broken into, and that they got to vote on. This was thought to inspire ideas for the project group, which they could put together when voting through the matrixes. The matrixes, which were the voting systems developed earlier, were then presented and the voting method was explained. The participants were given some time to vote spontaneously if they had anything that they believed was a good combination of elements, so that the spontaneous ideas would not get lost. But if they thought they needed time, they were encouraged to take their time to vote. A supervisor from Swegon encouraged the author of this report to weigh in own preference when choosing what to go forward with.

2.10 Evaluation of votes When evaluating the votes, the elements that got the most votes were taken forward to be developed into final concepts. If two elements had the same amount of votes, the one with the most squares won. The winning symbols were to be combined with the winning displays and settings.

2.11 Development of final concepts A notification came about which visual capsulation concept had won in the project that developed the capsulation. This allowed the alternatives that won in this project to be applied to the winning capsulation. In the development of the final concepts, sketching, CAD and 3D-printing was used. "The value of sketching in engineering design has been widely documented.", Schmidt et al. (2012) writes in the article "Research on encouraging sketching in engineering design". Sketching, in this project, was used as the first stage in the stages of the final concept development, as a fast way of getting ideas from the head to be able to be viewed on a paper. This goes hand in hand with the statement "Sketching is a critical tool to give physical representation to and provide an external recording of ideas that exist only in the mind of a designer or design team." made by Schmidt et al. (2012). In an article that investigates the roles of CAD and sketching, it is mentioned that ”… conceptual design requires more of the human centered tasks while detail design depends largely on the computer driven tasks.”, seemingly including sketching in the human centered tasks (Veisz et al. 2012). This is how sketching and CAD was used in this project. To create rough versions of the final conceptual designs, sketches were made. The ideas that seemed good were then designed with greater detail through CAD, to get the measurements that fit the capsulation design in a good way. The CAD-models were then 3D-printed to be able to mount together with the capsulation in a prototype of the combined concept.

      20  

Sketching When designing the layout of the elements that won in the voting, the seven design principles of Don Norman, from the requirements specification were kept in mind: 1. Discoverability 2. Feedback 3. Conceptual model 4. Affordances 5. Signifiers 6. Mappings 7. Constraints Norman (2013) Other elements from the requirements specification were also guiding in this process, like the wish about showing if heating or cooling. The sketch of the front of the capsulation-concept that had won the voting in the project focused on the capsulation design was used to sketch the user interface-concepts onto, to get a good view of how the layouts would look combined with that capsulation design. When sketches were made, compromises of the design were made to fit the ideas that the visual capsulation meant. CAD After sketches of the layouts had been made, CAD-models were made from the sketches, so that the symbols were proportionate to the capsulation, and so that the disk that the symbols were applied on fitted the capsulation. Prototyping 3D-printing The CAD-models were 3D-printed and combined with 3D-printed CAD-models of the capsulation by the other student. Mounting LEDs A disk with LEDs mounted on it was made to fit behind the symbols of one of the 3D-printed models.

      21  

3. Results In this chapter, results from the work described in the method-chapter are presented.

3.1 Project planning Project startup The meeting resulted in a mission statement written by one of the supervisors. Project plan The project plan with a background, preliminary problem question, purpose and goal, WBS, Gantt-chart and risk analysis is attached as appendix 1. Weekly status-checks The weekly status checks generated rough planning for a week ahead written down in a document. Problem analysis The problem evolved from being formulated “How can the use interface for an HVAC system be designed to be user friendly?” into taking shape as two questions, touching both functionality and user friendliness: “What functions do end users want in a user interface for HVAC systems?” and “How can a user interface for an HVAC system be interacted with in a user-friendly way?”

3.2 Research This chapter presents the result from the literature studies and internet searching and the explanation of Swegon's systems by the supervisor from Swegon.

3.2.1 Gathering information

The  design  of  everyday  things  -­‐  Don  Norman  Reading this book has given insights regarding the design of user interfaces. Information found in it has been inspirational and has been kept in mind when designing the user interface. According to Don Norman (2013), discoverability and understanding are two of the most important characteristics of good design. Discoverability, meaning that it should be easy to perceive what actions are available and how they are performed. Understanding, meaning it should be easy to know what the product means with its symbols, etc., and also that it should be easy to know how the product is supposed to be used and to know what the different controls and settings mean. These aspects have been considered in the development of the final concepts of this project. Norman writes that interaction design's goal is to "enhance people's understanding of what can be done, what is happening, and what has just occurred." (Norman 2013). Norman (2013) thinks that in good design, "what actions are possible, what is happening, and what is about to happen" should be communicated from machine to person. The user of a product should always be able to determine the answers to the questions below, Norman (2013) sais. Figure 8, from the book, helps to visualize the sequence.

The seven stages of action. 1. What do I want to accomplish? 2. What are the alternative action sequences? 3. What action can I do now?

      22  

4. How do I do it? 5. What happened? 6. What does it mean? 7. Is this okay? Have I accomplished my goal? (Norman 2013, p. 71)

Figure 8. Visualization of the seven stages of action. Norman (2013) also writes about seven fundamental principles of design, coming from the seven stages of action:

1. Discoverability. it is possible to determine what actions are possible and the current state of the device.

2. Feedback. There is full and continuous information about the results of actions and the current state of the product or service. After an action has been executed, it is easy to determine the new state.

3. Conceptual model. The design projects all the information needed to create a good conceptual model of the system, leading to understanding and a feeling of control. The conceptual model enhances both discoverability and evaluation of results.

      23  

4. Affordances. The proper affordances exist to make the desired actions possible. 5. Signifiers. Effective use of signifiers ensures discoverability and that the feedback is well

communicated and intelligible. 6. Mappings. The relationship between controls and their actions follows the principles of

good mapping, enhanced as much as possible through spatial layout and temporal contiguity.

7. Constraints. Providing physical, logical, semantic, and cultural constraints guides actions and eases interpretation.

(Norman 2013, pp. 72-73) Norman (2013) describes the term affordance in the following way: "An affordance is a relationship between the properties of an object and the capabilities of the agent that determine just how the object could possibly be used", the "agent" being a person or something else that interacts with the object. "Affordances determine what actions are possible." Norman (2013) also writes that a "signifier" is something that communicates where the action should take place. "Constraints are powerful clues, limiting the set of possible actions." (Norman 2013). Norman gives an example of a physical constraint: "... a large peg cannot fit into a small hole.". Constraints can be used to limit users of a product to use it in the way it is thought to be used. Mappings are "the relationship between the elements of two sets of things." (Norman 2013). Norman describes it like this: "Suppose there are many lights in the ceiling of a classroom or auditorium and a row of light switches on the wall at the front of the room. The mapping of switches to lights specifies which switch controls which light.". He sais that spatial correspondence between the controller and the controlled device can make it easier to know how to use them. In the case of the light switches, spatial correspondence would mean that if there is a row of lights from left to right, and a row of switches from left to right, the left switch controls the left light, the right switch controls the right light, and so on. "A conceptual model is an explanation, usually highly simplified, of how something works." (Norman 2013). Norman writes that files and folders on computer screens are part of the elements that allow people to create a "conceptual model of documents and folders inside the computer...". There are actually no folders in the computer, he writes - they are just "conceptualizations designed to make them easier to use.". The terms "feedforward" and "feedback" are also described by Norman (2013). Feedforward, he describes as "The information that helps answer questions of execution (doing)...". Feedforward is conveyed through the use of signifiers, constraints and mappings. "The conceptual model plays an important role" he writes. Norman (2013) describes feedback as "The information that aids in understanding what has happened...". He writes that the conceptual model plays an important role for the feedback as well. Feedback is held up as something important by Norman (2013) when it comes to design. The importance of feedback is also acknowledged by Blair-Early & Zender (2008) in the article "User Interface Design Principles for Interaction Design". They claim that "Immediate feedback is necessary to keep users informed that their actions are having an effect. Apt feedback can be a form of reward for the user."

      24  

Information  about  HVAC  systems  from  supervisor  from  Swegon  This has its base in how things work in Swegon's HVAC systems. It could be believed that when a temperature is set, and for instance, the user interface shows that 22°C is being set, that the one temperature 22°C is what the system is being set to. Though, what is actually happening is that an interval with a "heating setpoint" and a "cooling setpoint" that has been preset by an installer of the product is being set. The interval is individually set for each application. So if one for example would set 22°C, there are actually two temperatures being set, which could be an interval of 22°C as the lowest temperature (heating setpoint), and 24°C as the highest temperature (cooling setpoint). At the heating setpoint, the system starts heating and at the cooling setpoints it starts cooling. Having this interval allows the temperature to sway between the setpoints. When someone opens a window or more people enter a room, causing the temperature to sway, the system will not need to use energy to try and keep the temperature at an exact value. Figure 9 is made, based on the explanation by the supervisor, Pettersson2 from Swegon, to explain this visually. After getting this explained, this has been looked at as problematic throughout the project, since often times only one setpoint is shown on user interfaces for HVAC systems. At the educational visit at Kvänum, pictures and film-clips of different solutions for showing setpoint/setpoints were shown to supervisor and these were discussed.

Figure 9. Figure made to explain setpoints. Presence or absence modes Sometimes the systems use sensors for detecting presence. When noone is present, the distance between the heating setpoint and the cooling setpoint increases, so that the system does not use as much energy.

                                                                                                               2  Kristian  Pettersson,  Swegon  employee,  explanation  of  HVAC  systems,  spring  2014.  

      25  

Semester-mode The systems sometimes have semester modes they can be set to, so that they increase the distance between the setpoints even more. Adjustable setpoint shown One way of doing it is to show the setpoint that it will start regulating towards if changed. For example, if the current room temperature is 18°C, and the interface's cooling and heating setpoints are currently set to 19°C and 17°C (the setpoint-span is 3°C), and the user sets the temperature towards warmer temperature, it shows the heating setpoint, going up above 18°C, to for example 19°C. Then the new span is between 19°C and 21°C. If the user were to change from 18°C to 17°C, the cooling setpoint would be shown, decreasing to 17°C. The span would now be 15°C to 17°C.  

Tips  for  making  an  interview  guide  A compendium which consists of a couple of pages from the book "Som man frågar får man svar" (2001) and various other texts on interviewing, compiled by Wihk3 and used in an earlier course in the Innovation and design engineering programme, was a source of inspiration and provided guidelines when making the interview guides used for the semi-structured interviews. Guidelines which were considered, named in the compendium, were: • Use understandable language • Be consistent in the use of language • Ask one question at a time • Give all the answering options the same chance • Do not ask leading questions • Avoid asking hypothetical questions • Avoid using emotive words • Avoid asking sensitive questions

                                                                                                               3  Lennart  Wihk,  lecture  in  interview  techniques,  2012.  

      26  

3.2.2 Benchmarking Image boards The benchmarking resulted in two image boards. One, showing some user interfaces related to climate and one showing some icons that could represent temperature. Thoughts about the user interfaces and icons are written down on the image boards. Nordbygg fair-visit During the visit at the Nordbygg fair, observations regarding the functions of different user interfaces for HVAC systems were made. Here, some of the observations are written down together with pictures of the user interfaces, to ease understanding. On this Siemens QAW910 (figure 10 & 11), the current room temperature is shown on the display when not altered (figure 10). When readjusting the temperature setpoint, using the wheel, the display shows a dislocation that ranges between -3°C and +3°C from the current room temperature (figure 11). When the temperature has been readjusted, the display goes back to showing the current room temperature.

Figure 10. Siemens QAW910, showing current temperature.

      27  

Figure 11. Siemens QAW910, showing temperature increased by one degree Celsius. On this one, from Regin (figure 12), both the air-flow- and the temperature-settings are analog. The air flow setting is signified through a fan-symbol on a slider. To the left, there are signifiers indicating what happens if you move the slider. The temperature setting is signified through a wheel with a thermometer symbol next to it. The plus- and minus-symbols signify which way to turn the wheel to increase or decrease the temperature. The user interface also has an on- and off-button in the upper right corner of the interface-area, signified by a commonly used on- and off-symbol.

      28  

Figure 12. Regin, both air flow- and temperature settings are analogue. On this one from Schneider Electric (figure 13), the current room temperature is shown at first, on a screen, which is a touch-screen. Temperature is increased and decreased using buttons with arrow-symbols on them. Beneath the heating button (arrow pointing up), there is a blue line with a text under it, in this case showing the number "20.0" and above the cooling button (arrow pointing down), there is a red line with a text over it, in this case showing the number "18.5". These seem to be the two setpoints (cooling- and heating-), explained earlier in this report under "3.2.1 Gathering information"; the cooling-setpoint seeming to be the one at the blue line and the heating-setpoint seeming to be the one at the red line. When the temperature setpoints are changed, both these values change into new ones, with the same interval between them. The device also has a Fahrenheit-/Celsius-switch, to toggle between showing the temperatures in Fahrenheit or Celsius.

      29  

Figure 13. Schneider Electric, seemingly showing both heating and cooling setpoints. Has a Fahrenheit-/Celsius-switch. This one, from Regin (figure 14), is another example of red and blue being used to represent warm and cold. In combination with the colors, it uses arrows (up- and down-) to show the functions of increasing and decreasing temperature (figure 14).

Figure 14. Regin, using red and blue to symbolize heating and cooling.

      30  

3.2.3 Product semantic analyses (PSA) The results of the product semantic analysis-sessions are four PSAs written down in charts, shown in figures 15 to 18.

Figure 15. PSA of a concept developed in an earlier project.

      31  

Figure 16. PSA of Swegon's TUNE Control.

      32  

Figure 17. PSA of Swegon's Luna.

      33  

Figure 18. PSA of Swegon's sensor/user interface for their ADAPT Parasol-system.

      34  

 3.2.4 Target audience  In these accommodation-statistics for 2012 (figure 19) made by the Swedish central bureau of statistics (Statistics Sweden [SCB] 2013), it is declared that 75.8 % of the people staying in accommodations (hotels, cottage villages, hostels, camping sites and private cottages & apartments) in Sweden through this year were Swedish, leaving 24.2 % coming from other countries. In short, these statistics show that many of the accommodation stays in Sweden are made by people from other countries, meaning that many users of Swegon's user interfaces in Sweden will probably not understand Swedish. On top of this, Swegon is a company which also has its systems installed in other parts of the world. Reading these statistics (figure 19) gave a greater understanding for the need of an internationally understood user interface, even if the case would have been that it was to be sold and used only in Sweden.

      35  

Figure 19. Picture from the accommodation-report from SCB. Target audience assumption: The target audience is people not having much time to get to know the device, who do not use the device very often. The target audience is international and therefore requires internationally understood symbols.

      36  

3.2.5 Interviews Color interview The result of the interviews about colors resulted in everyone answering red for warmth and blue for cold. Semi-structured interviews The results related to the semi-structured interviews are two interview guides, attached as appendices 2 (the first version) and 3 (the second version), six interviews written down to a large extent in Swedish (see appendix 4), and also a summary of the interviews, translated into English (see appendix 5). Interview regarding installation of user interfaces The interview with the Swegon service-employee regarding installation of user interfaces, written down to a large extent in Swedish, is attached as appendix 6.

3.3 Requirements specification The requirements specification (which also is the functional analysis) is attached as appendix 7.

3.4 Idea generations

3.4.1 Random word-association The random word association generated many wild ideas and gave a number of 60 post-it-notes with ideas scribbled down and or drawn on them.

3.4.2. Slip-writing The slip-writing generated 40 post-it-notes with ideas scribbled down and or drawn on them.

3.4.3. 6-3-5 The 6-3-5-method generated 90 fields of ideas that were a little bit more worked through than the ideas that came from the other two idea generation-sessions.

3.5 Early concept evaluation – trimming of ideas The result of the first trimming of the ideas from the random word-association-session was 22 notes (out of 60 from the start), the result of the trimming of the slip-writing-ideas was 26 notes (out of 40 from the start) and the result of trimming of the 6-3-5-session ideas was 34 notes of ideas (out of 90 from the start). One of the supervisors from Swegon was asked to prioritize five or six relevant judging criteria. The highest prioritized ones were customer value and realizability. The three which were prioritized next were simplicity, innovativity and cost efficiency.

3.6 Further work with ideas – generating concepts The trimming of ideas had brought down the note-count to 82 notes of ideas. These were used as inspiration when sketching down 10 more worked through concepts. The concepts were drawn on a template designed to give a good overview of the concepts. The template, "Konkretiseringsmall 1: enkel" is shown in figure 20. The 10 concepts are shown in appendix 8.

      37  

Figure 20. Konkretiseringsmall 1: Enkel.

      38  

3.7 Presentation to supervisor at Swegon The result from presenting the 10 concepts was a decision to break them down into smaller pieces. 3.8 Breaking down concepts The breaking down of the 10 concepts resulted in the elements shown in figures 21 to 27. The voting systems which were developed, shown in figures 25 to 27, are matrixes, which enabled the voters to combine the elements from the 10 earlier concepts into what they thought were the best combinations. One might like some elements of one idea, and other elements of other ideas. The voters got matrixes which they got to draw lines on, combining different elements. Their first choice was to be marked with green lines combining the chosen elements and have squares drawn next to the elements chosen. Their second choice was to be marked with blue lines combining the chosen elements and have circles drawn next to the elements chosen. In figure 21, one of the matrixes is shown together with an example of how the voting should look. The voting system used for voting on settings and displays (the matrix shown in figure 27) is slightly different from the one used for voting on air-flow related (figure 25) and temperature related (figure 26) elements. The differences from the two other matrixes are described in the settings and display matrix (figure 27).

      39  

Figure 21. Voting-matrix for air flow-related elements, with an example of how voting could look.

!

"!First!choice!!"!Second!choice!

Air$flow)symbol$ Air)flow)setting$ AirBoost)function$

      40  

Figure 22. Temperature-symbols.

      41  

Figure 23. Heat-symbols.

      42  

Figure 24. Cold-symbols.

      43  

Figure 25. Voting-matrix, air flow.

      44  

Figure 26. Voting-matrix, temperature.

      45  

Figure 27. Voting matrix, settings and display.

      46  

3.9 Presentation to project group at Swegon, followed by voting The presentation was held 13/5 - 2014. Votes on which elements should be taken further in the development-process were acquired.

3.10 Evaluation of votes In figure 28 below, the winning symbols, settings and display types from the voting are shown.

Figure 28. Winning symbols, settings and display types.

      47  

3.11 Development of final concepts In this chapter, the results of the stages of the final concept development are presented. These include sketches, CAD-models and two physical prototypes. Pictures of the sketches, CAD-models and physical prototypes are shown in this chapter. This chapter also includes descriptions of the two final concepts, which are given in a table (table 1). Sketches The sketches in figures 29 & 30 are sketches of the two final concepts and are sketched onto the winning capsulation-design from the other project. These sketches were the foundation for the CAD-modeling that followed.

Figure 29. Final concept 1.

Figure 30. Final concept 2.

      48  

CAD-models Below are pictures of the CAD-models (figures 31-34), modeled from the sketches of the final concepts. The interfaces are in these models adjusted to work with the capsulation design from the other project.

Figure 31. CAD-model of final concept 1.

Figure 32. CAD-model of final concept 1, from the back.

      49  

Figure 33. CAD-model of final concept 2.

Figure 34. CAD-model of final concept 2, from the back. Prototypes In the figures below (figures 35-39) are pictures of the 3D-printed prototypes, printed from the CAD-models shown above. Figures 38 & 39 show the 3D-printed prototypes mounted together with the entirety of the capsulation-prototype from the other project.

      50  

Figure 35. Final concept 1, 3D-printed and mounted in capsulation.

Figure 36. Final concept 2, 3D-printed and mounted in capsulation.

      51  

Figure 37. Final concept 2. Demonstration of shine-through making button-symbols visible. Showing plus- & minus-buttons and symbols for fan- & temp.-settings. Also showing the watch symbol around 3 shining bars with fan-blades surrounding, altogether symbolizing the airboost-function.

Figure 38. Demonstration of symbol shining through wood.

      52  

Figure 39. Demonstration of symbols shining through wood. Explanation of concepts The table (table 1) explains which functions the interfaces have and how those functions are meant to be used. It also contains comments on the designs and thoughts behind them. In this case, the interfaces are made with touch-buttons and displays that are visible through shine-through-material, but the buttons could just as well be sticking out from a surface, adding a tactile dimension to the buttons, and the scale could just as well be a screen, enabling easy toggling between showing the temperature as Celsius or Fahrenheit if a button working as a Fahrenheit-Celsius-switch would be added.

      53  

Table 1: Explanation of final concepts. C1 stands for concept 1, C2 stands for concept 2 Functions How does it work? Comments Increase or decrease temperature

C1: Press button with rising air- or snowflake-symbol.

Aiming to use generally understood symbols.

C2: Press temperature button (with thermometer symbol) between arrows, then use arrow buttons.

Easy toggling between temperature- and air-flow-settings. Interact in the same way when altering temperature as when altering air-flow.

Show current temperature and temperature alteration

C1: A temperature scale is shown on the left side of the interface. Shining a "white" light (not colored) for the current room temperature. If temperature-setpoints are moved to warmer (through use of the button with the rising air-symbol), a light shines red for the temperature wished for. If moved to colder (through use of the button with the snowflake-symbol), a light shines blue for the temperature wished for. For both of these cases, the current temperature is still shown as usual. When the temperature reaches the temperature wished for, the red or blue light is replaced with the "white" light (showing current temperature).

Makes use of red and blue color on the setpoints to show if the system is now heating or cooling. Red represents heating and blue represents cooling. A "white" light, aiming to be neutral, represents the current room-temperature. The scale shows both the current room-temperature and the temperature that the system is working to achieve at the same time. Color-coding is used to distinguish the two from one another.

      54  

C2: A temperature scale is shown on the left side of the interface like in C1, and basically, it works in the same way as in C1. The way they differ from one another is that when pressing the temperature-button (which then starts shining light green), between the arrow-buttons on C2, the setpoint-value turns light green, to signal that it is being controlled by the arrow-buttons, which then will also be light green. When temp.-setpoints have been altered, and the buttons are no longer being touched it shows red or blue in the same way as in C1 (a few seconds after it has stopped being altered).

Same as in C1, and also light and dark shades of green are being used as color-coding to visually connect the buttons that act together to each other, and to visually connect those buttons to the values they alter. The light and dark shades of green being used are supposed to be of the same shades as the ones on the leaf in Swegon's logotype, and thereby, in a subtle way, make the interface identify with the Swegon brand. Using the shades of green avoids collision with the color coding for heating and cooling. The scale is placed on the left side of the interface and the button that decides that the arrow-buttons will alter temperature is placed to the left between the arrow-buttons. This layout is thought to ease peoples understanding of the connection between the temperature scale and the button the button just mentioned.

Increase & decrease air-flow. C1: Press the fan-blades, which are buttons and are "filled in" with a dark green light if pressed when not shining, and stops shining if pressed when shining.

Interact directly with the fan symbol which consists of buttons.

      55  

C2: Press the button with a fan-symbol on it, located between the arrows. The button starts shining dark green and the arrow buttons also start shining dark green to signal that they now control the air flow. As the air-flow is altered (using the arrow-buttons), the bars to the right react. If air-flow is increased, more of them shine dark green. If the air flow is decreased, fewer of them shine dark green.

Easy toggling between air-flow- and temperature-settings. Interact in the same way when altering air-flow as when altering temperature.

Show airflow C1: Number of fan-blades shining dark green. Increased air-flow is shown by more fan-blades shining.

Placed in direct connection with the buttons (they even are the buttons). The idea of this is to make it easy to understand the connection between the buttons and what they alter.

C2: Number of bars shining dark green. Increased air-flow is shown by more bars shining.

The bars are placed to the right of the buttons that alter them (the arrow-buttons), with the air-flow-button as the right one of the two buttons which decide what the arrow-buttons alter (located between the arrow-buttons); closest to the bars. This, as in C1, is layout thought to make it easy to understand the connection between the buttons and what they alter.

Airboost function C1: Press the round button with an hour glass-symbol, placed between the fan buttons (in the center). All fan-blades start shining (or slowly blinking?) when pressed.

Interact in the same area for airboost settings as for air-flow settings. Signifying airboost-setting through hourglass-symbol combined with all fan-blades shining (or slowly blinking?) when pressed. Supposed to communicate full air flow during certain amount of time.

      56  

C2: Press the button that looks like a fan and has three bars shining dark green in the middle surrounded by a clock-symbol.

Big button signifying airboost-setting through a clock-symbol combined with all bars shining. Supposed to communicate full air flow during certain amount of time.

Light up when there is movement infront of it

C1: Uses a sensor, mounted on the user interface, to detect movement infront of it. The surface does not show anything when no one is infront of it, and lights up to show the buttons and displays when it detects movement.

To try to eliminate discomfort and annoyance from blinking or shining light for people trying to fall asleep.

C2: Works in the same way as C1.

To try to eliminate discomfort and annoyance from blinking or shining light for people trying to fall asleep.

 

      57  

      58  

4. Discussion Target audience Since no research to define the target audience of user interfaces for HVAC systems was found, I decided to make assumptions about the target audience, based on the belief that people, at least those staying in hotel rooms, do not have much time to put on learning the device. Having this user audience and the want from Swegon to have a "simple" user interface developed meant that complex settings did not get prioritized at all, but focus was put on understanding the necessities. I was thinking of doing some interviews trying to define the target audience, before doing the other interviews, but it seemed like it would be very time consuming and therefore better suited for a larger project. An attempt of making at least the age of the target audience clear was made, contacting the Swedish central bureau of statistics, trying to find the average age of people staying in hotels or people working in office environments. They did not have statistic based on the age of people staying in hotels, nor did they have any on people working in offices. They did however have statistics on how many people staying in Swedish accomodations were from other countries. These statistics made it clearer that the target audience was broad, and also that the semantics of the concepts being developed should be understood by people not only from Sweden. On top of this, Swegon is a company delivering their products to big parts of the world, making the importance of universal understanding of their user interfaces even more clear. Interviews The interviews made were of the semi-structured type, giving both qualitative and quantitative answers. The interviews took about half an hour on average and took a very long time to write down in documents on the computer. If I would have done this project again, I would not have put as much time on documenting the interviews, focusing more on the answers that felt most important to the project and less on others. Recording interviews was good, since there is an issue with steering the interviewed peoples answers. I heard myself doing this at least once when listening to the recordings and could thereby rethink writing down that answer as something that came from the interviewed person. As people in general do not seem to have much experience of user interfaces for ventilation systems, I could have made an interview based on other setting devices/user interfaces, which are alike. Before the interview regarding installation of user interfaces with the guy working at Swegon service, it would have been nice to know more about the subject. Since my knowledge on the area was thin, the interview guide that I had made proved to be of lesser use than the interview guides made for the end user-interviews. The interview was not as structured as the ones with the end users and this made it harder to write down. I could have made a new interview-guide after doing the interview and contacted someone else from Swegon service for another interview, being better prepared. Joker An idea of a bigger hotel solution came up during the project. This is something that was not worked on so much, but could have been something fun to show among the results as some sort of wild card. Random word-association During this session, focus was probably put too much on generating ideas around the random

      59  

words, instead of letting the random words make people come up with new ideas when their inspiration was low. This might have locked the idea generation-process to some extent. Maybe, I should have, as described by Michanek & Breiler (2004), let the participants write down their ideas before the idea generation started on this one. They did not get the questions before the idea generation started, though, but maybe they should have gotten a little time to write something down before a word was connected to the idea-spawning. The words probably did inspire lots of ideas that would not have been thought of if they were not used, though. Slip-writing This method was a good way of letting me get my own ideas down on paper in a fast way and for the participants to be able to think freely without the problem mentioned about the random word-association-session affecting them. Installer of the product At first, my plan was to regard the installer of the product in the development-process. That plan had to be let go due to lack of time. This was thought of very late in the process. An interview with an installer had already been made, but did not come to use in the development-process. Setpoints Since how much of a relevant question the question of setpoints was to this work was not fully understood until relatively late in the project, interviews which could have been good to make was not done. I would have liked to check what people really think about the idea of showing both the setpoints in a good way, to not lie to the end users and to give them a better conceptual model of what they are actually setting. Image boards The modification of moodboards allowed for a good way of saving thoughts that occurred in the making of the image boards about problems with, and good things about different devices and ways of showing warm and cold. Though, having real moodboards could have been nice at the idea generation-sessions and when sketching down ideas at other times. Two setpoints To understand the problematic situation which follows with using two setpoints, end users of the product and facility owners must both be taken into account. The wants of the end user does not always seem to match the wants of the facility owner. End user vs. facility owner Facility owners probably want to push down the electrical bill, making them want to have a big distance between the two setpoints. The end users, on the other hand, probably want the distance between the setpoints to be as small as possible, so that the temperature sways less around their requested temperature. When trying to make a user interface that meets both the wants of end users and facility owners (electrical bill payers) the difference in wants is a problem. Some (most) people want to see current room temperature on the user interface (based on the interviews with end users). When having a distance between the two setpoints, the end user will be able to see that the system can not deliver the temperature that they set, if the temperature setpoint shown to them consists of only one value, telling them that they have set a certain temperature. They get a wrongful conceptual model of the system, telling them that the system is always trying to reach one certain temperature, when the system is actually

      60  

satisfied staying within an interval of two temperatures. This makes some companies unwilling to show current room temperature on their user interfaces. One way to attack this is like Schneider Electric seem to have done (figure 15). The user interface shows the current room temperature and what seems to be the two setpoints, at the same time. Personally, I think this interface is confusing, though. Showing these values, I think has its advantages, though on this interface I do not think it is clear enough what the values that seem to represent the setpoints are. The current indoor temperature feels like one could understand what it is, since it has the text "Indoor °C" over it. What seems to be the two setpoints (heating- and cooling-setpoint) explain what they are through the lower setpoint (heating-setpoint) being placed at the decrease-temperature-button (down-arrow) and the higher setpoint (cooling-setpoint) being placed at the increase-temperature-button (up-arrow). In addition to this, the heating-setpoint has a red line under it, and the cooling-setpoint has a blue line over it. From this information, it seems people are supposed to understand that the system has two setpoints, being the numbers at the two arrows, and that one is the setpoint where the system starts to heat, since there is a red line at it (and red is a common color to represent heat), and that one is the setpoint where the system starts to cool, since there is a blue line at it (and blue is a common color to represent cold). I think that this can be understood quite easily by people who know the concept of the setpoint-interval already, but that it may be hard to understand by someone who does not. During the interviews, the setpoints were explained to one person, who initially thought it would not be satisfying if the temperature varied a bit from the set value, but when the concept of having two setpoints was explained, the tolerance for a varying temperature increased. Interviews focusing on peoples opinions on this would be nice to have conducted. Maybe there is a better way of explaining the situation of the two setpoints through the user interface. If that could be done, I think it could grant a competitive advantage, if the increased tolerance for a varying temperature that revealed itself in the interview just mentioned actually applies to many people. Fahrenheit/Celsius If the concepts are designed to fit the capsulation that these CAD-models and prototypes are designed to fit; another disk with different temperature-values needs to be made if the user interface would be sold to a country that uses Fahrenheit. If the concept would be applied to a capsulation that uses a screen, a toggle-button could be applied to switch the values between Fahrenheit and Celsius. Symbols On the concept with symbols for heating and cooling, which uses a snowflake for symbolizing cold and rising air for symbolizing heating, the one for heating is something that Swegon voted for, and I think that maybe a sun could be easier to understand. Though, I think that people will understand what the rising air-symbol means, since it is shown together with an opposite one with a snowflake on it. LEDs The disc with LEDs, which was made to shine through the holes that made the symbols, did not work as planned. The LEDs were too close to the symbols to give a good shine-through. Smaller LEDs could maybe fix this problem, making the distance bigger. Constructing some sort of reflector that could be placed around the LEDs to spread the light better could perhaps be another solution. Choosing light-colors for concept two (C2) The colors that are chosen to separate setting temperature from setting air-flow are chosen because I did not want them to be the same colors as the ones for showing heating, cooling or

      61  

current temperature, to try to avoid confusion. This meant neither of them could be "white", which is the color used to show current room temperature, or the same shade of red or blue as the ones for showing heating and cooling. Since I needed other shades of these colors or different colors altogether, I chose to use the two shades of green that are used in the leaf in Swegon's logotype. These colors are intended to work as factors of identification between the product and the company.

      62  

5. Conclusions Two main questions have been touched: What functions do end users want in a user interface for HVAC systems? How can a user interface for an HVAC system be interacted with in a user-friendly way? The interviews lead to a better understanding of what functions the end user group wants. According to the interviews conducted, the end users all want to be able to set temperature. Most of them want to be able to regulate air flow. Half of them want to be able to regulate humidity (though, this was not touched in this project, since the system is not able to deliver humidity change). Almost everyone wanted it to show current temperature. Most of them wanted to see which temperature they set. The part of the purpose formulated: "To help Swegon get a clearer picture of what their end users want out of an HVAC system, and how they want to control one." has been fulfilled through handing Swegon the interviews and interview compilation through this report, which hopefully gives them valuable input. Concepts, having the functions which were most common that the end users wanted, and also the air-boost function (increase in air-flow for a preset amount of time) that Swegon wanted, have been developed. The report now presents two concepts of user interfaces for HVAC systems, focused on usability of the user interface. One of the concepts uses symbols displaying heating and cooling aiming to be understood in large parts of the world. The one for heating is something that Swegon voted for, and I think that maybe a sun could be easier to understand. Though, I think that people will understand what that one does, as it is put together with an opposite one, with a snowflake on it. The other concept uses arrows with a plus and a minus sign. This is a very common way of showing an increase or decrease, and aims to be understood in large parts of the world. The scale, used in both concepts, uses Celsius temperature indication in the form of numbers that in the CADed and 3D-printed versions of the concepts have been moulded into the product. This could make for problems if trying to sell the product in countries using Fahrenheit. If the concepts are made with a screen instead, without shine-through, they could come with a Fahrenheit-Celsius-switch.

      63  

Recommendations for future work The concepts now show one setpoint-temperature and the current room temperature. They could have been showing both the setpoints, though, to make a decision about what temperatures should be shown and in what way, I think that some sort of large scale interviewing or testing with end users should be conducted. The decision to only show one setpoint is based on the voting conducted. For future work, I would recommend that Swegon looks into what people think of the setpoints and if maybe both of them should be shown in some way, because to me it is unclear if any other company in this field has done this. This could maybe grant Swegon a competitive advantage. I think that if further work is done investigating what installers want out of a user interface for HVAC systems, the information gained could perhaps be used to design a user interface that in some way makes it easy to make the settings needed to be made directly using the user interface, instead of using a computer (if it sounds interesting to many installers), which was my impression from the interview regarding installation of user interfaces is the most common way of making the settings today. I would recommend conducting a larger study on whether end users want air-flow-settings on the devices, since the interviews conducted in this project indicate that it is wished for. I would argue that a larger study is needed if wanting to base decisions on it. In the study, I think it would be appropriate to also investigate what people really want out of the air-flow-setting, if the majority wants it. A thought on having an on-off-switch for the system emerged in one of the interviews as a demand, and I think that it may be interesting to investigate if this is something that end users in general want. I think that it could be rewarding to create interactive digital prototypes of the two user interface-concepts developed and let potential end users try them, to see their reactions and to get some feedback on what are good characteristics in the concepts and what could be added or changed to make the concepts better.

      64  

List of words HVAC - Heating, ventilation and air conditioning. Usability – A usable product has the right functions, and those functions are understandable. CAD - Computer aided design. Signifier - Something that communicates where possible actions on an object should take place. Semantics - The study of meaning. The study of the relationships between signs and what they represent.

      65  

Thanks Thanks to Kristian Pettersson and Lina Nygren at Swegon for the support during the project. Thanks to Lars Wellner at Swegon, for the presentation of the UI interface project and material from it. Thanks to Lennart Wihk, lecturer at Karlstad University for the support during the project. Thanks to the people who participated in the end user-interviews. Thanks to Anders Jakobsson from Swegon Service for participating in the interview regarding installation of user interfaces. Thanks to Mikael Åsberg, lecturer at Karlstad University for helping with the 3D-printing of the prototypes. Thanks to Anders Samsson, student at Karlstad University, for being a discussion partner throughout the project and for the collaboration in delivering the final concepts to Swegon.

      66  

References Andersson, B-E. (2001) Som man frågar får man svar. Göteborg: Elanders Digitaltryck. Blair-Early, A. & Zender, M. (2008). User Interface Design Principles for Interaction Design. Design issues, 24 (3), pp.85-107. Eriksson, M. & Lilliesköld, J. (2004). Handbok för mindre projekt. Stockholm: Liber Fritzon, I., Karlsson Ejwertz, V., Samsson, A. & Åkerman Markgren, M. (2014). Uniform Room Control Level 2. Karlstad: Fakulteten för hälsa, natur- och teknikvetenskap, Karlstads universitet. Johannesson, H., Persson, J-G. & Pettersson, D. (2009) Produktutveckling - effektiva metoder för konstruktion och design. Stockholm: Liber Landqvist, J. (2001) Vilda idéer och djuplodande analys: Om designmetodikens grunder. Stockholm: Carlsson Michanek, J. & Breiler, A. (2004) Idéagenten - en handbok i att leda kreativa processer. Malmö: Brain Books AB Monö, R. (1997) Design for product understanding. Stockholm: Liber Norman, D. (2013). The design of everyday things. New York: Basic Books Osvalder, A-L., Rose, L. & Karlsson, S. (2010). Metoder. I Bohgard, M., Karlsson, S., Lovén, E., Mikaelsson, L-Å., Mårtensson, L., Osvalder, A-L., Rose, L. & Ulfvengren, P (red.) Arbete och teknik på människans villkor. Stockholm: Prevent Pettersson, P., Johansson, O., Broman, M., Blücher, D. & Alsterman, H. (2009) Lean: gör avvikelser till framgång. Stockholm: Part Development. Schmidt, L.C., Vargas Hernandez, N. & Ruocco, A.L. (2012). Research on encouraging sketching in engineering design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26 (03), pp.303-315 Statistiska centralbyrån (2013). Inkvarteringsstatistik för Sverige 2012 - Totalundersökning av Sveriges hotell, stugbyar, vandrarhem, campingplatser och förmedlade privata stugor och lägenheter - Accommodation statistics 2012, Sweden. Stockholm: Statistiska centralbyrån. Veisz, D., Namouz, E.Z., Joshi, S. & Summers J.D. (2012). Computer-aided design versus sketching: An exploratory case study. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26 (03), pp.317-335. Österling, K. (2010) Design i fokus - för produktutveckling. Malmö: Liber

      67  

Appendices

Appendix 1: Project plan

Projektplan

DC0075 - Uniform Room Control Unit 2: delprojekt - kognitiv ergonomi hos börvärdesomställare

 

1.  Introduktion    Detta är projektplanen för ett projekt som görs som examensarbete för högskoleingenjörsexamen i innovationsteknik och design på Karlstads universitet. Här beskrivs bland annat projektets problemställning, syfte och mål. Dessa kan komma att omformuleras eller ändras under projektets gång, exempelvis på grund av tidsbrist eller nya insikter.

2.  Bakgrund   Företaget Swegon AB är en del av Latour-koncernen och är en av de marknadsledande företagen inom energieffektiva ventilations- och inneklimatsystem. Swegon är baserat i Sverige men deras produkter finns över stora delar i världen. Swegon har sex produktionsanläggningar varav tre av dem i Sverige; i Arvika, Tomelilla och Kvänum. Swegon erbjuder lösningar för inomhusklimat som är tänkta att inte märkas av. De försöker med hjälp av deras komponenter och systemlösningar bidra med energibesparing och skapa inomhusklimat där människor kan må bra. Swegon bildades 2005 genom en förening av de två företagen PM-LUFT och Stifab Farex. Stifab Farex var stationerat i Tomelilla medan PM-LUFT befann sig i Arvika. I Tomelilla har man fokus på luftdon medan man i Arvika fokuserar på induktionsapparater som distribuerar luft, värme och kyla samt kombinerar luft med vattenburna system. I september 2012 bildade Swegon gruppen Room Unit. Syftet med Room Unit är att arbeta med de delar av Swegons system som finns i slutanvändarens miljö. Enheterna som Room Unit jobbar med är hårt draget de enda produkterna som är synliga för Swegons slutanvändare och kan därför tolkas som Swegons ansikte utåt. En del av enheterna som Room Unit-gruppen arbetar med är så kallade "börvärdesomställare", som används för att reglera klimat. Dessa sitter ofta på väggen i exempelvis hotellrum. Swegon önskar nu att det utförs en undersökning om hur man kan optimera användargränssnittet till börvärdesomställare för att ge mervärde för slutkund eller Swegon.      

      68  

3.  Problemformulering Hur kan man utforma användargränssnittet på en börvärdesomställare för att främja användarvänlighet?

4.  Syfte    I projektet skall en undersökning av kognitiv ergonomi hos börvärdesomställare utföras. Det skall tittas på om denna kan optimeras. Syftet med att optimera den kognitiva ergonomin är att ge ett mervärde till Swegons produkter och förhoppningsvis göra Swegons slutkunder nöjdare.   Arbetsprocessen skall bygga på designprocessen och skall presenteras i en akademisk rapport. Syftet med detta är att i ett skarpt projekt öva på och visa prov på den kunskap som har förvärvats under utbildningens gång.

5.  Mål Att presentera konceptförslag på hur kognitiv ergonomi kan optimeras för börvärdesomställare, alltså ge förslag på olika sätt att underlätta slutanvändarens förståelse för börvärdesomställares funktioner och få denne att våga använda dem. I dessa koncept skall hänsyn till vilka egenskaper som är särskilt viktiga för en börvärdesomställare vara tagen. Koncepten kommer att presenteras genom illustrationer, exempelvis som skisser och färglagda bilder med förklaring av funktionalitet. Hur användargränssnittet kan se ut på en börvärdesomställare kommer att illustreras med hjälp av renderade CAD-modeller. En studie som beskriver vilka symboler, färger och eventuellt grupperingar av funktioner som bör användas och motivering till varför förslagen är lämpliga skall presenteras i form av text och bilder i ett dokument som bifogas i rapporten. I studien skall även ingå en analys av vilka egenskaper som för slutkunder och intressenter på Swegon är särskilt vilktiga hos en börvärdesomställare. En akademisk rapport skall skrivas. Denna skall beskriva arbetsprocessen, som skall bygga på designprocessen. Rapporten skall vara skriven på engelska, på önskemål av Swegon. I rapporten skall också en grov uppskattning om realiserbarhet och kostnad presenteras. En delredovisning av projektet skall ske den 20:e mars. Projektet är tänkt att vara färdigt för slutpresentation den 21:a maj 2014. Resultatet skall även visas upp på en examensarbetsutställning. Examensarbetet skall läsas och opponeras på av annan student. I examensarbetet ingår även att läsa och opponera på annan students examensarbete. Opponeringen sker den 27:e maj.

6.  Arbetsplanering

6.1.  Gantt-­‐schema  Tidsplanering i form av ett Gantt-schema är gjort och finns bifogat som bilaga 1.

6.2.  WBS    Arbetsmoment i projektet är illustrerade i en WBS som finns bifogad som bilaga 2.

7.  Riskbedömning  

      69  

Sjukdom: Jag eller någon av handledarna på Swegon eller någon handledare på skolan skulle kunna bli sjuk, vilket kan kompromissa tidplanen för projektet och möjligtvis projektets resultat. Lösningsfokus: Jag kan bli fokuserad på lösningar för tidigt och på så vis låsa mig vid någonting tidigt, vilket kan leda till att jag missar andra möjliga lösningar som kanske är bättre. Research: Jag skulle kunna lägga för lite tid på researchen eller missa viktig information och därmed ha en tunnare bas än lämpligt att stå på när jag börjar min konceptgenerering. Intervjuer: Utformningen av intervjufrågor kanske inte tillåter svar som verkligen är relevanta för projektet Tidplan: I min tidplan som den ser ut idag kanske fördelningen av tid mellan research och lösningsfas inte är lämplig, vilket eventuellt kan leda till tunn research eller dåligt genomarbetade koncept. Patent-, mönster-, uphovsrätts- eller varumärkesskydd: Jag skulle kunna stöta på patent-, mönster-, upphovsrätts- eller varumärkesskydd som hindrar mig från att gå vidare med lösningar som jag tycker är bra.

8.  Organisation   Viktor Karlsson Ejwertz Telefon: 0763 - 497 495 E-post: [email protected] Lennart Wihk Handledare, Karlstads Universitet E-post: [email protected] Leo de Vin Examinator, Karlstads Universitet E-post: [email protected] Lina Nygren Kontaktperson på Swegon E-post: [email protected] Kristian Pettersson Kontaktperson på Swegon E-post: [email protected]

9.  Dokumenthantering    Google Drive kommer att användas för att samla dokument i projektet på ett gemensamt ställe.

      70  

Bilaga 1: Gantt-schema

      71  

Bilaga 2: WBS

           

      72  

Appendix 2: Interview guide - end users, ver. 1

Intervjumall för intervjuer med slutkunder, ver. 1.  Syftet  med  denna  intervju  är  att  få  fram  underlag  som  kan  hjälpa  till  att  lista  önskade  funktioner  och  egenskaper  hos  börvärdesomställare,  samt  att  identifiera  vad  som  gör  en  börvärdesomställare  enkel  respektive  svår  att  förstå  sig  på  och  vad  som  får  en  börvärdesomställare  att  bjuda  in  till  användning  eller  avskräcka  från  att  användas.    

Introduktion  av  mig  själv  och  presentation  av  intervjun:  (Denna  introduktion  används  som  riktlinje  då  den  intervjuade  ej  känner  till  vem  jag  är  eller  vad  syftet  med  intervjun  är.)    Jag  väljer  att  inte  berätta  direkt  att  intervjun  handlar  om  BVO,  då  jag  tror  att  detta  kan  påverka  folks  svar  på  de  tidiga  frågorna  som  berör  teknik  i  allmänhet,  snarare  än  BVO.    Hej!    Jag  heter  Viktor  och  pluggar  på  Karlstads  universitet.  Jag  håller  på  att  göra  mitt  examensarbete,  som  handlar  om  utveckling  av  användargränssnitt  hos  en  teknisk  pryl.    Skulle  du  kunna  tänka  dig  att  svara  på  några  frågor?  Det  finns  inga  svar  som  är  fel  och  du  kommer  att  vara  anonym.    Det  är  okej  att  hoppa  över  frågor  om  du  inte  kan  komma  på  ett  svar  eller  av  någon  anledning  inte  känner  för  att  svara  på  frågan.  Intervjun  tar  cirka  X  minuter  och  innehåller  18  frågor.    Får  jag  spela  in  intervjun?    

Intervjufrågor    Ålder:    Kön:      1.   Har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?         •  Vad  gör  den  lätt  att  använda?      2.   Har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?         •  Vad  gör  den  svår  att  använda?    3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?      4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?      

      73  

5.     Har  du  någon  gång  sett  en  börvärdesomställare?  (ev.  en  sån  här  eller  motsvarande:  visa  bild  på  BVO)  +  fråga  vad  kan  man  göra  med  en  sådan?)      6.     Har  du  någon  gång  använt  en  börvärdesomställare?         •  Varför?       •  Varför  inte?      7.     Vad  gjorde  den  lätt/svår  att  använda?          8.   Hur  upplever  du  det  att  använda  en  BVO?         Vad  tror  du  gör  att  det  är  så?      9.     Vilken  funktion  använder  du  dig  av  oftast?      10.     Finner  du  alla  funktioner  nödvändiga?         •  Använder  du  dig  av  luftflödesfunktionen  om  den  finns?      11.     Behövs  det  andra  funktioner?         •  Vilka  i  så  fall?      12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?      13.   Vill  du  veta  vilken  temperatur  du  reglerar  mot  eller  räcker  det  med  varmare  och  kallare  som  indikation  när  du  reglerar?  (ev.  Räcker  det  att  veta  att  du  ställer  in  en  varmare  temperatur?)      14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?      15.   Har  du  några  direkta  krav  på  en  BVO?      16.     Har  du  några  önskemål  om  en  BVOs  funktioner?      17.     Vad  säger  du  om  jag  säger  återkoppling?    (Ev.  när  är  återkoppling  viktigast?    Vid  inställning?  Vid  uppnådd  temperatur?)  

      74  

18.     Hur  hade  du  allra  helst  reglerat  temperaturen  i  ett  rum?  (Ev.  säg  ett  önskescenario  om  hur  du  skulle  vilja  ställa  om  klimatparametrar  i  ett  rum.)  

      75  

Appendix 3: Interview guide - end users, ver. 2

Intervjumall för intervjuer med slutkunder, ver. 2.  Syftet  med  denna  intervju  är  att  få  fram  underlag  som  kan  hjälpa  till  att  lista  önskade  funktioner  och  egenskaper  hos  börvärdesomställare,  samt  att  identifiera  vad  som  gör  en  börvärdesomställare  enkel  respektive  svår  att  förstå  sig  på  och  vad  som  får  en  börvärdesomställare  att  bjuda  in  till  användning  eller  avskräcka  från  att  användas.    

Introduktion  av  mig  själv  och  presentation  av  intervjun:  (Denna  introduktion  används  som  riktlinje  då  den  intervjuade  ej  känner  till  vem  jag  är  eller  vad  syftet  med  intervjun  är.)    Jag  väljer  att  inte  berätta  direkt  att  intervjun  handlar  om  BVO,  då  jag  tror  att  detta  kan  påverka  folks  svar  på  de  tidiga  frågorna  som  berör  teknik  i  allmänhet,  snarare  än  BVO.    Hej!    Jag  heter  Viktor  och  pluggar  på  Karlstads  universitet.  Jag  håller  på  att  göra  mitt  examensarbete,  som  handlar  om  utveckling  av  användargränssnitt  hos  en  teknisk  pryl.    Skulle  du  kunna  tänka  dig  att  svara  på  några  frågor?  Det  finns  inga  svar  som  är  fel  och  du  kommer  att  vara  anonym.    Det  är  okej  att  hoppa  över  frågor  om  du  inte  kan  komma  på  ett  svar  eller  av  någon  anledning  inte  känner  för  att  svara  på  frågan.  Intervjun  tar  cirka  X  minuter  och  innehåller  22  frågor.    Får  jag  spela  in  intervjun?      

      76  

Intervjufrågor    Ålder:    Kön:      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?         •  Vad  gör  den  lätt  att  använda,  tror  du?      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?         •  Vad  gör  den  svår  att  använda,  tror  du?      3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?      4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?      5.     Har  du  någon  gång  sett  en  börvärdesomställare?      Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.      6.     Har  du  någon  gång  använt  en  börvärdesomställare?         •  Av  vilken  anledning?           (Vad  gjorde  den  avskräckande/enkel/svår)        7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?         •  Vad  tror  du  gör  att  det  är  så?      8.     Vilken  funktion  använder  du  oftast?      9.     Känns  någon  funktion  överflödig?      10.     Önskar  du  andra  funktioner?         •  Vilka  i  så  fall?      

      77  

11.     Har  du  några  direkta  krav  på  en  BVOs  funktioner?  (Vilka  som  skall  finnas/hur  de  skall  fungera,  etc.)      12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?      13.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?         •  Hur  kommer  det  sig?      14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?         •  Är  blinkande  eller  konstant  ljus  värst?      15.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?      16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?      17.     Vill  du  kunna  justera  luftflödet  på  något  sätt?         Hur  då?      18.     Om  du  tänker  dig  ditt  önske-­‐/drömscenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?      19.     Vilket  tror  du  är  det  bästa  sättet  att  visa  höjning  &  sänkning  av    temperatur?      20.     Vad  tror  du  är  det  bästa  sättet  att  visa  luftflödeshastighet  på?      21.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  tills  önskad  temperatur  är  uppnådd  på?      22.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  under  viss  tid  på?      

      78  

Appendix 4: Interview answers Intervjufrågor    Person  1  Ålder:    57  Kön:     Kvinna      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       Ja.  iPhone  &  dator.         •  Vad  gör  den  lätt  att  använda,  tror  du?       Används  frekvent      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?       Ibland,  tvättmaskinen.       Diskmaskinen  på  jobbet.         •  Vad  gör  den  svår  att  använda,  tror  du?       Tvättmaskin  -­‐  många  olika  inställningar.           Diskmaskin  -­‐  massa  olika  program.  Måste  hålla  in  vissa  sekunder  för  att  göra  vissa  inställningar.  Kör  den  bara  någon  gång  ibland.      3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?       Temperatur.     Vill  inte  att  den  skall  blåsa  om  ej  tropiskt  klimat.      4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Temperatur.      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.    6.     Har  du  någon  gång  använt  en  börvärdesomställare?  

      79  

    Ja.         •  Av  vilken  anledning?           Ville  ha  det  varmare.        7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?       Att  det  var  lite  svårt.         •  Vad  tror  du  gör  att  det  är  så?       Det  var  18  grader,  så  tryckte  jag  till  20  grader  och  sen  när  jag  hade  slutat  trycka  så  lyste  18  grader  igen    och  så  tänkte  jag  "nämen,  vad  konstigt,  ställde  jag  inte  in  den  nyss?".       Jag  visste  inte  om  jag  hade  lyckats  eller  inte.       Fanns  inget:  Ja!  Ny  har  du  ställt  in  20  grader.  Nu  jobbar  den  för  fullt  för         att  ge  dig  det  du  vill  ha.       Tryckte  till  20,  sen  när  man  släppte  så  bara  stod  det  18.  Och  då  visste  man  inte  om  det  skulle  bli  20  sen.      8.     Vilken  funktion  använder  du  oftast?       Temperatur.        9.     Känns  någon  funktion  överflödig?       Ja.  Fanns  nog  någon  timer  på  något  ställe.  Att  det  stod  timer.  Ytterligare  ett  moment  att  förstå.       Skapade  osäkerhet:  Har  jag  ändrat  på  tiden  nu?  Eller  har  jag  lyckats  höja  värmen?  Stängs  den  av  inom  en  viss  tid  eller  ändrat  vilken  tidpunkt  den    skulle  börja  eller  sluta?      10.     Önskar  du  andra  funktioner?  (Borde  stå:  Har  du  några  önskemål  angående  funktionerna?)       Ja.           •  Vilka  i  så  fall?       Skulle  kunna  vara  en  fjärrkontroll  som  kan  styra  fler  saker  i  rummet.     Skulle  kunna  styra  TV:n,  kan  använda  sig  av  TV:n  som  skärm.     Visa  temperaturen  på  TV:n:  Nu  har  du  ställt  in  20  grader.     Sen  kan  man  trycka  på  1:an,  så  får  man  TV:n.     Fara  med  många  funktioner  dock.        11.     Har  du  några  direkta  krav  på  en  BVOs  funktioner?  (Vilka  som  skall  finnas/hur  de  skall  

      80  

fungera,  etc.)       Ändra  temperatur.       Det  skall  visas  tydligt  att  jag  har  gjort  någonting.  Bekräftelse:  "Du  har  tryckt  på  knappen.  Jag  jobbar  nu."     (kanske  annan  färg  på  en  siffra  eller  att  en  lampa  börjar  lysa,  t.ex.     rött  -­‐  så  jobbar  den,  gult  -­‐  på  väg,  grönt  -­‐  klart.)      12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       När  man  kommer  in  i  rummet  kan  den  göra  det.       Problemet  för  mig  var  att  den  hela  tiden  fortsatte  att  visa  samma  rumstemperatur.     På  ett  sätt  är  det  skönt  att  veta  temperatur  i  rummet,  men  man  behöver  ju  också  se  att  man  faktiskt  har  sagt  till  den  och  att  man  vet  att  den  kommer  att  öka  en  grad  om  man  hade  önskat  det.      13.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?         Vill  kunna  se  att  jag  trycker  in  20,  och  att  den  jobbar  mot  20.     Vill  gärna  veta  när  den  är  klar.  Inte  nödvändigt  att  jag  ser  hela  tiden  att  den  jobbar  mot  20.  Huvudsaken  är  att  jag  ser  att  den  jobbar.         •  Hur  kommer  det  sig?        14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?       Ja.         •  Är  blinkande  eller  konstant  ljus  värst?       Blinkande.        15.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?       Kanske  kan  slockna  när  den  är  klar.  Kan  gå  fram  och  kolla  att  det  är  uppnådd  temperatur.  Kanske  tänds  upp  när  man  rör  vid  den.      16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?       Ja.      17.     Vill  du  kunna  justera  luftflödet  på  något  sätt?       Kanske  inte  så  viktigt  i  Sverige.  Om  man  är  i  varmare  klimat.         Hur  då?    

      81  

 18.     Om  du  tänker  dig  ditt  önske-­‐/drömscenario,  hur  hade  du  då  reglerat     klimatparametrar  i  ett  rum?       Bara  sagt  20  grader.  Eller  sagt  till  i  receptionen.  Inte  velat  bekymra  mig  över  det.  Helst  skall  det  bara  vara  rätt.  Om  man  skall  behöva  ändra  något  så  skall  det  vara  så  enkelt  som  det  bara  går.      19.     Vilket  tror  du  är  det  bästa  sättet  att  visa  höjning  &  sänkning  av    temperatur?       Antingen  från  rött  -­‐  varmt  till  grönt  -­‐  kallt  (via  gult  för  att  veta  att  den  är  påväg.).  Eller  +  till  -­‐.     Streck  längs  en  termometerskala.     Rött  till  blått  hade  också  fungerat.      20.     Vad  tror  du  är  det  bästa  sättet  att  visa  luftflödeshastighet  på?       Nog  pilar.  En,  två  eller  flera  pilar.  Bredvid  varandra.  (Meterologkarta  -­‐  pilar  för  vindar.)      21.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  tills  önskad  temperatur  är  uppnådd  på?       Mha.  färg.  En  färg  som  slår  över  i  en  annan,  när  det  är  klart.      22.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  under  viss  tid  på?    Om  det  är  display  -­‐  vandrar  någonting.  Snurrar  hjul  som  i  PC.  Pilar  som  går  över  skärmen.  Kan  vara  enerverande  dock.  

      82  

Intervjufrågor    Person  2  Ålder:    22  Kön:     Kvinna      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       Ja.  iPhone.         •  Vad  gör  den  lätt  att  använda,  tror  du?    

Apparna  visar  väldigt  bra  med  bilder  vad  det  är  som  man  kan  gå  in  på.  Texten  också.      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?       Ja.  Vissa  tvättmaskiner/torktumlare.         •  Vad  gör  den  svår  att  använda,  tror  du?       För  många  alternativ.      3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?    

•  Temperatur.  (Ska  vara  enkelt.  Vill  kunna  trycka  på  nånting,  så  att  det  inte    behöver  vara  varmt  idag,  när  jag  ska  till  skolan.  Så  kan  jag  bara  vrida  på  värmen  sen  igen.)  

  •  Luftflöde.  (Dålig  luft  typ  i  klassrum)     •  Luftfuktighet.  (Det  är  väl  inte  bra  för  lägenheten  om  det  blir  för  mycket  fukt.    Kan  väl  bli  

mögel  då?)     Vill  nog  kunna  justera  allt,  faktiskt.          4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Luftflödet  (ren  luft  känns  viktigast).      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.      6.     Har  du  någon  gång  använt  en  börvärdesomställare?      

Ja.  

      83  

      •  Av  vilken  anledning?         För  att  byta  temperatur.        7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?    

Den  jag  använde  var  lätt.  Hade  dock  inget  som  visade  vilken  temperatur  det    var  i  rummet.  Det  stod  inte  22,  så  nu  vet  jag  att  jag  höjer  till  23,  utan  det  var  bara  såhär:  Det  är  lite  svalt  här  inne,  då  höjer  jag,  men  jag  hade  ingen  aning  om  hur  varmt  det  var.    Hade  velat  ha  det.  Förra  gången  tog  jag  till  22  grader,  då  vet  jag  det  till  denna  gången  också.  

        •  Vad  tror  du  gör  att  det  är  så?    

Stod  ju  plus  och  minus.  Bara  att  vrida,  liksom.  Det  hade  nog  vem  som  helst    fattat.      8.     Vilken  funktion  använder  du  oftast?       Byta  temperatur.      9.     Känns  någon  funktion  överflödig?    

Nej.    Bara  saknade  det  att  man  vet  vad  det  är  för  grad  från  början.  Och  att  den  ska  se  lite  roligare  ut,  tycker  jag.  

   10.     Behövs  det  eller  önskar  du  andra  funktioner?       Ja.         •  Vilka  i  så  fall?       Saknade  nuvarande  temperatur.  Se  lite  roligare  ut.     Saknade  vilken  temperatur  man  ställde  in  mot.      11.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       Ja.      12.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?       Vill  veta  vilken  temperatur  jag  reglerar  mot.         •  Hur  kommer  det  sig?  

      84  

   För  att  då  vet  man  till  nästa  gång  att  det  här  var  en  behaglig  värme  i  just  den    här  lokalen.  Då  skulle  man  kunna  skriva  upp  det  i  något  bokningssystem.  Vi  säger  att  nån  bokar  en  konferens.  Så  skriver  man  in  det  samtidigt  i  bokningssystemet  att  bekväm  värme  är  typ  22  grader.    T.ex.  senast  så  tyckte  gästerna  att  det  var  22  grader.  De  som  möblerar  i  konferensrummen,  de  är  ju  de  som  justerar  värmen  och  så  innan  konferensgästerna  kommer.  Då  tror  jag  att  det  kan  vara  bra  för  dem  att  veta  bekväm  temperatur.  

   13.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?       Nej.         •  Är  blinkande  eller  konstant  ljus  värst?         Tror  konstant  ljus  är  mest  störande.      14.     Har  du  några  direkta  krav  på  en  BVO?       Kunna  ändra  temperatur  och  luftflöde.        15.   Har  du  några  önskemål  om  en  BVOs  funktioner?       Alla  från  ung  ålder  till  gammal  ålder  skall  förstå  den.  

Att  det  inte  ska  vara  krångel  och  oförståeligt.  Att  man  blir  irriterad  som  man    kan  bli  på  vissa  tekniska  saker.    Vill  kunna  se  nuvarande  temperatur.  

  Vill  kunna  se  vilken  temperatur  man  ställer  in  mot.     Se  lite  roligare  ut.  

Smälta  in  med  inredningen,  tycker  jag.  Man  kunde  få  designa  sin  egen.  Om  man  vet  att  man  ska  ha  beiga  tapeter  i    hallen,  då  kanske  man  vill  ha  en  beige  sån.  Den  blir  diskret.  Om  man  köper  en  till  sitt  hus  kunde  detta  kanske  varit  kul.  Kanske  inte  fungerar  till  ett  hotell  med  en  massa  rum.  

   16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?       Ja.  Det  tycker  jag.  Som  med  en  ugn.      17.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?    

Ja.  Det  är  bra  för  att  man  ska  förstå  apparaten.  Viktigt  med  någon  signal  om  att  man  gör    rätt.    En  micro.  Du  har  ju  inte  gjort  rätt  förrän  den  startas.  Man  kan  vrida  och  vända  jättemånga  gånger,  men  om  man  inte  har  gjort  rätt,  så  startas  den  ju  inte.    En  micro  visar  på  ett  bra  sätt  att  den  är  igång.  Tid  börjar  startas.  Den  börjar  lysa.  Börjar  låta  och  snurra.  

 

      85  

 18.     Om  du  tänker  dig  ditt  önskescenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?    

En  grej  som  är  på  väggen.  Som  en  iPhone.  Touch  grej  som  symboliserar    värme,  så  kommer  det  upp  så  att  man  kan  höja  eller  sänka,  så  att  man  bara  kan  trycka.  Så  visar  den  hur  många  grader  det  är  från  början.  Den  visar  att  den  går  ner  till  20,  men  visar  fortfarande  ärvärdet  också.    Om  man  vill  gå  tillbaka  sen,  så  kan  man  gå  in  på  den  igen  och  så  visar  den  om  det  har  lyckats  gå  ner  till  20.  (ärvärdet  visar  om  den  har  lyckats)  

   Personen  ville  gärna  ha  den  temperaturen  som  hon  hade  ställt  in.  När  hon  fick  förklarat  för  sig  hur  det  fungerar  med  kyl-­‐  och  värmebörvärde,  så  var  hon  mer  tolerant  mot  att  temperaturen  kan  svaja  lite.  ”Då  vill  jag  inte  bli  besviken,  för  jag  tänker  på  miljön.”  ”Denhär  kan  inte  göra  så,  men  det  fick  inte  jag  reda  på.”    

      86  

(Från  skolan)    Person  3  Ålder:    47  Kön:     Kvinna      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       Mobiltelefon  (iPhone)         •  Vad  gör  den  lätt  att  använda,  tror  du?       Inte  så  många  val.      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?       TV-­‐apparater.         •  Vad  gör  den  svår  att  använda,  tror  du?       Inställningar  –  olika  varianter  överallt.  Manualen  varje  gång.    3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?       Temperaturen.    4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Temperaturen.  Enda  gången  jag  gör  det.      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.  6.     Har  du  någon  gång  använt  en  börvärdesomställare?       Ja.         •  Av  vilken  anledning?          7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?       Fungerar  bra.  Relativt  användarvänligt.         •  Vad  tror  du  gör  att  det  är  så?  

      87  

    Lågt,  högt  &  skruva.     Man  behöver  inte  ta  ställning  till  olika  beslut.    8.     Vilken  funktion  använder  du  oftast?       Temperatur.        9.     Känns  någon  funktion  överflödig?       När  det  har  varit  flera  rattar.     Får  testa  sig  fram  på  hotellrum.      10.     Önskar  du  andra  funktioner?         •  Vilka  i  så  fall?       Lättare  att  använda,  med  display.      11.     Har  du  några  direkta  krav  på  en  BVOs  funktioner?  (Vilka  som  skall  finnas/hur  de  skall  fungera,  etc.)       Display.  I  bilen  är  det  enkelt.  Temperatur.    12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       Ja.  Det  vore  väl  önskvärt.    13.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?      

Spelar  ingen  roll  här  (var  i  ett  arbetsrum  på  en  arbetsplats).  Har  högre  krav    hemma.         •  Hur  kommer  det  sig?         Jobbar  bara  här.  Hemma  vill  man  styra  kostnaderna.      14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?       Ja.         •  Är  blinkande  eller  konstant  ljus  värst?       Blinkande  är  värst.  Det  är  mer  irriterande.        15.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?       Nej.  Kan  ju  gå  och  titta  på  BVO:n.  

      88  

   16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?       Nej.      17.     Vill  du  kunna  justera  luftflödet  på  något  sätt?       Ja.           Hur  då?       Kanske  om  man  vill  ha  kyla.      18.     Om  du  tänker  dig  ditt  önske-­‐/drömscenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?       Trådlöst  med  en  display.  Kopplad  till  hela  huset.    19.     Vilket  tror  du  är  det  bästa  sättet  att  visa  höjning  &  sänkning  av    temperatur?       Touch-­‐skärm.  Visa  gradertecken.  Använd  vedertagna  symboler.      20.     Vad  tror  du  är  det  bästa  sättet  att  visa  luftflödeshastighet  på?       Någon  fläktsymbol.  Pilar.  Uppåt  &  nedåt,  lodrätt.  Visa  kubikmeter  eller  liter.      21.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  tills  önskad  temperatur  är  uppnådd  på?       Med  en  färg,  kanske.  Grön  när  den  har  nått  dit,  röd  från  början.      22.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  under  viss  tid  på?    Visa  antal  minuter  eller  timmar.  I  kombination  med  fläktsymbol.

      89  

(Från  skolan)    Person  4  Ålder:    37  Kön:     Kvinna      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       iPhone         •  Vad  gör  den  lätt  att  använda,  tror  du?       Går  snabbt.  Bara  trycka  en  gång  eller  två  gånger  för  att  komma  dit  man  vill.      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?       Få  IP-­‐telefoni  att  fungera.         •  Vad  gör  den  svår  att  använda,  tror  du?       Måste  vara  senast  uppdaterat.  Ringa  support.      3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?       Temperatur  &  luftfuktighet.  Luftflödet  ska  vara  bra  automatiskt.    4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Bra  ventilation.      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.    6.     Har  du  någon  gång  använt  en  börvärdesomställare?       Ja.         •  Av  vilken  anledning?          7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?       Fungerar  inte  sådär  jättebra.  

      90  

      •  Vad  tror  du  gör  att  det  är  så?       Det  är  så  mycket  som  är  centralt  styrt.    8.     Vilken  funktion  använder  du  oftast?       Temperatur.        9.     Känns  någon  funktion  överflödig?       -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐    10.     Önskar  du  andra  funktioner?       Nej.  Vill  ha  temperatur  och  ventilation.         •  Vilka  i  så  fall?      11.     Har  du  några  direkta  krav  på  en  BVOs  funktioner?  (Vilka  som  skall  finnas/hur  de  skall  fungera,  etc.)       Ställa  in  temperatur.  Sen  skall  den  hålla  rätt  temperatur.      12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       Ja.      13.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?      

Vill  se  exakt  temperatur.         •  Hur  kommer  det  sig?      14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?       Ja.         •  Är  blinkande  eller  konstant  ljus  värst?       Blinkande  är  värst.        15.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?       Ja.  Grönt  eller  rött.  Kan  sluta  blinka.    

      91  

 16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?       Ja.      17.     Vill  du  kunna  justera  luftflödet  på  något  sätt?       Ja.           Hur  då?       Vill  gärna  kunna  rikta  luften.  Öka  på  eller  minska  luftflödet.      18.     Om  du  tänker  dig  ditt  önske-­‐/drömscenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?       Att  det  inte  blåste  men  att  det  höll  temperaturen.  Gjort  det  av  sig  självt.    19.     Vilket  tror  du  är  det  bästa  sättet  att  visa  höjning  &  sänkning  av    temperatur?    

Snöflinga  för  kallt  och  sol  för  varmt.  Rött  är  varmt  och  blått  är  kallt.    Gradantal,  kanske.  Men  det  känns  inte  lika  internationellt.  

   20.     Vad  tror  du  är  det  bästa  sättet  att  visa  luftflödeshastighet  på?    

Fläktsymbol.  Större  eller  mindre  fläkt  (beroende  på  mer  eller  mindre  luftflöde.    Större  för  mer,  mindre  för  mindre).  

   21.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  tills  önskad  temperatur  är  uppnådd  på?       Visar  inte  det,  kanske.      22.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  under  viss  tid  på?    Fläktsymbol  med  en  klocka  bredvid.  Svartmarkerat  med  en  kvart  på  klockan  om  man  ställt  in  en  kvart.  

      92  

(Från  skolan)    Person  5  Ålder:    49  Kön:     Man      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       iPhone         •  Vad  gör  den  lätt  att  använda,  tror  du?       Utgår  från  mig  som  användare  och  inte  från  tekniken.      2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?    

Svårt  är  väl  att  kanske  ta  i,  men  många  andra  tekniska  prylar  utgår  ju  från  den  tekniska  lösningen.  Många  gånger  är  användningen  utformad  av  tekniker.  Apple  produkter  är  utformade  väldigt  mycket  från  oss  som  ”dumma  användare”.    Motpolen  mot  apple-­‐produkter,  kan  man  säga.  Kanske  inte  svåra,  men  det  finns  en  skillnad  där  i  alla  fall.  

      •  Vad  gör  den  svår  att  använda,  tror  du?       -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐      3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?    

Framförallt  temperaturen.    (Luftfuktigheten)  Inte  jag  personligen,  men  jag  vet  att  en  del  skulle  vilja  ändra    luftfuktighetsinställningar  också.  Sommartid  kanske  man  skulle  vilja  öka  upp  tempot  på  fläkten  och  inte  vara  styrt  utav  någon  centralfläkt.    Speciellt  sommartid:  Fläktarna  går  ner  i  tempo  på  kvällarna  och  då  blir  väldigt  varmt  här  (på  arbetsplats).  

   4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Temperaturen.      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.  

      93  

 6.     Har  du  någon  gång  använt  en  börvärdesomställare?       Ja.         •  Av  vilken  anledning?          7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?       Enkla  att  använda.         •  Vad  tror  du  gör  att  det  är  så?    

På  denna  är  det  väldigt  enkelt  eftersom  det  bara  är  ett  reglage,  det  kan  ju  inte  bli  fel,  liksom.  (ett  hjul  för  att    ändra  temperatur.  Ingen  skärm.  Visar  siffror  längs  hjulet).  Få  reglage.    Om  man  skulle  vilja  ha  luftfuktighet,  temperatur  och  fläktfarten,  så  är  det  liksom  tre  enkla  reglage.    Eller  om  det  är  en  mer  elektronisk  panel,  att  man  bara  har  de  tre  alternativen.  Att  man  kan  toggla  runt  de  tre  bara.  

 8.     Vilken  funktion  använder  du  oftast?       Temperatur.        9.     Känns  någon  funktion  överflödig?       -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐    10.     Önskar  du  andra  funktioner?         •  Vilka  i  så  fall?       Prioritering  (viktig  till  mindre  viktig):       1.  Temperatur       2.  Fläkthastighet     3.  Luftfuktighet      11.     Har  du  några  direkta  krav  på  en  BVOs  funktioner?  (Vilka  som  skall  finnas/hur  de  skall  fungera,  etc.)       Temperaturändringsmöjlighet  skall  finnas.      12.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       Det  är  inte  nödvändigt.  Skulle  kanske  vara  bra,  men  det  är  inget  jättekrav.    

      94  

 13.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?      

Att  veta  att  det  blir  varmare  eller  kallare  räcker.         •  Hur  kommer  det  sig?      14.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?       Nej.         •  Är  blinkande  eller  konstant  ljus  värst?      15.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?       Nej.      16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?       Inte  i  denna  miljön.  (På  arbetsplatsen)      17.     Vill  du  kunna  justera  luftflödet  på  något  sätt?       Andra  prioritet  (efter  temperaturändring).         Hur  då?      18.     Om  du  tänker  dig  ditt  önske-­‐/drömscenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?    

Hemma  kanske  man  kunde  ha  en  smart  app.  Kan  styras  bortifrån,  så  man  kommer  hem  till  ett  varmt  hus.  Främst  hemma.  

 19.     Vilket  tror  du  är  det  bästa  sättet  att  visa  höjning  &  sänkning  av    temperatur?    

Dendär  är  ju  enkel  (den  som  satt  på  väggen  i  arbetsrummet).  Så  enkelt  som  möjligt.  Snöflinga  och  termometer-­‐symbol.  (Hjul  med  siffror  runt  fanns  också  på  den  han  hade.)  

   20.     Vad  tror  du  är  det  bästa  sättet  att  visa  luftflödeshastighet  på?    

Fläktsymbol.  Den  är  väl  vedertagen.  Fler  fläktblad,  så  att  det  ser  ut  som  att  den  går  snabbare  (när  man  ökar  på  hastigheten).  (Kanske  fläktblad  med  några  extra,  dimmade  (faded)  fläktblad  in  emellan.)  

   

      95  

21.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  tills  önskad  temperatur  är  uppnådd  på?      22.     Vad  tror  du  är  det  bästa  sättet  att  visa  funktionen  temporärt  ökat  luftflöde  under  viss  tid  på?    Kanske  skulle  vara  med  en  motsvarande  grej  (svaret  på  fråga  20)  och  en  klocka.      

      96  

Person  6  Ålder:    23  Kön:     Man      1.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  lätt  att  använda?       Ja.  iPad.         •  Vad  gör  den  lätt  att  använda,  tror  du?    

Den  har  bara  två  knappar.  Eller  ja.  Den  har  ju  en  touch  också.  Den  är  användarvänlig  för  att  när  jag  skaffade  den  så  ha  den  bara  dehär  standardgrejerna  som  man  behöver  och  vill  jag  ha  något  mer  så  går  det  att  hämta  hem.  Kan  modifiera  den.  

   2.   Vet  du  om  eller  har  du  någon  teknisk  pryl  eller  apparat  som  du  tycker  är  svår  att  använda?       Ja.  En  telefon.  En  samsung  experia.         •  Vad  gör  den  svår  att  använda,  tror  du?    

Den  är  fruktansvärt  långsam.  Menyerna  makes  no  sense.  Det  är  väl  en  vanesak    i  och  för  sig.  Den  känns  inte  så  sjysst,  bara.  

   3.   Vad  vill  du  kunna  ändra  för  klimatparametrar  i  ett  rum?    

Temperaturen.  Ju  mer  val  man  har,  desto  bättre  är  det  ju.  Det  räckte  ju  bara  med  ventilation,  så  går  det  ju  faktiskt  att  klä  sig  efter  temperatur.  Så  temperatur  spelar  ju  faktiskt  ingen  roll.  Det  är  ju  luftflöde  då  som  är  lite  mer  viktigt  att  ha,  så  att  man  får  frisk  luft.  (Pratade  om  en  semester  på  Bali,  där  det  är  väldigt,  väldigt  varmt  hela  tiden.)  

  Luftflödet  är  typ  ett  måste,  men  resten  är  lyxvara.        4.   Vilken  av  klimatparametrarna  känns  viktigast  att  kunna  ändra?       Luftflöde.      5.     Har  du  någon  gång  sett  en  börvärdesomställare?         Ja.    Förklaring  av  BVO:  De  brukar  vara  någon  form  av  dosa  som  sitter  på  väggen  i  exempelvis  hotellrum,  kontorsmiljöer  eller  skolmiljöer  och  används  för  att  ställa  in  olika  klimatparametrar,  som  exempelvis  luftflöde  och  lufttemperatur.      6.     Har  du  någon  gång  använt  en  börvärdesomställare?      

Använt  en  AC.  

      97  

      •  Av  vilken  anledning?      

För  att  ändra  förhållandena  i  rummet.  Om  jag  satt  i  t-­‐shirt  och  det  var  lite  kallt,  så  drog  jag  kanske  på  värmen,  eller  var  det  tvärtom  så  drog  jag  på  kylan.  

     7.   Hur  upplever  du  att  det  är  att  använda  en  BVO?    

Om  den  funkar  så  fungerar  det  bra.  Men  ibland  så  står  det  på  kinesiska  på  knapparna,  så  då  vet  man  inte  vad  man  ska  trycka  på.  

        •  Vad  tror  du  gör  att  det  är  så?    

Annars  så  är  det  ju  ganska  logiskt.  +  temperatur,  då  blir  det  ju  varmare,  minus  blir  kallare,  så  det  brukar  funka  rätt  så  bra.  

  Det  finns  en  funktion  fördelar  luften.  De  AC-­‐grejerna  jag  har  använt  med  fjärrkontroll  ser  ut  som  en  telefon  typ.  Den  har  ju  hundra  knappar.  En  massa  funktioner,  vilket  kan  göra  det  väldigt  krångligt.  

   8.     Vilken  funktion  använder  du  oftast?       Det  måste  väl  vara  temperatur  +  och  -­‐.    (Extrasnack)  Det  är  väldigt  bra  att  ha  en  funktion  för  att  styra  luftflödet,  för  att,  skulle  fläkten  skulle  sitta  i  taket,  mitt  i  ett  rum,  säg  att  sängen  står  lite  vid  sidan  av,  om  du  ligger  i  sängen  då  kanske  du  känner  att  det  kommer  en  fläkt  då  och  då.  Helst  skulle  man  ju  kunna  rikta  den  och  stanna  den  på  vilka  lägen  man  vill.  Det  är  ju  det  bästa  (11:41).    Göra  ett  eget  mönster  (för  luftspridning).  Skulle  kunna  ställa  in  den  så  att  den  rör  sig  långsammare  också.  Ju  fler  val  desto  bättre,  men  sen  beror  det  ju  på  också.  Min  mormor  kanske  inte  vill  ha  100  olika  val.  Jag  kanske  vill  ha  det,  men  min  mormor  kanske  vill  kunna  trycka  på  en  knapp,  on,  och  så  funkar  det  bara.  Man  kanske  kan  få  ett  val  i  början,  om  man  vill  vara  advanced  user  eller  basic  user.      9.     Känns  någon  funktion  överflödig?    

Nej.  Ju  fler  val  och  funktioner  som  finns  desto  bättre,  tycker  jag.      10.     Behövs  det  eller  önskar  du  andra  funktioner?       Ja.         •  Vilka  i  så  fall?       Kunna  stoppa  luftriktningen  i  vissa  lägen.  

Kanske  kunde  koppla  upp  den  till  sin  smartphone  och  kunna  ändra    temperaturen  via  den.  Säg  att  man  kanske  har  bakelser,  du  har  satt  en  deg  i  köket  och  den  skall  stå  och  jäsa  i  5  timmar,  och  så  går  du  till  jobbet  i  8  timmar,  och  de  fem  timmarna  kanske  du  vill  ha  en  hög  temperatur  i  rummet,  och  efter  det  så  kanske  du  inte  vill  ha  lika  hög  temperatur  längre,  och  

      98  

då  kanske  det  är  bra  att  kunna  ändra  det  när  du  inte  är  hemma.  Kanske  väldigt  överflödigt.    Tänk  typ  att  en  sån  kanske  sitter  i  ett  bageri  eller  nånting.    Om  den  sitter  i  ett  hotellrum,  eller  i  konferensrum  eller  kontorsmiljö  eller  nåt  sånt:  då  ska  den  vara  tyst.    

 11.     Vill  du  att  den  skall  visa  nuvarande  rumstemperatur?       Ja.      12.   Tycker  du  att  det  räcker  att  veta  att  du  reglerar  mot  varmare  eller  kallare  temperatur,  eller  vill  du  veta  ungefär  vilken  temperatur  du  reglerar  mot?    

Jag  vill  ha  exakta  gradtal.  Helst  med  decimaler.  Vissa  är  ju  pedanta  av  sig.    Control  freaks  får  man  ju  ta  hänsyn  till.  Men  det  räcker  ju  att  ha  vilken  temperatur  det  är,  utan  decimaler.  

 Sen  tänker  jag  också  att  du  får  valet  att  du  är  advanced  eller  basic,  sen  vill  jag  kunna  ställa  in  saker  som  om  den  skall  vara  ljudlös,  eller  om  den  skall  pipa  varje  gång  du  trycker  på  en  knapp.  För  det  kan  vara  irriterande,  för  jag  gillar  inte  när  saker  piper  när  man  trycker  på  dem.      Men  du  tycker  inte  att  det  ger  återkoppling  på  att  det  händer  någonting  nu,  liksom?    Fast  om  det  syns  på  displayen  att  det  händer  någonting,  då  händer  det  ju.  Pipet  blir  bara  en  störande  faktor.  Tänk  till  exempel  en  konferenssal,  så  sitter  det  någon  och  ska  ändra  temperaturen,  då  blir  ju  det  en  störningsfaktor.  Men  alternativet  (med  pip)  skall  finnas,  för  det  finns  ju  blinda  människor.  Det  var  någonting  använde  som  det  verkligen  inte  gick  att  ta  bort  pipetljudet  på,  och  jag  blev  så  irriterad,  för  att  jag  ville  verkligen  göra  det.           •  Hur  kommer  det  sig?      13.     Störs  du  av  ljus  från  tekniska  apparater  när  du  ska  sova?    

Oerhört.  Jag  har  hellre  ingen  AC  än  AC  med  ljus  på.  Det  är  skitstörande.  Jag    kan  inte  sova  när  det  är  ljus  i  rummet.  

      •  Är  blinkande  eller  konstant  ljus  värst?         Blinkande  är  värst.  

Om  det  skall  vara  något  ljus  så  skall  det  vara  något  som  verkligen  inte  syns    om  du  inte  kollar  på  det  eller  letar  efter  det.  

   14.     Har  du  några  direkta  krav  på  en  BVO?       On  &  off-­‐knapp.  Inte  stand  by.  Bryta  all  ström.      Varför  vill  man  ha  det  då?  

 För  att  man  vill  spara  ström.  Kunna  stänga  av  den  och  veta  att  den  inte  drar  någonting.  

 

      99  

Om  du  är  på  ett  hotell  då,  och  inte  bryr  dig  om  hur  mycket  ström  de  förbrukar,  finns  det  någon  anledning  att  ha  en  off-­‐knapp  då?  

 Ja,  för  tänk  om  värmeelementet  i  maskinen  går  sönder,  så  blåser  den  bara  kalluft  hela  tiden  och  så  skall  någon  ligga  där  inne  och  sova,  och  så  finns  det  ingen  off-­‐knapp.  Vill  kunna  stänga  av  hela  systemet  om  så  önskas.  Det  är  ett  krav.  Man  måste  kunna  stänga  av  den.  

   15.   Har  du  några  önskemål  om  en  BVOs  funktioner?       Röststyrd  om  det  är  till  en  blind  person.    

   16.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  temperatur  är  uppnådd?    

Inga  pipljud.  Absolut  inte.  Inga  lampor  heller.  Den  skall  inte  finnas.  Du  skall  välja  temperatur  och  så  skall  du  lita  på  att  det  funkar,  helt  enkelt.    

   17.     Tycker  du  att  det  är  viktigt  med  återkoppling  när  du  reglerat  ett  värde?    

Till  viss  del.  Då  får  det  ju  vara  en  liten  display  där  du  ser  att  det  händer  någonting  när  du  trycker.  Men  ta  bort  alla  pipljud  och  alla  blinkningar  och  sådana  grejer.  

   18.     Om  du  tänker  dig  ditt  önskescenario,  hur  hade  du  då  reglerat  klimatparametrar  i  ett  rum?    

Den  skall  vara  röststyrd.  Det  hade  varit  bra  om  den  hade  haft  inbyggd  brandvarnare.  Den  skall  kunna  upptäcka  giftiga  gaser  i  rummet.  Om  den  sitter  i  en  verkstad  och  det  blir  en  gasläcka.  Då  kan  den  hålla  på  med  pipljud  och  grejer.  Bara  i  nödsituationer,  så  att  man  verkligen  uppmärksammas.  Eller  om  dammhalten  i  luften  är  så  hög  att  det  finns  flammrisk.  Eller  om  det  är  för  mycket  styren  i  luften,  plastgaser.  Helst  skall  den  kunna  vara  lätt  att  återvinna.  Eller  gjord  på  återvunnet  material.  Produceras  nära.  Och  så  ska  den  inte  dra  mycket  energi.      

      100  

Appendix 5: Interview compilation

Interview compilation  1.  5  out  of  6  people  answered  iPhone,  one  answered  iPad  when  they  were  asked  to  name  a  technical  product  that  they  thought  was  easy  to  use.    When  asked  why,  the  answers  were:  •  Because  it  is  used  frequently.  •  The  apps  are  self  descriptive,  using  pictures  and  text.  •  There  are  not  so  many  choices.  •  It  goes  fast  to  get  where  you  want  to  go  inside  the  phone.  You  only  need  to  click  once  or  twice  to  get  where  you  want  to  go.  •  It  has  its  focus  on  me  as  a  user  and  not  on  the  technology.  •  Only  had  the  standard  stuff  when  I  got  it,  and  if  I  want  something  more  I  can  download  it.      2.  When  asked  werther  they  had  or  knew  of  any  technical  product  that  was  difficult  to  use,  the  answers  were:    •  Washing  machines        When  asked  why:     -­‐  Many  different  settings  available.     -­‐  Too  many  options.    •  Dryers  •  Dishwashers     -­‐  Lots  of  different  programs.     -­‐  Hold  down  button  a  certain  amount  of  time  to  make  certain  settings.     -­‐  Not  used  frequently.  (Dishwasher  at  work)      •  TVs     -­‐  Settings  are  hard  to  understand.  Different  on  different  TVs.  Need  manual  every  time.    •  Voice  over  IP     -­‐  Need  latest  update.  Need  to  call  support.    •  Samsung  Experia.     -­‐  Really  slow     -­‐  Just  does  not  feel  right      3.  When  asked  which  climate  parameters  the  interviewed  wished  to  be  able  to  control  in  a  room,  the  answers  were:    •  Temperature  (Most  frequent  answer.  6  out  of  6)  •  Air  flow  (Second  most  frequent  answer.  4  out  of  6.  One  of  which  only  requested  it  if  it  was  in  a  tropical  climate.)  •  Humidity  (Least  frequent  answer.  3  out  of  6.)    

      101  

  -­‐  The  more  choices  you  have,  the  better.  Only  ventilation  is  enough,  then  you  can  dress  after  the  temperature.      4.  When  asked  what  climate  parameter  felt  the  most  important  to  be  able  to  adjust,  the  answers  were:    •  Temperature  (3  out  of  6.)  •  Air  flow  (3  out  of  6.)      7.  When  asked  how  their  experience  using  user  interfaces  for  HVAC  systems  was,  the  answers  were:    •  It  was  a  little  difficult.    When  asked  why  the  person  thought  it  was  that  way,  the  answer  was:  I  did  not  know  if  i  had  succeeded  in  changing  the  temperature  or  not.  There  was  no  indication  that  said  that  the  system  had  started  working  after  i  set  it.  Changed  to  a  temperature,  and  then  it  started  showing  the  current  room  temperature  again.    •  It  was  easy.    Although  the  feeling  was  that  it  had  been  easy,  the  interviewed  person  commented  that  a  want  for  current  room  temperature  to  be  shown  existed.    The  want  was  based  on  that  the  person  wanted  to  be  able  to  learn  what  temperature  that  was  nice  in  that  room,  so  that  the  same  temperature  could  be  set  the  next  time.      •  Works  well.  Relatively  user-­‐friendly.    When  asked  why  the  person  thought  it  was  that  way,  the  answer  was:  You  do  not  need  to  take  a  stand  on  different  decisions.    •  Not  very  well.    When  asked  why  the  person  thought  it  was  that  way,  the  answer  was:  So  much  is  centrally  controlled.    •  Easy  to  use.    When  asked  why  the  person  thought  it  was  that  way,  the  answer  was:  On  this  device  it  is  very  simple,  since  there  is  only  one  thing  to  set.  (One  wheel,  no  screen,  numbers  shown  along  the  wheel.)  If  you  would  want  more  options,  you  could  toggle  between  the  three.    •  If  it  works,  it  works  well.       -­‐  sometimes  it  has  chinese  signs  on  the  buttons  and  then  you  don't  know  where  to  push.    When  asked  why  the  person  thought  it  was  that  way,  the  answer  was:    Otherwise  it  is  pretty  logical.  Plus  temperature  makes  it  warmer,  minus  makes  it  colder.  Lots  of  functions  can  make  it  difficult.    

      102  

 8.  When  asked  which  function  that  they  used  most  often,  six  out  of  six  answered  that  it  was  changing  the  temperature.        9.  When  asked  if  any  of  the  functions  that  they  have  encountered  felt  redundant,  the  answers  were:      •  Yes.         -­‐  There  was  a  timer  function  somewhere.  Another  thing  to                    understand.  This  created  uncertainty.       -­‐  When  there  has  been  several  wheels.  Trial  and  error  on  hotel  rooms.    •  No.       -­‐  The  more  functions  available,  the  better.      10.  Do  you  wish  for  other  functions?    •  Yes.       -­‐  Could  be  a  remote  control,  controling  more  things  in  the  room.                    Could  control  TV  and  use  TV  as  screen.     -­‐  More  easy  to  use.  With  a  display.     -­‐  Priority  (of  one  of  the  interviewed)     1.  Temperature                       2.  Air  flow-­‐speed                 3.  Humidity    •  No.       -­‐  Want  temperature  and  ventilation-­‐settings.      (Are  more  functions  needed  or  do  you  wish  for  other  functions?)    •  Yes.       -­‐  Current  temperature  was  missing.     -­‐  Could  look  more  fun.     -­‐  The  temperature  that  it  was  regulating  towards  was  missing.       -­‐  Be  able  to  stop  airflow-­‐angle  in  certain  positions.     -­‐  Maybe  connect  it  to  smartphone  and  change  temperature  through  it.      11.  Do  you  have  any  direct  requirements  on  a  user  interface  for  HVAC  systems?    •  Set  temperature.  (5  out  of  6)  •  Show  clearly  that  I  have  done  something.  Feedback.  •  Keep  set  temperature.  •  Display.  (1  out  of  6)  

      103  

•  Air  flow  (1  out  of  6)  •  On  &  off-­‐button.  Not  stand  by.  Cut  all  power.  (1  out  of  6)      12.  Do  you  want  it  to  show  current  room  temperature?    •  Yes.  [5  out  of  6]  One  added:  If  it  does  not  stop  showing  the  temperature  I've  set  after  I've  set  it.    •  Could  be  good,  but  it  is  not  required.  [1  out  of  5]    13.  Do  you  think  it  is  enough  to  know  that  you  are  setting  a  warmer  or  colder  temperature,  or  du  you  want  to  know  which  temperature  you  are  regulating  towards?    •  Would  like  to  know  which  temperature  I'm  regulating  towards.  [4  out  of  6]    •  Does  not  matter  at  workplace.  Higher  demands  at  home.  [1  out  of  6]  •  Warmer  or  colder  is  enough.  [1  out  of  6]    Extra  comments:  •  Would  also  like  to  know  when  it  is  done.  Mainly  I  want  to  see  that  it  is  working.  •  Would  like  to  know  which  temperature  I'm  regulating  towards,  because  then  you  know  what  is  a  comfortable  temperature  a  certain  room.        14.  Are  you  bothered  by  light  from  technical  products  when  going  to  sleep?      •  Yes  [4  out  of  6]      Which  is  worse,  blinking  or  constant  light?    •  Blinking  light  is  worse.  [4  out  of  4]       -­‐  if  there  should  be  light,  it  should  be  something  that  really  isn't  visible  if  you  aren't  looking  for  it.      15.  Do  you  think  it  is  important  with  feedback  when  set  temperature  is  reached?    •  Yes.  [2  out  of  6]    •No.  [2  out  of  6]    Comments:  -­‐  Could  be  as  on  a  stove.  -­‐  Maybe  it  can  turn  off  its  lights  when  it's  done.  Can  go  to  it  and  check  that  temperature  is  reached.  -­‐  Can  go  check  on  the  user  interface.  -­‐  Green  or  red  (green  -­‐  temperature  reached,  red  -­‐  working)  -­‐  Could  stop  blinking.  -­‐  No  beeping  noises.  No  lights  either.  Choose  temperature  and  trust  that  it  works.      

      104  

16.  Do  you  think  it's  important  with  feedback  when  you  have  changed  a  value?    •  Yes  (4  out  of  6)      Comments:         -­‐  Important  with  some  signal  showing  that  you  have  done  right.       -­‐  One  commented:  A  little  display  where  you  see  that  somethings  happening  when  you  push.  But  remove  all  beeping  noises  and  all  blinks  and  stuff  like  that.    •  No    Comment:         -­‐  Not  in  this  environment  (on  workplace)      17.  Do  you  want  to  be  able  to  adjust  air  flow  in  some  way?    •  Not  so  important  in  Sweden.  If  you  are  in  warmer  climates,  yes.    •  Yes.      •  Second  priority,  after  temperature.    How?    •  Maybe  if  you  want  it  cooler.  •  Set  angle  of  air  flow.  •  Increase  or  decrease  air  flow.    18.  What  is  your  dream-­‐scenario  of  handling  climate  parameters  in  a  room?    •  Voice  controlled.  Say  20  degrees  and  it  changes  it.  Wouldn't  want  to  worry  about  it.  It  should  just  be  right.  •  A  thing  on  the  wall.  Like  an  iPhone.  Touch-­‐thing  symbolizing  heat.  Showing  temperature  regulated  towards,  and  also  shows  current  room  temperature.  •  Wireless,  with  a  display.  Connected  to  all  the  house.  •  No  wind,  but  still  good  temperature.  Done  automatically.  •  At  home,  maybe  a  smart  app.  Could  be  controlled  while  away,  so  that  you  can  come  home  to  a  warm  house.  •  Voice  controlled.  Built  in  fire-­‐alarm.  Detect  poisonous  gases  in  the  room.      19.  What  do  you  think  is  the  best  way  of  showing  regulation  of  temperature?  (4  out  of  6  got  this  question)    •  Either  from  red  (warm)  to  green  (cold),  through  yellow,  to  know  that  it  is  working.    Or  +  and  -­‐.    Lines  along  a  thermometer-­‐scale.    •  Touch-­‐screen.  Show  degree-­‐symbol.  Use  established  symbols.  •  Snowflake-­‐symbol  for  cold  and  sun-­‐symbol  for  warm.    

      105  

Red  for  warm  and  blue  for  cold.  Degree-­‐symbol,  maybe.  Does  not  feel  as  international,  though.  •  Snowflake-­‐symbol  for  cold  and  thermometer-­‐symbol  for  warm.    20.  What  do  you  think  is  the  best  way  of  showing  air  flow  speed?    •  Probably  arrows.  One,  two  or  more  arrows  next  to  each  other  for  more  speed.  (Weather-­‐charts  -­‐  arrows  showing  winds.)    •  Fan-­‐symbol.  Arrows  up  and  down.  Show  cubic  meters  or  litres.    •  Fan-­‐symbol.  Smaller  or  bigger  fan,  depending  on  more  or  less  air-­‐flow.    •  Fan-­‐symbol.  More  fan-­‐blades,  so  that  it  looks  like  it  spins  faster,  when  increasing  air  flow.    21.  What  do  you  think  is  the  best  way  of  showing  the  function:  temporarily  increased  air  flow  until  set  temperature  is  reached?    •  With  color.  A  color  changing  into  another  when  it's  done.    •  With  color.  Green  when  it  has  reached  it,  red  from  the  start.    22.  What  do  you  think  is  the  best  way  of  showing  the  function:  temporarily  increased  air  flow  during  a  certain  amount  of  time?    •  If  it  is  a  display:  Wheel  turning,  like  in  a  computer.  Arrows  moving  over  the  screen.  Could  be  irritating,  though.    •  Show  number  of  minutes  or  hours  in  combination  with  a  fan-­‐symbol.    •  Fan-­‐symbol  with  a  watch  next  to  it.  Quarter  of  an  hour  marked  with  black  if  you've  set  15  minutes.    •  Fan-­‐symol  (with  more  blades  when  running  faster)  in  combination  with  a  watch.      

      106  

Appendix 6: Interview regarding installation of user interfaces

Intervju med Anders Jakobsson (Swegon service) angående installatörers synpunkter och önskemål kring börvärdesomställare.  1.  Vad  är  dina  (installatörens)  önskemål  om  börvärdesomställare,  rent  funktionsmässigt?    Fördel  är  ju  att  det  är  förstansade  hål.  Hål  i  botten  så  att  man  kommer  in  med  kabeln  i  botten.  Utan  att  behöva  hålla  på  med  distanser.  Både  mot  infälld  dosa  och  med  kabel.        2.  Frågade  om  han  ställer  in  värme  och  kylbörvärde  på  själva  börvärdesomställarna  och  tog  börvärdesomställaren  till  adapt  parasol  som  exempel,  som  man  kan  ställa  in  värme  och  kylbörvärde  på  genom  att  trycka  på  speciella  sätt  på  knapparna.    Aldrig  ställt  in  börvärden  och  sådant  via  den.  Kört  via  handdatorn.  Mot  en  websida  i  SuperWISEn.    När  det  gäller  just  den  enheten  så  har  han  inte  installerat  någon  anläggning  utan  SuperWISEn.  Då  jobbar  han  från  datorn.  "Men  hade  vi  inte  haft  någon  SuperWise  då,  så  då  hade  man  ju  fått  jobba  med  tryckknappen  där  då."      3.  Vad  är  viktigast  att  kunna  ställa  in  på  en  börvärdesomställare  vid  installation?      Till  börvärdesomställare:  Värme  &  kylbörvärde.  Det  är  väl  det  man  ställer  in.  När  det  skall  börja  värma  och  när  det  skall  börja  kyla.    Conductoranläggningar:  Till  våra  conductoranläggningar  -­‐  Alla  inställningar.  Temperatur,  närvaro,  alla  parametrar.  Det  är  ju  en  helt  annan  dosa  då.    Om  man  har  skärm:  Istället  för  att  ha,  som  till  WISE,  en  extern  temp.givare,  extern  CO2-­‐givare.  Man  får  ju  sätta  upp  två  sånahär  givare  bredvid  varandra  och  grejer.  Hade  man  haft  en  givare  med  en  display  i  och  där  i  kunde  man  haft  flera  funktioner.  Både  temp.  och  börvärde  och  CO2,  det  ser  ju  lite  proffsigare  ut.  Då  kan  man  ju  från  den  displayen  då  göra  både  temp.inställningar  och  ppm-­‐inställningar.  (ppm  -­‐  CO2,  luftkvalitet).      4.  Hur  är  det  att  ställa  in  i  mjukvaran  för  installatören,  brukar  det  vara  krångligt?      Jobbar  alltid  på  vår  handdator.  Enda  handdosan  som  man  jobbar  med  egentligen  är  ju  den  vi  har  till  conductorn  då.  Den  jobbar  man  ifrån.  Har  man  inte  tagit  i  den  förut  så  kan  den  ju  säkert  upplevas  som  lite  krånglig.    Hur  tror  du  att  den  skulle  kunna  göras  bättre  då,  så  att  den  inte  upplevs  som  så  krånglig?    Det  är  väl  med  en  display  på  och  så  ha  börvärdena  där  på.  Bara  klicka  på  börvärdet  så  får  man  upp  inställning  och  plussa/minska.    

      107  

Touch.      5.  Känner  du  att  det  vore  bra  om  man  kunde  göra  inställningarna  direkt  i  börvärdesomställaren  om  det  fungerade  bra  där  eller  finns  det  fördelar  med  att  man  kan  göra  det  över  internet?    Fördelarna  är  ju  om  man  driftsätter  och  man  har  flera  anläggningar  i  flera  rum,  då  gör  du  ju  inställningarna  från  datorn,  så  slipper  man  gå  runt  i  en  massa  rum.  Men  man  måste  ju  även  tänka  på  att  det  inte  alltid  är  vi  som  driftsätter  och  det  är  inte  vi  som  skall  sköta  det  sen  utan  det  är  oftast  en  fastighetsskötare  eller  något  och  de  kanske  inte  har  handdatorn  med  sig  jämt.      7.  Vilken  av  Swegons  nuvarande  börvärdesomställare  fungerar  bäst  vid  installation?    Den  vi  har  till  conductor.  Den  kan  man  ju  även  köra  trådlöst.      8.  Vilken  av  Swegons  nuvarande  börvärdesomställare  fungerar  sämst  vid  installation?    Svårt  att  säga.  De  andra  är  ju  enkla  i  sitt  utförande.  Så  att  de  fyller  ju  sin  funktion  genom  att  vara  enkla.    Känns  det  bättre  att  ha  inställningarna  direkt  i  börvärdesomställarna,  säg  att  de  skulle  vara  kopplade  till  internet  och  att  man  skulle  kunna  ställa  in  alla  från  en  sådan?  Om  du  inte  behöver  ha  med  dig  någon  handdator  utan  att  om  du  använder  dig  av  en  sådan  där  och  ställer  in  resten  av  börvärdesomställarna  med  den  också.    Det  är  så  vi  kan  göra  med  den  vi  har  till  conductorn.      Okej.  Tycker  du  det  är  smidigare  än  att  använda  hemsidan  eller  tycker  du  att  hemsidan  är  bättre?    Hemsidan  är  ju  smidigare,  men  har  man  ingen  åtgång  till  hemsidan  eller  inte  har  någon  SuperWISE,  då  är  ju  den  handdosan  (conductorn)  helt  okej.        9.  Vad  brukar  du  göra  när  du  använder  en  sådan  conductor,  vad  börjar  man  med  och  hur  ser  arbetsgången  ut?      Det  är  helt  olika.  Är  grejerna  konfigurerade  från  fabrik  då.  Då  är  det  mest  gå  in  bara  och  ställa  in  börvärdet  enligt  kundens  önskemål  då.  Om  det  är  defaultläge,  då  får  man  ju  gå  in  och  ställa  både  applikationer  och  parametrar  och  modbus  ID,  m.m.    Okej.  Så  det  är  flera  steg  då,  om  den  är  default-­‐inställd.    Ja.  Det  är  lite  fler  inställningar.    Vilka  steg  är  det  man  går  igenom  om  den  är  default-­‐inställd?    Arbetsgång  om  den  är  defaultinställd:    1.  Ställa  in  modbus  ID.  Efter  det  så  kan  man  ju  då  komma  åt  den.  Går  man  ett  varv  och  ställer  in  alla  dem  så  kommer  man  

      108  

ju  åt  dem  med  en  handdator  sen.    2.  Ställa  in  vad  det  är  för  produkt.    Om  det  är  en  tilluftsprodukt  eller  frånluftsprodukt,  vattenbaserad  eller  luftbaserad.    Okej.  Man  berättar  för  rumsenheten  vad  den  skall  reglera  för  typ  av  produkt  då?    Ja.    3.  Ställa  in  alla  börvärden.    -­‐  Temperaturer  -­‐  Luftflöde  -­‐  Luftkvalitet  (Mäts  i  ppm.  Är  det  förorenad  luft  så  stiger  ppm:en  och  då  får  man  forcera  in  så  att  det  blir  rätt  luft.)  -­‐  Luftfuktighet    Alla  produkter  har  fabriksinställda  börvärden  så  i  princip  så  behöver  du  inte  röra  de  börvärdena,  men  alla  beställare  har  ju  ofta  sina  egna  önskemål.  Då  får  man  ju  gå  in  och  göra  de  ändringarna  då,  men  har  du  fått  ställt  in  vad  den  har  för  funktion  och  sådant  då,  då  behöver  man  ju  inte  egentligen  ändra  ett  börvärde.      Okej.  Om  det  inte  finns  andra  önskemål?    Ja.      10.  Förslag  presenterat  för  Anders:  Det  kanske  kunde  finnas  någon  form  av  knapp  med  bara  börvärdesändringar  som  kan  användas  när  kunden  har  andra  önskemål.  Man  trycker  på  den  knappen  och  så  stegar  den  sig  igenom  alla  börvärden  som  man  kan  tänkas  vilja  ställa  in,  så  kan  man  bara  trycka  på  vidare  om  det  är  något  som  man  vill  lämna  och  trycka  på  ställ  in  om  det  är  något  som  den  kommer  till  som  man  vill  ställa  in.  Alltså  en  knapp  som  kan  guida  en  igenom  det,  så  att  man  inte  behöver  stega  sig  in  i  en  massa  undermenyer  och  hålla  på  och  gå  tillbaka  och  sådant.    Det  låter  jättevettigt.  

      109  

Appendix 7: Requirements specification

      110  

Appendix 8: Pictures of the 10 concepts

      111  

      112  

      113  

      114  

      115  

      116  

      117  

      118  

      119