design report j#685 ircon shell store r1

257
ERA BUILDING SYSTEMS LTD., NOIDA DESIGNED BY- RECOMMENDED BY- APPROVED BY- Prafull Mungle Saurabh Bhardwaj SSB Anil Kumar Seth Era Building Systems Ltd. Job No Head Office : C-56/41, Sector 62, Noida 201301 Ph. : +91-120-4145000 Fax : +91-120-4145030 Corporate Office : 153, Okhla Industrial Estate, Phase III, New Delhi 110020 Owner RAIL COACH FACTORY IRCON INTERNATIONAL LTD Main Contactor Project RAIL COACH FACTORY RAE BARELI (U.P) J685 Building SHELL STORE Consultant IIT, DELHI Website : www. eragroup.co.in CHECKED BY- DESIGN REPORT Ph. : +91-11-40637000 Fax : +91-11-40637070 E-mail : [email protected] Page 1

Upload: chetanchinta

Post on 21-Apr-2015

88 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

DESIGNED BY- RECOMMENDED BY- APPROVED BY-Prafull Mungle Saurabh Bhardwaj SSB Anil Kumar Seth

Era Building Systems Ltd.

Job No

Head Office : C-56/41, Sector 62, Noida 201301Ph. : +91-120-4145000 Fax : +91-120-4145030Corporate Office : 153, Okhla Industrial Estate, Phase III, New Delhi 110020

Owner RAIL COACH FACTORY 

IRCON INTERNATIONAL LTDMain Contactor

Project RAIL COACH FACTORY RAE BARELI (U.P)

J‐685

Building SHELL STORE

Consultant IIT, DELHI

Website : www. eragroup.co.in

CHECKED BY-

DESIGN REPORT

Ph. : +91-11-40637000 Fax : +91-11-40637070E-mail : [email protected]

Page 1

Page 2: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

SECTION 1 :

1.11.21.31.4

SECTION 2 :

TABLE OF CONTENTS

DESIGN INFORMATION

Applicable Design CodesMaterial Specifications

Design BasisDesign Assumptions and Load Combinations

ANALYSIS & DESIGN

2.12.1a2.1b2.22.32.42.52.62.72.82.92.102.112.122.132.142.152.16

Purlin staad input file

Sag Rod DesignSheeting Screw DesignPUFF Panel SpecificationScrew Specification

Main Frame staad input file

Bracing Design

Eave Gutter & Downtake Pipe Design

Flange Brace Design

Purlin Design Strut Pipe Design

Girt Design

Girt staad input file

Ridge Vent & Turbo Vent Design

Deflection & Bending MomentMain Frame DesignAnchor bolt & Base plate designConnection Design

Page 3: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

ConsultantOwner

IRCON INTERNATIONAL LTDRAIL COACH FACTORY RAE BARELI (U.P)

BuildingS.S BANDYOPADHYAY

DESIGN INFORMATION

Main ContractorRecommded BProject

SHELL STORE

RAIL COACH FACTORY Date Design By

EBSL-PEB- 685

IIT, DELHI7-Feb-2011

Job No.

Approved By

PRAFULL MUNGLE

ANIL K. SETH

Checked By SAURABH BHARDWAJ

SECTION 1

Page 4: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Checked By SAURABH BHARDWAJIRCON INTERNATIONAL LTD

Building

APPLICABLE DESIGN CODES

RAIL COACH FACTORY RAE BARELI (U.P)

SECTION 1.1

ANIL K. SETHRecommded By

IIT, DELHI

S.S BANDYOPADHYAY

7-Feb-2011Design By

Main Contracto

SHELL STORE

RAIL COACH FACTORY Date

Project

OwnerConsultant

Job No.

PRAFULL MUNGLE

EBSL-PEB- 685

Approved By

Page 5: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Date

APPLICABLE DESIGN CODES

Hot rolled and built up section are designed in accordance with:* IS-800:2007 (Working stress of Design) : Code of Pratice for General construction in Steel.

Loads are applied in accordance with: * IS-875 ( Part I ) : code of practice for design Dead loads for building and structure.* IS-875 ( Part II ) : code of practice for design Imposed loads for building and structure.* IS-875 ( Part III ) : code of practice for design Wind loads for building and structure.* IS-1893 ( 2002 ) : criteria for Earthquake resistante design of structures.

Cold-formed members are designed in accordance with:*IS-801 (1975) : Code of Practice for use of Cold-Formed Light Gauge Steel Structure.

ANIL K. SETH

Owner

Recommded By

Design By7-Feb-2011

IIT, DELHI

Project RAIL COACH FACTORY RAE BARELI (U.P)Checked ByMain Contractor

Building

RAIL COACH FACTORY

SHELL STORE Approved By

IRCON INTERNATIONAL LTDPRAFULL MUNGLE

S.S BANDYOPADHYAYSAURABH BHARDWAJ

Consultant

Welding is applied in accordance with: Structural Steel Welding code of American Welding Society (AWS D1.1.98) * ALL CODE OF LATEST REVISION

Page 6: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

ConsultantSAURABH BHARDWAJPRAFULL MUNGLE

Building

EBSL-PEB- 685Owner 7-Feb-2011

IIT, DELHI

Approved By

Checked By

Job No.

ANIL K. SETHProjectMain Contracto

SHELL STORERAIL COACH FACTORY RAE BARELI (U.P)

Date

IRCON INTERNATIONAL LTDDesign By

Recommded B

RAIL COACH FACTORY

S.S BANDYOPADHYAY

MATERIAL SPECIFICATIONSSECTION 1.2

Page 7: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

S.No

4

5

6

7

8

10

IRCON INTERNATIONAL LTDDesign By PRAFULL MUNGLEIIT, DELHI

Project

Consultant

S.S BANDYOPADHYAY

Materials Specifications

RAIL COACH FACTORY RAE BARELI (U.P Recommded ByChecked By

Approved By

The following is the list of the material standards and specifications for which the building components havebeen designed

Main Contractor SAURABH BHARDWAJ

Job No. RAIL COACH FACTORY

1 Built-up MembersASTM A 572 M Gr 50 Minimum thickness shall be 6.0 mm by continuos automatic submerged arc welding process on both side

2 Hot Rolled Secondary Members IS : 2062 Gr. A Fy = 240 MPa

Minimum yield strength of 345 Mpa

,Minimum tensile Strength of 450 Mpa.

Building SHELL STORE

MATERIAL SPECIFICATIONS

Steel Yields

ANIL K. SETH

ASTM A 572 M Gr 50 Minimum thickness shall be 6.0 mm by continuos automatic submerged arc welding process on both side

Minimum yield strength of 345 Mpa .

3 Cold Formed Secondary MembersASTM A 653 M Gr 50 .Minimum thickness shall be 3.15 mm for Purlin and Girts. Pre-Galvenised with 120GSM.

Fy =345 MPa

9 X-Bracing Members/Steel Tubes Conform to IS : 1161 & IS : 2062 Fy = 240 MPa

Polycarbonate Sheet Confirm to IS 14443 : 1997.Minimum 3 mm thick .

Machine Bolts for Secondary IS 3757 Grade 8.8.Minimum bolt size 12 mmDia/ASTM A 325

11 Anchor BoltsIS : 2062 Gr A.Nuts and lock nuts shall confirm to IS 1363 (Part 1 to 3) and washers shall confirm to IS 2016.

Fy = 250 MPa

Hot Dip Galvanized with Xylon coated with EPDMseals Confirming to AS: 3566 Class-3

--

Grade 8.8Connections

12 High Strength Bolts for Primary IS 3757 Grade 8.8.Minimum bolt size 12 mmDia/ASTM A 325

Grade 8.8Connections

13

Fy = 550 MPa

Roof and Side Panel

Composite Insulated Panels having on top side Trapezoidal profile 28-35mm deep & 200-300 mm pitch with 950-1050mm efeective cover width. The profile having 2-3 secondary ribs in pan and an anticlimactically flute at side overlap shall be made of 0.50mm TCT Pre-Painted high tensile galvalume/zincalume steel grade AZ150/G-300 having hot dipped metallic zinc- Aluminium alloy coating 150gsm as per AS1897-1993 having 300mpa yeild strength with SMP coated.

Fy = 300 MPa

15 Welding 70 ksi ElectrodeFuts = 480 Mpa

14 Self Drilling Self Tapping Screws

Crane Rail - CR 80Confirm to IS : 3443 including fixing on crane girder as oer tender drawing no. MEC/7983/05/12/STR/SD/030

NOT IN ERA SCOPE

Crane Girder

--

Steel Tubes Conform to IS : 1161 Fy = 240 MPa

Partition & canopy Panel 0.50mm TCT ERA HI-Rib Profile

Page 8: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

S.No

18

Connections19 ---b) All shop connections shall be welded using submerged arc processand shall be in accordance with AWS D 1.1and D 1.3 as applicable. All butt welds used in splicing shall be full penetration welds. All welders shall be certified and qualified for wled sperformed.

Steel Louvers M.S louvers shall be painted and fabrciated as per specification and tender . ---

a) All site connection shall be bolted connections. All primary structural connections are made with electro galvanized high strength bolts conforming to IS: 3757 to grade 8.8.Minimum bolt dia should be 12mm and minimum 2 bolts should be prvided per connection.

MATERIAL SPECIFICATIONS

The following is the list of the material standards and specifications for which the building componentshave been designed

Materials Specifications Steel Yields

17 RidgeVents 600mm dia wind driven air ventialtors along with aluminim cage. ---

Project RAIL COACH FACTORY RAE BARELI (U.PRecommded By S.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJ

Job No. RAIL COACH FACTORYConsultant IIT, DELHI

Page 9: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

DESIGN ASSUMPTIONS & LOAD COMBINATIONS

IIT, DELHIMain Contractor

SECTION 1.3

IRCON INTERNATIONAL LTD

Job No.Owner

BuildingRecommded BS.S BANDYOPADHYAY

EBSL-PEB- 685

ANIL K. SETH

PRAFULL MUNGLE

RAIL COACH FACTORY RAE BARELI (U.P

7-Feb-2011

SAURABH BHARDWAJ

Date

Approved By

Checked By

RAIL COACH FACTORY

SHELL STOREProject

Design ByConsultant

Page 10: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

a) DESIGN ASSUMPTIONS

1

2

3 The lateral stability has been provided through the frame action of the main frame.

4 The longitudinal stability has been provided thorugh the cross braced bays and longitudinal struts.

5 Roof purlins are continuous beams supported at main frame locations and span the bay spacing.

6 Side wall girts and end wall girts are continuous beams supported at main frame columns and end columns.

b) LOAD COMBINATIONS

**The load combinations have been considered as per IS 800:2007 WSM.

**For detailed load combinations please refer staad file input.

Job No.

Main ContractorPRAFULL MUNGLE

IRCON INTERNATIONAL LTD

RAIL COACH FACTORY

The support condition has been considered fixed.

DESIGN ASSUMPTIONS AND LOAD COMBINATIONS

The frame analysis has been done using STAAD PRO 2006 software.

IIT, DELHI7-Feb-2011

S.S BANDYOPADHYAYANIL K. SETHApproved By

SAURABH BHARDWAJ

EBSL-PEB- 685Owner

RAIL COACH FACTORY RAE BARELI (U.P)Recommded By

Consultant

Building SHELL STOREProject

Design ByChecked By

Date

Page 11: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

DESIGN BASIS

EBSL-PEB- 685Date

ConsultantIRCON INTERNATIONAL LTDRAIL COACH FACTORY RAE BARELI (U.P)

Job No.

BuildingRecommded B

SHELL STOREProject

Approved By ANIL K. SETH

SECTION 1.4

S.S BANDYOPADHYAY

PRAFULL MUNGLE7-Feb-2011

Design ByOwner

SAURABH BHARDWAJIIT, DELHI

Main Contracto

RAIL COACH FACTORY

Checked By

Page 12: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

a) FRAMING CONDITIONS:

Frame Type : SCMS-1 (Straight Column Multi Span-1)

Building Width : 40m C/C of Builtup Columns.Building Length : 156m C/C of Builtup ColumnsBay Spacing : 13 @ 12.0 C/C of Builtup Columns.Clear Height : 13.7 m clear from FFLRoof slope : 1:10Width Module : 2@ 20.00 m C/C of Builtup Columns.

b) BASIC LOADS :

Weight of sheeting = 10.0 Kg/m2 Weight of purlins = 10.0 Kg/m2 Weight of Insulation = 2.0 Kg/m2Weight of sag rod = 1.8 Kg/m2 Weight of bracing = 5.0 Kg/m2 Weight of flange brace = 0.50 Kg/m2

Total Dead load on Rafters = 30.0 Kg/m2 = 0.30 kN/m2 (FOR BOLTS, PAINTING ETC)

Collateral load on Rafter & Purlin 20 kg/m2 on Rafter as well as on Purlin.

TOTAL DEAD LOAD ON PURLINS = 20.0Kg/m2 = 0.20 kN/m2

2. LIVE LOAD = 0.75 kN/m2 ( As per IS 875:1987 Part 2 Table -2)

IRCON INTERNATIONAL LTDPRAFULL MUNGLE

Project

Design BySAURABH BHARDWAJS.S BANDYOPADHYAYRecommded ByANIL K. SETHSHELL STORE Approved ByBuilding

7-Feb-2011

DESIGN BASIS

1. DESCRIPTION OF DEAD LOAD

RAIL COACH FACTORY Date OwnerIIT, DELHI

Checked ByRAIL COACH FACTORY RAE BARELI (U.P)

Main Contractor

Job No.

Main Frames:

EBSL-PEB- 685

Consultant

Page 13: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

3.WIND LOADBasic Wind Speed = 47 m/s as per IS 875 Part :k1( Risk coefficient ad per TS) : 1.00k2 ( Category 1 as per TS, Class C) : 1.03 k3 ( Topography Factor as per TS) 1.00INETRNAL PRESSURE COEFFICIENT (CPI)= ± 0.5

Design Wind speed = K1 x K2 x K3 Vb = 1 x 1.03 x 1.0 x 47 = 48.41m/SDesign Wind pressure = 0.6 x Vz^2 1406.11 ≈ 1.41 kN/m2

4.SEISMIC LOAD : Seismic Zone IV, as per IS1893-2002Seismic coefficient : 0.24

Vertical Deflection Criteria as per IS 800:2007 (Table 6)

RAFTERS : L/180 PURLINS/GIRTS : L/250 for DL+LL AS PER TENDERPURLINS/GIRTS : L/200 for DL+LL+WL AS PER TENDER

c)LIMITNG DEFLECTION AND TOLERANCELateral Deflection Criteria as per IS 800:2007 (Table 6)

CRITICAL DEFLECTION CHECK

ALLOWABLE DEFLECTION(HORIZONTAL) : 15000/325 46.2 mm

ACTUAL DEFLECTION(HORIZONTAL) 31.705 mm(NODE-20) AS PER STAAD FILE

ALLOWABLE DEFLECTION(VERTICAL) : 20000/180 111.11 MM

ACTUAL DEFLECTION(VERTICAL) 79.651 mm(NODE-26) AS PER STAAD FILE

IIT, DELHI

Building SHELL STORE Approved By

Checked By SAURABH BHARDWAJPRAFULL MUNGLE

ANIL K. SETH

7-Feb-2011

S.S BANDYOPADHYAYMain ContractorProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded By

Consultant Design ByIRCON INTERNATIONAL LTD

Date RAIL COACH FACTORYOwnerJob No. EBSL-PEB- 685

Page 14: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2DESIGN CALCULATIONS

Project RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJ

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 15: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

DESIGN INPUT OF STAAD FILE

Building

SECTION 2.1

S.S BANDYOPADHYAYSHELL STORE

Date Consultant

ProjectIRCON INTERNATIONAL LTD

Owner

ANIL K. SETHApproved ByRecommded B

7-Feb-2011

Main Contractor Checked By

RAIL COACH FACTORYJob No. EBSL-PEB- 685

IIT, DELHI

RAIL COACH FACTORY RAE BARELI (U.P)

PRAFULL MUNGLEDesign BySAURABH BHARDWAJ

Page 16: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 17: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.textSTAAD SPACESTART JOB INFORMATIONJOB PART SHELL STOREENGINEER NAME P.B.MCHECKER NAME S.BAPPROVED NAME A.K.SETHJOB NAME J-685JOB CLIENT M/S Ircon International LtdJOB NO J-685JOB REV R0ENGINEER DATE 28-Dec-11END JOB INFORMATIONINPUT WIDTH 79***************************** NODE COORDINATES **************************************UNIT METER KNJOINT COORDINATES1 0 0 0; 2 0 14.4 0; 3 20 16.4 0; 4 40 0 0; 5 40 14.4 0; 6 20 0 0; 7 0 4.3 0;8 40 4.3 0; 9 3.653 14.765 0; 10 36.347 14.765 0; 11 15.5922 15.9592 0;12 24.4078 15.9592 0; 13 9.623 15.362 0; 14 30.377 15.362 0; 15 20 4.4 0;16 0 0 -12; 17 0 14.4 -12; 18 20 16.4 -12; 19 40 0 -12; 20 40 14.4 -12;21 20 0 -12; 22 0 4.3 -12; 23 40 4.3 -12; 24 3.653 14.765 -12;25 36.347 14.765 -12; 26 15.5922 15.9592 -12; 27 24.4078 15.9592 -12;28 9.62262 15.3621 -12; 29 30.3774 15.3621 -12; 30 20 4.4 -12; 31 0 0 -24;32 0 14.4 -24; 33 20 16.4 -24; 34 40 0 -24; 35 40 14.4 -24; 36 20 0 -24;37 0 4.3 -24; 38 40 4.3 -24; 39 3.653 14.765 -24; 40 36.347 14.765 -24;41 15.5922 15.9592 -24; 42 24.4078 15.9592 -24; 43 9.62262 15.3621 -24;44 30.3774 15.3621 -24; 45 20 4.4 -24; 46 0 0 -36; 47 0 14.4 -36;48 20 16.4 -36; 49 40 0 -36; 50 40 14.4 -36; 51 20 0 -36; 52 0 4.3 -36;53 40 4.3 -36; 54 3.653 14.765 -36; 55 36.347 14.765 -36;56 15.5922 15.9592 -36; 57 24.4078 15.9592 -36; 58 9.62262 15.3621 -36;59 30.3774 15.3621 -36; 60 20 4.4 -36; 61 0 0 -48; 62 0 14.4 -48;63 20 16.4 -48; 64 40 0 -48; 65 40 14.4 -48; 66 20 0 -48; 67 0 4.3 -48;68 40 4.3 -48; 69 3.653 14.765 -48; 70 36.347 14.765 -48;71 15.5922 15.9592 -48; 72 24.4078 15.9592 -48; 73 9.62262 15.3621 -48;74 30.3774 15.3621 -48; 75 20 4.4 -48; 76 0 0 -60; 77 0 14.4 -60;78 20 16.4 -60; 79 40 0 -60; 80 40 14.4 -60; 81 20 0 -60; 82 0 4.3 -60;83 40 4.3 -60; 84 3.653 14.765 -60; 85 36.347 14.765 -60;86 15.5922 15.9592 -60; 87 24.4078 15.9592 -60; 88 9.62262 15.3621 -60;89 30.3774 15.3621 -60; 90 20 4.4 -60; 91 0 0 -72; 92 0 14.4 -72;93 20 16.4 -72; 94 40 0 -72; 95 40 14.4 -72; 96 20 0 -72; 97 0 4.3 -72;98 40 4.3 -72; 99 3.653 14.765 -72; 100 36.347 14.765 -72;101 15.5922 15.9592 -72; 102 24.4078 15.9592 -72; 103 9.62262 15.3621 -72;104 30.3774 15.3621 -72; 105 20 4.4 -72; 106 0 0 -84; 107 0 14.4 -84;108 20 16.4 -84; 109 40 0 -84; 110 40 14.4 -84; 111 20 0 -84; 112 0 4.3 -84;113 40 4.3 -84; 114 3.653 14.765 -84; 115 36.347 14.765 -84;116 15.5922 15.9592 -84; 117 24.4078 15.9592 -84; 118 9.62262 15.3621 -84;119 30.3774 15.3621 -84; 120 20 4.4 -84; 121 0 0 -96; 122 0 14.4 -96;123 20 16.4 -96; 124 40 0 -96; 125 40 14.4 -96; 126 20 0 -96; 127 0 4.3 -96;128 40 4.3 -96; 129 3.653 14.765 -96; 130 36.347 14.765 -96;131 15.5922 15.9592 -96; 132 24.4078 15.9592 -96; 133 9.62262 15.3621 -96;134 30.3774 15.3621 -96; 135 20 4.4 -96; 136 0 0 -108; 137 0 14.4 -108;138 20 16.4 -108; 139 40 0 -108; 140 40 14.4 -108; 141 20 0 -108;142 0 4.3 -108; 143 40 4.3 -108; 144 3.653 14.765 -108; 145 36.347 14.765 -108;146 15.5922 15.9592 -108; 147 24.4078 15.9592 -108; 148 9.62262 15.3621 -108;149 30.3774 15.3621 -108; 150 20 4.4 -108; 151 0 0 -120; 152 0 14.4 -120;153 20 16.4 -120; 154 40 0 -120; 155 40 14.4 -120; 156 20 0 -120;

Page 1

Page 18: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text157 0 4.3 -120; 158 40 4.3 -120; 159 3.653 14.765 -120; 160 36.347 14.765 -120;161 15.5922 15.9592 -120; 162 24.4078 15.9592 -120; 163 9.62262 15.3621 -120;164 30.3774 15.3621 -120; 165 20 4.4 -120; 166 0 0 -132; 167 0 14.4 -132;168 20 16.4 -132; 169 40 0 -132; 170 40 14.4 -132; 171 20 0 -132;172 0 4.3 -132; 173 40 4.3 -132; 174 3.653 14.765 -132; 175 36.347 14.765 -132;176 15.5922 15.9592 -132; 177 24.4078 15.9592 -132; 178 9.62262 15.3621 -132;179 30.3774 15.3621 -132; 180 20 4.4 -132; 181 0 0 -144; 182 0 14.4 -144;183 20 16.4 -144; 184 40 0 -144; 185 40 14.4 -144; 186 20 0 -144;187 0 4.3 -144; 188 40 4.3 -144; 189 3.653 14.765 -144; 190 36.347 14.765 -144;191 15.5922 15.9592 -144; 192 24.4078 15.9592 -144; 193 9.62262 15.3621 -144;194 30.3774 15.3621 -144; 195 20 4.4 -144; 196 0 0 -156; 197 0 14.4 -156;198 20 16.4 -156; 199 40 0 -156; 200 40 14.4 -156; 201 20 0 -156;202 0 4.3 -156; 203 40 4.3 -156; 204 3.653 14.765 -156; 205 36.347 14.765 -156;206 15.5922 15.9592 -156; 207 24.4078 15.9592 -156; 208 9.623 15.362 -156;209 30.377 15.362 -156; 210 20 4.4 -156; 211 9.623 0 0; 212 9.623 4.3 0;213 30.377 0 0; 214 30.377 4.3 0; 215 9.623 0 -156; 216 9.623 4.3 -156;217 30.377 0 -156; 218 30.377 4.3 -156; 219 0 9.3 -72; 220 0 9.3 -84;221 40 9.3 -72; 222 40 9.3 -84; 223 20 4.3 -72; 224 20 4.3 -84; 225 20 9.3 -72;226 20 9.3 -84; 227 0 6.5 0; 228 40 6.5 0; 229 9.623 6.5 0; 230 30.377 6.5 0;231 20 6.5 0; 232 9.62284 6.2 3; 233 4.00543e-005 6.2 3; 234 20 6.2 3;235 30.3772 6.2 3; 236 40 6.2 3; 237 0 9.3 -96; 238 40 9.3 -96; 239 20 4.3 -96;240 20 9.3 -96;***************************** MEMBER INCIDENCES *************************************MEMBER INCIDENCES1 1 7; 2 2 9; 3 4 8; 4 5 10; 5 6 15; 6 7 227; 7 8 228; 8 9 13; 9 10 14;10 11 3; 11 12 3; 12 13 11; 13 14 12; 14 15 231; 15 16 22; 16 17 24; 17 19 23;18 20 25; 19 21 30; 20 22 17; 21 23 20; 22 24 28; 23 25 29; 24 26 18; 25 27 18;26 28 26; 27 29 27; 28 30 18; 29 31 37; 30 32 39; 31 34 38; 32 35 40; 33 36 45;34 37 32; 35 38 35; 36 39 43; 37 40 44; 38 41 33; 39 42 33; 40 43 41; 41 44 42;42 45 33; 43 46 52; 44 47 54; 45 49 53; 46 50 55; 47 51 60; 48 52 47; 49 53 50;50 54 58; 51 55 59; 52 56 48; 53 57 48; 54 58 56; 55 59 57; 56 60 48; 57 61 67;58 62 69; 59 64 68; 60 65 70; 61 66 75; 62 67 62; 63 68 65; 64 69 73; 65 70 74;66 71 63; 67 72 63; 68 73 71; 69 74 72; 70 75 63; 71 76 82; 72 77 84; 73 79 83;74 80 85; 75 81 90; 76 82 77; 77 83 80; 78 84 88; 79 85 89; 80 86 78; 81 87 78;82 88 86; 83 89 87; 84 90 78; 85 91 97; 86 92 99; 87 94 98; 88 95 100;89 96 223; 90 97 219; 91 98 221; 92 99 103; 93 100 104; 94 101 93; 95 102 93;96 103 101; 97 104 102; 98 105 225; 99 106 112; 100 107 114; 101 109 113;102 110 115; 103 111 224; 104 112 220; 105 113 222; 106 114 118; 107 115 119;108 116 108; 109 117 108; 110 118 116; 111 119 117; 112 120 226; 113 121 127;114 122 129; 115 124 128; 116 125 130; 117 126 239; 118 127 237; 119 128 238;120 129 133; 121 130 134; 122 131 123; 123 132 123; 124 133 131; 125 134 132;126 135 240; 127 136 142; 128 137 144; 129 139 143; 130 140 145; 131 141 150;132 142 137; 133 143 140; 134 144 148; 135 145 149; 136 146 138; 137 147 138;138 148 146; 139 149 147; 140 150 138; 141 151 157; 142 152 159; 143 154 158;144 155 160; 145 156 165; 146 157 152; 147 158 155; 148 159 163; 149 160 164;150 161 153; 151 162 153; 152 163 161; 153 164 162; 154 165 153; 155 166 172;156 167 174; 157 169 173; 158 170 175; 159 171 180; 160 172 167; 161 173 170;162 174 178; 163 175 179; 164 176 168; 165 177 168; 166 178 176; 167 179 177;168 180 168; 169 181 187; 170 182 189; 171 184 188; 172 185 190; 173 186 195;174 187 182; 175 188 185; 176 189 193; 177 190 194; 178 191 183; 179 192 183;180 193 191; 181 194 192; 182 195 183; 183 196 202; 184 197 204; 185 199 203;186 200 205; 187 201 210; 188 202 197; 189 203 200; 190 204 208; 191 205 209;192 206 198; 193 207 198; 194 208 206; 195 209 207; 196 210 198; 197 211 212;198 212 229; 199 213 214; 200 214 230; 201 215 216; 202 216 208; 203 217 218;204 218 209; 205 2 17; 206 17 32; 207 32 47; 208 47 62; 209 62 77; 210 77 92;211 92 107; 212 107 122; 213 122 137; 214 137 152; 215 152 167; 216 167 182;

Page 2

Page 19: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text217 182 197; 218 13 28; 219 28 43; 220 43 58; 221 58 73; 222 73 88; 223 88 103;224 103 118; 225 118 133; 226 133 148; 227 148 163; 228 163 178; 229 178 193;230 193 208; 231 3 18; 232 18 33; 233 33 48; 234 48 63; 235 63 78; 236 78 93;237 93 108; 238 108 123; 239 123 138; 240 138 153; 241 153 168; 242 168 183;243 183 198; 244 5 20; 245 20 35; 246 35 50; 247 50 65; 248 65 80; 249 80 95;250 95 110; 251 110 125; 252 125 140; 253 140 155; 254 155 170; 255 170 185;256 185 200; 257 14 29; 258 29 44; 259 44 59; 260 59 74; 261 74 89; 262 89 104;263 104 119; 264 119 134; 265 134 149; 266 149 164; 267 164 179; 268 179 194;269 194 209; 278 2 28; 279 13 17; 280 13 18; 281 3 28; 282 5 29; 283 14 20;284 14 18; 285 3 29; 286 182 208; 287 193 197; 288 193 198; 289 183 208;290 185 209; 291 194 200; 292 194 198; 293 183 209; 305 219 92; 306 220 107;312 221 95; 313 222 110; 322 223 105; 323 224 120; 324 225 93; 325 226 108;334 227 2; 335 228 5; 336 229 13; 337 230 14; 338 231 3; 339 229 232;340 227 233; 341 231 234; 342 230 235; 343 228 236; 344 233 232; 345 232 234;346 234 235; 347 235 236; 348 227 229; 349 229 231; 350 231 230; 351 230 228;352 107 133; 353 118 122; 354 118 123; 355 108 133; 356 110 134; 357 119 125;358 119 123; 359 108 134; 360 106 127; 361 121 112; 362 112 127; 363 237 122;364 112 237; 365 127 220; 366 220 237; 367 237 107; 368 220 122; 369 109 128;370 124 113; 371 238 125; 372 113 238; 373 128 222; 374 222 238; 375 238 110;376 222 125; 377 239 135; 378 111 239; 379 126 224; 380 240 123; 381 224 240;382 239 226; 383 226 240; 384 226 123; 385 240 108; 386 113 128; 387 224 239;***************************** MATERIAL PEOPERTIES ************DEFINE MATERIAL STARTISOTROPIC STEELE 2e+008POISSON 0.3DENSITY 76.9822ALPHA 1.2e-005DAMP 0.03END DEFINE MATERIALCONSTANTSBETA 90 MEMB 5 14 187 196 TO 204 336 TO 338MATERIAL STEEL ALLMEMBER PROPERTY INDIAN**********************FRAME-1 COLUMN************************************20 21 34 35 48 49 62 63 76 77 90 91 104 105 118 119 132 133 146 147 160 161 -174 175 305 306 312 313 363 371 TAPERED 0.782 0.008 0.782 0.25 0.01619 28 33 42 47 56 61 70 75 84 89 98 103 112 117 126 131 140 145 154 159 168 -173 182 322 TO 325 377 380 TAPERED 0.44 0.008 0.44 0.35 0.02***********************FRAME-1 RAFTER*************************************16 18 30 32 44 46 58 60 72 74 86 88 100 102 114 116 128 130 142 144 156 158 -170 172 TAPERED 0.924 0.008 0.524 0.25 0.01222 23 36 37 50 51 64 65 78 79 92 93 106 107 120 121 134 135 148 149 162 163 -176 177 TAPERED 0.52 0.006 0.72 0.225 0.0126 27 40 41 54 55 68 69 82 83 96 97 110 111 124 125 138 139 152 153 166 167 -180 181 TAPERED 0.72 0.006 0.52 0.225 0.0124 25 38 39 52 53 66 67 80 81 94 95 108 109 122 123 136 137 150 151 164 165 -178 179 TAPERED 0.524 0.008 1.024 0.275 0.012******************************************************************************1 3 183 185 TAPERED 0.79 0.01 0.79 0.475 0.0256 7 188 189 334 335 TAPERED 0.782 0.006 0.782 0.3 0.0165 187 197 199 201 203 TAPERED 0.682 0.006 0.682 0.375 0.01614 196 198 200 202 204 336 TO 338 TAPERED 0.67 0.006 0.67 0.25 0.01**********************ENDFRAME-1 RAFTER****************************************2 4 8 TO 13 184 186 190 TO 195 TAPERED 0.366 0.006 0.366 0.175 0.008************************CANOPY**********************************************

Page 3

Page 20: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text339 TO 343 TAPERED 0.712 0.006 0.412 0.15 0.006************************BRACING*********************************************MEMBER PROPERTY INDIAN362 366 374 383 386 387 TABLE ST PIP1524.0MMEMBER PROPERTY COLDFORMED INDIAN344 TO 351 TABLE ST 300ZS75X3.15MEMBER PROPERTY INDIAN278 TO 293 352 TO 359 TABLE ST PIP1143.0M360 361 364 365 367 TO 370 372 373 375 376 TABLE ST PIP1143.0M378 379 381 382 384 385 TABLE ST PIP1397.0MMEMBER PROPERTY INDIAN15 17 29 31 43 45 57 59 71 73 85 87 99 101 113 115 127 129 141 143 155 157 -169 171 TAPERED 0.782 0.008 0.782 0.35 0.016205 TO 269 TABLE ST PIPE OD 0.1937 ID 0.1829************Support condition***************************SUPPORTS1 4 6 16 19 21 31 34 36 46 49 51 61 64 66 76 79 81 91 94 96 106 109 111 121 -124 126 136 139 141 151 154 156 166 169 171 181 184 186 196 199 201 211 213 -215 217 FIXED****************Special Member Specification*********************MEMBER RELEASE196 202 204 336 TO 338 END MX MY MZMEMBER TRUSS 205 TO 269 362 366 374 383 386 387MEMBER TRUSS 278 TO 293 352 TO 361 364 365 367 TO 370 372 373 375 376 378 379 381 382 384 -385*************DEFINED LOAD FOR EARTH QUAKE*********DEFINE 1893 LOADZONE 0.24 RF 4 I 1 SS 2 ST 2 DM 2 PX 0.5 PZ 0.5 DT 0SELFWEIGHT 1 MEMBER WEIGHT***** DEAD WEIGHT 100% ***************MAIN FRAME-1 = 0.3x12=3.6kN/M ******16 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI 3.6***** DEAD WEIGHT 100% ***************END FRAME-1 = 0.3x12/2=1.8kN/M ******2 4 8 TO 13 184 186 190 TO 195 UNI 1.8***** DEAD WEIGHT 100% ***************Canopy = 0.2x10=2.0kN/M ******339 TO 343 UNI 2**********************************************************************LIV LOAD 25%***************MAIN FRAME-1 = 0.75x12x0.25=2.25kN/M ******16 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI 2.25**********LIV LOAD 25%***************ENDFRAME-1 = 0.75x12/2x0.25=1.125kN/M ******2 4 8 TO 13 184 186 190 TO 195 UNI 1.125**********LIV LOAD 25%***************Canopy = 0.75x10x0.25=1.875kN/M ******339 TO 343 UNI 1.875************************************************************

Page 4

Page 21: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text***** Collareral Load 100% ***************MAIN FRAME-1 = 0.2x12=2.4kN/M ******16 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI 2.4***** DEAD WEIGHT 100% ***************END FRAME-1 = 0.2x12/2=1.2kN/M ******2 4 8 TO 13 184 186 190 TO 195 UNI 1.2*******************************************************************************************PURE LOAD CASE APLLICATION******************DL-DEAD LOAD*LL-LIVE LOAD*CL-COLLATERAL LOAD*WL-WIND LOAD*EQ-SEISMIC LOAD****************SEISMIC LOADING******************************LOAD 1 LOADTYPE None TITLE EQ-X11893 LOAD X 1LOAD 2 LOADTYPE None TITLE EQ-X21893 LOAD X -1LOAD 3 LOADTYPE None TITLE EQ-Z11893 LOAD Z 1LOAD 4 LOADTYPE None TITLE EQ-Z21893 LOAD Z -1****************DEAD LOAD**********************************************DEAD LOAD*******************************DL=0.30 Kn/m2***************** DEAD LOAD DISCRIPTION ************************WEIGHT OF SHEETING = 10.0 Kg/m2 *******************WEIGHT OF PURLINS = 10.0 Kg/m2 ********WEIGHT OF INSULATION = 2.0 Kg/m2 *******************WEIGHT OF SAG ROD = 1.8 Kg/m2 *******************WEIGHT OF BRACING = 5.0 Kg/m2 *******************WEIGHT OF FLANGE BRACE = 0.50 Kg/m2*TOTA DEAD LOAD = 29.3 Kg/m2 = 0.3 kN/m2 (FOR BOLTS PAINTING ETC)************************************************************DEAD LOAD ON MAIN FRAME-1 & SIDE WALL = DEAD LOAD x BAY SPACING =* =0.3kN/m2 x 12.0 = 3.6 kN/m *******LOAD 5 LOADTYPE None TITLE DLSELFWEIGHT Y -1 MEMBER LOAD6 7 16 18 20 TO 27 30 32 34 TO 41 44 46 48 TO 55 58 60 62 TO 69 72 74 -76 TO 83 86 88 90 TO 97 100 102 104 TO 111 114 116 118 TO 125 128 130 132 -133 TO 139 142 144 146 TO 153 156 158 160 TO 167 170 172 174 TO 181 188 189 -305 306 312 313 334 335 363 371 UNI GY -3.6**********************************************************DEAD LOAD ON END FRAME-1 & SIDE WALL = DEAD LOAD x BAY SPACING =* =0.3kN/m2 x 12.0/2 = 1.8 kN/m *******2 4 8 TO 13 184 186 190 TO 195 UNI GY -1.8***********************************************************DEAD LOAD ON Canopy = DEAD LOAD x BAY SPACING =* =0.2kN/m2 x 10 = 2.0 kN/m *******339 TO 343 UNI GY -214 196 198 200 202 204 336 TO 338 UNI GY -3****************LIVE LOAD AS PER IS 875 PART-II= 75Kg/m2*********************LL=0.75 Kn/m2

Page 5

Page 22: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text*LIVE LOAD ON MAIN FRAME-1 RAFTER = LIVE LOAD x BAY SPACING =* =0.75kN/m2 x 12.0 = 9.0 kN/m *******LOAD 6 LOADTYPE None TITLE LLMEMBER LOAD16 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI GY -9*******************************************************************LIVE LOAD ON END FRAME-1 RAFTER = LIVE LOAD x BAY SPACING =* =0.75kN/m2 x 12.0/2 = 4.5 kN/m *******2 4 8 TO 13 184 186 190 TO 195 UNI GY -4.5*****************************************************************LIVE LOAD ON Canopy RAFTER = LIVE LOAD x BAY SPACING =* =0.75kN/m2 x 10 = 7.5 kN/m *******339 TO 343 UNI GY -7.5****************COLLATERAL LOAD *********************LL=0.20 Kn/m2*COLLATERAL LOAD ON MAIN FRAME-1 RAFTER = COLLATERAL LOAD x BAY SPACING =* =0.20kN/m2 x 12.0 = 2.4 kN/m *******LOAD 7 LOADTYPE None TITLE CLMEMBER LOAD16 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI GY -2.4*******************************************************************COLLATERAL LOAD ON END FRAME-1 RAFTER = COLLATERAL LOAD x BAY SPACING =* =0.20kN/m2 x 12.0/2 = 1.2 kN/m *******2 4 8 TO 13 184 186 190 TO 195 UNI GY -1.2********************************************************************************* WIND LOAD CASES ***************************WIND SPEED = 47.0M/S, K1= 1.0, K3=1.0 & K2=1.03 FOR TERRAIN CATEGORY 1,CLASS C & HT < 15.0M ****DESIGN WIND SPEED = K1 x K2 x K3 x Vb = 1.03 x 47 = 48.41 m/s *******************DESIGN WIND PRESSURE pd = 0.6 Vz^2 = 0.6 x 48.41^2 = 1406.11 N/m2 = 1.406 kN/m2 ******PARTIALLY ENCLOSED & CPI =+/-0.5LOAD 8 WL1 + 0 (WIND LOAD FROM RIGHT TO LEFT WITH +VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX -20.2518 23 25 27 32 37 39 41 46 51 53 55 60 65 67 69 74 79 81 83 88 93 95 97 102 -107 109 111 116 121 123 125 130 135 137 139 144 149 151 153 158 163 165 167 -172 177 179 181 UNI Y 7.7416 22 24 26 30 36 38 40 44 50 52 54 58 64 66 68 72 78 80 82 86 92 94 96 100 -106 108 110 114 120 122 124 128 134 136 138 142 148 150 152 156 162 164 166 -170 176 178 180 UNI Y -1.6920 34 48 62 76 90 104 118 132 146 160 174 305 306 363 UNI GX 4.22******************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX -10.1254 9 11 13 186 191 193 195 UNI Y 3.7352 8 10 12 184 190 192 194 UNI Y -0.8456 188 334 UNI GX 2.11******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125*****************************************************************

Page 6

Page 23: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text*WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ -1.4114 198 200 336 TO 338 UNI GZ 1.41188 189 UNI GZ -0.7056 7 334 335 UNI GZ 0.705**********************************LOAD 9 WL2 -0 (WIND LOAD FROM RIGHT TO LEFT WITH -VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX -3.3718 23 25 27 32 37 39 41 46 51 53 55 60 65 67 69 74 79 81 83 88 93 95 97 102 -107 109 111 116 121 123 125 130 135 137 139 144 149 151 153 158 163 165 167 -172 177 179 181 UNI Y 24.3416 22 24 26 30 36 38 40 44 50 52 54 58 64 66 68 72 78 80 82 86 92 94 96 100 -106 108 110 114 120 122 124 128 134 136 138 142 148 150 152 156 162 164 166 -170 176 178 180 UNI Y 15.1920 34 48 62 76 90 104 118 132 146 160 174 305 306 363 UNI GX -12.66*******************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX -1.6854 9 11 13 186 191 193 195 UNI Y 12.172 8 10 12 184 190 192 194 UNI Y 7.5956 188 334 UNI GX -6.33******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ -15.5114 198 200 336 TO 338 UNI GZ 15.51188 189 UNI GZ -7.7556 7 334 335 UNI GZ 7.755***********************************LOAD 10 WL3 +90 (WIND LOAD FROM PERPENDICULAR TO BUILDING WITH +VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-116 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI Y 5.06************************************************************************WIND LOAD ON ENDFRAME-14 9 11 13 186 191 193 195 UNI Y 2.532 8 10 12 184 190 192 194 UNI Y 2.53*****************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ 16.9214 198 200 336 TO 338 UNI GZ -5.64188 189 UNI GZ 8.466 7 334 335 UNI GZ -2.82**********FORCES ACTING DUT TO EFFECT OF FRICATIONAL DRAG************************* CALCULATION FOR DRAG FORCE APPLICABLE ONLY IN 90 & 270 DEGREE WIND ****

Page 7

Page 24: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text****TOTAL LENGTH (d) =156.0M, WIDTH (b)=40.0M & EAVE HEIGHT (h)=15.0M************COEFFICIENT OF FORCE =Cf'=0.04 (FOR CORRUGATION ACROSS THE WIND)*********d/h=156.0/10.0 =15.6 > 4.0 & h < b ***************************HENCE TOTAL DRAG FORCE ON ROOF= 'F'=Cf' x (d-4h) x bpd = 0.04 (156.0-4x15.0)x40.0x1.41= 216.576 kN**&TOTAL DRAG FORCE ON WALL = Cf' x (d-4h) x 2hpd= 0.04x(156.0-4x15.0)x2x15.0x1.41 = 162.432 kN****APPLIED FORCE ON STRUT JOINT INTERNAL = FORCE/ (NO. OF GABLE COL SPACING X NO. OF BAYS)* = 216.576 /(4 x13) = 4.164 kN ***APPLIED FORCE ON STRUT SIDE WALL @ 4.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5/2)/14.4) = 14.1 kN ****************APPLIED FORCE ON STRUT SIDE WALL @ 9.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5+5.1/2)/14.4) = 28.42 kN ****************APPLIED FORCE ON STRUT ON EAVE @ 14.4 M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)+ (4.164/2)** = = (162.432/(1 x 2))X((5.1/2)/14.4) = 14.37 kN ********JOINT LOAD2 3 5 13 14 17 18 20 28 29 32 33 35 43 44 47 48 50 58 59 62 63 65 73 74 77 -78 80 88 89 92 93 95 103 104 107 108 110 118 119 122 123 125 133 134 137 -138 140 148 149 152 153 155 163 164 167 168 170 178 179 182 183 185 193 194 -197 198 200 208 209 FZ -4.164220 222 FZ -28.42112 113 FZ -14.1107 110 FZ -14.37***********************************LOAD 11 WL4 -90 (WIND LOAD FROM PERPENDICULAR TO BUILDING WITH -VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX 16.8716 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI Y 21.9420 34 48 62 76 90 104 118 132 146 160 174 305 306 363 UNI GX -16.87**************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX 8.4354 9 11 13 186 191 193 195 UNI Y 10.972 8 10 12 184 190 192 194 UNI Y 10.976 188 334 UNI GX -8.435******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ 2.8214 198 200 336 TO 338 UNI GZ 8.46188 189 UNI GZ 1.416 7 334 335 UNI GZ 4.23**********FORCES ACTING DUT TO EFFECT OF FRICATIONAL DRAG************************* CALCULATION FOR DRAG FORCE APPLICABLE ONLY IN 90 & 270 DEGREE WIND ********TOTAL LENGTH (d) =156.0M, WIDTH (b)=40.0M & EAVE HEIGHT (h)=15.0M************COEFFICIENT OF FORCE =Cf'=0.04 (FOR CORRUGATION ACROSS THE WIND)*********d/h=156.0/10.0 =15.6 > 4.0 & h < b ***************************HENCE TOTAL DRAG FORCE ON ROOF= 'F'=Cf' x (d-4h) x bpd = 0.04 (156.0-4x15.0)x40.0x1.41= 216.576 kN**&TOTAL DRAG FORCE ON WALL = Cf' x (d-4h) x 2hpd= 0.04x(156.0-4x15.0)x2x15.0x1.41 = 162.432 kN***

Page 8

Page 25: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text*APPLIED FORCE ON STRUT JOINT INTERNAL = FORCE/ (NO. OF GABLE COL SPACING X NO. OF BAYS)* = 216.576 /(4 x13) = 4.164 kN ***APPLIED FORCE ON STRUT SIDE WALL @ 4.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5/2)/14.4) = 14.1 kN ****************APPLIED FORCE ON STRUT SIDE WALL @ 9.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5+5.1/2)/14.4) = 28.42 kN ****************APPLIED FORCE ON STRUT ON EAVE @ 14.4 M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)+ (4.164/2)** = = (162.432/(1 x 2))X((5.1/2)/14.4) = 14.37 kN ********JOINT LOAD2 3 5 13 14 17 18 20 28 29 32 33 35 43 44 47 48 50 58 59 62 63 65 73 74 77 -78 80 88 89 92 93 95 103 104 107 108 110 118 119 122 123 125 133 134 137 -138 140 148 149 152 153 155 163 164 167 168 170 178 179 182 183 185 193 194 -197 198 200 208 209 FZ -4.164220 222 FZ -28.42112 113 FZ -14.1107 110 FZ -14.37*************************************LOAD 12 WL5 +180 (WIND LOAD FROM LEFT TO RIGHT WITH +VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX -4.2218 23 25 27 32 37 39 41 46 51 53 55 60 65 67 69 74 79 81 83 88 93 95 97 102 -107 109 111 116 121 123 125 130 135 137 139 144 149 151 153 158 163 165 167 -172 177 179 181 UNI Y -1.6916 22 24 26 30 36 38 40 44 50 52 54 58 64 66 68 72 78 80 82 86 92 94 96 100 -106 108 110 114 120 122 124 128 134 136 138 142 148 150 152 156 162 164 166 -170 176 178 180 UNI Y 7.4720 34 48 62 76 90 104 118 132 146 160 174 305 306 363 UNI GX 20.25********************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX -2.114 9 11 13 186 191 193 195 UNI Y -0.8452 8 10 12 184 190 192 194 UNI Y 3.7356 188 334 UNI GX 10.125******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ -1.4114 198 200 336 TO 338 UNI GZ 1.41188 189 UNI GZ -0.7056 7 334 335 UNI GZ 0.705*************************************LOAD 13 WL6 -180(WIND LOAD FROM LEFT TO RIGHT WITH -VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX 12.6618 23 25 27 32 37 39 41 46 51 53 55 60 65 67 69 74 79 81 83 88 93 95 97 102 -107 109 111 116 121 123 125 130 135 137 139 144 149 151 153 158 163 165 167 -172 177 179 181 UNI Y 15.1916 22 24 26 30 36 38 40 44 50 52 54 58 64 66 68 72 78 80 82 86 92 94 96 100 -

Page 9

Page 26: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text106 108 110 114 120 122 124 128 134 136 138 142 148 150 152 156 162 164 166 -170 176 178 180 UNI Y 24.346 20 34 48 62 76 90 104 118 132 146 160 174 305 306 334 363 UNI GX 3.37*************************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX 6.334 9 11 13 186 191 193 195 UNI Y 7.5952 8 10 12 184 190 192 194 UNI Y 12.176 188 334 UNI GX 1.685******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ -15.5114 198 200 336 TO 338 UNI GZ 15.51188 189 UNI GZ -7.7556 7 334 335 UNI GZ 7.755************************************LOAD 14 WL7 +270 (WIND LOAD FROM PERPENDICULAR TO BUILDING WITH +VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-116 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI Y 5.06**************************************************************************WIND LOAD ON ENDFRAME-14 9 11 13 186 191 193 195 UNI Y 2.532 8 10 12 184 190 192 194 UNI Y 2.53******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ 5.6414 198 200 336 TO 338 UNI GZ -16.92188 189 UNI GZ 2.826 7 334 335 UNI GZ -8.46**********FORCES ACTING DUT TO EFFECT OF FRICATIONAL DRAG************************* CALCULATION FOR DRAG FORCE APPLICABLE ONLY IN 90 & 270 DEGREE WIND ********TOTAL LENGTH (d) =156.0M, WIDTH (b)=40.0M & EAVE HEIGHT (h)=15.0M************COEFFICIENT OF FORCE =Cf'=0.04 (FOR CORRUGATION ACROSS THE WIND)*********d/h=156.0/10.0 =15.6 > 4.0 & h < b ***************************HENCE TOTAL DRAG FORCE ON ROOF= 'F'=Cf' x (d-4h) x bpd = 0.04 (156.0-4x15.0)x40.0x1.41= 216.576 kN**&TOTAL DRAG FORCE ON WALL = Cf' x (d-4h) x 2hpd= 0.04x(156.0-4x15.0)x2x15.0x1.41 = 162.432 kN****APPLIED FORCE ON STRUT JOINT INTERNAL = FORCE/ (NO. OF GABLE COL SPACING X NO. OF BAYS)* = 216.576 /(4 x13) = 4.164 kN ***APPLIED FORCE ON STRUT SIDE WALL @ 4.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5/2)/14.4) = 14.1 kN ****************APPLIED FORCE ON STRUT SIDE WALL @ 9.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5+5.1/2)/14.4) = 28.42 kN ****************APPLIED FORCE ON STRUT ON EAVE @ 14.4 M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE

Page 10

Page 27: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.textHEIGHT/TOTAL HEIGHT)+ (4.164/2)** = = (162.432/(1 x 2))X((5.1/2)/14.4) = 14.37 kN ********JOINT LOAD2 3 5 13 14 17 18 20 28 29 32 33 35 43 44 47 48 50 58 59 62 63 65 73 74 77 -78 80 88 89 92 93 95 103 104 107 108 110 118 119 122 123 125 133 134 137 -138 140 148 149 152 153 155 163 164 167 168 170 178 179 182 183 185 193 194 -197 198 200 208 209 FZ 4.164237 238 FZ 28.42127 128 FZ 14.1122 125 FZ 14.37************************************LOAD 15 WL8 -270 (WIND LOAD FROM PERPENDICULAR TO BUILDING WITH -VE CPI)MEMBER LOAD*WIND LOAD ON FRAME-121 35 49 63 77 91 105 119 133 147 161 175 312 313 371 UNI GX 16.8716 18 22 TO 27 30 32 36 TO 41 44 46 50 TO 55 58 60 64 TO 69 72 74 78 TO 83 -86 88 92 TO 97 100 102 106 TO 111 114 116 120 TO 125 128 130 134 TO 139 142 -144 148 TO 153 156 158 162 TO 167 170 172 176 TO 181 UNI Y 21.9420 34 48 62 76 90 104 118 132 146 160 174 305 306 363 UNI GX -16.87********************************************************************************WIND LOAD ON ENDFRAME-1189 335 UNI GX 8.4354 9 11 13 186 191 193 195 UNI Y 10.972 8 10 12 184 190 192 194 UNI Y 10.976 188 334 UNI GX -8.435******************************************************************WIND LOAD ON CANOPY339 341 342 UNI Y 17.625340 343 UNI Y 8.8125******************************************************************WIND LOAD ON ENDWALL COLUMN196 202 204 UNI GZ -8.4614 198 200 336 TO 338 UNI GZ -2.82188 189 UNI GZ -4.236 7 334 335 UNI GZ -1.41**********FORCES ACTING DUT TO EFFECT OF FRICATIONAL DRAG************************* CALCULATION FOR DRAG FORCE APPLICABLE ONLY IN 90 & 270 DEGREE WIND ********TOTAL LENGTH (d) =156.0M, WIDTH (b)=40.0M & EAVE HEIGHT (h)=15.0M************COEFFICIENT OF FORCE =Cf'=0.04 (FOR CORRUGATION ACROSS THE WIND)*********d/h=156.0/10.0 =15.6 > 4.0 & h < b ***************************HENCE TOTAL DRAG FORCE ON ROOF= 'F'=Cf' x (d-4h) x bpd = 0.04 (156.0-4x15.0)x40.0x1.41= 216.576 kN**&TOTAL DRAG FORCE ON WALL = Cf' x (d-4h) x 2hpd= 0.04x(156.0-4x15.0)x2x15.0x1.41 = 162.432 kN****APPLIED FORCE ON STRUT JOINT INTERNAL = FORCE/ (NO. OF GABLE COL SPACING X NO. OF BAYS)* = 216.576 /(4 x13) = 4.164 kN ***APPLIED FORCE ON STRUT SIDE WALL @ 4.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5/2)/14.4) = 14.1 kN ****************APPLIED FORCE ON STRUT SIDE WALL @ 9.3M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)=** = (162.432/(1 x 2))X((5+5.1/2)/14.4) = 28.42 kN ****************APPLIED FORCE ON STRUT ON EAVE @ 14.4 M LEVEL = (WALL FORCE/ (2 x NO. OF BAYS))X (EFFECTIVE HEIGHT/TOTAL HEIGHT)+ (4.164/2)** = = (162.432/(1 x 2))X((5.1/2)/14.4) = 14.37 kN ********JOINT LOAD2 3 5 13 14 17 18 20 28 29 32 33 35 43 44 47 48 50 58 59 62 63 65 73 74 77 -78 80 88 89 92 93 95 103 104 107 108 110 118 119 122 123 125 133 134 137 -

Page 11

Page 28: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text138 140 148 149 152 153 155 163 164 167 168 170 178 179 182 183 185 193 194 -197 198 200 208 209 FZ 4.164237 238 FZ 28.42127 128 FZ 14.1122 125 FZ 14.37*************************************************IS800 LOAD COMBINATION FOR STRENGTH*************LOAD COMB 101 1.0(DL+LL)5 1.0 6 1.0 *************************************LOAD COMB 102 1.0(DL+LL+CL)5 1.0 6 1.0 7 1.0 ********1.0(DL+EQ X)******************LOAD COMB 103 1 (DL+EQ+X)5 1.0 1 1.0 LOAD COMB 104 1 (DL+EQ-X)5 1.0 2 1.0 LOAD COMB 105 1 (DL+EQ+Z)5 1.0 3 1.0 LOAD COMB 106 1 (DL+EQ-Z)5 1.0 4 1.0 ********1.0(0.75DL+0.75LL+0.75EQ X+0.75CL)******************LOAD COMB 107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL)5 0.75 6 0.75 1 0.75 7 0.75 LOAD COMB 108 1 (DL+0.75LL+0.75EQ-X+0.75CL)5 0.75 6 0.75 2 0.75 7 0.75 LOAD COMB 109 1 (DL+0.75LL+0.75EQ+Z+0.75CL)5 0.75 6 0.75 3 0.75 7 0.75 LOAD COMB 110 1 (DL+0.75LL+0.75EQ-Z+0.75CL)5 0.75 6 0.75 4 0.75 7 0.75 ********1.0(DL+WL)******************LOAD COMB 111 1 (DL+WL1)5 1.0 8 1.0 LOAD COMB 112 1 (DL+WL2)5 1.0 9 1.0 LOAD COMB 113 1 (DL+WL3)5 1.0 10 1.0 LOAD COMB 114 1 (DL+WL4)5 1.0 11 1.0 LOAD COMB 115 1 (DL+WL5)5 1.0 12 1.0 LOAD COMB 116 1 (DL+WL6)5 1.0 13 1.0 LOAD COMB 117 1 (DL+WL7)5 1.0 14 1.0 LOAD COMB 118 1 (DL+WL8)5 1.0 15 1.0 ********1(0.75DL+0.75LL+0.75WL+0.75CL)******************LOAD COMB 119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL)5 0.75 6 0.75 8 0.75 7 0.75 LOAD COMB 120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL)5 0.75 6 0.75 9 0.75 7 0.75 LOAD COMB 121 1 (0.75DL+0.75 LL+0.75 WL3+0.75CL)5 0.75 6 0.75 10 0.75 7 0.75 LOAD COMB 122 1 (0.75DL+0.75 LL+0.75 WL4+0.75CL)5 0.75 6 0.75 11 0.75 7 0.75

Page 12

Page 29: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.textLOAD COMB 123 1 (0.75DL+0.75 LL+0.75 WL5+0.75CL)5 0.75 6 0.75 12 0.75 7 0.75 LOAD COMB 124 1 (0.75DL+0.75 LL+0.75 WL6+0.75CL)5 0.75 6 0.75 13 0.75 7 0.75 LOAD COMB 125 1 (0.75DL+0.75 LL+0.75 WL7+0.75CL)5 0.75 6 0.75 14 0.75 7 0.75 LOAD COMB 126 1 (0.75DL+0.75 LL+0.75 WL8+0.75CL)5 0.75 6 0.75 15 0.75 7 0.75 **********************************************1(0.75DL+0.75LL+0.75WL)******************LOAD COMB 127 1 (0.75DL+0.75 LL+0.75 WL1)5 0.75 6 0.75 8 0.75 LOAD COMB 128 1 (0.75DL+0.75 LL+0.75 WL2)5 0.75 6 0.75 9 0.75 LOAD COMB 129 1 (0.75DL+0.75 LL+0.75 WL3)5 0.75 6 0.75 10 0.75 LOAD COMB 130 1 (0.75DL+0.75 LL+0.75 WL4)5 0.75 6 0.75 11 0.75 LOAD COMB 131 1 (0.75DL+0.75 LL+0.75 WL5)5 0.75 6 0.75 12 0.75 LOAD COMB 132 1 (0.75DL+0.75 LL+0.75 WL6)5 0.75 6 0.75 13 0.75 LOAD COMB 133 1 (0.75DL+0.75 LL+0.75 WL7)5 0.75 6 0.75 14 0.75 LOAD COMB 134 1 (0.75DL+0.75 LL+0.75 WL8)5 0.75 6 0.75 15 0.75 *******************B) IS800-2007 LOAD COMBINATION FOR SERVICEABILITY********************(1.0xDL + 1.0xLL + 1.0xCL)****LOAD COMB 101 (1.0XDL+1.0XLL+1.0XCL)*5 1.0 6 1.0 7 1.0******(1.0xDL+0.8xLL+0.8XCL+0.8xWL)**LOAD COMB 102 (1.0XDL+0.8XLL+0.8XCL+0.8XWL1)*5 1.0 6 0.8 7 0.8 8 0.8*LOAD COMB 103 (1.0XDL+0.8XLL+0.8XCL+0.8XWL2)*5 1.0 6 0.8 7 0.8 9 0.8*LOAD COMB 104 (1.0XDL+0.8XLL+0.8XCL+0.8XWL3)*5 1.0 6 0.8 7 0.8 10 0.8*LOAD COMB 105 (1.0XDL+0.8XLL+0.8XCL+0.8XWL4)*5 1.0 6 0.8 7 0.8 11 0.8*LOAD COMB 106 (1.0XDL+0.8XLL+0.8XCL+0.8XWL5)*5 1.0 6 0.8 7 0.8 12 0.8*LOAD COMB 107 (1.0XDL+0.8XLL+0.8XCL+0.8XWL6)*5 1.0 6 0.8 7 0.8 13 0.8*LOAD COMB 108 (1.0XDL+0.8XLL+0.8XCL+0.8XWL7)*5 1.0 6 0.8 7 0.8 14 0.8*LOAD COMB 109 (1.0XDL+0.8XLL+0.8XCL+0.8XWL8)*5 1.0 6 0.8 7 0.8 15 0.8**********(1.0xDL + 1.0xWL)***LOAD COMB 110 (1.0XDL+1.0XWL1)*5 1.0 8 1.0*LOAD COMB 111 (1.0XDL+1.0XWL2)*5 1.0 9 1.0*LOAD COMB 112 (1.0XDL+1.0XWL3)*5 1.0 10 1.0*LOAD COMB 113 (1.0XDL+1.0XWL4)*5 1.0 11 1.0

Page 13

Page 30: Design Report J#685 Ircon Shell Store R1

Staad Input forShell store.text*LOAD COMB 114 (1.0XDL+1.0XWL5)*5 1.0 12 1.0*LOAD COMB 115 (1.0XDL+1.0XWL6)*5 1.0 13 1.0*LOAD COMB 116 (1.0XDL+1.0XWL7)*5 1.0 14 1.0*LOAD COMB 117 (1.0XDL+1.0XWL8)*5 1.0 15 1.0*********(1.0xDL+0.8xLL+0.8XCL+0.8xEQ)***LOAD COMB 118 (1.0XDL+0.8XLL+0.8XCL+0.8XEQ+X)*5 1.0 6 0.8 7 0.8 1 0.8*LOAD COMB 119 (1.0XDL+0.8XLL+0.8XCL+0.8XEQ-X)*5 1.0 6 0.8 7 0.8 2 0.8*LOAD COMB 120 (1.0XDL+0.8XLL+0.8XCL+0.8XEQ+Z)*5 1.0 6 0.8 7 0.8 3 0.8*LOAD COMB 121 (1.0XDL+0.8XLL+0.8XCL+0.8XEQ-Z)*5 1.0 6 0.8 7 0.8 4 0.8******************(1.0xDL+1.0xEQ)***LOAD COMB 122 (1.0XDL+1.0XEQ+X)*5 1.0 1 1.0*LOAD COMB 123 (1.0XDL+1.0XEQ-X)*5 1.0 2 1.0*LOAD COMB 124 (1.0XDL+1.0XEQ+Z)*5 1.0 3 1.0*LOAD COMB 125 (1.0XDL+1.0XEQ-Z)*5 1.0 4 1.0***************************************************************************PERFORM ANALYSIS*********** FOR A) IS800-2007(WORKING STRESS OF STRENGTH) ***********LOAD LIST 101 TO 134************* FOR B) IS800-2007(WORKING STRESS OF SERVICIABILITY) ************LOAD LIST 101 TO 125************************ ANALYSIS COMMAND *********************************FINISH

Page 14

Page 31: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

SECTION 2.1aPURLIN DESIGN INPUT OF STAAD FILE

Page 32: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

PURLIN MODEL WITH FLANGE BRACE

Page 33: Design Report J#685 Ircon Shell Store R1

Staad Input for Purlin.textSTAAD PLANESTART JOB INFORMATIONENGINEER DATE 28-Dec-11JOB NAME EBL-J JOB CLIENT IRCONJOB REV 0ENGINEER NAME P.B.MCHECKER NAME S.BAPPROVED NAME SSBCHECKER DATE 28-Dec-11APPROVED DATE 28-Dec-11JOB PART PURLIN DESIGN 12 MEND JOB INFORMATIONINPUT WIDTH 79UNIT METER KNJOINT COORDINATES1 0 0 0; 2 12 0 0; 3 0 -1 0; 4 12 -1 0; 5 0.74 0 0; 6 11.26 0 0; 7 24 0 0;8 24 -1 0; 9 23.26 0 0; 10 12.74 0 0; 11 36 0 0; 12 36 -1 0; 13 24.74 0 0;14 35.26 0 0; 15 48 0 0; 16 48 -1 0; 17 47.26 0 0; 18 36.74 0 0; 19 60 0 0;20 60 -1 0; 21 48.74 0 0; 22 59.26 0 0; 23 72 0 0; 24 72 -1 0; 25 71.26 0 0;26 60.74 0 0; 27 84 0 0; 28 84 -1 0; 29 72.74 0 0; 30 83.26 0 0; 31 96 0 0;32 96 -1 0; 33 95.26 0 0; 34 84.74 0 0;MEMBER INCIDENCES1 1 5; 2 5 6; 3 6 2; 4 3 5; 5 4 6; 7 10 9; 9 8 9; 10 4 10; 13 14 11; 14 8 13;15 12 14; 16 17 15; 17 18 17; 19 16 17; 20 12 18; 23 22 19; 24 16 21; 25 20 22;26 25 23; 27 26 25; 29 24 25; 30 20 26; 33 30 27; 34 24 29; 35 28 30; 36 31 33;37 34 33; 39 32 33; 40 28 34; 65 7 13; 68 13 14; 106 21 22; 130 29 30;131 2 10; 132 9 7; 133 11 18; 134 15 21; 135 19 26; 136 23 29; 137 27 34;START USER TABLETABLE 1 200Z3.15TABLE 2 250Z3.15ENDDEFINE MATERIAL STARTISOTROPIC STEELE 2e+008POISSON 0.3DENSITY 76.9822ALPHA 1.2e-005DAMP 0.03END DEFINE MATERIALMEMBER PROPERTY INDIAN1 TO 3 7 13 16 17 23 26 27 33 36 37 65 68 106 130 TO 137 UPTABLE 2 250Z4 5 9 10 14 15 19 20 24 25 29 30 34 35 39 40 TABLE ST ISA60X60X6CONSTANTSMATERIAL STEEL ALLSUPPORTS1 TO 4 7 8 11 12 15 16 19 20 23 24 27 28 31 32 PINNEDMEMBER TRUSS 4 5 9 10 14 15 19 20 24 25 29 30 34 35 39 40LOAD 1 LOADTYPE Dead TITLE LOAD CASE 1 DEAD LOAD*DEAD LOAD ON PURLIN = DEAD LOAD x BAY SPACING= 0.2kN/m2 x 1.8 = 0.36 kN/m********MEMBER LOAD********W/O LOCAL WING**********1 TO 3 7 13 16 17 23 26 27 33 36 37 65 68 106 130 TO 137 UNI GY -0.36LOAD 2 LOADTYPE Live TITLE LOAD CASE 2 (LIVE LOAD)*******W/O LOCAL*LIVE LOAD ON PURLIN = LIVE LOAD x BAY SPACING= 0.75kN/m2 x 1.8 = 1.35 kN/m********

Page 1

Page 34: Design Report J#685 Ircon Shell Store R1

Staad Input for Purlin.text*COLATERAL LOAD ON PURLIN = COLATRAL LOAD x BAY SPACING= 0.20kN/m2 x 1.8 = 0.36 kN/m********MEMBER LOAD********W/O LOCAL WING***********1 TO 3 7 13 16 17 23 26 27 33 36 37 65 68 106 130 TO 137 UNI GY -1.351 TO 3 7 13 16 17 23 26 27 33 36 37 65 68 106 130 TO 137 UNI GY -0.36LOAD 3 LOADTYPE Wind TITLE LOAD CASE 3 (WIND LOAD)MEMBER LOAD*WIND SPEED = 47.0M/S, K1= 1.0, K3=1.0 & K2=1.03 FOR TERRAIN CTEGORY 1,CLASS C & HT > 10.0M ****DESIGN WIND SPEED = K1 x K2 x K3 x Vb = 1.03 x 47 = 48.41 m/s *******************DESIGN WIND PRESSURE pd = 0.6 Vz^2 = 0.6 x 48.41^2 = 1406.11 N/m2 = 1.406 kN/m2 ********1.406x(-0.9426-0.5) = 2.0282956*MAX WIND ON INTERNAL SPAN PURLIN =Pdx(Cpe-Cpi)xBAY SPACING=1.406x(-0.9426-0.5)x(1.8)=-3.65 kN/m**1 TO 3 7 13 16 17 23 26 27 33 36 37 65 68 106 130 TO 137 UNI GY 3.65**********LOAD COMBINATION FOR STRENGTH********************LOAD COMB 4 DL + LL*1 1.0 2 1.0 *LOAD COMB 5 DL + WL*1 0.75 3 0.75 *LOAD COMB 6 DL + LL + WL*1 0.75 3 0.75 2 0.75 ********LOAD COMBINATION FOR DEFLECTION*******************LOAD COMB 4 DL + LL1 1.0 2 1.0LOAD COMB 5 DL + WL1 1.0 3 1.0LOAD COMB 6 DL + LL + WL1 1.0 3 0.8 2 0.8PERFORM ANALYSISLOAD LIST 4 TO 6

Page 2

Page 35: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

SECTION 2.1bGIRT DESIGN INPUT OF STAAD FILE

Page 36: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain Contracto IRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

12m GIRT MODEL WITH FLANGE BRACE

Page 37: Design Report J#685 Ircon Shell Store R1

Staad Input for Girt-12m.textSTAAD SPACESTART JOB INFORMATIONENGINEER DATE 28-Dec-11JOB NAME EBL-J JOB CLIENT IRCONJOB REV 0ENGINEER NAME P.B.MCHECKER NAME S.BAPPROVED NAME SSBCHECKER DATE 28-Dec-11APPROVED DATE 28-Dec-11JOB PART GIRT DESIGN 12 MEND JOB INFORMATIONINPUT WIDTH 79UNIT METER KNJOINT COORDINATES1 0 0 0; 2 12 0 0; 3 0 -1 0; 4 12 -1 0; 5 0.74 0 0; 6 11.26 0 0; 35 1.33 0 0;36 2.66125 0 0; 37 3.9925 0 0; 38 5.32375 0 0; 39 6.655 0 0; 40 7.98625 0 0;41 9.3175 0 0; 42 10.6488 0 0;MEMBER INCIDENCES1 1 5; 2 5 35; 3 6 2; 4 3 5; 5 4 6; 138 35 36; 139 36 37; 140 37 38; 141 38 39;142 39 40; 143 40 41; 144 41 42; 145 42 6;START USER TABLETABLE 1 200Z3.15TABLE 2 250Z3.15ENDDEFINE MATERIAL STARTISOTROPIC STEELE 2e+008POISSON 0.3DENSITY 76.9822ALPHA 1.2e-005DAMP 0.03END DEFINE MATERIALMEMBER PROPERTY INDIAN4 5 TABLE ST ISA60X60X6MEMBER PROPERTY1 TO 3 138 TO 145 UPTABLE 1 200ZCONSTANTSMATERIAL STEEL ALLSUPPORTS1 TO 4 PINNED35 TO 42 FIXED BUT FX FY MX MZMEMBER TRUSS 4 5LOAD 1 LOADTYPE Dead TITLE LOAD CASE 1 DEAD LOAD*DEAD LOAD ON GIRT = DEAD LOAD x BAY SPACING= 0.2kN/m2 x 1.5 = 0.30 kN/m********MEMBER LOAD********W/O LOCAL WING**********1 TO 3 138 TO 145 UNI GZ -0.30LOAD 2 LOADTYPE Wind TITLE LOAD CASE 2 (WIND LOAD)MEMBER LOAD*WIND SPEED = 47.0M/S, K1= 1.0, K3=1.0 & K2=1.03 FOR TERRAIN CTEGORY 1,CLASS C & HT > 10.0M ****DESIGN WIND SPEED = K1 x K2 x K3 x Vb = 1.03 x 47 = 48.41 m/s *******************DESIGN WIND PRESSURE pd = 0.6 Vz^2 = 0.6 x 48.41^2 = 1406.11 N/m2 = 1.406 kN/m2 ********1.406x(-0.7-0.5) = 1.6872*MAX WIND ON INTERNAL SPAN PURLIN =Pdx(Cpe-Cpi)xBAY SPACING=1.406x(-0.7-0.5)x(1.5)=-2.5308 kN/m**

Page 1

Page 38: Design Report J#685 Ircon Shell Store R1

Staad Input for Girt-12m.text1 TO 3 138 TO 145 UNI GY 2.5308**********LOAD COMBINATION FOR STRENGTH*******************LOAD COMB 3 DL1 1.0 LOAD COMB 4 DL + WL1 0.75 2 0.75 ********LOAD COMBINATION FOR DEFLECTION********************LOAD COMB 3 DL*1 1.0*LOAD COMB 4 DL + WL*1 1.0 2 0.8PERFORM ANALYSISLOAD LIST 3 4

Page 2

Page 39: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain Contracto IRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

10m GIRT MODEL WITH FLANGE BRACE

Page 40: Design Report J#685 Ircon Shell Store R1

Staad Input for Girt-10m.textSTAAD SPACESTART JOB INFORMATIONENGINEER DATE 28-Dec-11JOB NAME EBL-J#685 JOB CLIENT IRCONJOB REV 0ENGINEER NAME P.B.MCHECKER NAME S.BAPPROVED NAME SSBCHECKER DATE 28-Dec-11APPROVED DATE 28-Dec-11JOB PART GIRT DESIGN 10 MEND JOB INFORMATIONINPUT WIDTH 79UNIT METER KNJOINT COORDINATES1 0 0 0; 2 10 0 0; 3 0 -1 0; 4 10 -1 0; 5 0.74 0 0; 6 9.26 0 0; 35 1.43 0 0;36 2.86125 0 0; 37 4.2925 0 0; 38 5.72375 0 0; 39 7.155 0 0; 40 8.58625 0 0;MEMBER INCIDENCES1 1 5; 2 5 35; 3 6 2; 4 3 5; 5 4 6; 138 35 36; 139 36 37; 140 37 38; 141 38 39;142 39 40; 145 40 6;START USER TABLETABLE 1 200Z3.15TABLE 2 250Z3.15ENDDEFINE MATERIAL STARTISOTROPIC STEELE 2e+008POISSON 0.3DENSITY 76.9822ALPHA 1.2e-005DAMP 0.03END DEFINE MATERIALMEMBER PROPERTY INDIAN4 5 TABLE ST ISA60X60X6MEMBER PROPERTY INDIAN1 TO 3 138 TO 142 145 UPTABLE 1 200ZCONSTANTSMATERIAL STEEL ALLSUPPORTS1 TO 4 PINNED35 TO 40 FIXED BUT FX FY MX MZMEMBER TRUSS 4 5LOAD 1 LOADTYPE Dead TITLE LOAD CASE 1 DEAD LOAD*DEAD LOAD ON PURLIN = DEAD LOAD x BAY SPACING= 0.2kN/m2 x 1.8 = 0.36 kN/m********MEMBER LOAD********W/O LOCAL WING**********1 TO 3 138 TO 142 145 UNI GZ -0.36LOAD 2 LOADTYPE Wind TITLE LOAD CASE 2 (WIND LOAD)MEMBER LOAD*WIND SPEED = 47.0M/S, K1= 1.0, K3=1.0 & K2=1.03 FOR TERRAIN CTEGORY 1,CLASS C & HT > 10.0M ****DESIGN WIND SPEED = K1 x K2 x K3 x Vb = 1.03 x 47 = 48.41 m/s *******************DESIGN WIND PRESSURE pd = 0.6 Vz^2 = 0.6 x 48.41^2 = 1406.11 N/m2 = 1.406 kN/m2 ********1.406x(-0.7-0.5) = 1.6872*MAX WIND ON INTERNAL SPAN PURLIN =Pdx(Cpe-Cpi)xBAY SPACING=1.406x(-0.7-0.5)x(1.8)=-3.03696 kN/m**1 TO 3 138 TO 142 145 UNI GY 3.03696

Page 1

Page 41: Design Report J#685 Ircon Shell Store R1

Staad Input for Girt-10m.text**********LOAD COMBINATION FOR STRENGTH********************LOAD COMB 3 DL*1 1.0 *LOAD COMB 4 DL + WL*1 0.75 2 0.75 ********LOAD COMBINATION FOR DEFLECTION*******************LOAD COMB 3 DL1 1.0LOAD COMB 4 DL + WL1 1.0 2 0.8PERFORM ANALYSISLOAD LIST 3 4

Page 2

Page 42: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

7-Feb-2011

Project

IIT, DELHI Design By

ANIL K. SETH

Owner RAIL COACH FACTORY Date Job No.

SAURABH BHARDWAJPRAFULL MUNGLE

EBSL-PEB- 685

ConsultantMain Contractor

RAIL COACH FACTORY RAE BARELI (U.P) Recommded BIRCON INTERNATIONAL LTD

SHELL STORE

Checked By

Moment Diagram & Deflected Shape of the Frame

BuildingS.S BANDYOPADHYAY

Approved By

SECTION 2.2

Page 43: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building

Owner Date Consultant

Recommded B

SECTION 2.2.1

ANIL K. SETH

Design By

ProjectSAURABH BHARDWAJPRAFULL MUNGLE

Job No.

Main Contractor

EBSL-PEB- 685RAIL COACH FACTORY

Checked By

Approved By

IRCON INTERNATIONAL LTDRAIL COACH FACTORY RAE BARELI (U.P) S.S BANDYOPADHYAY

IIT, DELHI

SHELL STORE

7-Feb-2011

Deflected shape of frame

Page 44: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 45: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

PRAFULL MUNGLE

Moment diagrams SECTION 2.2.2

SHELL STORES.S BANDYOPADHYAYRAIL COACH FACTORY RAE BARELI (U.P)

IRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJRecommded B

EBSL-PEB- 685Job No.

Building Approved By

Owner

ANIL K. SETH

RAIL COACH FACTORY

Main ContractorIIT, DELHI Design ByConsultant

7-Feb-2011

Project

Date

Page 46: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 47: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Consultant IIT, DELHI Design By7-Feb-2011Date

Main ContractorIRCON INTERNATIONAL LTD Checked By

Building

Owner RAIL COACH FACTORY

MAIN FRAME DESIGN

SAURABH BHARDWAJPRAFULL MUNGLE

Job No.

RAIL COACH FACTORY RAE BARELI (U.P) Recommded BProject

SECTION 2.3

EBSL-PEB- 685

SHELL STORE Approved ByS.S BANDYOPADHYAYANIL K. SETH

Page 48: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No.

Consultant IIT, DELHI

S.S BANDYOPADHYAYApproved By

EBSL-PEB- 685

Recommded B

Date

RAIL COACH FACTORY RAE BARELI (U.P)Main Contractor

Design BySAURABH BHARDWAJ

7-Feb-2011PRAFULL MUNGLE

Owner RAIL COACH FACTORY

Checked ByIRCON INTERNATIONAL LTDProject

ANIL K. SETHSHELL STOREBuilding

Frame 1

Page 49: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2

Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 1AWeb Depth d 750 mmWeb Thickness t 8 mm

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 1A (Bottom of side wall column) Beam No. 113 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-1A COLUMN, BEAM 113 OF STAAD Load combination 115 1(DL+WL5)(COMP. MEMBER)SHELL STORE

J#685RAIL COACH FACTORY

A.K. SETH

Web Thickness tw 8 mm

Flange Width bfo 350 mm 350 mm

Flange Width bfi 350 mm 16 mm

Top(Outside) Flange thickness tfo 16 mm

Bottom(Inside) Flange thickness tfi 16 mm

Total Depth D 782 mmDiameter of bolt hole in tension flange dbt 16 mm

750 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 17200 mm2 16 mmInside of Section to Centroid yg 391 mm

Inertia about Major axis Iz 1924405733 mm4 350 mm

Inertia about Minor axis Iy 114365333 mm4Elastic Section Modulus, Top(Outside) flange Zzo 4921754 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 4921754 mm3 Gross-Section Properties

Section Modulus, Minor axis Zy 653516 mm3

Plastic Section Modulus, Major axis Zpz 5414600 mm3

Plastic Section Modulus, Minor axis Zpy 992000 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 766 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 16776136381333 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 1083733 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 334 mm 33 cm

Radius of Gyration about minor axis ry 82 mm 8.2 cmShear Center from top h1 391 mm

Critical Load Data LOAD CASE 115 1(DL+WL5)

Major axis Bending moment Mz 646.567 kNm (+ve when Compression is at bottom)

Compression Flange

Tension Flange

Page 1 of 6

Page 50: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Minor axis Bending moment My .351 kNm (+ve when Compression is at bottom)Axial Force P 37.674 kN Axial ForceShear Force V 125.637 kN

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 3440 mmMinor axis Bottom Flange Unbraced Length Lyb 3440 mmMinor axis Axial Lya 3440 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.911874033 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.205913556

Shape of Moment Diagram ψ 0.16

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

MAX END END MOMENT

647 kNm 106.329

MAX START END MOMENT

Transverse Stiffeners Provided only at supports

500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 93.75

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 110.03 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.345 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 110.03 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 6000 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 660.19 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 77.02 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 77.02 N/mm2

Actual shear stress τb = 20.94 N/mm2 ≤ 77.02 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 171 mmWidth of extended flange(Inside flange) b 171 mmWidth/thickness, compression (Outside) Flange 10.69Widht/thickness, tension (Inside) Flange 10.69

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONPage 2 of 6

Page 51: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Bottom flange is SEMI-COMPACT SECTIONWeb depth/thickness limitDepth/Thickness of Web 93.75For flexure onlyPlastic limit 84ε 70.23 (Table 2, IS 800:2007)Compact limit 105ε 87.01 (Table 2, IS 800:2007) r1 = 0.0182Semi-compact limit 126ε 105.91 (Table 2, IS 800:2007) r2 = 0.006348837For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Conclusion on Web Classification Flexure Only: SEMI-COMPACT SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 171.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 350.00 mm

Semi-compact limit 105.91Effective web depth, def 750.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 463.98 mm

Effective section properties for Compression

Top Flange : 350 mm x 16 mmBottom Flange: 318 mm x 16 mmWeb: 750mm x 8 mm with 463.98 mm removed at mid depth 350 mmEffective Area Ae 13488 mm2 16 mmInside to C.G. yg 391 mmMajor axis Intertia Iz 1857817060 mm4 185782 cm4Minor axis Intertia Iy 114345537 mm4 11435 cm4Outside Flange Elastic Section Modulus Zezo 4751450 mm3 4751 cm3Inside Flange Elastic Section Modulus Zezi 4751450 mm3 4751 cm3 750 mmElastic Section Modulus, Minor Axis Zy 653403 mm3 653 cm3Plastic Section Modulus in Major Axis Zpz 4984049 mm3 4984 cm3Plastic Section Modulus in Minor Axis Zpy 984576 mm3 985 cm3Major Axis rz 371 mmMinor Axis ry 92 mm 16 mm

Ifc 57166666.67 350 mmIft 57166666.67βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 16773232469212 mm6Torsional constant It 1004548 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

143.01

143.01

463.98

Compression Flange

Tension Flange

Page 3 of 6

Page 52: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Top Flange : 350 mm x 16 mmBottom Flange: 318 mm x 16 mmWeb: 750mm x 8 mm with 0 mm removed at mid depth 350 mmEffective Area Ae 16528 mm2Inside to C.G. yg 382.92 mm 16 mmMajor axis Intertia Iz 1847210707 mm4 184721 cm4Minor axis Intertia Iy 101377771 mm4 10138 cm4 375Outside Flange Elastic Section Modulus Zezo 4824004 mm3 4824 cm3Inside Flange Elastic Section Modulus Zezi 4628680 mm3 4629 cm3 0 750 mmElastic Section Modulus, Minor Axis Zy 579302 mm3 579 cm3Plastic Section Modulus in Major Axis Zpz 4888712 mm3 4889 cm3Plastic Section Modulus in Minor Axis Zpy 992000 mm3 992 cm3 375Major Axis rz 334 mmMinor Axis ry 78 mm 16 mm

Ifc 57166666.67 350 mm

Ift 57166666.67βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 14871003801323 mm6Torsional constant It 1083733 mm4Shear Center from top h1 391.00 mm

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.987 (Cl. 8.2.2, IS 800:2007)

Compression Flange

Tension Flange

LLT 3440 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 391.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 6594.2 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.502 ≤ 0.55 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section(Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.700 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.842 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 264 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.987Calculated Design Bending Strength Mdz=βb * fbd* Zpz 1273.4 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1513.0 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1815.6 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1273.4 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 158.39 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 165.07 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 134.03 N/mm2 ≤ 158.39 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 139.69 N/mm2 ≤ 165.07 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .61 N/mm2 ≤ 207 N/mm2 OK

Page 4 of 6

Page 53: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Major AxisTop Flange : 350 mm x 16 mmBottom Flange: 350 mm x 16 mmWeb: 750mm x 8 mm with 463.98 mm removed at mid depth

Column Slenderness KL/r 46.6 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 911 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.616 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.760 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 260.061 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 156.04 N/mm2The Actual Compressive stress fc = P/Ae = 2.79 N/mm2 ≤ 156.04 N/mm2 OK

Check member for Compression, Minor AxisColumn Slenderness KL/r 37.36 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1414 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.494 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.694 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 265.454 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 159.27 N/mm2The Actual Compressive stress fc = P/Ae = 2.79 N/mm2 ≤ 159.27 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.018ny=fcy/facy = 0.018

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0074 <1.01 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0074

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0052 ≤1.01 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.998 ≥ 0.996

Therefore, KLT 0.998

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (2.79/ 0.6 *345) + ((134.03/ 207) + (0.606/ 207) = 0.664 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (2.79/ 159.27) + (0.998(134.03/ 158.39) + (0.6 *1.005 *0.67* 0.606/ 207) = 0.863 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (2.79/ 156.04) + (1.007*0.665780653822419(134.031/ 158.39) + (0.6 *1.005 *0.67* 0.606/ 207) 0.587 ≤ 1 OK

Page 5 of 6

Page 54: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 1BWeb Depth d 750 mmWeb Thickness tw 8 mm

Flange Width bfo 250 mm 250 mm

Flange Width bfi 250 mm 16 mm

Top(Outside) Flange thickness tfo 16 mm

Bottom(Inside) Flange thickness tfi 16 mm82

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 1B (Top of side wall column) Beam No. 371 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-1B COLUMN, BEAM 371 OF STAAD Load combination 123 1(0.75DL+0.75 LL+0.75 WL5+0.75CL)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 782 mmDiameter of bolt hole in tension flange dbt 16 mm

750 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 14000 mm2 16 mmInside of Section to Centroid yg 391 mm

Inertia about Major axis Iz 1454932667 mm4 250 mm

Inertia about Minor axis Iy 41698667 mm4Elastic Section Modulus, Top(Outside) flange Zzo 3721055 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 3721055 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 333589 mm3

Plastic Section Modulus, Major axis Zpz 4189000 mm3

Plastic Section Modulus, Minor axis Zpy 512000 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 766 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 6116735714667 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 810667 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 322 mm 32 cm

Radius of Gyration about minor axis ry 55 mm 5.5 cmShear Center from top h1 391 mm

Critical Load Data LOAD CASE 123 1(0.75DL+0.75 LL+0.75 WL5+0.75CL)

Major axis Bending moment Mz 453.850 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 143.434 kN Axial ForceShear Force V 72.194 kN

Tension Flange

Page 1 of 5

Page 55: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.755743043 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.23923814

Shape of Moment Diagram ψ 0.28

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 93.75

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

-454 kNm -126.82

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 110.03 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.345 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 110.03 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 6000 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 660.19 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 77.02 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 77.02 N/mm2

Actual shear stress τb = 12.03 N/mm2 ≤ 77.02 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 121 mmWidth of extended flange(Inside flange) b 121 mmWidth/thickness, compression (Outside) Flange 7.56Widht/thickness, tension (Inside) Flange 7.56

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is COMPACT SECTIONBottom flange is COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 93.75For flexure onlyPlastic limit 84ε 66.87 (Table 2, IS 800:2007)Compact limit 105ε 80.97 (Table 2, IS 800:2007) r1 = 0.069291787Semi-compact limit 126ε 101.25 (Table 2, IS 800:2007) r2 = 0.02969648For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 56: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SEMI-COMPACT SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 121.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 250.00 mm

Semi-compact limit 101.25Effective web depth, def 750.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 463.98 mm

Effective section properties for Compression

Top Flange : 250 mm x 16 mmBottom Flange: 218 mm x 16 mmWeb: 750mm x 8 mm with 463.98 mm removed at mid depth 250 mmEffective Area Ae 10288 mm2 16 mm

Compression Flange

Inside to C.G. yg 391 mmMajor axis Intertia Iz 1388343994 mm4 138834 cm4Minor axis Intertia Iy 41678870 mm4 4168 cm4Outside Flange Elastic Section Modulus Zezo 3550752 mm3 3551 cm3Inside Flange Elastic Section Modulus Zezi 3550752 mm3 3551 cm3 750 mmElastic Section Modulus, Minor Axis Zy 333431 mm3 333 cm3Plastic Section Modulus in Major Axis Zpz 3758449 mm3 3758 cm3Plastic Section Modulus in Minor Axis Zpy 504576 mm3 505 cm3Major Axis rz 367 mmMinor Axis ry 64 mm 16 mm

Ifc 20833333.33 250 mmIft 20833333.33βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 6113831802546 mm6Torsional constant It 731481 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 250 mm x 16 mmBottom Flange: 218 mm x 16 mmWeb: 750mm x 8 mm with 0 mm removed at mid depth 250 mmEffective Area Ae 13328 mm2Inside to C.G. yg 380.98 mm 16 mmMajor axis Intertia Iz 1377241509 mm4 137724 cm4Minor axis Intertia Iy 35571904 mm4 3557 cm4 375Outside Flange Elastic Section Modulus Zezo 3614989 mm3 3615 cm3Inside Flange Elastic Section Modulus Zezi 3434353 mm3 3434 cm3 0 750 mmElastic Section Modulus, Minor Axis Zy 284575 mm3 285 cm3Plastic Section Modulus in Major Axis Zpz 3663112 mm3 3663 cm3Plastic Section Modulus in Minor Axis Zpy 512000 mm3 512 cm3 375Major Axis rz 321 mmMinor Axis ry 52 mm 16 mm

Ifc 20833333.33 250 mm

Ift 20833333.33βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 5218007025856 mm6Torsional constant It 810667 mm4Shear Center from top h1 391.00 mm

143.01

143.01

463.98

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 57: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.987 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 391.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 7566.9 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.406 ≤ 0.445 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.633 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.894 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 280 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.987Calculated Design Bending Strength Mdz=βb * fbd* Zpz 1013.8 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1133.8 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1360.6 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1013.8 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 168.26 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 177.11 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 125.55 N/mm2 ≤ 168.26 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 132.15 N/mm2 ≤ 177.11 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 250 mm x 16 mmBottom Flange: 250 mm x 16 mmWeb: 750mm x 8 mm with 463.98 mm removed at mid depth

Column Slenderness KL/r 47.0 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 892 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.622 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.765 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 259.041 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 155.42 N/mm2The Actual Compressive stress fc = P/Ae = 13.94 N/mm2 ≤ 155.42 N/mm2 OK

Page 4 of 5

Page 58: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 28.28 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 2468 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.374 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.612 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 285.739 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 171.44 N/mm2The Actual Compressive stress fc = P/Ae = 13.94 N/mm2 ≤ 171.44 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.71 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.71 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.71 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.090ny=fcy/facy = 0.081

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0378 <1.07 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0378

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0141 ≤1.07 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.993 ≥ 0.982

Therefore, KLT 0.993

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (13.94/ 0.6 *345) + ((125.55/ 207) + (0/ 207) = 0.674 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (13.94/ 171.44) + (0.993(125.55/ 168.26) + (0.6 *1.014 *0.71* 0/ 207) = 0.822 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (13.94/ 155.42) + (1.038*0.711772612096508(125.547/ 168.26) + (0.6 *1.014 *0.71* 0/ 207) 0.641 ≤ 1 OK

Page 5 of 5

Page 59: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 2Web Depth d 900 mmWeb Thickness tw 8 mm

Flange Width bfo 250 mm 250 mm

Flange Width bfi 250 mm 12 mm

Top(Outside) Flange thickness tfo 12 mm

Bottom(Inside) Flange thickness tfi 12 mm92

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 2(Rafter-1) Beam No. 102 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-2 RAFTER-1, BEAM 102 OF STAAD Load combination 123 1 (0.75DL+0.75 LL+0.75 WL5+0.75CL)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 924 mmDiameter of bolt hole in tension flange dbt 10 mm

900 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 13200 mm2 12 mmInside of Section to Centroid yg 462 mm

Inertia about Major axis Iz 1733688000 mm4 250 mm

Inertia about Minor axis Iy 31288400 mm4Elastic Section Modulus, Top(Outside) flange Zzo 3752571 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 3752571 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 250307 mm3

Plastic Section Modulus, Major axis Zpz 4356000 mm3

Plastic Section Modulus, Minor axis Zpy 389400 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 912 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 6505984742400 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 441600 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 362 mm 36 cm

Radius of Gyration about minor axis ry 49 mm 4.9 cmShear Center from top h1 462 mm

Critical Load Data LOAD CASE 123 1(0.75DL+0.75 LL+0.75 WL5+0.75CL)

Major axis Bending moment Mz 410.436 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 56.818 kN Axial ForceShear Force V 143.510 kN

Tension Flange

Page 1 of 5

Page 60: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 20100 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.192822823 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.131993889

Shape of Moment Diagram ψ -0.02

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 112.5

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

410 kNm -9.573

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 76.41 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.615 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 76.41 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 7200 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 550.16 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 53.49 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 53.49 N/mm2

Actual shear stress τb = 19.93 N/mm2 ≤ 53.49 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 121 mmWidth of extended flange(Inside flange) b 121 mmWidth/thickness, compression (Outside) Flange 10.08Widht/thickness, tension (Inside) Flange 10.08

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 112.5For flexure onlyPlastic limit 84ε 69.91 (Table 2, IS 800:2007)Compact limit 105ε 86.42 (Table 2, IS 800:2007) r1 = 0.022873591Semi-compact limit 126ε 104.65 (Table 2, IS 800:2007) r2 = 0.012476504For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 61: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 121.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 250.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 104.65Effective web depth, def 837.18 mmWeb depth to be removed 62.82 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 613.98 mm

Effective section properties for Compression

Top Flange : 250 mm x 12 mmBottom Flange: 230 mm x 12 mmWeb: 900mm x 8 mm with 613.98 mm removed at mid depth 250 mmEffective Area Ae 8288 mm2 12 mm

Compression Flange

Inside to C.G. yg 462 mmMajor axis Intertia Iz 1579387704 mm4 157939 cm4Minor axis Intertia Iy 31262204 mm4 3126 cm4Outside Flange Elastic Section Modulus Zezo 3418588 mm3 3419 cm3Inside Flange Elastic Section Modulus Zezi 3418588 mm3 3419 cm3 900 mmElastic Section Modulus, Minor Axis Zy 250098 mm3 250 cm3Plastic Section Modulus in Major Axis Zpz 3602063 mm3 3602 cm3Plastic Section Modulus in Minor Axis Zpy 379576 mm3 380 cm3Major Axis rz 437 mmMinor Axis ry 61 mm 12 mm

Ifc 15625000 250 mmIft 15625000βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 6500537570603 mm6Torsional constant It 336814 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 250 mm x 12 mmBottom Flange: 230 mm x 12 mmWeb: 900mm x 8 mm with 62.82 mm removed at mid depth 250 mmEffective Area Ae 12297 mm2Inside to C.G. yg 469.89 mm 12 mmMajor axis Intertia Iz 1649072595 mm4 164907 cm4Minor axis Intertia Iy 28103720 mm4 2810 cm4 418.588255Outside Flange Elastic Section Modulus Zezo 3509490 mm3 3509 cm3Inside Flange Elastic Section Modulus Zezi 3631435 mm3 3631 cm3 62.8234894 900 mmElastic Section Modulus, Minor Axis Zy 224830 mm3 225 cm3Plastic Section Modulus in Major Axis Zpz 3739346 mm3 3739 cm3Plastic Section Modulus in Minor Axis Zpy 388395 mm3 388 cm3 418.588255Major Axis rz 366 mmMinor Axis ry 48 mm 12 mm

Ifc 15625000 250 mm

Ift 15625000.00βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 5843775024422 mm6Torsional constant It 430878 mm4Shear Center from top h1 462.00 mm

143.01

143.01

613.98

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 62: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.939 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 462.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 8718.1 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.373 ≤ 0.408 OK (Cl. 8.2.2, IS 800:2007)

The section is Laterally supported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.612 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.912 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 286 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.939Calculated Design Bending Strength Mdz=βb * fbd* Zpz .0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1100.7 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1320.8 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1100.7 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 188.18 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 181.86 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 116.95 N/mm2 ≤ 207 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 113.02 N/mm2 ≤ 207 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 250 mm x 12 mmBottom Flange: 250 mm x 12 mmWeb: 900mm x 8 mm with 613.98 mm removed at mid depth

Column Slenderness KL/r 46.0 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 931 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.609 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.755 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 261.150 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 156.69 N/mm2The Actual Compressive stress fc = P/Ae = 6.86 N/mm2 ≤ 156.69 N/mm2 OK

Page 4 of 5

Page 63: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 29.31 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 2298 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.387 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.621 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 283.505 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 170.10 N/mm2The Actual Compressive stress fc = P/Ae = 6.86 N/mm2 ≤ 170.1 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.59 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.59 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.59 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.044ny=fcy/facy = 0.040

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0179 <1.04 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0179

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0076 ≤1.03 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.996 ≥ 0.988

Therefore, KLT 0.996

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (6.86/ 0.6 *345) + ((116.95/ 207) + (0/ 207) = 0.598 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (6.86/ 170.1) + (0.996(116.95/ 207) + (0.6 *1.008 *0.59* 0/ 207) = 0.603 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (6.86/ 156.69) + (1.018*0.590670409028448(116.95/ 207) + (0.6 *1.008 *0.59* 0/ 207) 0.383 ≤ 1 OK

Page 5 of 5

Page 64: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 3AWeb Depth d 700 mmWeb Thickness tw 6 mm

Flange Width bfo 225 mm 225 mm

Flange Width bfi 225 mm 10 mm

Top(Outside) Flange thickness tfo 10 mm

Bottom(Inside) Flange thickness tfi 10 mm20

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 3A(Rafter-2) Beam No. 22 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-3A RAFTER-2, BEAM 22 OF STAAD Load combination 102 1 (DL+LL+CL)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 720 mmDiameter of bolt hole in tension flange dbt 10 mm

700 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 8700 mm2 10 mmInside of Section to Centroid yg 360 mm

Inertia about Major axis Iz 738650000 mm4 225 mm

Inertia about Minor axis Iy 18996975 mm4Elastic Section Modulus, Top(Outside) flange Zzo 2051806 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 2051806 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 168862 mm3

Plastic Section Modulus, Major axis Zpz 2332500 mm3

Plastic Section Modulus, Minor axis Zpy 259425 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 710 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 2394093774375 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 200400 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 291 mm 29 cm

Radius of Gyration about minor axis ry 47 mm 4.7 cmShear Center from top h1 360 mm

Critical Load Data LOAD CASE 102 1 (DL+LL+CL)

Major axis Bending moment Mz 242.720 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .012 kNm (+ve when Compression is at bottom)Axial Force P 42.679 kN Axial ForceShear Force V 7.820 kN

Tension Flange

Page 1 of 5

Page 65: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 20100 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.092830488 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.16342378

Shape of Moment Diagram ψ 0.04

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 116.6666667

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

-243 kNm -9.583

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.674 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 4200 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 298.41 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 49.74 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 49.74 N/mm2

Actual shear stress τb = 1.86 N/mm2 ≤ 49.74 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 110 mmWidth of extended flange(Inside flange) b 110 mmWidth/thickness, compression (Outside) Flange 10.95Widht/thickness, tension (Inside) Flange 10.95

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 116.6666667For flexure onlyPlastic limit 84ε 69.46 (Table 2, IS 800:2007)Compact limit 105ε 85.60 (Table 2, IS 800:2007) r1 = 0.029454106Semi-compact limit 126ε 104.29 (Table 2, IS 800:2007) r2 = 0.014219224For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 66: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 109.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 225.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 104.29Effective web depth, def 625.75 mmWeb depth to be removed 74.25 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 485.48 mm

Effective section properties for Compression

Top Flange : 225 mm x 10 mmBottom Flange: 205 mm x 10 mmWeb: 700mm x 6 mm with 485.48 mm removed at mid depth 225 mmEffective Area Ae 5787 mm2 10 mm

Compression Flange

Inside to C.G. yg 360 mmMajor axis Intertia Iz 681437222 mm4 68144 cm4Minor axis Intertia Iy 18988236 mm4 1899 cm4Outside Flange Elastic Section Modulus Zezo 1892881 mm3 1893 cm3Inside Flange Elastic Section Modulus Zezi 1892881 mm3 1893 cm3 700 mmElastic Section Modulus, Minor Axis Zy 168784 mm3 169 cm3Plastic Section Modulus in Major Axis Zpz 1978959 mm3 1979 cm3Plastic Section Modulus in Minor Axis Zpy 255056 mm3 255 cm3Major Axis rz 343 mmMinor Axis ry 57 mm 10 mm

Ifc 9492187.5 225 mmIft 9492187.5βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 2392992479660 mm6Torsional constant It 165445 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 225 mm x 10 mmBottom Flange: 205 mm x 10 mmWeb: 700mm x 6 mm with 74.25 mm removed at mid depth 225 mmEffective Area Ae 7895 mm2Inside to C.G. yg 369.73 mm 10 mmMajor axis Intertia Iz 695346414 mm4 69535 cm4Minor axis Intertia Iy 16887722 mm4 1689 cm4 312.877226Outside Flange Elastic Section Modulus Zezo 1880669 mm3 1881 cm3Inside Flange Elastic Section Modulus Zezi 1985193 mm3 1985 cm3 74.2455478 700 mmElastic Section Modulus, Minor Axis Zy 150113 mm3 150 cm3Plastic Section Modulus in Major Axis Zpz 2042286 mm3 2042 cm3Plastic Section Modulus in Minor Axis Zpy 258757 mm3 259 cm3 312.877226Major Axis rz 297 mmMinor Axis ry 46 mm 10 mm

Ifc 9492187.5 225 mm

Ift 9492187.50βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 2128275154145 mm6Torsional constant It 195054 mm4Shear Center from top h1 360.00 mm

107.26

107.26

485.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 67: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.921 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 360.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 3909.4 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.407 ≤ 0.446 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.634 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.893 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 280 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.921Calculated Design Bending Strength Mdz=βb * fbd* Zpz 527.0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 589.8 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 707.8 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 527.0 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 168.12 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 159.27 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 129.06 N/mm2 ≤ 168.12 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 122.27 N/mm2 ≤ 159.27 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .08 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 225 mm x 10 mmBottom Flange: 225 mm x 10 mmWeb: 700mm x 6 mm with 485.48 mm removed at mid depth

Column Slenderness KL/r 58.6 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 575 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.774 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.897 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 232.128 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 139.28 N/mm2The Actual Compressive stress fc = P/Ae = 7.37 N/mm2 ≤ 139.28 N/mm2 OK

Page 4 of 5

Page 68: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 31.42 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1999 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.415 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.639 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 278.862 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 167.32 N/mm2The Actual Compressive stress fc = P/Ae = 7.37 N/mm2 ≤ 167.32 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.62 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.62 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.62 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.053ny=fcy/facy = 0.044

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0304 <1.04 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0304

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0095 ≤1.04 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.995 ≥ 0.988

Therefore, KLT 0.995

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (7.37/ 0.6 *345) + ((129.06/ 207) + (0.08/ 207) = 0.659 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (7.37/ 167.32) + (0.995(129.06/ 168.12) + (0.6 *1.009 *0.62* 0.08/ 207) = 0.808 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (7.37/ 139.28) + (1.03*0.615792682926829(129.06/ 168.12) + (0.6 *1.009 *0.62* 0.08/ 207) 0.540 ≤ 1 OK

Page 5 of 5

Page 69: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 3BWeb Depth d 700 mmWeb Thickness tw 6 mm

Flange Width bfo 225 mm 225 mm

Flange Width bfi 225 mm 10 mm

Top(Outside) Flange thickness tfo 10 mm

Bottom(Inside) Flange thickness tfi 10 mm20

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 3B(Rafter-2) Beam No. 125 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-3B RAFTER-2, BEAM 125 OF STAAD Load combination 102 1.0(DL+LL+CL)(COMP. MEMBER)SHELL STORE

J#685RAIL COACH FACTORY

A.K. SETH

Compression Flange

Total Depth D 720 mmDiameter of bolt hole in tension flange dbt 10 mm

700 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 8700 mm2 10 mmInside of Section to Centroid yg 360 mm

Inertia about Major axis Iz 738650000 mm4 225 mm

Inertia about Minor axis Iy 18996975 mm4Elastic Section Modulus, Top(Outside) flange Zzo 2051806 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 2051806 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 168862 mm3

Plastic Section Modulus, Major axis Zpz 2332500 mm3

Plastic Section Modulus, Minor axis Zpy 259425 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 710 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 2394093774375 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 200400 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 291 mm 29 cm

Radius of Gyration about minor axis ry 47 mm 4.7 cmShear Center from top h1 360 mm

Critical Load Data LOAD CASE 102 1 (DL+LL+CL)

Major axis Bending moment Mz 242.720 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .014 kNm (+ve when Compression is at bottom)Axial Force P 42.766 kN Axial ForceShear Force V 12.617 kN

Tension Flange

Page 1 of 5

Page 70: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 20100 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 3.026525775 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 1.602448154

Shape of Moment Diagram ψ -0.47

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 116.6666667

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX END END MOMENT

-243 kNm 113.026

MAX START END MOMENT

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.674 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 4200 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 298.41 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 49.74 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 49.74 N/mm2

Actual shear stress τb = 3.00 N/mm2 ≤ 49.74 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 110 mmWidth of extended flange(Inside flange) b 110 mmWidth/thickness, compression (Outside) Flange 10.95Widht/thickness, tension (Inside) Flange 10.95

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 116.6666667For flexure onlyPlastic limit 84ε 69.46 (Table 2, IS 800:2007)Compact limit 105ε 85.59 (Table 2, IS 800:2007) r1 = 0.029514148Semi-compact limit 126ε 104.29 (Table 2, IS 800:2007) r2 = 0.014248209For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 71: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 109.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 225.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 104.29Effective web depth, def 625.72 mmWeb depth to be removed 74.28 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 485.48 mm

Effective section properties for Compression

Top Flange : 225 mm x 10 mmBottom Flange: 205 mm x 10 mmWeb: 700mm x 6 mm with 485.48 mm removed at mid depth 225 mmEffective Area Ae 5787 mm2 10 mm

Compression Flange

Inside to C.G. yg 360 mmMajor axis Intertia Iz 681437222 mm4 68144 cm4Minor axis Intertia Iy 18988236 mm4 1899 cm4Outside Flange Elastic Section Modulus Zezo 1892881 mm3 1893 cm3Inside Flange Elastic Section Modulus Zezi 1892881 mm3 1893 cm3 700 mmElastic Section Modulus, Minor Axis Zy 168784 mm3 169 cm3Plastic Section Modulus in Major Axis Zpz 1978959 mm3 1979 cm3Plastic Section Modulus in Minor Axis Zpy 255056 mm3 255 cm3Major Axis rz 343 mmMinor Axis ry 57 mm 10 mm

Ifc 9492187.5 225 mmIft 9492187.5βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 2392992479660 mm6Torsional constant It 165445 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 225 mm x 10 mmBottom Flange: 205 mm x 10 mmWeb: 700mm x 6 mm with 74.28 mm removed at mid depth 225 mmEffective Area Ae 7894 mm2Inside to C.G. yg 369.74 mm 10 mmMajor axis Intertia Iz 695337901 mm4 69534 cm4Minor axis Intertia Iy 16887721 mm4 1689 cm4 312.859591Outside Flange Elastic Section Modulus Zezo 1880618 mm3 1881 cm3Inside Flange Elastic Section Modulus Zezi 1985200 mm3 1985 cm3 74.2808184 700 mmElastic Section Modulus, Minor Axis Zy 150113 mm3 150 cm3Plastic Section Modulus in Major Axis Zpz 2042299 mm3 2042 cm3Plastic Section Modulus in Minor Axis Zpy 258756 mm3 259 cm3 312.859591Major Axis rz 297 mmMinor Axis ry 46 mm 10 mm

Ifc 9492187.5 225 mm

Ift 9492187.50βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 2128275074136 mm6Torsional constant It 195052 mm4Shear Center from top h1 360.00 mm

107.26

107.26

485.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 72: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.921 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 360.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 5653.5 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.339 ≤ 0.371 OK (Cl. 8.2.2, IS 800:2007)

The section is Laterally supported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.591 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.929 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 291 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.921Calculated Design Bending Strength Mdz=βb * fbd* Zpz .0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 589.8 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 707.8 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 589.8 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 188.18 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 178.27 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 129.06 N/mm2 ≤ 207 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 122.26 N/mm2 ≤ 207 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .09 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 225 mm x 10 mmBottom Flange: 225 mm x 10 mmWeb: 700mm x 6 mm with 485.48 mm removed at mid depth

Column Slenderness KL/r 58.6 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 575 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.774 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.897 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 232.128 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 139.28 N/mm2The Actual Compressive stress fc = P/Ae = 7.39 N/mm2 ≤ 139.28 N/mm2 OK

Page 4 of 5

Page 73: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 31.42 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1999 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.415 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.639 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 278.862 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 167.32 N/mm2The Actual Compressive stress fc = P/Ae = 7.39 N/mm2 ≤ 167.32 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.41 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.41 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.41 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.053ny=fcy/facy = 0.044

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0305 <1.04 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0305

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0095 ≤1.04 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.991 ≥ 0.973

Therefore, KLT 0.991

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (7.39/ 0.6 *345) + ((129.06/ 207) + (0.093/ 207) = 0.660 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (7.39/ 167.32) + (0.991(129.06/ 207) + (0.6 *1.01 *0.41* 0.093/ 207) = 0.662 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (7.39/ 139.28) + (1.03*0.413734344100198(129.064/ 207) + (0.6 *1.01 *0.41* 0.093/ 207) 0.319 ≤ 1 OK

Page 5 of 5

Page 74: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 4Web Depth d 1000 mmWeb Thickness tw 8 mm

Flange Width bfo 275 mm 275 mm

Flange Width bfi 275 mm 12 mm

Top(Outside) Flange thickness tfo 12 mm

Bottom(Inside) Flange thickness tfi 12 mm102

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 4(Peak Rafter-3) Beam No. 136 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-4 RAFTER-3, BEAM 122 OF STAAD Load combination 102 1 (DL+LL+CL)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 1024 mmDiameter of bolt hole in tension flange dbt 10 mm

1000 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 14600 mm2 12 mmInside of Section to Centroid yg 512 mm

Inertia about Major axis Iz 2356583467 mm4 275 mm

Inertia about Minor axis Iy 41636417 mm4Elastic Section Modulus, Top(Outside) flange Zzo 4602702 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 4602702 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 302810 mm3

Plastic Section Modulus, Major axis Zpz 5339600 mm3

Plastic Section Modulus, Minor axis Zpy 469750 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 1012 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 10660421577667 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 487467 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 402 mm 40 cm

Radius of Gyration about minor axis ry 53 mm 5.3 cmShear Center from top h1 512 mm

Critical Load Data LOAD CASE 102 1 (DL+LL+CL)

Major axis Bending moment Mz 737.476 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .032 kNm (+ve when Compression is at bottom)Axial Force P 26.399 kN Axial ForceShear Force V 176.275 kN

Tension Flange

Page 1 of 5

Page 75: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 20100 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.928078679 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.202108597

Shape of Moment Diagram ψ 0.15

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 125

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

737 kNm 113.026

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 61.89 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.794 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 61.89 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 8000 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 495.14 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 43.33 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 43.33 N/mm2

Actual shear stress τb = 22.03 N/mm2 ≤ 43.33 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 134 mmWidth of extended flange(Inside flange) b 134 mmWidth/thickness, compression (Outside) Flange 11.13Widht/thickness, tension (Inside) Flange 11.13

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 125For flexure onlyPlastic limit 84ε 70.83 (Table 2, IS 800:2007)Compact limit 105ε 88.12 (Table 2, IS 800:2007) r1 = 0.009564855Semi-compact limit 126ε 106.15 (Table 2, IS 800:2007) r2 = 0.005241016For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 76: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 133.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 275.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 106.15Effective web depth, def 849.17 mmWeb depth to be removed 150.83 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 713.98 mm

Effective section properties for Compression

Top Flange : 275 mm x 12 mmBottom Flange: 255 mm x 12 mmWeb: 1000mm x 8 mm with 713.98 mm removed at mid depth 275 mmEffective Area Ae 8888 mm2 12 mm

Compression Flange

Inside to C.G. yg 512 mmMajor axis Intertia Iz 2113943199 mm4 211394 cm4Minor axis Intertia Iy 41605954 mm4 4161 cm4Outside Flange Elastic Section Modulus Zezo 4128795 mm3 4129 cm3Inside Flange Elastic Section Modulus Zezi 4128795 mm3 4129 cm3 1000 mmElastic Section Modulus, Minor Axis Zy 302589 mm3 303 cm3Plastic Section Modulus in Major Axis Zpz 4320071 mm3 4320 cm3Plastic Section Modulus in Minor Axis Zpy 458326 mm3 458 cm3Major Axis rz 488 mmMinor Axis ry 68 mm 12 mm

Ifc 20796875 275 mmIft 20796875βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 10652621939418 mm6Torsional constant It 365614 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 275 mm x 12 mmBottom Flange: 255 mm x 12 mmWeb: 1000mm x 8 mm with 150.83 mm removed at mid depth 275 mmEffective Area Ae 12993 mm2Inside to C.G. yg 535.42 mm 12 mmMajor axis Intertia Iz 2191688217 mm4 219169 cm4Minor axis Intertia Iy 37720481 mm4 3772 cm4 424.582801Outside Flange Elastic Section Modulus Zezo 4093413 mm3 4093 cm3Inside Flange Elastic Section Modulus Zezi 4485817 mm3 4486 cm3 150.834399 1000 mmElastic Section Modulus, Minor Axis Zy 274331 mm3 274 cm3Plastic Section Modulus in Major Axis Zpz 4647552 mm3 4648 cm3Plastic Section Modulus in Minor Axis Zpy 467337 mm3 467 cm3 424.582801Major Axis rz 411 mmMinor Axis ry 54 mm 12 mm

Ifc 20796875 275 mm

Ift 20796875.00βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 9657801090125 mm6Torsional constant It 461724 mm4Shear Center from top h1 512.00 mm

143.01

143.01

713.98

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 77: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.881 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 512.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 11344.5 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.353 ≤ 0.387 OK (Cl. 8.2.2, IS 800:2007)

The section is Laterally supported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.600 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.922 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 289 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.881Calculated Design Bending Strength Mdz=βb * fbd* Zpz .0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1283.8 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1540.6 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1283.8 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 188.18 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 171.72 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 180.16 N/mm2 ≤ 207 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 164.40 N/mm2 ≤ 207 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .12 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 275 mm x 12 mmBottom Flange: 275 mm x 12 mmWeb: 1000mm x 8 mm with 713.98 mm removed at mid depth

Column Slenderness KL/r 41.2 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1162 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.545 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.707 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 270.913 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 162.55 N/mm2The Actual Compressive stress fc = P/Ae = 2.97 N/mm2 ≤ 162.55 N/mm2 OK

Page 4 of 5

Page 78: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 26.31 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 2852 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.348 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.597 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 289.988 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 173.99 N/mm2The Actual Compressive stress fc = P/Ae = 2.97 N/mm2 ≤ 173.99 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.66 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.66 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.66 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.018ny=fcy/facy = 0.017

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0063 <1.01 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0063

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0025 ≤1.01 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.00

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.999 ≥ 0.996

Therefore, KLT 0.999

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (2.97/ 0.6 *345) + ((180.16/ 207) + (0.117/ 207) = 0.885 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (2.97/ 173.99) + (0.999(180.16/ 207) + (0.6 *1.003 *0.66* 0.117/ 207) = 0.886 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (2.97/ 162.55) + (1.006*0.661304232273321(180.162/ 207) + (0.6 *1.003 *0.66* 0.117/ 207) 0.598 ≤ 1 OK

Page 5 of 5

Page 79: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 5AWeb Depth d 400 mmWeb Thickness tw 8 mm

Flange Width bfo 350 mm 350 mm

Flange Width bfi 350 mm 20 mm

Top(Outside) Flange thickness tfo 20 mm

Bottom(Inside) Flange thickness tfi 20 mm0

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 5A (Bottom of ICO column) Beam No. 103 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-5A ICO COLUMN, BEAM 103 OF STAAD Load combination 109 1.0(DL+0.75LL+0.75EQ+Z)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 440 mmDiameter of bolt hole in tension flange dbt 16 mm

400 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 17200 mm2 20 mmInside of Section to Centroid yg 220 mm

Inertia about Major axis Iz 660533333 mm4 350 mm

Inertia about Minor axis Iy 142933733 mm4Elastic Section Modulus, Top(Outside) flange Zzo 3002424 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 3002424 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 816764 mm3

Plastic Section Modulus, Major axis Zpz 3260000 mm3

Plastic Section Modulus, Minor axis Zpy 1231400 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 420 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 6303377640000 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 1934933 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 196 mm 20 cm

Radius of Gyration about minor axis ry 91 mm 9.1 cmShear Center from top h1 220 mm

Critical Load Data LOAD CASE 109 1.0(DL+0.75LL+0.75EQ+Z)

Major axis Bending moment Mz .000 kNm (+ve when Compression is at bottom)Minor axis Bending moment My 6.229 kNm (+ve when Compression is at bottom)Axial Force P 363 kN Axial ForceShear Force V .00 kN

Tension Flange

Page 1 of 5

Page 80: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 19680 mmMinor axis Top Flange Unbraced Length Lyt 13120 mmMinor axis Bottom Flange Unbraced Length Lyb 13120 mmMinor axis Axial Lya 13120 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.15 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.15

Shape of Moment Diagram ψ 0.00

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 50

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, No need to Verify Shear Buckling

MAX START END MOMENT MAX END END MOMENT

.001 kNm 0

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 386.83 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 0.718 i.e,. λw < 0.8 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 199.19 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3200 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 637.39 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 139.43 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 138.00 N/mm2

Actual shear stress τb = .00 N/mm2 ≤ 138 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 171 mmWidth of extended flange(Inside flange) b 171 mmWidth/thickness, compression (Outside) Flange 8.55Widht/thickness, tension (Inside) Flange 8.55

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 50For flexure onlyPlastic limit 84ε 53.80 (Table 2, IS 800:2007)Compact limit 105ε 59.83 (Table 2, IS 800:2007) r1 = 0.329213768Semi-compact limit 126ε 95.55 (Table 2, IS 800:2007) r2 = 0.061249073For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 81: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: PLASTIC SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 171.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 350.00 mm

Semi-compact limit 95.55Effective web depth, def 400.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 113.98 mm

Effective section properties for Compression

Top Flange : 350 mm x 20 mmBottom Flange: 318 mm x 20 mmWeb: 400mm x 8 mm with 113.98 mm removed at mid depth 350 mmEffective Area Ae 16288 mm2 20 mm

Compression Flange

Inside to C.G. yg 220 mmMajor axis Intertia Iz 659546214 mm4 65955 cm4Minor axis Intertia Iy 142928870 mm4 14293 cm4Outside Flange Elastic Section Modulus Zezo 2997937 mm3 2998 cm3Inside Flange Elastic Section Modulus Zezi 2997937 mm3 2998 cm3 400 mmElastic Section Modulus, Minor Axis Zy 816736 mm3 817 cm3Plastic Section Modulus in Major Axis Zpz 3234018 mm3 3234 cm3Plastic Section Modulus in Minor Axis Zpy 1229576 mm3 1230 cm3Major Axis rz 201 mmMinor Axis ry 94 mm 20 mm

Ifc 71458333.33 350 mmIft 71458333.33βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 6303163179361 mm6Torsional constant It 1915481 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 350 mm x 20 mmBottom Flange: 318 mm x 20 mmWeb: 400mm x 8 mm with 0 mm removed at mid depth 350 mmEffective Area Ae 16400 mm2Inside to C.G. yg 213.95 mm 20 mmMajor axis Intertia Iz 631267981 mm4 63127 cm4Minor axis Intertia Iy 126699280 mm4 12670 cm4 200Outside Flange Elastic Section Modulus Zezo 2950523 mm3 2951 cm3Inside Flange Elastic Section Modulus Zezi 2792618 mm3 2793 cm3 0 400 mmElastic Section Modulus, Minor Axis Zy 723996 mm3 724 cm3Plastic Section Modulus in Major Axis Zpz 3036000 mm3 3036 cm3Plastic Section Modulus in Minor Axis Zpy 1231400 mm3 1231 cm3 200Major Axis rz 196 mmMinor Axis ry 88 mm 20 mm

Ifc 71458333.33 350 mm

Ift 71458333.33βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 5587438248000 mm6Torsional constant It 1934933 mm4Shear Center from top h1 220.00 mm

143.01

143.01

113.98

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 82: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.972 (Cl. 8.2.2, IS 800:2007)

LLT 13120 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 220.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 1052.1 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.984 ≤ 1.078 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 1.176 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.549 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 172 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.972Calculated Design Bending Strength Mdz=βb * fbd* Zpz 508.5 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 925.4 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1110.5 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 508.5 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 103.40 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 109.25 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = .00 N/mm2 ≤ 103.4 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = .00 N/mm2 ≤ 109.25 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = 8.60 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 350 mm x 20 mmBottom Flange: 350 mm x 20 mmWeb: 400mm x 8 mm with 113.98 mm removed at mid depth

Column Slenderness KL/r 97.8 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 206 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 1.293 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 1.522 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 134.955 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 80.97 N/mm2The Actual Compressive stress fc = P/Ae = 22.31 N/mm2 ≤ 80.97 N/mm2 OK

Page 4 of 5

Page 83: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 140.06 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 101 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 1.852 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 2.619 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 70.149 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 42.09 N/mm2The Actual Compressive stress fc = P/Ae = 22.31 N/mm2 ≤ 42.09 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.276ny=fcy/facy = 0.530

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.3012 <1.22 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.2200

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.8756 >1.42 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.42

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.851 ≥ 0.849

Therefore, KLT 0.851

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (22.31/ 0.6 *345) + ((0/ 207) + (8.604/ 207) = 0.149 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (22.31/ 42.09) + (0.851(0/ 103.4) + (0.6 *1.424 *0.6* 8.604/ 207) = 0.551 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (22.31/ 80.97) + (1.22*0.6(0/ 103.4) + (0.6 *1.424 *0.6* 8.604/ 207) 0.297 ≤ 1 OK

Page 5 of 5

Page 84: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 5BWeb Depth d 400 mmWeb Thickness tw 8 mm

Flange Width bfo 350 mm 350 mm

Flange Width bfi 350 mm 20 mm

Top(Outside) Flange thickness tfo 20 mm

Bottom(Inside) Flange thickness tfi 20 mm0

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 5B (Top of ICO column) Beam No.28 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-5B ICO COLUMN, BEAM 28 OF STAAD Load combination 119 1(DL+WL2)(COMP. MEMBER)SHELL STORE

J#685RAIL COACH FACTORY

A.K. SETH

Compression Flange

Total Depth D 440 mmDiameter of bolt hole in tension flange dbt 16 mm

400 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 8 mm

Area A 17200 mm2 20 mmInside of Section to Centroid yg 220 mm

Inertia about Major axis Iz 660533333 mm4 350 mm

Inertia about Minor axis Iy 142933733 mm4Elastic Section Modulus, Top(Outside) flange Zzo 3002424 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 3002424 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 816764 mm3

Plastic Section Modulus, Major axis Zpz 3260000 mm3

Plastic Section Modulus, Minor axis Zpy 1231400 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 420 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 6303377640000 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 1934933 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 196 mm 20 cm

Radius of Gyration about minor axis ry 91 mm 9.1 cmShear Center from top h1 220 mm

Critical Load Data LOAD CASE 112 1 (DL+WL2)

Major axis Bending moment Mz 73.173 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .002 kNm (+ve when Compression is at bottom)Axial Force P 198.503 kN Axial ForceShear Force V 5.070 kN

Tension Flange

Page 1 of 5

Page 85: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 19680 mmMinor axis Top Flange Unbraced Length Lyt 13120 mmMinor axis Bottom Flange Unbraced Length Lyb 13120 mmMinor axis Axial Lya 13120 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.905925929 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.20731021

Shape of Moment Diagram ψ 0.17

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 50

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, No need to Verify Shear Buckling

MAX END END MOMENT

-73 kNm -12.334

MAX START END MOMENT

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 386.83 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 0.718 i.e,. λw < 0.8 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 199.19 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3200 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 637.39 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 139.43 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 138.00 N/mm2

Actual shear stress τb = 1.58 N/mm2 ≤ 138 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 171 mmWidth of extended flange(Inside flange) b 171 mmWidth/thickness, compression (Outside) Flange 8.55Widht/thickness, tension (Inside) Flange 8.55

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 50For flexure onlyPlastic limit 84ε 60.61 (Table 2, IS 800:2007)Compact limit 105ε 70.40 (Table 2, IS 800:2007) r1 = 0.179803442Semi-compact limit 126ε 100.53 (Table 2, IS 800:2007) r2 = 0.033451803For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 86: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: PLASTIC SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 171.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 350.00 mm

Semi-compact limit 100.53Effective web depth, def 400.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 286 mmWeb depth to be removed 113.98 mm

Effective section properties for Compression

Top Flange : 350 mm x 20 mmBottom Flange: 318 mm x 20 mmWeb: 400mm x 8 mm with 113.98 mm removed at mid depth 350 mmEffective Area Ae 16288 mm2 20 mm

Compression Flange

Inside to C.G. yg 220 mmMajor axis Intertia Iz 659546214 mm4 65955 cm4Minor axis Intertia Iy 142928870 mm4 14293 cm4Outside Flange Elastic Section Modulus Zezo 2997937 mm3 2998 cm3Inside Flange Elastic Section Modulus Zezi 2997937 mm3 2998 cm3 400 mmElastic Section Modulus, Minor Axis Zy 816736 mm3 817 cm3Plastic Section Modulus in Major Axis Zpz 3234018 mm3 3234 cm3Plastic Section Modulus in Minor Axis Zpy 1229576 mm3 1230 cm3Major Axis rz 201 mmMinor Axis ry 94 mm 20 mm

Ifc 71458333.33 350 mmIft 71458333.33βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 6303163179361 mm6Torsional constant It 1915481 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 350 mm x 20 mmBottom Flange: 318 mm x 20 mmWeb: 400mm x 8 mm with 0 mm removed at mid depth 350 mmEffective Area Ae 16400 mm2Inside to C.G. yg 213.95 mm 20 mmMajor axis Intertia Iz 631267981 mm4 63127 cm4Minor axis Intertia Iy 126699280 mm4 12670 cm4 200Outside Flange Elastic Section Modulus Zezo 2950523 mm3 2951 cm3Inside Flange Elastic Section Modulus Zezi 2792618 mm3 2793 cm3 0 400 mmElastic Section Modulus, Minor Axis Zy 723996 mm3 724 cm3Plastic Section Modulus in Major Axis Zpz 3036000 mm3 3036 cm3Plastic Section Modulus in Minor Axis Zpy 1231400 mm3 1231 cm3 200Major Axis rz 196 mmMinor Axis ry 88 mm 20 mm

Ifc 71458333.33 350 mm

Ift 71458333.33βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 5587438248000 mm6Torsional constant It 1934933 mm4Shear Center from top h1 220.00 mm

143.01

143.01

113.98

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 87: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.972 (Cl. 8.2.2, IS 800:2007)

LLT 13120 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 220.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 932.7 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 1.045 ≤ 1.144 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 1.253 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.514 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 161 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.972Calculated Design Bending Strength Mdz=βb * fbd* Zpz 476.1 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 925.4 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1110.5 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 476.1 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 96.81 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 102.28 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 24.80 N/mm2 ≤ 96.81 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 26.20 N/mm2 ≤ 102.28 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 350 mm x 20 mmBottom Flange: 350 mm x 20 mmWeb: 400mm x 8 mm with 113.98 mm removed at mid depth

Column Slenderness KL/r 97.8 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 206 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 1.293 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 1.522 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 134.955 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 80.97 N/mm2The Actual Compressive stress fc = P/Ae = 12.19 N/mm2 ≤ 80.97 N/mm2 OK

Page 4 of 5

Page 88: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 140.06 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 101 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 1.852 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 2.619 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 70.149 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 42.09 N/mm2The Actual Compressive stress fc = P/Ae = 12.19 N/mm2 ≤ 42.09 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.151ny=fcy/facy = 0.290

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.1645 <1.12 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.1200

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.4782 >1.23 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.23

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.928 ≥ 0.931

Therefore, KLT 0.931

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (12.19/ 0.6 *345) + ((24.8/ 207) + (0.003/ 207) = 0.179 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (12.19/ 42.09) + (0.931(24.8/ 96.81) + (0.6 *1.232 *0.67* 0.003/ 207) = 0.528 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (12.19/ 80.97) + (1.12*0.667423776529594(24.8/ 96.81) + (0.6 *1.232 *0.67* 0.003/ 207) 0.342 ≤ 1 OK

Page 5 of 5

Page 89: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

EndFrame 1

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.P) Recommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 90: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member ER1Web Depth d 350 mmWeb Thickness tw 6 mm

Flange Width bfo 175 mm 175 mm

Flange Width bfi 175 mm 8 mm

Top(Outside) Flange thickness tfo 8 mm

Bottom(Inside) Flange thickness tfi 8 mm366

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member ER1(Endwall Rafter) Beam No. 13 of Staad EndFrame-1

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-ER1, BEAM 10 OF STAAD Load combination 102 1 (DL+LL+CL)(COMP. MEMBER)SHELL STORE

J#685RAIL COACH FACTORY

A.K. SETH

Compression Flange

Total Depth D 366 mmDiameter of bolt hole in tension flange dbt 10 mm

350 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 4900 mm2 8 mmInside of Section to Centroid yg 183 mm

Inertia about Major axis Iz 111167233 mm4 175 mm

Inertia about Minor axis Iy 7152133 mm4Elastic Section Modulus, Top(Outside) flange Zzo 607471 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 607471 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 81739 mm3

Plastic Section Modulus, Major axis Zpz 684950 mm3

Plastic Section Modulus, Minor axis Zpy 125650 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 358 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 229161504133 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 84933 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 151 mm 15 cm

Radius of Gyration about minor axis ry 38 mm 3.8 cmShear Center from top h1 183 mm

Critical Load Data LOAD CASE 102 1 (DL+LL+CL)

Major axis Bending moment Mz 72.978 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .008 kNm (+ve when Compression is at bottom)Axial Force P 3.386 kN Axial ForceShear Force V 41.442 kN

Tension Flange

Page 1 of 5

Page 91: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 3.018985365 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 1.60885127

Shape of Moment Diagram ψ -0.46

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 58.33333333

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX END END MOMENT

73 kNm -33.699

MAX START END MOMENT

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 284.20 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 0.837 i.e., 0.8 < λw < 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 193.26 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 2100 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 405.85 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 135.28 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 135.28 N/mm2

Actual shear stress τb = 19.73 N/mm2 ≤ 135.28 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 85 mmWidth of extended flange(Inside flange) b 85 mmWidth/thickness, compression (Outside) Flange 10.56Widht/thickness, tension (Inside) Flange 10.56

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 58.33333333For flexure onlyPlastic limit 84ε 71.17 (Table 2, IS 800:2007)Compact limit 105ε 88.76 (Table 2, IS 800:2007) r1 = 0.004673568Semi-compact limit 126ε 106.83 (Table 2, IS 800:2007) r2 = 0.002002958For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 92: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: PLASTIC SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 84.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 175.00 mm

Semi-compact limit 106.83Effective web depth, def 350.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 135.48 mm

Effective section properties for Compression

Top Flange : 175 mm x 8 mmBottom Flange: 155 mm x 8 mmWeb: 350mm x 6 mm with 135.48 mm removed at mid depth 175 mmEffective Area Ae 4087 mm2 8 mm

Compression Flange

Inside to C.G. yg 183 mmMajor axis Intertia Iz 109923785 mm4 10992 cm4Minor axis Intertia Iy 7149695 mm4 715 cm4Outside Flange Elastic Section Modulus Zezo 600676 mm3 601 cm3Inside Flange Elastic Section Modulus Zezi 600676 mm3 601 cm3 350 mmElastic Section Modulus, Minor Axis Zy 81711 mm3 82 cm3Plastic Section Modulus in Major Axis Zpz 657416 mm3 657 cm3Plastic Section Modulus in Minor Axis Zpy 124431 mm3 124 cm3Major Axis rz 164 mmMinor Axis ry 42 mm 8 mm

Ifc 3572916.667 175 mmIft 3572916.667βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 229083365735 mm6Torsional constant It 75179 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 175 mm x 8 mmBottom Flange: 155 mm x 8 mmWeb: 350mm x 6 mm with 0 mm removed at mid depth 175 mmEffective Area Ae 4580 mm2Inside to C.G. yg 183.14 mm 8 mmMajor axis Intertia Iz 106047917 mm4 10605 cm4Minor axis Intertia Iy 6185800 mm4 619 cm4 175Outside Flange Elastic Section Modulus Zezo 579055 mm3 579 cm3Inside Flange Elastic Section Modulus Zezi 579940 mm3 580 cm3 0 350 mmElastic Section Modulus, Minor Axis Zy 70695 mm3 71 cm3Plastic Section Modulus in Major Axis Zpz 602043 mm3 602 cm3Plastic Section Modulus in Minor Axis Zpy 125650 mm3 126 cm3 175Major Axis rz 152 mmMinor Axis ry 37 mm 8 mm

Ifc 3572916.667 175 mm

Ift 3572916.67βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 198199217800 mm6Torsional constant It 84933 mm4Shear Center from top h1 183.00 mm

107.26

107.26

135.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 93: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.962 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 183.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 1123.0 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.422 ≤ 0.462 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.643 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.886 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 278 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.962Calculated Design Bending Strength Mdz=βb * fbd* Zpz 160.9 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 181.6 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 217.9 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 160.9 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 166.68 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 166.43 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 126.03 N/mm2 ≤ 166.68 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 125.84 N/mm2 ≤ 166.43 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .11 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 175 mm x 8 mmBottom Flange: 175 mm x 8 mmWeb: 350mm x 6 mm with 135.48 mm removed at mid depth

Column Slenderness KL/r 105.4 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 178 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 1.393 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 1.673 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 120.647 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 72.39 N/mm2The Actual Compressive stress fc = P/Ae = .83 N/mm2 ≤ 72.39 N/mm2 OK

Page 4 of 5

Page 94: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 43.04 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1066 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.569 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.752 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 252.047 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 151.23 N/mm2The Actual Compressive stress fc = P/Ae = .83 N/mm2 ≤ 151.23 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.42 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.42 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.42 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.011ny=fcy/facy = 0.005

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0137 <1.01 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0100

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0020 ≤1 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.00

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.999 ≥ 0.997

Therefore, KLT 0.999

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (0.83/ 0.6 *345) + ((126.03/ 207) + (0.113/ 207) = 0.613 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (0.83/ 151.23) + (0.999(126.03/ 166.68) + (0.6 *1.002 *0.42* 0.113/ 207) = 0.761 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (0.83/ 72.39) + (1.01*0.415292279865165(126.03/ 166.68) + (0.6 *1.002 *0.42* 0.113/ 207) 0.329 ≤ 1 OK

Page 5 of 5

Page 95: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 1AWeb Depth d 750 mmWeb Thickness tw 10 mm

Flange Width bfo 475 mm 475 mm

Flange Width bfi 475 mm 25 mm

Top(Outside) Flange thickness tfo 25 mm

Bottom(Inside) Flange thickness tfi 25 mm800

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 1A (Bottom of side wall column) Beam No. 3 of Staad EndFrame-1

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-1A COLUMN, BEAM 3 OF STAAD Load combination 116 1(DL+WL6)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 800 mmDiameter of bolt hole in tension flange dbt 16 mm

750 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 10 mm

Area A 31250 mm2 25 mmInside of Section to Centroid yg 400 mm

Inertia about Major axis Iz 3919010417 mm4 475 mm

Inertia about Minor axis Iy 446611979 mm4Elastic Section Modulus, Top(Outside) flange Zzo 9797526 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 9797526 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 1880471 mm3

Plastic Section Modulus, Major axis Zpz 10609375 mm3

Plastic Section Modulus, Minor axis Zpy 2839063 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 775 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 67061579996745 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 5197917 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 354 mm 35 cm

Radius of Gyration about minor axis ry 120 mm 12.0 cmShear Center from top h1 400 mm

Critical Load Data LOAD CASE 117 1(DL+WL7)

Major axis Bending moment Mz 328.499 kNm (+ve when Compression is at bottom)Minor axis Bending moment My 263.956 kNm (+ve when Compression is at bottom)Axial Force P 17.302 kN Axial ForceShear Force V 35.848 kN

Tension Flange

Page 1 of 5

Page 96: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 3440 mmMinor axis Bottom Flange Unbraced Length Lyb 3440 mmMinor axis Axial Lya 3440 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.488284969 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.272476461

Shape of Moment Diagram ψ 0.53

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 75

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

328 kNm 174.354

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 171.92 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.076 i.e., 0.8 < λw < 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 155.15 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 7500 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 1163.60 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 108.60 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 108.60 N/mm2

Actual shear stress τb = 4.78 N/mm2 ≤ 108.6 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 233 mmWidth of extended flange(Inside flange) b 233 mmWidth/thickness, compression (Outside) Flange 9.30Widht/thickness, tension (Inside) Flange 9.30

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 75For flexure onlyPlastic limit 84ε 71.03 (Table 2, IS 800:2007)Compact limit 105ε 88.49 (Table 2, IS 800:2007) r1 = 0.006686763Semi-compact limit 126ε 106.92 (Table 2, IS 800:2007) r2 = 0.001604823For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 97: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: COMPACT SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 232.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 475.00 mm

Semi-compact limit 106.92Effective web depth, def 750.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 358 mmWeb depth to be removed 392.47 mm

Effective section properties for Compression

Top Flange : 475 mm x 25 mmBottom Flange: 443 mm x 25 mmWeb: 750mm x 10 mm with 392.47 mm removed at mid depth 475 mmEffective Area Ae 27325 mm2 25 mm

Compression Flange

Inside to C.G. yg 400 mmMajor axis Intertia Iz 3868631869 mm4 386863 cm4Minor axis Intertia Iy 446579273 mm4 44658 cm4Outside Flange Elastic Section Modulus Zezo 9671580 mm3 9672 cm3Inside Flange Elastic Section Modulus Zezi 9671580 mm3 9672 cm3 750 mmElastic Section Modulus, Minor Axis Zy 1880334 mm3 1880 cm3Plastic Section Modulus in Major Axis Zpz 10224289 mm3 10224 cm3Plastic Section Modulus in Minor Axis Zpy 2829251 mm3 2829 cm3Major Axis rz 376 mmMinor Axis ry 128 mm 25 mm

Ifc 223274739.6 475 mmIft 223274739.6βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 67056668983215 mm6Torsional constant It 5067093 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 475 mm x 25 mmBottom Flange: 443 mm x 25 mmWeb: 750mm x 10 mm with 0 mm removed at mid depth 475 mmEffective Area Ae 30290 mm2Inside to C.G. yg 391.88 mm 25 mmMajor axis Intertia Iz 3795816865 mm4 379582 cm4Minor axis Intertia Iy 407293913 mm4 40729 cm4 375Outside Flange Elastic Section Modulus Zezo 9686208 mm3 9686 cm3Inside Flange Elastic Section Modulus Zezi 9300703 mm3 9301 cm3 0 750 mmElastic Section Modulus, Minor Axis Zy 1714922 mm3 1715 cm3Plastic Section Modulus in Major Axis Zpz 9893375 mm3 9893 cm3Plastic Section Modulus in Minor Axis Zpy 2839063 mm3 2839 cm3 375Major Axis rz 354 mmMinor Axis ry 116 mm 25 mm

Ifc 223274739.6 475 mm

Ift 223274739.58βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 61157726548828 mm6Torsional constant It 5197917 mm4Shear Center from top h1 400.00 mm

178.76

178.76

392.47

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 98: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.979 (Cl. 8.2.2, IS 800:2007)

LLT 3440 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 400.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 21070.0 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.398 ≤ 0.436 OK (Cl. 8.2.2, IS 800:2007)

The section is Laterally supported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.628 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.898 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 282 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.979Calculated Design Bending Strength Mdz=βb * fbd* Zpz .0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 3037.9 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 3645.5 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 3037.9 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 188.18 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 195.98 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 33.91 N/mm2 ≤ 207 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 35.32 N/mm2 ≤ 207 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = 153.92 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 475 mm x 25 mmBottom Flange: 475 mm x 25 mmWeb: 750mm x 10 mm with 392.47 mm removed at mid depth

Column Slenderness KL/r 45.9 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 936 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.607 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.754 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 261.403 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 156.84 N/mm2The Actual Compressive stress fc = P/Ae = .63 N/mm2 ≤ 156.84 N/mm2 OK

Page 4 of 5

Page 99: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 26.91 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 2726 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.356 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.601 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 288.700 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 173.22 N/mm2The Actual Compressive stress fc = P/Ae = .63 N/mm2 ≤ 173.22 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.81 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.81 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.81 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.004ny=fcy/facy = 0.004

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0016 <1 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0000

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0006 ≤1 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.00

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 1.000 ≥ 0.999

Therefore, KLT 1.000

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (0.63/ 0.6 *345) + ((33.91/ 207) + (153.917/ 207) = 0.910 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (0.63/ 173.22) + (1(33.91/ 207) + (0.6 *1.001 *0.81* 153.917/ 207) = 0.530 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (0.63/ 156.84) + (1*0.812303842629658(33.914/ 207) + (0.6 *1.001 *0.81* 153.917/ 207) 0.500 ≤ 1 OK

Page 5 of 5

Page 100: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 1BWeb Depth d 750 mmWeb Thickness tw 6 mm

Flange Width bfo 300 mm 300 mm

Flange Width bfi 300 mm 16 mm

Top(Outside) Flange thickness tfo 16 mm

Bottom(Inside) Flange thickness tfi 16 mm82

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 1B (Top of side wall column) Beam No. 335 of Staad EndFrame-1

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-1B COLUMN, BEAM 335 OF STAAD Load combination 117 1(DL+WL7)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 782 mmDiameter of bolt hole in tension flange dbt 16 mm

750 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 14100 mm2 16 mmInside of Section to Centroid yg 391 mm

Inertia about Major axis Iz 1619356700 mm4 300 mm

Inertia about Minor axis Iy 72013500 mm4Elastic Section Modulus, Top(Outside) flange Zzo 4141577 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 4141577 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 480090 mm3

Plastic Section Modulus, Major axis Zpz 4520550 mm3

Plastic Section Modulus, Minor axis Zpy 726750 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 766 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 10563588301500 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 873200 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 339 mm 34 cm

Radius of Gyration about minor axis ry 71 mm 7.1 cmShear Center from top h1 391 mm

Critical Load Data LOAD CASE 117 1(DL+WL7)

Major axis Bending moment Mz .648 kNm (+ve when Compression is at bottom)Minor axis Bending moment My 33.502 kNm (+ve when Compression is at bottom)Axial Force P 37.643 kN Axial ForceShear Force V .421 kN

Tension Flange

Page 1 of 5

Page 101: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.593928358 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 1.963337313

Shape of Moment Diagram ψ -0.24

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 125

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

-1 kNm 2.68

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 61.89 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.794 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 61.89 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 4500 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 278.52 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 43.33 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 43.33 N/mm2

Actual shear stress τb = .09 N/mm2 ≤ 43.33 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 147 mmWidth of extended flange(Inside flange) b 147 mmWidth/thickness, compression (Outside) Flange 9.19Widht/thickness, tension (Inside) Flange 9.19

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 125For flexure onlyPlastic limit 84ε 69.81 (Table 2, IS 800:2007)Compact limit 105ε 86.25 (Table 2, IS 800:2007) r1 = 0.024246699Semi-compact limit 126ε 105.62 (Table 2, IS 800:2007) r2 = 0.007738308For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 102: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 147.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 300.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 105.62Effective web depth, def 633.74 mmWeb depth to be removed 116.26 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 535.48 mm

Effective section properties for Compression

Top Flange : 300 mm x 16 mmBottom Flange: 268 mm x 16 mmWeb: 750mm x 6 mm with 535.48 mm removed at mid depth 300 mmEffective Area Ae 10887 mm2 16 mm

Compression Flange

Inside to C.G. yg 391 mmMajor axis Intertia Iz 1542583803 mm4 154258 cm4Minor axis Intertia Iy 72003861 mm4 7200 cm4Outside Flange Elastic Section Modulus Zezo 3945227 mm3 3945 cm3Inside Flange Elastic Section Modulus Zezi 3945227 mm3 3945 cm3 750 mmElastic Section Modulus, Minor Axis Zy 480026 mm3 480 cm3Plastic Section Modulus in Major Axis Zpz 4090436 mm3 4090 cm3Plastic Section Modulus in Minor Axis Zpy 721931 mm3 722 cm3Major Axis rz 376 mmMinor Axis ry 81 mm 16 mm

Ifc 36000000 300 mmIft 36000000βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 10562174410181 mm6Torsional constant It 834645 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 300 mm x 16 mmBottom Flange: 268 mm x 16 mmWeb: 750mm x 6 mm with 116.26 mm removed at mid depth 300 mmEffective Area Ae 12730 mm2Inside to C.G. yg 392.20 mm 16 mmMajor axis Intertia Iz 1511829170 mm4 151183 cm4Minor axis Intertia Iy 62774245 mm4 6277 cm4 316.87088Outside Flange Elastic Section Modulus Zezo 3854720 mm3 3855 cm3Inside Flange Elastic Section Modulus Zezi 3878495 mm3 3878 cm3 116.258241 750 mmElastic Section Modulus, Minor Axis Zy 418495 mm3 418 cm3Plastic Section Modulus in Major Axis Zpz 4117136 mm3 4117 cm3Plastic Section Modulus in Minor Axis Zpy 725704 mm3 726 cm3 316.87088Major Axis rz 345 mmMinor Axis ry 70 mm 16 mm

Ifc 36000000 300 mm

Ift 36000000.00βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 9208291178598 mm6Torsional constant It 864829 mm4Shear Center from top h1 391.00 mm

107.26

107.26

535.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 103: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.936 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 391.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 19442.5 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.262 ≤ 0.286 OK (Cl. 8.2.2, IS 800:2007)

The section is Laterally supported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.549 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.969 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 304 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.936Calculated Design Bending Strength Mdz=βb * fbd* Zpz .0 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1209.0 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1450.8 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1209.0 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 188.18 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 187.03 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = .17 N/mm2 ≤ 207 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = .17 N/mm2 ≤ 207 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = 80.05 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 300 mm x 16 mmBottom Flange: 300 mm x 16 mmWeb: 750mm x 6 mm with 535.48 mm removed at mid depth

Column Slenderness KL/r 45.9 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 937 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.607 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.753 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 261.441 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 156.86 N/mm2The Actual Compressive stress fc = P/Ae = 3.46 N/mm2 ≤ 156.86 N/mm2 OK

Page 4 of 5

Page 104: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 22.13 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 4029 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.293 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.566 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 298.868 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 179.32 N/mm2The Actual Compressive stress fc = P/Ae = 3.46 N/mm2 ≤ 179.32 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.50 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.50 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.50 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.022ny=fcy/facy = 0.019

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0090 <1.02 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0090

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0018 ≤1.02 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.00

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.998 ≥ 0.992

Therefore, KLT 0.998

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (3.46/ 0.6 *345) + ((0.17/ 207) + (80.054/ 207) = 0.404 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (3.46/ 179.32) + (0.998(0.17/ 207) + (0.6 *1.002 *0.5* 80.054/ 207) = 0.137 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (3.46/ 156.86) + (1.009*0.503283582089552(0.168/ 207) + (0.6 *1.002 *0.5* 80.054/ 207) 0.139 ≤ 1 OK

Page 5 of 5

Page 105: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 2AWeb Depth d 650 mmWeb Thickness tw 6 mm

Flange Width bfo 375 mm 375 mm

Flange Width bfi 375 mm 16 mm

Top(Outside) Flange thickness tfo 16 mm

Bottom(Inside) Flange thickness tfi 16 mm682

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 2A (Bottom of Endwall column) Beam No. 187 of Staad EndFrame-1

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-2A ENDWALL COLUMN, BEAM 187 OF STAAD Load combination 113 1(DL+WL3)(COMP. MEMBER)SHELL STORE

J#685RAIL COACH FACTORY

A.K. SETH

Compression Flange

Total Depth D 682 mmDiameter of bolt hole in tension flange dbt 16 mm

650 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 15900 mm2 16 mmInside of Section to Centroid yg 341 mm

Inertia about Major axis Iz 1468236500 mm4 375 mm

Inertia about Minor axis Iy 140636700 mm4Elastic Section Modulus, Top(Outside) flange Zzo 4305679 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 4305679 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 750062 mm3

Plastic Section Modulus, Major axis Zpz 4629750 mm3

Plastic Section Modulus, Minor axis Zpy 1130850 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 666 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 15595063026300 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 1070800 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 304 mm 30 cm

Radius of Gyration about minor axis ry 94 mm 9.4 cmShear Center from top h1 341 mm

Critical Load Data LOAD CASE 113 1(DL+WL3)

Major axis Bending moment Mz 578.230 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 44.420 kN Axial ForceShear Force V 109.541 kN

Tension Flange

Page 1 of 5

Page 106: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 3440 mmMinor axis Bottom Flange Unbraced Length Lyb 3440 mmMinor axis Axial Lya 3440 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 1.908973848 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.206594539

Shape of Moment Diagram ψ 0.17

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 108.3333333

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX END END MOMENT

-578 kNm -96.249

MAX START END MOMENT

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 82.40 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.555 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 82.40 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3900 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 321.37 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 57.68 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 57.68 N/mm2

Actual shear stress τb = 28.09 N/mm2 ≤ 57.68 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 185 mmWidth of extended flange(Inside flange) b 185 mmWidth/thickness, compression (Outside) Flange 11.53Widht/thickness, tension (Inside) Flange 11.53

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 108.3333333For flexure onlyPlastic limit 84ε 69.22 (Table 2, IS 800:2007)Compact limit 105ε 85.16 (Table 2, IS 800:2007) r1 = 0.03301375Semi-compact limit 126ε 105.55 (Table 2, IS 800:2007) r2 = 0.008097712For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 107: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 184.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 375.00 mm

Web depth to be removed for Flexure onlySemi-compact limit 105.55Effective web depth, def 633.29 mmWeb depth to be removed 16.71 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 435.48 mm

Effective section properties for Compression

Top Flange : 375 mm x 16 mmBottom Flange: 343 mm x 16 mmWeb: 650mm x 6 mm with 435.48 mm removed at mid depth 375 mmEffective Area Ae 13287 mm2 16 mm

Compression Flange

Inside to C.G. yg 341 mmMajor axis Intertia Iz 1426942716 mm4 142694 cm4Minor axis Intertia Iy 140628861 mm4 14063 cm4Outside Flange Elastic Section Modulus Zezo 4184583 mm3 4185 cm3Inside Flange Elastic Section Modulus Zezi 4184583 mm3 4185 cm3 650 mmElastic Section Modulus, Minor Axis Zy 750021 mm3 750 cm3Plastic Section Modulus in Major Axis Zpz 4345281 mm3 4345 cm3Plastic Section Modulus in Minor Axis Zpy 1126931 mm3 1127 cm3Major Axis rz 328 mmMinor Axis ry 103 mm 16 mm

Ifc 70312500 375 mmIft 70312500βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 15594193800654 mm6Torsional constant It 1039445 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 375 mm x 16 mmBottom Flange: 343 mm x 16 mmWeb: 650mm x 6 mm with 16.71 mm removed at mid depth 375 mmEffective Area Ae 15128 mm2Inside to C.G. yg 334.62 mm 16 mmMajor axis Intertia Iz 1406395250 mm4 140640 cm4Minor axis Intertia Iy 125533637 mm4 12553 cm4 316.64674Outside Flange Elastic Section Modulus Zezo 4202997 mm3 4203 cm3Inside Flange Elastic Section Modulus Zezi 4048547 mm3 4049 cm3 16.7065194 650 mmElastic Section Modulus, Minor Axis Zy 669513 mm3 670 cm3Plastic Section Modulus in Major Axis Zpz 4277388 mm3 4277 cm3Plastic Section Modulus in Minor Axis Zpy 1130700 mm3 1131 cm3 316.64674Major Axis rz 305 mmMinor Axis ry 91 mm 16 mm

Ifc 70312500 375 mm

Ift 70312500.00βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 13920299430710 mm6Torsional constant It 1069597 mm4Shear Center from top h1 341.00 mm

107.26

107.26

435.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 108: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.983 (Cl. 8.2.2, IS 800:2007)

LLT 3440 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 341.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 7111.5 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.452 ≤ 0.495 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.664 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.870 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 273 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.983Calculated Design Bending Strength Mdz=βb * fbd* Zpz 1146.4 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 1318.2 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 1581.9 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 1146.4 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 163.66 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 169.90 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 137.58 N/mm2 ≤ 163.66 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 142.82 N/mm2 ≤ 169.9 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 375 mm x 16 mmBottom Flange: 375 mm x 16 mmWeb: 650mm x 6 mm with 435.48 mm removed at mid depth

Column Slenderness KL/r 52.7 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 710 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.697 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.827 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 246.311 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 147.79 N/mm2The Actual Compressive stress fc = P/Ae = 3.34 N/mm2 ≤ 147.79 N/mm2 OK

Page 4 of 5

Page 109: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 33.44 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 1765 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.442 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.657 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 274.381 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 164.63 N/mm2The Actual Compressive stress fc = P/Ae = 3.34 N/mm2 ≤ 164.63 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.67 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.023ny=fcy/facy = 0.020

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0112 <1.02 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0112

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0049 ≤1.02 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.00

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.998 ≥ 0.995

Therefore, KLT 0.998

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (3.34/ 0.6 *345) + ((137.58/ 207) + (0/ 207) = 0.681 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (3.34/ 164.63) + (0.998(137.58/ 163.66) + (0.6 *1.005 *0.67* 0/ 207) = 0.859 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (3.34/ 147.79) + (1.011*0.666581810006399(137.576/ 163.66) + (0.6 *1.005 *0.67* 0/ 207) 0.589 ≤ 1 OK

Page 5 of 5

Page 110: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member 2BWeb Depth d 650 mmWeb Thickness tw 6 mm

Flange Width bfo 250 mm 250 mm

Flange Width bfi 250 mm 10 mm

Top(Outside) Flange thickness tfo 10 mm

Bottom(Inside) Flange thickness tfi 10 mm6 0

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member 2B (Top of Endwall column) Beam No. 338 of Staad EndFrame-1

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-2B ENDWALL COLUMN, BEAM 338 OF STAAD Load combination 117 1(DL+WL7)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R0

26/12/2011PRAFULLSAURABH

SSB

Compression Flange

Total Depth D 670 mmDiameter of bolt hole in tension flange dbt 16 mm

650 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 8900 mm2 10 mmInside of Section to Centroid yg 335 mm

Inertia about Major axis Iz 681854167 mm4 250 mm

Inertia about Minor axis Iy 26053367 mm4Elastic Section Modulus, Top(Outside) flange Zzo 2035386 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 2035386 mm3 Gross-Section PropertiesSection Modulus, Minor axis Zy 208427 mm3

Plastic Section Modulus, Major axis Zpz 2283750 mm3

Plastic Section Modulus, Minor axis Zpy 318350 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 660 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 2837211630000 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 213467 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 277 mm 28 cm

Radius of Gyration about minor axis ry 54 mm 5.4 cmShear Center from top h1 335 mm

Critical Load Data LOAD CASE 117 1(DL+WL7)

Major axis Bending moment Mz 118.111 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 30.908 kN Axial ForceShear Force V 71.824 kN

Tension Flange

Page 1 of 5

Page 111: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 17280 mmMinor axis Top Flange Unbraced Length Lyt 1800 mmMinor axis Bottom Flange Unbraced Length Lyb 1800 mmMinor axis Axial Lya 1800 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.15 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.15

Shape of Moment Diagram ψ 0.00

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports 500.00

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 108.3333333

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

Web Buckling check Hence, Shear Buckling Should be Verified

MAX START END MOMENT MAX END END MOMENT

-118 kNm 0

Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 82.40 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.555 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 82.40 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3900 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 321.37 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 57.68 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 57.68 N/mm2

Actual shear stress τb = 18.42 N/mm2 ≤ 57.68 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 122 mmWidth of extended flange(Inside flange) b 122 mmWidth/thickness, compression (Outside) Flange 12.20Widht/thickness, tension (Inside) Flange 12.20

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SLENDER SECTIONBottom flange is SLENDER SECTION

Web depth/thickness limitDepth/Thickness of Web 108.3333333For flexure onlyPlastic limit 84ε 69.90 (Table 2, IS 800:2007)Compact limit 105ε 86.40 (Table 2, IS 800:2007) r1 = 0.022971386Semi-compact limit 126ε 105.14 (Table 2, IS 800:2007) r2 = 0.010066113For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 112: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 115.77 mmFlange width to be removed 6.23 mmTotal flange width to be removed 12.46 mmTotal Effective Flange width 237.54 mm

Web depth to be removed for Flexure onlySemi-compact limit 105.14Effective web depth, def 630.85 mmWeb depth to be removed 19.15 mmWeb depth to be removed for Compression onlySemi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 435.48 mm

Effective section properties for Compression

Top Flange : 237.54 mm x 10 mmBottom Flange: 218 mm x 10 mmWeb: 650mm x 6 mm with 435.48 mm removed at mid depth 238 mmEffective Area Ae 6162 mm2 10 mm

Compression Flange

Inside to C.G. yg 342 mmMajor axis Intertia Iz 626716053 mm4 62672 cm4Minor axis Intertia Iy 24194073 mm4 2419 cm4Outside Flange Elastic Section Modulus Zezo 1834261 mm3 1834 cm3Inside Flange Elastic Section Modulus Zezi 1908813 mm3 1909 cm3 650 mmElastic Section Modulus, Minor Axis Zy 193553 mm3 194 cm3Plastic Section Modulus in Major Axis Zpz 1984647 mm3 1985 cm3Plastic Section Modulus in Minor Axis Zpy 299244 mm3 299 cm3Major Axis rz 319 mmMinor Axis ry 63 mm 10 mm

Ifc 11169378.55 250 mmIft 13020833.33βf=Ifc/(Ifc + Ift) 0.461731324

Warping constant Iw 2619300383609 mm6Torsional constant It 177959 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 237.54 mm x 10 mmBottom Flange: 218 mm x 10 mmWeb: 650mm x 6 mm with 19.15 mm removed at mid depth 238 mmEffective Area Ae 8180 mm2Inside to C.G. yg 336.38 mm 10 mmMajor axis Intertia Iz 629279043 mm4 62928 cm4Minor axis Intertia Iy 20372341 mm4 2037 cm4 315.424766Outside Flange Elastic Section Modulus Zezo 1870728 mm3 1871 cm3Inside Flange Elastic Section Modulus Zezi 1886225 mm3 1886 cm3 19.1504681 650 mmElastic Section Modulus, Minor Axis Zy 162979 mm3 163 cm3Plastic Section Modulus in Major Axis Zpz 1942096 mm3 1942 cm3Plastic Section Modulus in Minor Axis Zpy 302991 mm3 303 cm3 315.424766Major Axis rz 277 mmMinor Axis ry 50 mm 10 mm

Ifc 11169378.55 250 mm

Ift 13020833.33βf=Ifc/(Ifc + Ift) 0.46

Warping constant Iw 2205551702951 mm6Torsional constant It 207934 mm4Shear Center from top h1 360.26 mm

107.26

107.26

435.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 113: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.963 (Cl. 8.2.2, IS 800:2007)

LLT 1800 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) -25.257 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 360.26 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 3272.2 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.444 ≤ 0.487 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.658 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.874 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 274 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.963Calculated Design Bending Strength Mdz=βb * fbd* Zpz 512.6 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 586.7 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 704.1 kNm (Cl. 8.2.1.2, IS 800:2007)

Therefore, Mdz 512.6 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 164.42 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 163.07 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 63.14 N/mm2 ≤ 164.42 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 62.62 N/mm2 ≤ 163.07 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 237.54 mm x 10 mmBottom Flange: 250 mm x 10 mmWeb: 650mm x 6 mm with 435.48 mm removed at mid depth

Column Slenderness KL/r 54.2 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 672 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.716 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.844 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 242.877 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 145.73 N/mm2The Actual Compressive stress fc = P/Ae = 5.02 N/mm2 ≤ 145.73 N/mm2 OK

Page 4 of 5

Page 114: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 28.73 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 2392 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 0.380 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.616 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 284.769 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 170.86 N/mm2The Actual Compressive stress fc = P/Ae = 5.02 N/mm2 ≤ 170.86 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.034ny=fcy/facy = 0.029

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0178 <1.03 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0178

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0053 ≤1.02 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.01

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.996 ≥ 0.992

Therefore, KLT 0.996

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (5.02/ 0.6 *345) + ((63.14/ 207) + (0/ 207) = 0.329 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (5.02/ 170.86) + (0.996(63.14/ 164.42) + (0.6 *1.005 *0.6* 0/ 207) = 0.412 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (5.02/ 145.73) + (1.018*0.6(63.136/ 164.42) + (0.6 *1.005 *0.6* 0/ 207) 0.269 ≤ 1 OK

Page 5 of 5

Page 115: Design Report J#685 Ircon Shell Store R1

Era Engineering Division IS 800:2007 (Working Stress Method)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Steel Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2

Poisson's Ratio of Steel µ 0.3

Shear Modulus G 76900 N/mm2

Ultimate Yield strength fu 490 N/mm2Section SizeSection Name

Web Depth d 700 mmWeb Thickness tw 6 mm

Top(Outside) Flange Width bf0 150 mm

Bottom(Inside) Flange Width bfi 150 mm

Top(Outside) Flange thickness tfo 6 mm

Bottom(Inside) Flange thickness tfi 6 mm

MEMBER DESIGN CHECK FOR ENDFRAME 1 MEMBER-Canopy, BEAM 342 OF STAAD Load combination 117 1 (DL+WL7)( TENSION MEMBER)

Member Canopy Beam No. 342 of Staad EndFrame-1

IRCON INTERNATIONAL LTDRail coach factory at Rai bareily SSB

Anil Seth

Design of Beam Column + Axial Tension according to IS 800: 2007 (WSM)R0

27/12/2011Prafull Mungle

Saurabh Bhardwaj

J-685

SHELL STORE

Rail Coach FactoryIIT, DELHI

Bottom(Inside) Flange thickness tfi 6 mm

Total Depth D 712 mm

Diameter of bolt hole in web dbw mm

Diameter of bolt hole in compression flange dbc mm

Diameter of bolt hole in tension flange dbt mmGross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 150 mm

Area A 6000 mm2 6 mmInside of Section to Centroid yg 356 mm

Inertia about Major axis Iz 395801600 mm4

Inertia about Minor axis Iy 3387600 mm4 700 mmElastic Section Modulus, Top(Outside) flange Zzo 1111802 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 1111802 mm3 6 mm

Section Modulus, Minor axis Zy 45168 mm3

Plastic Section Modulus, Major axis Zpz 1370400 mm3 0.451205807

Plastic Section Modulus, Minor axis Zpy 73800 mm3 0.47025168

Warpin Constant Iw 421000024514 mm3

Torsion Constant It 72000 mm3

Radius of Gyration about major axis rz 257 mm 6 mm

Radius of Gyration about minor axis ry 24 mm 150 mm

Distance between Flange centroids hy 706 mmShear Center from top h1 356 mm Gross-Section Properties

Critical Load Data LOAD CASE 117 1 (DL+WL7)

Major axis Bending moment Mz 67 kNmMinor axis Bending moment My .164 kNmAxial Force T 1 kNShear Force V 45.19 kN

Compression Flange

Tension Flange

Page 1 of 4

Page 116: Design Report J#685 Ircon Shell Store R1

Era Engineering Division IS 800:2007 (Working Stress Method)

Unbraced Lenghts

Major axis Unbraced Length Lz 2500 mmMinor axis Top Flange Unbraced Length Lyt 1200 mmMinor axis Bottom Flange Unbraced Length Lyb 1200 mmMinor axis Axial Lya 1200 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1Partial safety factor for Ultimate Strength γm1 1.25Tension area Coefficient Cn 1Moment Diagram Coefficient C1 1.466836614 TABLE 42 PAGE 129-130 IS-800-2007

C2 0 TABLE 42 PAGE 129-130 IS-800-2007

Moment Diagram and Member Coefficient C3 2.273707946Shape of Moment Diagram ψ 0.556415533

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners condition Provided only at supports 3000.00Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 116.6666667Required Limit to avoid Buckling due to shear 62ε√(Kv/5.35) 57.03 (Cl. 8.4.2.1, IS 800:2007)

-67 kNm -37.311MINIMUM MOMENT IN MEMBERMAX MOMENT IN MEMBER

Page 2 of 4

Web Buckling check Hence, Shear Buckling Should be Verified Shear Buckling Coefficient Kv 5.35 (Cl. 8.4.2.2, IS 800:2007)Shear Buckling design Method- Simple Post Critical Method

Elastic Critical Shear Stress τcr,e = Kvπ2E/(12(1-µ2)(d/tw)

2) 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)Yield Stress of Web fyw 345 N/mm2Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 1.674 i.e., λw>= 1.2 (Cl. 8.4.2.2, IS 800:2007)Shear stress corresponding to web buckling τb1 71.05 N/mm2 (Cl. 8.4.2.2, IS 800:2007)Shear Area Av 4200 mm2Shear Force corresponding for Web buckling Vcr=τb1*Av 298.41 kNThe Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 49.74 N/mm2 (Cl. 11.4.2, IS 800:2007)The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)Therefore, Permissible shear stress τab = 49.74 N/mm2Actual shear stress τb = V/Av = 10.76 N/mm2 ≤ 49.74 N/mm2 OK

Effective Flange and Web Plates

Flange width Limit--For flexure and compressionWidth of extended flange (outside flange) b 72 mmWidth of extended flange (inside flange) b 72 mmWidth/thickness, compression (Outside) Flange provided bf/tf 12.00Widht/thickness, tension (Inside) Flange provided bf/tf 12.00LimitsPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SLENDER SECTIONBottom flange is SLENDER SECTION

Web depth/thickness limitDepth/Thickness of Web 116.67For flexure onlyPlastic limit 84ε 71.54 (Table 2, IS 800:2007)Compact limit 105ε 89.43 (Table 2, IS 800:2007) r1 = -0.000512077Semi-compact limit 126ε 107.34 (Table 2, IS 800:2007) r2 = -0.000358454

Page 2 of 4

Page 117: Design Report J#685 Ircon Shell Store R1

Era Engineering Division IS 800:2007 (Working Stress Method)

For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Conclusion on Web Classification Flexure Only: SLENDER SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.58Effective Flange width 69.46 mmFlange width to be removed 2.54 mmTotal flange width to be removed 5.08 mmTotal Effective Flange width 144.92 mm

Flange width to be removed for Tension flangeSemi-compact limit 11.58Effective Flange width 69.46 mmFlange width to be removed 2.54 mmTotal flange width to be removed 5.08Total Effective Flange width 144.92

Web depth to be removedFlexure onlySemi-compact limit 107.3 mmEffective web depth, def 644.0 mmWeb depth to be removed 56.0 mm

Page 3 of 4

Web depth to be removed 56.0 mmcompression onlySemi-compact limit 35.8 mmEffective web depth, def 214.5 mmWeb depth to be removed 485.5 mm

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 144.92 mm x 6 mm 145 mmBottom Flange: 150 mm x 6 mmWeb: 700mm x 6 mm with 55.99 mm removed at mid depth 6 mmEffective Area Ae 5634 mm2

Inside to C.G. yg 370.10 mm

Major axis Intertia Iz 376760823 mm4 37676 cm4

Minor axis Intertia Iy 3220883 mm4 322 cm4 700 mm

Outside Flange Elastic Section Modulus Zezo 1018002 mm3 1018 cm3

Inside Flange Elastic Section Modulus Zezi 1101957 mm3 1102 cm3

Elastic Section Modulus, Minor Axis Zy 42945 mm3 43 cm3

Plastic Section Modulus in Major Axis Zpz 1116674 mm3 1117 cm3 6 mm

Plastic Section Modulus in Minor Axis Zpy 71049 mm3 71 cm3 150 mm

Major Axis rz 259 mm

Minor Axis ry 24 mm Effective-Section Properties for FlexureM.I. of the compression flange about the minor axis of the entire section Ifc 1521791 mm4M.I. of the tension flange about the minor axis of the entire section Ift 1687500 mm4

βf=Ifc/(Ifc + Ift) 0.47Warping constant of Effective section Iw 400280984930 mm6Torsion constant of Effective section It 67603 mm4Shear Center from top h1 374 mm

Check Member for Bending, Compressive FlangeSection Modulus ratio βb 0.912 (Cl. 8.2.2, IS 800:2007)

322.01

55.99

322.01

Compression Flange

Tension Flange

Page 3 of 4

Page 118: Design Report J#685 Ircon Shell Store R1

Era Engineering Division IS 800:2007 (Working Stress Method)

LLT 1200 mmEffective length factor K 0.5 (E-1.2, Annex E, IS 800:2007)

c1 1.466836614 (Table 42, IS 800: 2007)c3 2.273707946 (Table 42, IS 800: 2007)

Warping restrain factor Kw 1 (E-1.2, Annex E, IS 800:2007)M.I. of the compression flange about the minor axis of the entire section Ifc 1521791 mmM.I. of the tension flange about the minor axis of the entire section Ift 1687500 mm

βf=Ifc/(Ifc + Ift) 0.47 (E-1.2, Annex E, IS 800:2007)Distance between the two Shear centres of the two flanges of the Cross-sectionhy 706 mm

yj=1*(2*βf-1)*hy/2) -18.227 mm (E-1.2, Annex E, IS 800:2007)

Elastic Critical Moment for Mono-Symmetrical Section

Mcr=c1 π2 EIy / (LLT)*{[(K/Kw)2*Iw/Iy+GIt(LLT)2/(EIy)+(c2yg-c3yj)2)]0.5-(c2yg-c3yj))} 925.1 kNm ( Annex E,, IS 800:2007)Non-Dimensional Slenderness ratio λ lt = √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 0.616 ≤ 0.675 OK (Cl. 8.2.2, IS 800:2007)The Section is Laterally unsupportedThe Imperfection Parameter α LT 0.49 for welded secti (Cl. 8.2.2, IS 800:2007)

ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 0.792 (Cl. 8.2.2, IS 800:2007)

Bending stress reduction factor to account for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.776 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 243 N/mm2 (Cl. 8.2.2, IS 800:2007)

βb 0.912

For computation of Mdz

Calculated Design Bending Strength Mdz=βb * fbd* Zpz 247.7 kNm

Design Bending Strength Mdz=βb * fy* Zpz/γm0 319.3 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beami 1 2* *f / 0 383 1 k ( l 8 2 1 2 800 2007)

Page 4 of 4

Since, 1.2*Ze*fy/γm0 383.1 kNm (Cl. 8.2.1.2, IS 800:2007)Therefore, Mdz 247.7 kNm

The Permissible bending stress, compression flange fabc = 0.6Mdz/Zezo = 145.99 N/mm2 (Cl. 11.4.1, IS 800:2007)The Permissible bending stress, tension flange fabt = 0.6Mdz/Zezi = 134.86 N/mm2 (Cl. 11.4.1, IS 800:2007)The permissible stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2 (Cl. 11.4.1, IS 800:2007 , PAGE 85)The Actual Bending Stress, compression flange fbc = Mz/Zezo = 65.87 N/mm2 ≤ 145.99 N/mm2 OKThe Actual Bending Stress, tension flange fbt = Mz/Zezi = 60.85 N/mm2 ≤ 134.86 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fb = My/Zy = 3.82 N/mm2 ≤ 207 N/mm2 OK

Check Member for TensionThe Permissible stress Due to Yielding of Gross Section fat = 0.6*fy = 207.00 N/mm2 (Cl. 11.2.1, IS 800:2007)Ultimate stress of the material fu 490 N/mm2

Net effective area of the member (Area deduction of bolt hole) Aet=Ag-Area of bolt hole 6000 mm2

Tensile Rupture, Tdn=0.9Aet fu/γm0 2405 kNThe Permissible stress Due to rupture of net Section fat = 0.69*Tdn/Ag = 276.63 N/mm2 (Cl. 11.2.1, IS 800:2007)Therefore, Permissible tensile stress fat = 207.00 N/mm2The Actual tensile stress ft = T/Ag = .12 N/mm2 ≤ 207 N/mm2 OK

Combined Stress: Tension + Bending (Cl. 11.5.3) IS 800:2007)(0.12/207)+(3.82/207) +(60.85/134.86) 0.470 ≤ 1 OK(ft/fat) + ( fbty/fabty) + (fbtz/fabtz)

Page 4 of 4

Page 119: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member Portal Bracing columnWeb Depth d 500 mmWeb Thickness tw 6 mm

Flange Width bfo 200 mm 200 mm

Flange Width bfi 200 mm 10 mm

J#685RAIL COACH FACTORY

A.K. SETHRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member -Portal Bracing column No. 1 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-Portal Column, BEAM 1 OF STAAD Load combination 4 1.0 (DL+WL4)(COMP. MEMBER)SHELL STORE

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSB

Compression Flange

Top(Outside) Flange thickness tfo 10 mm

Bottom(Inside) Flange thickness tfi 10 mmTotal Depth D 520 mmDiameter of bolt hole in tension flange dbt mm

500 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 7000 mm2 10 mmInside of Section to Centroid yg 260 mm

Inertia about Major axis Iz 322633333 mm4 200 mm

Inertia about Minor axis Iy 13342333 mm4Elastic Section Modulus, Top(Outside) flange Zzo 1240897 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 1240897 mm3 Gross-Section Properties

Section Modulus, Minor axis Zy 133423 mm3

Plastic Section Modulus, Major axis Zpz 1395000 mm3

Plastic Section Modulus, Minor axis Zpy 204500 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 510 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 867585225000 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 169333 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 215 mm 21 cm

Radius of Gyration about minor axis ry 44 mm 4.4 cmShear Center from top h1 260 mm

Critical Load Data LOAD CASE 570 1 (0.75DL+0.75LL+0.75EQ+X+0.75CR1+0.75CL)

Major axis Bending moment Mz 86.550 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 14.448 kN Axial ForceShear Force V 17.310 kN

Tension Flange

Page 1 of 5

Page 120: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 6000 mmMinor axis Top Flange Unbraced Length Lyt 5000 mmMinor axis Bottom Flange Unbraced Length Lyb 5000 mmMinor axis Axial Lya 5000 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 2.15 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 2.15

Shape of Moment Diagram ψ 0.00

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports

Spacing of Transverse Stiffeners c 500 mm

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 83.33333333

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 75.40 (Cl. 8.4.2.1, IS 800:2007)

MAX START END MOMENT MAX END END MOMENT

87 kNm 0

Web Buckling check Hence, Shear Buckling Should be Verified Shear Buckling Coefficient Kv 9.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 243.38 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 0.905 i.e., 0.8 < λw < 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 182.51 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3000 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 547.52 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 127.76 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 127.76 N/mm2

Actual shear stress τb = 5.77 N/mm2 ≤ 127.76 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 97 mmWidth of extended flange(Inside flange) b 97 mmWidth/thickness, compression (Outside) Flange 9.70Widht/thickness, tension (Inside) Flange 9.70

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 83.33333333For flexure onlyPlastic limit 84ε 70.52 (Table 2, IS 800:2007)Compact limit 105ε 87.55 (Table 2, IS 800:2007) r1 = 0.01395942Semi-compact limit 126ε 105.99 (Table 2, IS 800:2007) r2 = 0.005982609For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 121: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: COMPACT SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 97.00 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 200.00 mm

Semi-compact limit 105.99Effective web depth, def 500.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 285.48 mm

Effective section properties for Compression

Top Flange : 200 mm x 10 mmBottom Flange: 200 mm x 10 mm Compression FlangegWeb: 500mm x 6 mm with 285.48 mm removed at mid depth 200 mmEffective Area Ae 5287 mm2 10 mmInside to C.G. yg 260 mmMajor axis Intertia Iz 310999780 mm4 31100 cm4Minor axis Intertia Iy 13337195 mm4 1334 cm4Outside Flange Elastic Section Modulus Zezo 1196153 mm3 1196 cm3Inside Flange Elastic Section Modulus Zezi 1196153 mm3 1196 cm3 500 mmElastic Section Modulus, Minor Axis Zy 133372 mm3 133 cm3Plastic Section Modulus in Major Axis Zpz 1272749 mm3 1273 cm3Plastic Section Modulus in Minor Axis Zpy 201931 mm3 202 cm3Major Axis rz 243 mmMinor Axis ry 50 mm 10 mm

Ifc 6666666.667 200 mmIft 6666666.667βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 867251081008 mm6Torsional constant It 148779 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 200 mm x 10 mmBottom Flange: 200 mm x 10 mmWeb: 500mm x 6 mm with 0 mm removed at mid depth 200 mmEffective Area Ae 6840 mm2Inside to C.G. yg 266.08 mm 10 mmMajor axis Intertia Iz 322892257 mm4 32289 cm4Minor axis Intertia Iy 13342333 mm4 1334 cm4 100.00Outside Flange Elastic Section Modulus Zezo 1213507 mm3 1214 cm3Inside Flange Elastic Section Modulus Zezi 1271639 mm3 1272 cm3 0.00 500 mmElastic Section Modulus, Minor Axis Zy 133423 mm3 133 cm3Plastic Section Modulus in Major Axis Zpz 1275000 mm3 1275 cm3Plastic Section Modulus in Minor Axis Zpy 204500 mm3 205 cm3 400.00Major Axis rz 217 mmMinor Axis ry 44 mm 10 mm

Ifc 6666666.667 200 mm

107.26

107.26

285.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 122: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Ift 6666666.67βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 867585225000 mm6Torsional constant It 169333 mm4Shear Center from top h1 260.00 mm

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.952 (Cl. 8.2.2, IS 800:2007)

LLT 5000 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 260.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 383.2 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 1.045 ≤ 1.145 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 1.253 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.514 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 161 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.952Calculated Design Bending Strength Mdz=βb * fbd* Zpz 195.7 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 380.6 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 456.7 kNm (Cl. 8.2.1.2, IS 800:2007)

Th f Mdz 195 7 kNTherefore, Mdz 195.7 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 96.75 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 92.32 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 71.32 N/mm2 ≤ 96.75 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 68.06 N/mm2 ≤ 92.32 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 200 mm x 10 mmBottom Flange: 200 mm x 10 mmWeb: 500mm x 6 mm with 285.48 mm removed at mid depth

Column Slenderness KL/r 24.7 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 3225 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.327 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.575 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 299.240 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 179.54 N/mm2The Actual Compressive stress fc = P/Ae = 2.73 N/mm2 ≤ 179.54 N/mm2 OK

Page 4 of 5

Page 123: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 99.55 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 199 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 1.316 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 1.640 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 119.837 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 71.90 N/mm2The Actual Compressive stress fc = P/Ae = 2.73 N/mm2 ≤ 71.9 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.60 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.015ny=fcy/facy = 0.038

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0019 <1.01 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0019

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.0424 >1.03 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.03

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.989 ≥ 0.989

Therefore, KLT 0.989

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (2.73/ 0.6 *345) + ((71.32/ 207) + (0/ 207) = 0.358 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (2.73/ 71.9) + (0.989(71.32/ 96.75) + (0.6 *1.03 *0.6* 0/ 207) = 0.767 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (2.73/ 179.54) + (1.002*0.6(71.322/ 96.75) + (0.6 *1.03 *0.6* 0/ 207) 0.458 ≤ 1 OK

Page 5 of 5

Page 124: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Material Properties

Steel Yield strength fy 345 N/mm2

Modulus of Elasticity of Steel Es 200000 N/mm2Poisson's Ratio of Steel µ 0.3Shear Modulus G 76900 N/mm2

Section Size

Section Name Member Portal Bracing columnWeb Depth d 500 mmWeb Thickness tw 6 mm

Flange Width bfo 225 mm 225 mm

Flange Width bfi 225 mm 12 mm

Design of Beam Column + Axial Compression according to IS 800: 2007 (WSM)R1

24/01/2012PRAFULLSAURABH

SSBRAIL COACH FACTORY RAE BARELI (U.P)

IIT, DELHIIRCON INTERNATIONAL LTD

Member -Portal Bracing Rafter No. 1 of Staad Frame-1

MEMBER DESIGN CHECK FOR FRAME 1 MEMBER-Portal Rafter, BEAM 2 OF STAAD Load combination 4 1.0 (DL+WL4)(COMP. MEMBER)MACHINE + TOOL ROOM + MS SHOP

J#685RAIL COACH FACTORY

A.K. SETH

Compression Flange

Top(Outside) Flange thickness tfo 12 mm

Bottom(Inside) Flange thickness tfi 12 mmTotal Depth D 524 mmDiameter of bolt hole in tension flange dbt mm

500 mm

Gross Section Propertiesz-z is major Bending axis, y-y is minor bending axis 6 mm

Area A 8400 mm2 12 mmInside of Section to Centroid yg 262 mm

Inertia about Major axis Iz 416459200 mm4 225 mm

Inertia about Minor axis Iy 22790250 mm4Elastic Section Modulus, Top(Outside) flange Zzo 1589539 mm3

Elastic Section Modulus, Bottom(Inside) flange Zzi 1589539 mm3 Gross-Section Properties

Section Modulus, Minor axis Zy 202580 mm3

Plastic Section Modulus, Major axis Zpz 1757400 mm3

Plastic Section Modulus, Minor axis Zpy 308250 mm3

βf=Ifc/(Ifc + Ift) 0.5 (E-1.2, Annex E, IS 800:2007)

Distance between Flange centroids hy 512 mm (E-1.2, Annex E, IS 800:2007)

Warping Constant Iw 1493581824000 mm6 (E-1.2, Annex E, IS 800:2007)

Torsion Constant It 295200 mm4 (E-1.2, Annex E, IS 800:2007)

Radius of Gyration about major axis rz 223 mm 22 cm

Radius of Gyration about minor axis ry 52 mm 5.2 cmShear Center from top h1 262 mm

Critical Load Data LOAD CASE 570 1 (0.75DL+0.75LL+0.75EQ+X+0.75CR1+0.75CL)

Major axis Bending moment Mz 86.796 kNm (+ve when Compression is at bottom)Minor axis Bending moment My .000 kNm (+ve when Compression is at bottom)Axial Force P 17.316 kN Axial ForceShear Force V 14.448 kN

Tension Flange

Page 1 of 5

Page 125: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Unbraced Lenghts

Major axis Unbraced Length Lz 12000 mmMinor axis Top Flange Unbraced Length Lyt 12000 mmMinor axis Bottom Flange Unbraced Length Lyb 12000 mmMinor axis Axial Lya 12000 mm

Other Factors

Partial safety factor for Yielding & Buckling γm0 1.1

Partial safety factor for Ultimate Strength γm1 1.25

Tension area Coefficient Cn 1

Moment Diagram Coefficient C1 3.148439974 (Table 42, IS 800: 2007 PAGE 129,130)

C2 0 (Table 42, IS 800: 2007 PAGE 129,130)

Moment Diagram and Member Coefficient C3 0.008370386

Shape of Moment Diagram ψ -1.00

Check Member for Shear (IS 800:2007, Cl 8.4.2 and Cl 11.4.2)

Transverse Stiffeners Provided only at supports

Spacing of Transverse Stiffeners c 500 mm

Ratio ε 0.8513 (Note Point 2, Table 2, IS 800:2007)Provided, Web Slenderness d/tw 83.33333333

Required Limit to avoid Buckling due to shear 67ε√(Kv/5.35) 75.40 (Cl. 8.4.2.1, IS 800:2007)

MAX END END MOMENT

-86.80 kNm 86.579

MAX START END MOMENT

Web Buckling check Hence, Shear Buckling Should be Verified Shear Buckling Coefficient Kv 9.35 (Cl. 8.4.2.2, IS 800:2007)

Shear Buckling design Method- Simple Post Critical MethodElastic Critical Shear Stress τcr,e= Kvπ

2E/(12(1-µ2)(d/tw)2) 243.38 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Yield Stress of Web fyw 345 N/mm2

Non-dimensional web slenderness ratio for shear buckling stress. λw=√(fyw/√3τcr,e ) 0.905 i.e., 0.8 < λw < 1.2 (Cl. 8.4.2.2, IS 800:2007)

Shear stress corresponding to web buckling τb 182.51 N/mm2 (Cl. 8.4.2.2, IS 800:2007)

Shear Area Av 3000 mm2

Shear Force corresponding for Web buckling Vcr=τb /Av 547.52 kN

The Permissible shear stress due to shear buckling τab = 0.7*Vcr/Av = 127.76 N/mm2 (Cl. 11.4.2, IS 800:2007)

The Permissible shear stress due to pure shear τab = 0.4*fy = 138.00 N/mm2 (Cl. 11.4.2, IS 800:2007)

Therefore, Permissible shear stress τab = 127.76 N/mm2

Actual shear stress τb = 4.82 N/mm2 ≤ 127.76 N/mm2 OK

Effective Flange and Web PlatesWidth of extended flange(Outside flange) b 110 mmWidth of extended flange(Inside flange) b 110 mmWidth/thickness, compression (Outside) Flange 9.13Widht/thickness, tension (Inside) Flange 9.13

Flange width Limit--For flexure and compressionPlastic limit 8.4ε 7.15 (Table 2, IS 800:2007)Compact limit 9.4ε 8.00 (Table 2, IS 800:2007)Semi-compact limit 13.6ε 11.58 (Table 2, IS 800:2007)

Top flange is SEMI-COMPACT SECTIONBottom flange is SEMI-COMPACT SECTION

Web depth/thickness limitDepth/Thickness of Web 83.33333333For flexure onlyPlastic limit 84ε 70.33 (Table 2, IS 800:2007)Compact limit 105ε 87.19 (Table 2, IS 800:2007) r1 = 0.016730435Semi-compact limit 126ε 105.99 (Table 2, IS 800:2007) r2 = 0.005975155For Compression onlySemi-compact limit 42ε 35.75 (Table 2, IS 800:2007)

Page 2 of 5

Page 126: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Conclusion on Web Classification Flexure Only: COMPACT SECTIONCompression Only SLENDER SECTION

Flange width to be removed for compression flangeSemi-compact limit 11.577Effective Flange width 109.50 mmFlange width to be removed .00 mmTotal flange width to be removed .00 mmTotal Effective Flange width 225.00 mm

Semi-compact limit 105.99Effective web depth, def 500.00 mmWeb depth to be removed 0.00 mm

Semi-compact limit 35.75Effective web depth, 215 mmWeb depth to be removed 285.48 mm

Effective section properties for Compression

Top Flange : 225 mm x 12 mmBottom Flange: 225 mm x 12 mm Compression FlangegWeb: 500mm x 6 mm with 285.48 mm removed at mid depth 225 mmEffective Area Ae 6687 mm2 12 mmInside to C.G. yg 262 mmMajor axis Intertia Iz 404825647 mm4 40483 cm4Minor axis Intertia Iy 22785111 mm4 2279 cm4Outside Flange Elastic Section Modulus Zezo 1545136 mm3 1545 cm3Inside Flange Elastic Section Modulus Zezi 1545136 mm3 1545 cm3 500 mmElastic Section Modulus, Minor Axis Zy 202534 mm3 203 cm3Plastic Section Modulus in Major Axis Zpz 1635149 mm3 1635 cm3Plastic Section Modulus in Minor Axis Zpy 305681 mm3 306 cm3Major Axis rz 246 mmMinor Axis ry 58 mm 12 mm

Ifc 11390625 225 mmIft 11390625βf=Ifc/(Ifc + Ift) 0.5

Warping constant Iw 1493245054132 mm6Torsional constant It 274645 mm4

Effective section properties for Flexure member (including deduction of bolt hole in tension flange)

Top Flange : 225 mm x 12 mmBottom Flange: 225 mm x 12 mmWeb: 500mm x 6 mm with 0 mm removed at mid depth 225 mmEffective Area Ae 8240 mm2Inside to C.G. yg 267.09 mm 12 mmMajor axis Intertia Iz 416676604 mm4 41668 cm4Minor axis Intertia Iy 22790250 mm4 2279 cm4 100.00Outside Flange Elastic Section Modulus Zezo 1560076 mm3 1560 cm3Inside Flange Elastic Section Modulus Zezi 1621861 mm3 1622 cm3 0.00 500 mmElastic Section Modulus, Minor Axis Zy 202580 mm3 203 cm3Plastic Section Modulus in Major Axis Zpz 1637400 mm3 1637 cm3Plastic Section Modulus in Minor Axis Zpy 308250 mm3 308 cm3 400.00Major Axis rz 225 mmMinor Axis ry 53 mm 12 mm

Ifc 11390625 225 mm

107.26

107.26

285.48

Compression Flange

Tension Flange

Tension Flange

Page 3 of 5

Page 127: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Ift 11390625.00βf=Ifc/(Ifc + Ift) 0.50

Warping constant Iw 1493581824000 mm6Torsional constant It 295200 mm4Shear Center from top h1 262.00 mm

Check Member for Major axis Bending, Compressive Flange (IS 800:2007, Cl 8.2.2 and Cl 11.4.1)Section Modulus ratio βb 0.953 (Cl. 8.2.2, IS 800:2007)

LLT 12000 mmKw 1 (E-1.2, Annex E, IS 800:2007)

K 0.5

yj=1*(2*βf-1)*hy/2) 0.000 =1*(2*βf-1)*hy/2) (E-1.2, Annex E, IS 800:2007)yg 262.00 mm

Elastic Critical Moment for Symmetrical Section

Mcr=c1 π2 EIy / (LLT^2)*{[(K/Kw)2*Iw/Iy+GIt(LLT)^2/(π2EIy)+(c2yg-c3yj)^2)]0.5-(c2yg-c3yj)} 293.5 kNm ( Annex E,, IS 800:2007)

Non-Dimensional Slenderness ratio λ lt= √(βb Zp fy/ Mcr) ≤ √(1.2 Ze fy/ Mcr) 1.354 ≤ 1.483 OK (Cl. 8.2.2, IS 800:2007)

The Section is Laterally unsupported

The Imperfection Parameter α LT 0.49 for welded section (Cl. 8.2.2, IS 800:2007)ΦLT=0.5[1+α LT(λ lt -0.2)+λ lt 2] 1.700 (Cl. 8.2.2, IS 800:2007)

Bending stress red. factor for lateral torisonal buckling, χ LT=1/{ΦLT+[ΦLT2-λ lt2]0.5}≤1 0.367 ≤ 1 OK (Cl. 8.2.2, IS 800:2007)

Design bending compressive stress, fbd=χ LT fy/γm0 115 N/mm2 (Cl. 8.2.2, IS 800:2007)

For computation of Mdz βb 0.953Calculated Design Bending Strength Mdz=βb * fbd* Zpz 179.4 kNm

Hence, Design Bending Strength Mdz=βb * fy* Zpz/γm0 489.3 kNm ≤ 1.2*Ze*fy/γm0 kNm for Simply supported Beam

Since, 1.2*Ze*fy/γm0 587.2 kNm (Cl. 8.2.1.2, IS 800:2007)

Th f Mdz 179 4 kNTherefore, Mdz 179.4 kNm

The Permissible bending stress, compression flange fabcz = 0.6Mdz/Zezo = 69.01 N/mm2 (Cl. 11.4.1, IS 800:2007)

The Permissible bending stress, tension flange fabtz = 0.6Mdz/Zezi = 66.38 N/mm2 (Cl. 11.4.1, IS 800:2007)

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2

The Actual Bending Stress, compression flange fbcz = Mz/Zezo = 55.64 N/mm2 ≤ 69.01 N/mm2 OK

The Actual Bending Stress, tension flange fbtz = Mz/Zezi = 53.52 N/mm2 ≤ 66.38 N/mm2 OK

Check Member for Bending, along Minor Axis

The permissible bending stress SEMI-COMPACT SECTION fabc or fabt = 0.60 *fy = 207.00 N/mm2The Actual Bending stress fby = My/Zy = .00 N/mm2 ≤ 207 N/mm2 OK

Check member for Compression, Major AxisTop Flange : 225 mm x 12 mmBottom Flange: 225 mm x 12 mmWeb: 500mm x 6 mm with 285.48 mm removed at mid depth

Column Slenderness KL/r 48.8 < 180, OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 830 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ z=√(fy/fcc) 0.645 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is bImprerfection factor α 0.34 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 0.783 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 255.285 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 OK

The Permissible Compressive stress facz = 0.60*fcd = 153.17 N/mm2The Actual Compressive stress fc = P/Ae = 2.59 N/mm2 ≤ 153.17 N/mm2 OK

Page 4 of 5

Page 128: Design Report J#685 Ircon Shell Store R1

Era Buildsys Research Development Dept. IS 800: 2007 (Working Stress Method Design)

Check member for Compression, Minor AxisColumn Slenderness KL/r 205.58 > 180, Not OK (Table 3, IS 800:2007)

Euler buckling stress fcc=π2E/(KL/r)2 47 N/mm2 (Cl. 7.1.2.1, IS 800:2007)Effective slenderness ratio λ y=√(fy/fcc) 2.718 (Cl. 7.1.2.1, IS 800:2007)

Buckling class is cImprerfection factor α 0.49 (Table 7, IS 800:2007)

Φ=0.5[1+α (λ -0.2)+λ 2] 4.810 (Cl. 7.1.2.1, IS 800:2007)

Desing Compressive stress fcd=(fy/γm0)/(Φ+[Φ2-λ 2]0.5) 35.726 < fy/γm0 (Cl. 7.1.2.1, IS 800:2007)fy/γm0 313.636 O.K.

The Permissible Compressive stress facy = 0.60*fcd = 21.44 N/mm2The Actual Compressive stress fc = P/Ae = 2.59 N/mm2 ≤ 21.44 N/mm2 OK

Combined Stress: Compression + Bending : Compression Flange (Cl. 11.5.2, IS 800:2007)Equivalent moment factor for lateral torsional buckling CmLT = 0.6+0.4ψ ≥ 0.4 0.40 (Table 18, IS 800: 2007)Equivalent moment factor for Cmy = 0.6+0.4ψ ≥ 0.4 0.40 (Table 18, IS 800: 2007)Equivalent moment factor Cmz = 0.6+0.4ψ ≥ 0.4 0.40 (Table 18, IS 800: 2007)

nz=fcz/facz = 0.017ny=fcy/facy = 0.121

Moment amplification factor Kz=1+(λz-0.2)nz ≤ 1+0.8nz 1.0075 <1.01 (Cl. 9.3.2.2, IS 800: 2007)Therefore, Kz 1.0075

Moment amplification factor Ky=1+(λy-0.2)ny ≤ 1+0.8ny 1.3042 >1.1 (Cl. 9.3.2.2, IS 800: 2007)

Therefore, Ky 1.10

Moment amplification factor KLT=1-[0.1λ lt ny/(CmLT -0.25)] ≥ 1-[0.1ny/(CmLT - 0.25)] 0.891 ≥ 0.919

Therefore, KLT 0.919

Checks

a) Member strength requirement (Cl. 11.5.2, b) IS 800:2007)

= (fc/0.6*fy) + ( fbcz/fabcz) + (fbcy/fabcy))

= (2.59/ 0.6 *345) + ((55.64/ 207) + (0/ 207) = 0.281 ≤ 1 OK

b) Member stability requirement (Cl. 11.5.2, a) IS 800:2007)

= (fc/facy) + (KLT * ( fbcz/fabcz)) + (0.6*KY * Cmy * (fbcy/fabcy))

= (2.59/ 21.44) + (0.919(55.64/ 69.01) + (0.6 *1.097 *0.4* 0/ 207) = 0.862 ≤ 1 OK

= (fc/facz) + (Kz * Cmz * ( fbcz/fabcz)) + (0.6 * KY * Cmy * (fbcy/fabcy))

= (2.59/ 153.17) + (1.008*0.4(55.636/ 69.01) + (0.6 *1.097 *0.4* 0/ 207) 0.342 ≤ 1 OK

Page 5 of 5

Page 129: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.4Anchor Bolt & Base Plate Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 130: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

Approved By :

General Frames

750 mm Frame No. Frame-1

8 mm Node No. 106, 166, 49

350 mm Detail A

16 mm Location FRAME-1 SW COLUMN

p1 e1330 N/mm2

1030 mm510 e232 mm114 mm

g1 28 mm975 mm b=251mm b=250mm

Anchorage length Of bolt acted for Bond, l = 1087 mm8 e2

130.00 mm p2= 146 mm140.00 mm a=73mm a=114mm146.00 mm60.00 mm60.00 mm132.00 Fig. 120 mm

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSBBUILDING : SHELL STORE A.K. SETH

ANCHOR BOLT & BASE PLATE DESIGN (FIXED BASE)

SECTION SIZES:Depth of Web of column, dw =

Thickness of column web, tw =

Width of column flange, bf =

Thickness of column flange, tf =

BASE PLATE DETAILS: e1 p1Yield stress of Plate, Fy =

Length of Base Plate, L =

Width of Base Plate, B =

Thickness of Base Plate, t =

Cantilever along Length =

ANCHOR BOLT DETAILS:Dia. Of Anchor Bolt near to flanges, db =

Anchorage length Of bolt, l =

No. of Bolts nearer to flanges, N1 =

Spacing of Bolts, g =

Spacing of Bolts, p1 =

Spacing of Stiffeners, p2 =

Edge Distance of Bolts, e1 =

Edge Distance of Bolts, e2 =

Cantiliver on Both Side=LzDiameter Of Anchor Bolt at centre d' = 20 mm

700 mm Upward Force " -ve "8 Downward Force " +ve "4.6 Anticlockwise Momen" -ve "

Ultimate Tensile Streass of the Bolt =fub 400.0 Clockwise Moment " +ve "

Yield Stress of bolt fyb = 0.6fub 240.0

10 mm100 mm200 mm2

No. of Stiffeners within column flange = 3

Pedestal Details:

Grade of Concrete = M 25 25.0

Maximum Bearing Pressure, Fb = 14.25 N/mm2 IS 800:2007 Cl 7.4.1

Length of Pedetsal = 1130 mm

Width of Pedetsal = 610 mm

LOAD COMB. Shear Fx, KN Vertical Fy, KN Shear Fz, KN Moment Mx, KNm Moment Mz, KNm ENTER LOAD NUMBER lue of bearing pressu111 1 (DL+WL1) 126.5 23.7 0.0 0.0 -648.3 111.0 7.233101 1.0(DL+LL) -37.0 181.3 0.0 -0.1 187.6 101.0 2.423102 1.0(DL+LL+CL) -43.6 203.6 0.0 -0.1 220.9 102.0 2.835103 1 (DL+EQ+X) -18.7 99.8 0.0 0.0 129.6 103.0 1.626107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL) -37.4 154.4 0.0 -0.1 216.1 107.0 2.688112 1 (DL+WL2) 94.6 -145.9 -0.1 -0.8 -558.3 112.0 5.932119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL) 71.4 97.4 0.0 0.0 -367.3 119.0 4.259127 1 (0.75DL+0.75 LL+0.75 WL1) 76.3 80.6 0.0 0.0 -392.3 127.0 4.504104 1 (DL+EQ-X) -6.0 95.3 0.0 0.0 -4.8 104.0 0.128108 1 (DL+0.75LL+0.75EQ-X+0.75CL) -27.9 151.0 0.0 -0.1 115.3 108.0 1.565113 1 (DL+WL3) 1.6 50.2 0.1 1.5 -8.0 113.0 0.041120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL) 47.5 -29.9 0.0 -0.7 -299.8 120.0 3.283128 1 (0.75DL+0.75 LL+0.75 WL2) 52.4 -46.6 0.0 -0.7 -324.9 128.0 3.529105 1 (DL+EQ+Z) -12.3 97.5 -0.1 -1.3 62.4 105.0 0.847

167.940

Diameter Of Anchor Bolt at centre, d'b =

Anchorage length Of bolt at Centre, l' =

No. of Bolts at centre, N2 =

Grade of Bolts =

STIFFENER DETAILS:

Thickness of stiffener, ts =

width of stiffener, w = Notes : We are not taking the advantage of centre bolt as it is not take any tension in the major axis.Height of stiffener, h =

3-2

LOAD DATA (STAAD OUTPUT)

THESE LOAD COMBINATIONS ARE FOR A PARTICULAR CRITICAL NODE,HOWEVER ANY OTHER LOAD CASES COMING OUT TO BE CRITICAL FOR ANY OTHER NODES HAVE ALSO BEEN CHECKED FOR.

No. of stiffeners within column web =

Page 131: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE I : 111 1 (DL+WL1) SP 40 PAGE NO-25

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force 23.74 kN & Moment 648.258 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-23.74x1000x455-648.258x 10^6 =0

=> K^2- 3K +0.579=0

K1= 2.793 OR K2= 0.207

Y=Kx(L-e2)= 2.793x970 OR Y= 0.208x970

Y= 2709.16 OR 200.84 mm

=> mm

706.1 KN Tensile Force

0.1 KN 706.2 KN 14.3 MPa

706.2 KN

Check for Base Plate Under Bearing Pressure Fig. 2

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb23.8/(1030x510) +-648.3x6/(510x1030^2) + 0.1x6/(1030x510^2) 7.2 MPa [HENCE SAFE]

0.78 27.80

CASE II : 101 1.0(DL+LL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force 181.293 kN & Moment 187.567 kNm

CALCULATIONS FOR TENSION IN BOLTS

Refer SP 40 Page 24 to 25 for analysis only.

200.84

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-181.293x1000x455-187.567x 10^6 =0=> K^2- 3K +0.237=0

K= 2.9188 OR 0.0812

Y=Kx(L-e2)= 2.919x970 OR 0.082x970

Y= 2831.25 OR 78.75 mm

=> mm

14.3 MPa

104.9 KN Tensile Force

0.3 KN 105.2 KN

105.150 KN

Fig. 3

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb181.3/(1030x510) +187.6x6/(510x1030^2) + -0.2x6/(1030x510^2) 2.42 MPa [HENCE SAFE]

CASE III : 102 1.0(DL+LL+CL)

Compressive Force 203.627 kN & Moment 220.948 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-203.627x1000x455-220.948x 10^6 =0

=> K^2- 3K +0.276=0

K= 2.9053 OR 0.0947

Y=Kx(L-e2)= 2.906x970 OR 0.095x970

Y= 2818.13 OR 91.87 mm

=> mm

130.2 KN Tensile Force 14.3 MPa

0.3 KN

130.5 KN 130.5 KN

Check for Base Plate Under Bearing Pressure Fig. 4

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb203.7/(1030x510) +221x6/(510x1030^2) + -0.2x6/(1030x510^2) 2.8 MPa [HENCE SAFE]

78.75

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

91.87

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 132: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE IV : 103 1 (DL+EQ+X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 99.784 kN & Moment = 129.569 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-99.784x1000x455-129.569x 10^6 =0

=> K^2- 3K +0.154=0

K= 2.9479 OR 0.0521

Y=Kx(L-e2)= 2.948x970 OR 0.053x970

Y= 2859.48 OR 50.52 mm

=> mm

83.8 KN Tensile Force Fig. 5

0.1 KN

83.9 84.0 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb99.8/(1030x510) +129.6x6/(510x1030^2) + -0.1x6/(1030x510^2) 1.6 MPa [HENCE SAFE]

CASE V : 107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 154.403 kN & Moment = 216.096 kNm

> 1/2 Fb (L 2)^2 K B (1 1/3 K) P ( L/2 2 ) M 0

Refer SP 40 Page 24 to 25 for analysis only.

50.52

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-154.403x1000x455-216.096x 10^6 =0

=> K^2- 3K +0.252=0

K= 2.9138 OR 0.0862

Y=Kx(L-e2)= 2.914x970 OR 0.087x970

Y= 2826.36 OR 83.64 mm

=> mm

149.5 KN Tensile Force Fig. 6

0.2 KN

149.8 KN 149.8 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb154.5/(1030x510) +216.1x6/(510x1030^2) + -0.1x6/(1030x510^2) 2.7 MPa [HENCE SAFE]

CASE VI : 112 1 (DL+WL2)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 145.912 kN & Moment = 558.317 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)+145.912x1000x455-558.317x 10^6 =0

=> K^2- 3K +0.432=0

K= 2.8485 OR 0.1515

Y=Kx(L-e2)= 2.849x970 OR 0.152x970

Y= 2763.01 OR 146.99 mm

=> mm

Fig. 7

680.0 KN Tensile Force

2.1 KN

682.1 KN 682.1 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-146/(1030x510) +-558.4x6/(510x1030^2) + -0.9x6/(1030x510^2) 5.9 MPa [HENCE SAFE]

83.64

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

146.99

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 133: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE VII : 119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 97.371 kN & Moment = 367.274 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-97.371x1000x455-367.274x 10^6 =0

=> K^2- 3K +0.362=0

K= 2.8744 OR 0.1256

Y=Kx(L-e2)= 2.875x970 OR 0.126x970

Y= 2788.13 OR 121.87 mm

=> mm

Fig. 8

345.5 KN Tensile Force

0.1 KN

345.6 KN 345.6 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb97.4/(1030x510) +-367.3x6/(510x1030^2) + -0.1x6/(1030x510^2) 4.3 MPa [HENCE SAFE]

CASE VIII : 127 1 (0.75DL+0.75 LL+0.75 WL1)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 80.62 kN & Moment = 392.31 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 970^2 K 510 (1 1/3K) 80 62 1000 455 392 31 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

121.87

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-80.62x1000x455-392.31x 10^6 =0

=> K^2- 3K +0.377=0

K= 2.8688 OR 0.1312

Y=Kx(L-e2)= 2.869x970 OR 0.132x970

14.3 MPa

Y= 2782.72 OR 127.28 mm

=> mm

Fig. 9

381.9 KN Tensile Force

0.1 KN

381.9 KN 382.0 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb80.7/(1030x510) +-392.4x6/(510x1030^2) + -0.1x6/(1030x510^2) 4.5 MPa [HENCE SAFE]

CASE IX : 104 1 (DL+EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 95.295 kN & Moment = 4.791 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-95.295x1000x455-4.791x 10^6 =0

=> K^2- 3K +0.043=0

K= 2.9859 OR 0.0141

Y=Kx(L-e2)= 2.986x970 OR 0.015x970

14.3 MPa

Y= 2896.27 OR 13.73 mm

=> mm

Fig. 10

-45.4 KN Compressive Force

0.0 KN

-45.4 KN -45.4 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb95.3/(1030x510) +-4.8x6/(510x1030^2) + -0.1x6/(1030x510^2) 0.1 MPa [HENCE SAFE]

127.28

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

13.73

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 134: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE X : 108 1 (DL+0.75LL+0.75EQ-X+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 151.037 kN & Moment = 115.326 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-151.037x1000x455-115.326x 10^6 =0

=> K^2- 3K +0.162=0

K= 2.9452 OR 0.0548

Y=Kx(L-e2)= 2.946x970 OR 0.055x970

14.3 MPa

Y= 2856.81 OR 53.19 mm

=> mm

Fig. 1042.2 KN Tensile Force0.2 KN

42.4 KN 42.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb

151.1/(1030x510) +115.4x6/(510x1030^2) + -0.1x6/(1030x510^2) 1.6 MPa [HENCE SAFE]

CASE XI : 113 1 (DL+WL3)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 50.234 kN & Moment = 7.986 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

Refer SP 40 Page 24 to 25 for analysis only.

53.19

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

> 1/2 x Fb x(L e2) 2 xK x B x (1 1/3 K) P x ( L/2 e2 ) Mz 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-50.234x1000x455-7.986x 10^6 =0

=> K^2- 3K +0.028=0

K= 2.9910 OR 0.0090

Y=Kx(L-e2)= 2.991x970 OR 0.01x970

14.3 MPa

Y= 2901.22 OR 8.78 mm

=> mm

Fig. 10-18.3 KN Compressive Force3.8 KN

-14.5 KN -14.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb50.3/(1030x510) +-8x6/(510x1030^2) + 1.6x6/(1030x510^2) 0.0 MPa [HENCE SAFE]

CASE XII : 120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 29.869 kN & Moment = 299.819 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)+29.869x1000x455-299.819x 10^6 =0

=> K^2- 3K +0.252=0

K= 2.9138 OR 0.0862

Y=Kx(L-e2)= 2.914x970 OR 0.087x970

14.3 MPa

Y= 2826.39 OR 83.61 mm

=> mm

Fig. 10333.7 KN Tensile Force1.7 KN

335.4 KN 335.4 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-29.9/(1030x510) +-299.9x6/(510x1030^2) + -0.7x6/(1030x510^2) 3.3 MPa [HENCE SAFE]

8.78

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

83.61

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 135: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE XIII : 128 1 (0.75DL+0.75 LL+0.75 WL2)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 46.619 kN & Moment = 324.854 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x970^2x K x510x(1-1/3K)+46.619x1000x455-324.854x 10^6 =0

=> K^2- 3K +0.267=0

K= 2.9084 OR 0.0916

Y=Kx(L-e2)= 2.909x970 OR 0.092x970

14.3 MPa

Y= 2821.14 OR 88.86 mm

=> mm

Fig. 10369.5 KN Tensile Force1.7 KN

371.2 KN 371.3 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-46.7/(1030x510) +-324.9x6/(510x1030^2) + -0.7x6/(1030x510^2) 3.5 MPa [HENCE SAFE]

CASE XIV : 105 1 (DL+EQ+Z)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 97.54 kN & Moment = 62.389 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 970^2 K 510 (1 1/3K) 97 54 1000 455 62 389 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

88.86

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x970^2x K x510x(1-1/3K)-97.54x1000x455-62.389x 10^6 =0

=> K^2- 3K +0.094=0

K= 2.9684 OR 0.0316

Y=Kx(L-e2)= 2.969x970 OR 0.032x970

14.3 MPa

Y= 2879.39 OR 30.61 mm

=> mm

Fig. 10

13.7 KN Tensile Force

3.5 KN

17.2 KN 17.2 KN

Permissible bond stress of Plain bars in tension , ζbd = 1.4 N/mm2 IS 456 : 2000 Cl 26.2.1.1

T/(Л x ζbd x (28 )

Thus Doverall = 716.8 mm [OVERALL ANCHORAGE LENGTH REQUIRED IS SUFFICIENT]

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb97.6/(1030x510) +62.4x6/(510x1030^2) + -1.4x6/(1030x510^2) 0.8 MPa [HENCE SAFE]

30.61

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Calculation for anchor bolt length

Overall Anchorage length required =

Page 136: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

706.2 KN Load Case111 1 (DL+WL1)

88.3 KN

Check For Tension:

Tension per bolt 'Tb' =Flange Force/N = 88.28 kN

Tension Capacity of the Bolt (Tnb)=0.9fub x An=0.9x400xЛ/4x25^2= 176.72 kN IS 800:2007 Cl 10.3.5

< fyb x Asb x Ymb/Ym0=240x Л/4 x 28^2 x (1.25/1.1) 167.94 kN

Hence , Tnb = 167.94 kN

Capacity of Bolt (Tdb)=Tdb= Tnb =167.94 167.94 kN > 88.28 Hence OK

Capacity of Bolt (Tdb)=Tdb= 0.6 x Tnb = 0.6 x167.94 100.76 kN As per IS 800 2007 Cl(11.6.2.3)

Check For Shear:

400 N/mm2

Shear per Bolt 'Tsb'=Shear Force/N = 7.9 kN

No. of Shear Plane with thread intercepting = nn= 0.0

No. of Shear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 910.0 > 15db Reduction for Long Joint required IS 800:2007 Cl 10.3.

Reduction Factor for shear (βij) = 0.91 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 103.81 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3

Design Shear Strength of the Bolt = 0.6 xVdsb= 62.28 kN As per IS 800 2007 Cl(11.6.2.1) [Hence OK]

* Provide 16.0 no.s of 28 mm dia. Bolts

Check For Combined Shear & Tension:

Tension Forc e per Bolt (Tf)= 88.28 kN

Design Tensile Strength of the Bolt (Tdf)= 100.76 kN

Factored Shear Force per Bolt = Vsf = 7.91 kN

Design shear Strength of the bolt = Vdf = 62.28 kN

MAXIMUM FORCE IN BOLTS =

Maximum force in each bolt in tension =

ultimate tensile strength of bolt

Combined Stress Ratio (Shear+ Tension) = (Vsf/ Vdf)2 = 0.02 SAFE

(Tf/ Tdf)2 = 0.77 SAFE

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 = (7.9/62.28)^2+(88.28/100.76)^2 = 0.78 SAFE IS 800:2007 Cl 11.5.3

Calculation of Plastic Secion modulus of Rectangular Section

t/4

t Ac At

b t/4 a1 114.00

Zp=bxt/2xt/4+bxt/2xt/4 =bt2/8+bt2/8=bt2/4 d1 250.00

a1/d1 0.46

fy/fm0<M/Zp => Zp<M/(fy/fm0) => t2 = 4M/(bx(fy/fm0))t = 4M/(bx(fy/fm0))

Page 137: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

Base Plate Thickness :-

Exterior Panel : Two Continuous Edge is Fixed & Two Contineous Edge is Free Interior Panel :Three Contineous Edge is Fixed & One Edge is Free :-

a1 a1

d1 d1

a1= 114 mm a1= 73 mmd1 = 120.00 mmd1 = 120.00 mm d1 = 251 mm

a1/d1 = 0.950 a1/d1 = 0.29

0.75

Assuming Y/b 1 Assuming Y/b 1

Assuming X/a 0 Assuming X/a 0

Moment Coefficient a3 = 0.245 after interpolation 0.245 Moment Coefficient a3 = 0.0296 after interpolation

For Coefficient See Page 33 of Moment & Reaction for rectangular plate by W.T Moody For Coefficient See Page 7 of Moment & Reaction for rectangular plate by W.T Moody

Me = a3 x s con-max x d12 = 25496.71532 Nmm Mp = a3 x (s con-max x (C-e)/C) x d12 = 13498.40788 Nmm

t requd = (6 x Me/(fy x 0.6) ) 0.5 27.80 mm t requd = (6 x Me/(fy x 0.6) ) 20.2 mm

t requd = 27.80 mm

SUMMARY .

CHECKING OF PLATE THICKNESS BY W.T MOODY

PLATE SIZE = 1030x510 mm

PLATE THICKNESS = 32 mm SAFE

Maximum Moment (M) = 648.26 kNm

Axial Force (P) = 23.74 kN

size of weld for Web = Sw = 5 mm

size of weld for Flange = Sf = 5 mm

Ixx of Weld = 3553435262 mm4

Ymax = 505 mm

Area of Weld consider (Aweld)= 33280. mm2 Full weld for shear check

Stresses

Design Strength of fillet Weld = 132.00 N/mm2 = Minimum of [(Fu/√3)/fm0=(610/√3)/1.25] OR [0.6 x fy] As per 800-2007 Cl 11.6.3.1

Bending stress in weld = σb = 92.13 N/mm2 =M x Ymax / Ixx SAFE

Axial stress in weld = σaxial = 1.01 N/mm2 = P/Aweld SAFE

Combine check for axial and bending = 92.13 N/mm2 =(σb2 + σaxial

2)1/2 As per 800-2007 Cl 11.5.4 0.69 < 1 SAFE

DESIGN FOR WELDED CONNECTION BETWEEN COLUMN PLATE

Page 138: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

Approved By :

General Frames

400 mm Frame No. Frame-1

8 mm Node No. 111, 126, 21

350 mm Detail B

20 mm Location FRAME-1 ICO COLUMN

p1 e1345 N/mm2

640 mm400 e220 mm90 mm

g1 20 mm700 mm b=196mm b=195mm

Anchorage length Of bolt acted for Bond, l = 780 mm8 e2

100.00 mm p2= 195 mm120.00 mm a=97.5mm a=90mm195.00 mm50.00 mm50.00 mm112.00 Fig. 116 mm

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSBBUILDING : SHELL STORE A.K. SETH

ANCHOR BOLT & BASE PLATE DESIGN (FIXED BASE)

SECTION SIZES:Depth of Web of column, dw =

Thickness of column web, tw =

Width of column flange, bf =

Thickness of column flange, tf =

BASE PLATE DETAILS: e1 p1Yield stress of Plate, Fy =

Length of Base Plate, L =

Width of Base Plate, B =

Thickness of Base Plate, t =

Cantilever along Length =

ANCHOR BOLT DETAILS:Dia. Of Anchor Bolt near to flanges, db =

Anchorage length Of bolt, l =

No. of Bolts nearer to flanges, N1 =

Spacing of Bolts, g =

Spacing of Bolts, p1 =

Spacing of Stiffeners, p2 =

Edge Distance of Bolts, e1 =

Edge Distance of Bolts, e2 =

Cantiliver on Both Side=LzDiameter Of Anchor Bolt at centre d' = 16 mm

600 mm Upward Force " -ve "0 Downward Force " +ve "4.6 Anticlockwise Momen" -ve "

Ultimate Tensile Streass of the Bolt =fub 400.0 Clockwise Moment " +ve "

Yield Stress of bolt fyb = 0.6fub 240.0

10 mm100 mm300 mm1

No. of Stiffeners within column flange = 3

Pedestal Details:

Grade of Concrete = M 25 25.0

Maximum Bearing Pressure, Fb = 14.25 N/mm2 IS 800:2007 Cl 7.4.1

Length of Pedetsal = 740 mm

Width of Pedetsal = 500 mm

LOAD COMB. Shear Fx, KN Vertical Fy, KN Shear Fz, KN Moment Mx, KNm Moment Mz, KNm ENTER LOAD NUMBER lue of bearing pressu107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL) -3.098 290.371 -4.245 -0.595 24.844 107.0 2.009114 1 (DL+WL4) 0.0 -362.9 25.4 4.4 0.0 114.0 -1.672101 1.0(DL+LL) 0.0 335.4 -5.2 -0.7 0.0 101.0 1.266102 1.0(DL+LL+CL) 0.0 387.2 -5.7 -0.8 0.0 102.0 1.466103 1 (DL+EQ+X) -4.1 136.2 -1.8 -0.2 33.1 103.0 1.731108 1 (DL+0.75LL+0.75EQ-X) 3.1 290.4 -4.2 -0.6 -24.8 108.0 0.190111 1 (DL+WL1) -5.1 43.0 1.8 0.3 -0.3 111.0 0.174119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL) -3.8 220.5 -1.6 -0.2 -0.2 119.0 0.842127 1 (0.75DL+0.75 LL+0.75 WL1) -3.8 181.6 -1.3 -0.2 -0.2 127.0 0.692104 1 (DL+EQ-X) 4.1 136.2 -1.8 -0.2 -33.1 104.0 1.760108 1 (DL+0.75LL+0.75EQ-X) 3.1 290.4 -4.2 -0.6 -24.8 108.0 0.190112 1 (DL+WL2) -4.4 -286.4 5.3 0.5 -5.0 112.0 -0.965120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL) -3.3 -26.6 1.1 0.0 -3.8 120.0 0.036128 1 (0.75DL+0.75 LL+0.75 WL2) -3.3 -65.5 1.4 0.0 -3.8 128.0 -0.118

81.720

Diameter Of Anchor Bolt at centre, d'b =

Anchorage length Of bolt at Centre, l' =

No. of Bolts at centre, N2 =

Grade of Bolts =

STIFFENER DETAILS:

Thickness of stiffener, ts =

width of stiffener, w = Notes : We are not taking the advantage of centre bolt as it is not take any tension in the major axis.Height of stiffener, h =

3-1

LOAD DATA (STAAD OUTPUT)

THESE LOAD COMBINATIONS ARE FOR A PARTICULAR CRITICAL NODE,HOWEVER ANY OTHER LOAD CASES COMING OUT TO BE CRITICAL FOR ANY OTHER NODES HAVE ALSO BEEN CHECKED FOR.

No. of stiffeners within column web =

Page 139: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE I : 107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL) SP 40 PAGE NO-25

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force 290.371 kN & Moment 24.844 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-290.371x1000x270-24.844x 10^6 =0

=> K^2- 3K +0.313=0

K1= 2.892 OR K2= 0.108

Y=Kx(L-e2)= 2.893x590 OR Y= 0.108x590

Y= 1706.31 OR 63.69 mm

=> mm

-108.8 KN Compressive Force

2.0 KN 106.9 KN 14.3 MPa

-106.9 KN

Check for Base Plate Under Bearing Pressure Fig. 2

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb290.4/(640x400) +24.9x6/(400x640^2) + -0.6x6/(640x400^2) 2.0 MPa [HENCE SAFE]

0.93 13.74

CASE II : 114 1 (DL+WL4)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force 362.923 kN & Moment 0.026 kNm

CALCULATIONS FOR TENSION IN BOLTS

Refer SP 40 Page 24 to 25 for analysis only.

63.69

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)+362.923x1000x270-0.026x 10^6 =0=> K^2- 3K +-0.297=0

K= 3.0957 OR -0.0957

Y=Kx(L-e2)= 3.096x590 OR -0.096x590

Y= 1826.46 OR -56.46 mm

=> mm

14.3 MPa

362.9 KN Tensile Force

14.5 KN 377.5 KN

377.450 KN

Fig. 3

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-363/(640x400) +-0.1x6/(400x640^2) + 4.4x6/(640x400^2) -1.67 MPa [HENCE SAFE]

CASE III : 101 1.0(DL+LL)

Compressive Force 335.362 kN & Moment 0 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-335.362x1000x270-0x 10^6 =0

=> K^2- 3K +0.274=0

K= 2.9058 OR 0.0942

Y=Kx(L-e2)= 2.906x590 OR 0.095x590

Y= 1714.40 OR 55.60 mm

=> mm

-176.9 KN Compressive Force 14.3 MPa

2.5 KN

-174.4 KN -174.5 KN

Check for Base Plate Under Bearing Pressure Fig. 4

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb335.4/(640x400) +0x6/(400x640^2) + -0.8x6/(640x400^2) 1.3 MPa [HENCE SAFE]

Y VALUE BEYOND BASE PLATE, THUS IGNORED

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

55.60

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 140: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE IV : 102 1.0(DL+LL+CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 387.161 kN & Moment = 0 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-387.161x1000x270-0x 10^6 =0

=> K^2- 3K +0.317=0

K= 2.8906 OR 0.1094

Y=Kx(L-e2)= 2.891x590 OR 0.11x590

Y= 1705.48 OR 64.52 mm

=> mm

-203.3 KN Compressive Force Fig. 5

2.6 KN

-200.6 -200.7 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb387.2/(640x400) +0x6/(400x640^2) + -0.8x6/(640x400^2) 1.5 MPa [HENCE SAFE]

CASE V : 103 1 (DL+EQ+X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 136.229 kN & Moment = 33.125 kNm

> 1/2 Fb (L 2)^2 K B (1 1/3 K) P ( L/2 2 ) M 0

Refer SP 40 Page 24 to 25 for analysis only.

64.52

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-136.229x1000x270-33.125x 10^6 =0

=> K^2- 3K +0.212=0

K= 2.9278 OR 0.0722

Y=Kx(L-e2)= 2.928x590 OR 0.073x590

Y= 1727.40 OR 42.60 mm

=> mm

-14.8 KN Compressive Force Fig. 6

0.8 KN

-14.0 KN -14.0 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb136.3/(640x400) +33.2x6/(400x640^2) + -0.3x6/(640x400^2) 1.7 MPa [HENCE SAFE]

CASE VI : 108 1 (DL+0.75LL+0.75EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 290.371 kN & Moment = 24.844 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-290.371x1000x270-24.844x 10^6 =0

=> K^2- 3K +0.313=0

K= 2.8920 OR 0.1080

Y=Kx(L-e2)= 2.893x590 OR 0.108x590

Y= 1706.31 OR 63.69 mm

=> mm

Fig. 7

-108.8 KN Compressive Force

2.0 KN

-106.9 KN -106.9 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb290.4/(640x400) +-24.9x6/(400x640^2) + -0.6x6/(640x400^2) 0.2 MPa [HENCE SAFE]

42.60

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

63.69

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 141: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE VII : 111 1 (DL+WL1)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 43.031 kN & Moment = 0.284 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-43.031x1000x270-0.284x 10^6 =0

=> K^2- 3K +0.036=0

K= 2.9880 OR 0.0120

Y=Kx(L-e2)= 2.988x590 OR 0.013x590

Y= 1762.89 OR 7.11 mm

=> mm

Fig. 8

-22.8 KN Compressive Force

0.9 KN

-21.8 KN -21.9 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb43.1/(640x400) +-0.3x6/(400x640^2) + 0.3x6/(640x400^2) 0.2 MPa [HENCE SAFE]

CASE VIII : 119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 220.472 kN & Moment = 0.213 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 590^2 K 400 (1 1/3K) 220 472 1000 270 0 213 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

7.11

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-220.472x1000x270-0.213x 10^6 =0

=> K^2- 3K +0.181=0

K= 2.9385 OR 0.0615

Y=Kx(L-e2)= 2.939x590 OR 0.062x590

14.3 MPa

Y= 1733.73 OR 36.27 mm

=> mm

Fig. 9

-117.1 KN Compressive Force

0.7 KN

-116.5 KN -116.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb220.5/(640x400) +-0.3x6/(400x640^2) + -0.2x6/(640x400^2) 0.8 MPa [HENCE SAFE]

CASE IX : 127 1 (0.75DL+0.75 LL+0.75 WL1)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 181.623 kN & Moment = 0.213 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-181.623x1000x270-0.213x 10^6 =0

=> K^2- 3K +0.149=0

K= 2.9495 OR 0.0505

Y=Kx(L-e2)= 2.95x590 OR 0.051x590

14.3 MPa

Y= 1740.21 OR 29.79 mm

=> mm

Fig. 10

-96.7 KN Compressive Force

0.5 KN

-96.2 KN -96.2 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb181.7/(640x400) +-0.3x6/(400x640^2) + -0.2x6/(640x400^2) 0.7 MPa [HENCE SAFE]

36.27

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

29.79

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 142: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE X : 104 1 (DL+EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 136.229 kN & Moment = 33.125 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-136.229x1000x270-33.125x 10^6 =0

=> K^2- 3K +0.212=0

K= 2.9278 OR 0.0722

Y=Kx(L-e2)= 2.928x590 OR 0.073x590

14.3 MPa

Y= 1727.40 OR 42.60 mm

=> mm

Fig. 10-14.8 KN Compressive Force0.8 KN

-14.0 KN -14.0 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb

136.3/(640x400) +-33.2x6/(400x640^2) + -0.3x6/(640x400^2) 1.8 MPa [HENCE SAFE]

CASE XI : 108 1 (DL+0.75LL+0.75EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 290.371 kN & Moment = 24.844 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

Refer SP 40 Page 24 to 25 for analysis only.

42.60

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

> 1/2 x Fb x(L e2) 2 xK x B x (1 1/3 K) P x ( L/2 e2 ) Mz 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)-290.371x1000x270-24.844x 10^6 =0

=> K^2- 3K +0.313=0

K= 2.8920 OR 0.1080

Y=Kx(L-e2)= 2.893x590 OR 0.108x590

14.3 MPa

Y= 1706.31 OR 63.69 mm

=> mm

Fig. 10-108.8 KN Compressive Force2.0 KN

-106.9 KN -106.9 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb290.4/(640x400) +-24.9x6/(400x640^2) + -0.6x6/(640x400^2) 0.2 MPa [HENCE SAFE]

CASE XII : 112 1 (DL+WL2)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 286.427 kN & Moment = 5.027 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)+286.427x1000x270-5.027x 10^6 =0

=> K^2- 3K +-0.219=0

K= 3.0712 OR -0.0712

Y=Kx(L-e2)= 3.072x590 OR -0.072x590

14.3 MPa

Y= 1812.01 OR -42.01 mm

=> mm

Fig. 10286.4 KN Tensile Force1.7 KN

288.1 KN 288.2 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-286.5/(640x400) +-5.1x6/(400x640^2) + 0.6x6/(640x400^2) -1.0 MPa [HENCE SAFE]

63.69

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

Y VALUE BEYOND BASE PLATE, THUS IGNORED

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 143: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE XIII : 120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 26.621 kN & Moment = 3.77 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x590^2x K x400x(1-1/3K)+26.621x1000x270-3.77x 10^6 =0

=> K^2- 3K +-0.011=0

K= 3.0034 OR -0.0034

Y=Kx(L-e2)= 3.004x590 OR -0.004x590

14.3 MPa

Y= 1772.03 OR -2.03 mm

=> mm

Fig. 1026.6 KN Tensile Force0.1 KN

26.7 KN 26.8 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-26.7/(640x400) +-3.8x6/(400x640^2) + -0.1x6/(640x400^2) 0.0 MPa [HENCE SAFE]

CASE XIV : 128 1 (0.75DL+0.75 LL+0.75 WL2)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 65.471 kN & Moment = 3.77 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 590^2 K 400 (1 1/3K)+65 471 1000 270 3 77 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

Y VALUE BEYOND BASE PLATE, THUS IGNORED

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x590^2x K x400x(1-1/3K)+65.471x1000x270-3.77x 10^6 =0

=> K^2- 3K +-0.043=0

K= 3.0140 OR -0.0140

Y=Kx(L-e2)= 3.014x590 OR -0.014x590

14.3 MPa

Y= 1778.23 OR -8.23 mm

=> mm

Fig. 10

65.5 KN Tensile Force

0.0 KN

65.5 KN 65.6 KN

Permissible bond stress of Plain bars in tension , ζbd = 1.4 N/mm2 IS 456 : 2000 Cl 26.2.1.1

T/(Л x ζbd x (20 )

Thus Doverall = 536.4 mm [OVERALL ANCHORAGE LENGTH REQUIRED IS SUFFICIENT]

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-65.5/(640x400) +-3.8x6/(400x640^2) + 0.1x6/(640x400^2) -0.1 MPa [HENCE SAFE]

Y VALUE BEYOND BASE PLATE, THUS IGNORED

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Calculation for anchor bolt length

Overall Anchorage length required =

Page 144: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

377.5 KN Load Case114 1 (DL+WL4)

47.2 KN

Check For Tension:

Tension per bolt 'Tb' =Flange Force/N = 47.19 kN

Tension Capacity of the Bolt (Tnb)=0.9fub x An=0.9x400xЛ/4x17^2= 81.72 kN IS 800:2007 Cl 10.3.5

< fyb x Asb x Ymb/Ym0=240x Л/4 x 20^2 x (1.25/1.1) 85.68 kN

Hence , Tnb = 81.72 kN

Capacity of Bolt (Tdb)=Tdb= Tnb =81.72 81.72 kN > 47.19 Hence OK

Capacity of Bolt (Tdb)=Tdb= 0.6 x Tnb = 0.6 x81.72 49.03 kN As per IS 800 2007 Cl(11.6.2.3)

Check For Shear:

400 N/mm2

Shear per Bolt 'Tsb'=Shear Force/N = 0.0 kN

No. of Shear Plane with thread intercepting = nn= 0.0

No. of Shear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 540.0 > 15db Reduction for Long Joint required IS 800:2007 Cl 10.3.

Reduction Factor for shear (βij) = 0.94 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 54.56 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3

Design Shear Strength of the Bolt = 0.6 xVdsb= 32.74 kN As per IS 800 2007 Cl(11.6.2.1) [Hence OK]

* Provide 16.0 no.s of 20 mm dia. Bolts

Check For Combined Shear & Tension:

Tension Forc e per Bolt (Tf)= 47.19 kN

Design Tensile Strength of the Bolt (Tdf)= 49.03 kN

Factored Shear Force per Bolt = Vsf = 0.00 kN

Design shear Strength of the bolt = Vdf = 32.74 kN

MAXIMUM FORCE IN BOLTS =

Maximum force in each bolt in tension =

ultimate tensile strength of bolt

Combined Stress Ratio (Shear+ Tension) = (Vsf/ Vdf)2 = 0.00 SAFE

(Tf/ Tdf)2 = 0.93 SAFE

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 = (0/32.73)^2+(47.19/49.03)^2 = 0.93 SAFE IS 800:2007 Cl 11.5.3

Calculation of Plastic Secion modulus of Rectangular Section

t/4

t Ac At

b t/4 a1 90.00

Zp=bxt/2xt/4+bxt/2xt/4 =bt2/8+bt2/8=bt2/4 d1 195.00

a1/d1 0.46

fy/fm0<M/Zp => Zp<M/(fy/fm0) => t2 = 4M/(bx(fy/fm0))t = 4M/(bx(fy/fm0))

Page 145: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

Base Plate Thickness :-

Exterior Panel : Two Continuous Edge is Fixed & Two Contineous Edge is Free Interior Panel :Three Contineous Edge is Fixed & One Edge is Free :-

a1 a1

d1 d1

a1= 90 mm a1= 97.5 mmd1 = 92.50 mmd1 = 92.50 mm d1 = 196 mm

a1/d1 = 0.973 a1/d1 = 0.50

0.75

Assuming Y/b 1 Assuming Y/b 1

Assuming X/a 0 Assuming X/a 0

Moment Coefficient a3 = 0.252 after interpolation 0.252 Moment Coefficient a3 = 0.0844 after interpolation

For Coefficient See Page 33 of Moment & Reaction for rectangular plate by W.T Moody For Coefficient See Page 7 of Moment & Reaction for rectangular plate by W.T Moody

Me = a3 x s con-max x d12 = 4338.765894 Nmm Mp = a3 x (s con-max x (C-e)/C) x d12 = 6517.012208 Nmm

t requd = (6 x Me/(fy x 0.6) ) 0.5 11.21 mm t requd = (6 x Me/(fy x 0.6) ) 13.7 mm

t requd = 13.74 mm

SUMMARY .

CHECKING OF PLATE THICKNESS BY W.T MOODY

PLATE SIZE = 640x400 mm

PLATE THICKNESS = 20 mm SAFE

Maximum Moment (M) = 33.13 kNm

Axial Force (P) = 26.621 kN

size of weld for Web = Sw = 5 mm

size of weld for Flange = Sf = 5 mm

Ixx of Weld = 809672791.7 mm4

Ymax = 310 mm

Area of Weld consider (Aweld)= 21840. mm2 Full weld for shear check

Stresses

Design Strength of fillet Weld = 138.00 N/mm2 = Minimum of [(Fu/√3)/fm0=(610/√3)/1.25] OR [0.6 x fy] As per 800-2007 Cl 11.6.3.1

Bending stress in weld = σb = 12.68 N/mm2 =M x Ymax / Ixx SAFE

Axial stress in weld = σaxial = 1.72 N/mm2 = P/Aweld SAFE

Combine check for axial and bending = 12.80 N/mm2 =(σb2 + σaxial

2)1/2 As per 800-2007 Cl 11.5.4 0.09 < 1 SAFE

DESIGN FOR WELDED CONNECTION BETWEEN COLUMN PLATE

Page 146: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

Approved By :

General Frames

750 mm Frame No. End Frame-1

10 mm Node No. 1, 4, 196

475 mm Detail A1

25 mm Location EndFrame-1 SW COLUMN

p1 e1330 N/mm2

1070 mm590 e232 mm125 mm

g1 32 mm1125 mm b=290mm b=290mm

Anchorage length Of bolt acted for Bond, l = 1253 mm8 e2

150.00 mm p2= 146 mm160.00 mm a=73mm a=125mm146.00 mm70.00 mm70.00 mm150.00 Fig. 124 mm

Spacing of Bolts, g =

Spacing of Bolts, p1 =

Spacing of Stiffeners, p2 =

Edge Distance of Bolts, e1 =

Edge Distance of Bolts, e2 =

Cantiliver on Both Side=LzDiameter Of Anchor Bolt at centre d' =

Thickness of Base Plate, t =

Cantilever along Length =

ANCHOR BOLT DETAILS:Dia. Of Anchor Bolt near to flanges, db =

Anchorage length Of bolt, l =

No. of Bolts nearer to flanges, N1 =

BASE PLATE DETAILS: e1 p1Yield stress of Plate, Fy =

Length of Base Plate, L =

Width of Base Plate, B =

Width of column flange, bf =

Thickness of column flange, tf =

ANCHOR BOLT & BASE PLATE DESIGN (FIXED BASE)

SECTION SIZES:Depth of Web of column, dw =

Thickness of column web, tw =

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSBBUILDING : SHELL STORE A.K. SETH

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

24 mm

850 mm Upward Force " -ve "8 Downward Force " +ve "4.6 Anticlockwise Momen" -ve "

Ultimate Tensile Streass of the Bolt =fub 400.0 Clockwise Moment " +ve "

Yield Stress of bolt fyb = 0.6fub 240.0

10 mm100 mm300 mm2

No. of Stiffeners within column flange = 3

Pedestal Details:

Grade of Concrete = M 25 25.0

Maximum Bearing Pressure, Fb = 14.25 N/mm2 IS 800:2007 Cl 7.4.1

Length of Pedetsal = 1170 mm

Width of Pedetsal = 690 mm

LOAD COMB. Shear Fx, KN Vertical Fy, KN Shear Fz, KN Moment Mx, KNm Moment Mz, KNm ENTER LOAD NUMBER lue of bearing pressu112 1 (DL+WL2) 37.7 16.2 -49.2 -264.1 -303.2 112.0 6.974116 1 (DL+WL6) -44.0 -8.4 -49.2 -264.1 368.9 116.0 0.965101 1.0(DL+LL) 1.6 122.7 2.9 -4.5 -13.3 101.0 0.004102 1.0(DL+LL+CL) 1.8 128.4 2.9 -4.5 -15.7 102.0 0.415103 1 (DL+EQ+X) -4.6 76.9 0.7 -1.2 65.6 103.0 0.685107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL) -2.5 95.0 2.1 -3.4 40.8 107.0 0.458113 1 (DL+WL3) -0.1 40.2 12.6 86.0 0.7 113.0 1.455119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL) 13.1 82.8 -4.5 -26.8 -151.4 119.0 1.908127 1 (0.75DL+0.75 LL+0.75 WL1) 12.9 78.5 -4.5 -26.8 -149.6 127.0 1.885104 1 (DL+EQ-X) 5.7 80.4 0.8 -1.1 -74.5 104.0 0.807108 1 (DL+0.75LL+0.75EQ-X) 5.2 97.6 2.2 -3.3 -64.3 108.0 0.779114 1 (DL+WL4) 21.2 -4.4 -28.5 -145.7 -108.4 114.0 3.302117 1 (DL+WL7) 0.0 40.2 45.0 266.2 1.3 117.0 4.364120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL) 29.2 49.5 -35.3 -200.6 -235.8 120.0 5.405

219.350THESE LOAD COMBINATIONS ARE FOR A PARTICULAR CRITICAL NODE,HOWEVER ANY OTHER LOAD CASES COMING OUT TO BE CRITICAL FOR ANY OTHER NODES HAVE ALSO BEEN CHECKED FOR.

No. of stiffeners within column web =

Grade of Bolts =

STIFFENER DETAILS:

Thickness of stiffener, ts =

width of stiffener, w = Notes : We are not taking the advantage of centre bolt as it is not take any tension in the major axis.Height of stiffener, h =

3-2

LOAD DATA (STAAD OUTPUT)

Diameter Of Anchor Bolt at centre, d'b =

Anchorage length Of bolt at Centre, l' =

No. of Bolts at centre, N2 =

Page 147: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

CASE I : 112 1 (DL+WL2) SP 40 PAGE NO-25

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force 16.199 kN & Moment 303.221 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-16.199x1000x465-303.221x 10^6 =0

=> K^2- 3K +0.222=0

K1= 2.924 OR K2= 0.076

Y=Kx(L-e2)= 2.925x1000 OR Y= 0.076x1000

Y= 2924.16 OR 75.84 mm

=> mm

302.6 KN Tensile Force

587.0 KN 889.7 KN 14.3 MPa

889.6 KN

Check for Base Plate Under Bearing Pressure Fig. 2

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb16.2/(1070x590) +-303.3x6/(590x1070^2) + -264.2x6/(1070x590^2) 7.0 MPa [HENCE SAFE]

0.85 30.59

CASE II : 116 1 (DL+WL6)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force 8.412 kN & Moment 368.852 kNm

Refer SP 40 Page 24 to 25 for analysis only.

Total Tension in bolts, T =

CALCULATIONS FOR TENSION IN BOLTS

Refer SP 40 Page 24 to 25 for analysis only.

75.84

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)+8.412x1000x465-368.852x 10^6 =0=> K^2- 3K +0.261=0

K= 2.9105 OR 0.0895

Y=Kx(L-e2)= 2.911x1000 OR 0.09x1000

Y= 2910.52 OR 89.48 mm

=> mm

14.3 MPa

384.6 KN Tensile Force

586.9 KN 971.5 KN

971.500 KN

Fig. 3

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-8.5/(1070x590) +368.9x6/(590x1070^2) + -264.2x6/(1070x590^2) 0.96 MPa [HENCE SAFE]

CASE III : 101 1.0(DL+LL)

Compressive Force 122.701 kN & Moment 13.313 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-122.701x1000x465-13.313x 10^6 =0

=> K^2- 3K +0.051=0

K= 2.9832 OR 0.0168

Y=Kx(L-e2)= 2.984x1000 OR 0.017x1000

Y= 2983.17 OR 16.83 mm

=> mm

-51.9 KN Compressive Force 14.3 MPa

10.0 KN

-42.0 KN -42.0 KN

Check for Base Plate Under Bearing Pressure Fig. 4

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb122.8/(1070x590) +-13.4x6/(590x1070^2) + -4.5x6/(1070x590^2) 0.0 MPa [HENCE SAFE]

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

89.48

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

16.83

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Page 148: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

CASE IV : 102 1.0(DL+LL+CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 128.432 kN & Moment = 15.668 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-128.432x1000x465-15.668x 10^6 =0

=> K^2- 3K +0.054=0

K= 2.9820 OR 0.0180

Y=Kx(L-e2)= 2.982x1000 OR 0.019x1000

Y= 2981.96 OR 18.04 mm

=> mm

-52.6 KN Compressive Force Fig. 5

10.0 KN

-42.6 -42.7 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb128.5/(1070x590) +-15.7x6/(590x1070^2) + -4.5x6/(1070x590^2) 0.4 MPa [HENCE SAFE]

CASE V : 103 1 (DL+EQ+X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 76.933 kN & Moment = 65.612 kNm

> 1/2 Fb (L 2)^2 K B (1 1/3 K) P ( L/2 2 ) M 0

Refer SP 40 Page 24 to 25 for analysis only.

18.04

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-76.933x1000x465-65.612x 10^6 =0

=> K^2- 3K +0.073=0

K= 2.9757 OR 0.0243

Y=Kx(L-e2)= 2.976x1000 OR 0.025x1000

Y= 2975.68 OR 24.32 mm

=> mm

25.3 KN Tensile Force Fig. 6

2.7 KN

28.0 KN 28.0 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb77/(1070x590) +65.7x6/(590x1070^2) + -1.3x6/(1070x590^2) 0.7 MPa [HENCE SAFE]

CASE VI : 107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 95.04 kN & Moment = 40.78 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-95.04x1000x465-40.78x 10^6 =0

=> K^2- 3K +0.061=0

K= 2.9796 OR 0.0204

Y=Kx(L-e2)= 2.98x1000 OR 0.021x1000

Y= 2979.65 OR 20.35 mm

=> mm

Fig. 7

-9.5 KN Compressive Force

7.5 KN

-1.9 KN -2.0 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb95.1/(1070x590) +40.8x6/(590x1070^2) + -3.4x6/(1070x590^2) 0.5 MPa [HENCE SAFE]

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

20.35

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

24.32

Page 149: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

CASE VII : 113 1 (DL+WL3)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 40.153 kN & Moment = 0.683 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-40.153x1000x465-0.683x 10^6 =0

=> K^2- 3K +0.014=0

K= 2.9954 OR 0.0046

Y=Kx(L-e2)= 2.996x1000 OR 0.005x1000

Y= 2995.39 OR 4.61 mm

=> mm

Fig. 8

-20.8 KN Compressive Force

191.1 KN

170.4 KN 170.4 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb40.2/(1070x590) +0.7x6/(590x1070^2) + 86.1x6/(1070x590^2) 1.5 MPa [HENCE SAFE]

CASE VIII : 119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 82.827 kN & Moment = 151.368 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 1000^2 K 590 (1 1/3K) 82 827 1000 465 151 368 10^6 0

4.61

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-82.827x1000x465-151.368x 10^6 =0

=> K^2- 3K +0.136=0

K= 2.9541 OR 0.0459

Y=Kx(L-e2)= 2.955x1000 OR 0.046x1000

14.3 MPa

Y= 2954.13 OR 45.87 mm

=> mm

Fig. 9

110.0 KN Tensile Force

59.6 KN

169.6 KN 169.7 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb82.9/(1070x590) +-151.4x6/(590x1070^2) + -26.9x6/(1070x590^2) 1.9 MPa [HENCE SAFE]

CASE IX : 127 1 (0.75DL+0.75 LL+0.75 WL1)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 78.528 kN & Moment = 149.603 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-78.528x1000x465-149.603x 10^6 =0

=> K^2- 3K +0.133=0

K= 2.9551 OR 0.0449

Y=Kx(L-e2)= 2.956x1000 OR 0.045x1000

14.3 MPa

Y= 2955.05 OR 44.95 mm

=> mm

Fig. 10

110.4 KN Tensile Force

59.6 KN

170.1 KN 170.1 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb78.6/(1070x590) +-149.7x6/(590x1070^2) + -26.9x6/(1070x590^2) 1.9 MPa [HENCE SAFE]

Refer SP 40 Page 24 to 25 for analysis only.

44.95

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

45.87

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 150: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

CASE X : 104 1 (DL+EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 80.357 kN & Moment = 74.47 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-80.357x1000x465-74.47x 10^6 =0

=> K^2- 3K +0.08=0

K= 2.9732 OR 0.0268

Y=Kx(L-e2)= 2.974x1000 OR 0.027x1000

14.3 MPa

Y= 2973.16 OR 26.84 mm

=> mm

Fig. 1032.5 KN Tensile Force2.5 KN

35.0 KN 35.1 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb

80.4/(1070x590) +-74.5x6/(590x1070^2) + -1.2x6/(1070x590^2) 0.8 MPa [HENCE SAFE]

CASE XI : 108 1 (DL+0.75LL+0.75EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 97.608 kN & Moment = 64.282 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

Refer SP 40 Page 24 to 25 for analysis only.

26.84

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

> 1/2 x Fb x(L e2) 2 xK x B x (1 1/3 K) P x ( L/2 e2 ) Mz 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-97.608x1000x465-64.282x 10^6 =0

=> K^2- 3K +0.079=0

K= 2.9737 OR 0.0263

Y=Kx(L-e2)= 2.974x1000 OR 0.027x1000

14.3 MPa

Y= 2973.68 OR 26.32 mm

=> mm

Fig. 1013.0 KN Tensile Force7.4 KN

20.5 KN 20.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb97.7/(1070x590) +-64.3x6/(590x1070^2) + -3.4x6/(1070x590^2) 0.8 MPa [HENCE SAFE]

CASE XII : 114 1 (DL+WL4)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force = 4.387 kN & Moment = 108.412 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)+4.387x1000x465-108.412x 10^6 =0

=> K^2- 3K +0.076=0

K= 2.9745 OR 0.0255

Y=Kx(L-e2)= 2.975x1000 OR 0.026x1000

14.3 MPa

Y= 2974.48 OR 25.52 mm

=> mm

Fig. 10111.7 KN Tensile Force323.7 KN

435.4 KN 435.4 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-4.4/(1070x590) +-108.5x6/(590x1070^2) + -145.7x6/(1070x590^2) 3.3 MPa [HENCE SAFE]

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

26.32

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

25.52

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Page 151: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

CASE XIII : 117 1 (DL+WL7)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 40.245 kN & Moment = 1.301 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-40.245x1000x465-1.301x 10^6 =0

=> K^2- 3K +0.015=0

K= 2.9952 OR 0.0048

Y=Kx(L-e2)= 2.996x1000 OR 0.005x1000

14.3 MPa

Y= 2995.23 OR 4.77 mm

=> mm

Fig. 10-20.2 KN Compressive Force591.6 KN

571.4 KN 571.4 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb40.3/(1070x590) +1.4x6/(590x1070^2) + 266.3x6/(1070x590^2) 4.4 MPa [HENCE SAFE]

CASE XIV : 120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 49.49 kN & Moment = 235.845 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 1000^2 K 590 (1 1/3K) 49 49 1000 465 235 845 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

4.77

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x1000^2x K x590x(1-1/3K)-49.49x1000x465-235.845x 10^6 =0

=> K^2- 3K +0.185=0

K= 2.9371 OR 0.0629

Y=Kx(L-e2)= 2.938x1000 OR 0.063x1000

14.3 MPa

Y= 2937.10 OR 62.90 mm

=> mm

Fig. 10

214.9 KN Tensile Force

445.8 KN

660.7 KN 660.7 KN

Permissible bond stress of Plain bars in tension , ζbd = 1.4 N/mm2 IS 456 : 2000 Cl 26.2.1.1

T/(Л x ζbd x (32 )

Thus Doverall = 862.8 mm [OVERALL ANCHORAGE LENGTH REQUIRED IS SUFFICIENT]

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb49.5/(1070x590) +-235.9x6/(590x1070^2) + -200.6x6/(1070x590^2) 5.4 MPa [HENCE SAFE]

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Calculation for anchor bolt length

Overall Anchorage length required =

62.90

Page 152: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

971.5 KN Load Case116 1 (DL+WL6)

121.4 KN

Check For Tension:

Tension per bolt 'Tb' =Flange Force/N = 121.44 kN

Tension Capacity of the Bolt (Tnb)=0.9fub x An=0.9x400xЛ/4x29^2= 237.79 kN IS 800:2007 Cl 10.3.5

< fyb x Asb x Ymb/Ym0=240x Л/4 x 32^2 x (1.25/1.1) 219.35 kN

Hence , Tnb = 219.35 kN

Capacity of Bolt (Tdb)=Tdb= Tnb =219.35 219.35 kN > 121.44 Hence OK

Capacity of Bolt (Tdb)=Tdb= 0.6 x Tnb = 0.6 x219.35 131.61 kN As per IS 800 2007 Cl(11.6.2.3)

Check For Shear:

400 N/mm2

Shear per Bolt 'Tsb'=Shear Force/N = 2.8 kN

No. of Shear Plane with thread intercepting = nn= 0.0

No. of Shear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 930.0 > 15db Reduction for Long Joint required IS 800:2007 Cl 10.3.

Reduction Factor for shear (βij) = 0.93 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 138.14 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3

Design Shear Strength of the Bolt = 0.6 xVdsb= 82.88 kN As per IS 800 2007 Cl(11.6.2.1) [Hence OK]

* Provide 16.0 no.s of 32 mm dia. Bolts

Check For Combined Shear & Tension:

Tension Forc e per Bolt (Tf)= 121.44 kN

Design Tensile Strength of the Bolt (Tdf)= 131.61 kN

Factored Shear Force per Bolt = Vsf = 2.75 kN

Design shear Strength of the bolt = Vdf = 82.88 kN

MAXIMUM FORCE IN BOLTS =

Maximum force in each bolt in tension =

ultimate tensile strength of bolt

Combined Stress Ratio (Shear+ Tension) = (Vsf/ Vdf)2 = 0.00 SAFE

(Tf/ Tdf)2 = 0.85 SAFE

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 = (2.75/82.88)^2+(121.44/131.61)^2 = 0.85 SAFE IS 800:2007 Cl 11.5.3

Calculation of Plastic Secion modulus of Rectangular Section

t/4

t Ac At

b t/4 a1 125.00

Zp=bxt/2xt/4+bxt/2xt/4 =bt2/8+bt2/8=bt2/4 d1 290.00

a1/d1 0.43

fy/fm0<M/Zp => Zp<M/(fy/fm0) => t2 = 4M/(bx(fy/fm0))t = 4M/(bx(fy/fm0))

Page 153: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

MAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULL

Base Plate Thickness :-

Exterior Panel : Two Continuous Edge is Fixed & Two Contineous Edge is Free Interior Panel :Three Contineous Edge is Fixed & One Edge is Free :-

a1 a1

d1 d1

a1= 125 mm a1= 73 mmd1 = 140.00 mmd1 = 140.00 mm d1 = 290 mm

a1/d1 = 0.893 a1/d1 = 0.25

0.75

Assuming Y/b 1 Assuming Y/b 1

Assuming X/a 0 Assuming X/a 0

Moment Coefficient a3 = 0.226 after interpolation 0.226 Moment Coefficient a3 = 0.0213 after interpolation

For Coefficient See Page 33 of Moment & Reaction for rectangular plate by W.T Moody For Coefficient See Page 7 of Moment & Reaction for rectangular plate by W.T Moody

Me = a3 x s con-max x d12 = 30884.62744 Nmm Mp = a3 x (s con-max x (C-e)/C) x d12 = 12474.29355 Nmm

t requd = (6 x Me/(fy x 0.6) ) 0.5 30.59 mm t requd = (6 x Me/(fy x 0.6) ) 19.4 mm

t requd = 30.59 mm

SUMMARY .

CHECKING OF PLATE THICKNESS BY W.T MOODY

PLATE SIZE = 1070x590 mm

PLATE THICKNESS = 32 mm SAFE

Maximum Moment (M) = 368.85 kNm

Axial Force (P) = 4.387 kN

size of weld for Web = Sw = 5 mm

size of weld for Flange = Sf = 5 mm

Ixx of Weld = 4125740347 mm4

Ymax = 525 mm

Area of Weld consider (Aweld)= 38200. mm2 Full weld for shear check

Stresses

Design Strength of fillet Weld = 132.00 N/mm2 = Minimum of [(Fu/√3)/fm0=(610/√3)/1.25] OR [0.6 x fy] As per 800-2007 Cl 11.6.3.1

Bending stress in weld = σb = 46.94 N/mm2 =M x Ymax / Ixx SAFE

Axial stress in weld = σaxial = 0.16 N/mm2 = P/Aweld SAFE

Combine check for axial and bending = 46.94 N/mm2 =(σb2 + σaxial

2)1/2 As per 800-2007 Cl 11.5.4 0.35 < 1 SAFE

DESIGN FOR WELDED CONNECTION BETWEEN COLUMN PLATE

Page 154: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

Approved By :

General Frames

650 mm Frame No. End Frame-1

6 mm Node No. 6, 213, 211

375 mm Detail C

16 mm Location ndFrame-1 Endwall Colum

p1 e1330 N/mm2

930 mm480 e232 mm114 mm

g1 28 mm975 mm b=237mm b=235mm

Anchorage length Of bolt acted for Bond, l = 1087 mm8 e2

120.00 mm p2= 210 mm140.00 mm a=105mm a=114mm210.00 mm60.00 mm60.00 mm134.00 Fig. 120 mm

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSBBUILDING : SHELL STORE A.K. SETH

ANCHOR BOLT & BASE PLATE DESIGN (FIXED BASE)

SECTION SIZES:Depth of Web of column, dw =

Thickness of column web, tw =

Width of column flange, bf =

Thickness of column flange, tf =

BASE PLATE DETAILS: e1 p1Yield stress of Plate, Fy =

Length of Base Plate, L =

Width of Base Plate, B =

Thickness of Base Plate, t =

Cantilever along Length =

ANCHOR BOLT DETAILS:Dia. Of Anchor Bolt near to flanges, db =

Anchorage length Of bolt, l =

No. of Bolts nearer to flanges, N1 =

Spacing of Bolts, g =

Spacing of Bolts, p1 =

Spacing of Stiffeners, p2 =

Edge Distance of Bolts, e1 =

Edge Distance of Bolts, e2 =

Cantiliver on Both Side=LzDiameter Of Anchor Bolt at centre d' = 20 mm

700 mm Upward Force " -ve "4 Downward Force " +ve "4.6 Anticlockwise Momen" -ve "

Ultimate Tensile Streass of the Bolt =fub 400.0 Clockwise Moment " +ve "

Yield Stress of bolt fyb = 0.6fub 240.0

10 mm100 mm300 mm2

No. of Stiffeners within column flange = 3

Pedestal Details:

Grade of Concrete = M 25 25.0

Maximum Bearing Pressure, Fb = 14.25 N/mm2 IS 800:2007 Cl 7.4.1

Length of Pedetsal = 1030 mm

Width of Pedetsal = 580 mm

LOAD COMB. Shear Fx, KN Vertical Fy, KN Shear Fz, KN Moment Mx, KNm Moment Mz, KNm ENTER LOAD NUMBER lue of bearing pressu112 1 (DL+WL2) -109.1 -60.8 2.9 -14.8 -553.6 112.0 8.281116 1 (DL+WL6) -109.1 -62.1 -3.5 18.3 -553.5 116.0 7.349101 1.0(DL+LL) 2.4 154.2 0.0 0.0 -8.6 101.0 0.221102 1.0(DL+LL+CL) 2.4 166.7 0.0 0.0 -8.7 102.0 0.248103 1 (DL+EQ+X) 0.7 85.1 -0.8 4.0 -2.6 103.0 0.266107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL) 1.8 125.0 -0.6 3.0 -6.5 107.0 0.271119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL) -11.5 71.3 1.9 -9.9 -49.5 119.0 1.153127 1 (0.75DL+0.75 LL+0.75 WL1) -11.5 61.9 1.9 -9.9 -49.5 127.0 1.132104 1 (DL+EQ-X) 0.7 85.1 0.8 -4.0 -2.6 104.0 0.041108 1 (DL+0.75LL+0.75EQ-X) 1.8 125.0 0.6 -3.0 -6.5 108.0 0.102113 1 (DL+WL3) 29.8 5.9 0.0 0.0 199.9 113.0 2.902117 1 (DL+WL7) 102.0 1.4 0.0 0.0 571.7 117.0 8.265120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL) -80.6 15.6 2.1 -11.1 -419.8 120.0 6.414128 1 (0.75DL+0.75 LL+0.75 WL2) -80.6 6.3 2.1 -11.1 -419.8 128.0 6.393

167.940

Diameter Of Anchor Bolt at centre, d'b =

Anchorage length Of bolt at Centre, l' =

No. of Bolts at centre, N2 =

Grade of Bolts =

STIFFENER DETAILS:

Thickness of stiffener, ts =

width of stiffener, w = Notes : We are not taking the advantage of centre bolt as it is not take any tension in the major axis.Height of stiffener, h =

3-2

LOAD DATA (STAAD OUTPUT)

THESE LOAD COMBINATIONS ARE FOR A PARTICULAR CRITICAL NODE,HOWEVER ANY OTHER LOAD CASES COMING OUT TO BE CRITICAL FOR ANY OTHER NODES HAVE ALSO BEEN CHECKED FOR.

No. of stiffeners within column web =

Page 155: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE I : 112 1 (DL+WL2) SP 40 PAGE NO-25

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force 60.791 kN & Moment 553.623 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)+60.791x1000x405-553.623x 10^6 =0

=> K^2- 3K +0.614=0

K1= 2.779 OR K2= 0.221

Y=Kx(L-e2)= 2.78x870 OR Y= 0.221x870

Y= 2418.10 OR 191.90 mm

=> mm

717.1 KN Tensile Force

41.2 KN 758.4 KN 14.3 MPa

758.4 KN

Check for Base Plate Under Bearing Pressure Fig. 2

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-60.8/(930x480) +-553.7x6/(480x930^2) + -14.9x6/(930x480^2) 8.3 MPa [HENCE SAFE]

0.92 30.97

CASE II : 116 1 (DL+WL6)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Tensile Force 62.069 kN & Moment 553.541 kNm

CALCULATIONS FOR TENSION IN BOLTS

Refer SP 40 Page 24 to 25 for analysis only.

191.90

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) + P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)+62.069x1000x405-553.541x 10^6 =0=> K^2- 3K +0.613=0

K= 2.7797 OR 0.2203

Y=Kx(L-e2)= 2.78x870 OR 0.221x870

Y= 2418.33 OR 191.67 mm

=> mm

14.3 MPa

717.6 KN Tensile Force

50.8 KN 768.5 KN

768.410 KN

Fig. 3

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb-62.1/(930x480) +-553.6x6/(480x930^2) + 18.4x6/(930x480^2) 7.35 MPa [HENCE SAFE]

CASE III : 101 1.0(DL+LL)

Compressive Force 154.247 kN & Moment 8.636 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-154.247x1000x405-8.636x 10^6 =0

=> K^2- 3K +0.083=0

K= 2.9723 OR 0.0277

Y=Kx(L-e2)= 2.973x870 OR 0.028x870

Y= 2585.88 OR 24.12 mm

=> mm

-71.8 KN Compressive Force 14.3 MPa

0.0 KN

-71.8 KN -71.8 KN

Check for Base Plate Under Bearing Pressure Fig. 4

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb154.3/(930x480) +-8.7x6/(480x930^2) + 0x6/(930x480^2) 0.2 MPa [HENCE SAFE]

191.67

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

24.12

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 156: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE IV : 102 1.0(DL+LL+CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 166.7 kN & Moment = 8.659 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-166.7x1000x405-8.659x 10^6 =0

=> K^2- 3K +0.089=0

K= 2.9703 OR 0.0297

Y=Kx(L-e2)= 2.971x870 OR 0.03x870

Y= 2584.14 OR 25.86 mm

=> mm

-78.3 KN Compressive Force Fig. 5

0.0 KN

-78.3 -78.3 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb166.7/(930x480) +-8.7x6/(480x930^2) + 0x6/(930x480^2) 0.2 MPa [HENCE SAFE]

CASE V : 103 1 (DL+EQ+X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 85.106 kN & Moment = 2.569 kNm

> 1/2 Fb (L 2)^2 K B (1 1/3 K) P ( L/2 2 ) M 0

Refer SP 40 Page 24 to 25 for analysis only.

25.86

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-85.106x1000x405-2.569x 10^6 =0

=> K^2- 3K +0.043=0

K= 2.9856 OR 0.0144

Y=Kx(L-e2)= 2.986x870 OR 0.015x870

Y= 2597.49 OR 12.51 mm

=> mm

-42.3 KN Compressive Force Fig. 6

11.2 KN

-31.1 KN -31.2 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb85.2/(930x480) +-2.6x6/(480x930^2) + 4.1x6/(930x480^2) 0.3 MPa [HENCE SAFE]

CASE VI : 107 1 (0.75DL+0.75LL+0.75EQ+X+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 125.025 kN & Moment = 6.494 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-125.025x1000x405-6.494x 10^6 =0

=> K^2- 3K +0.067=0

K= 2.9778 OR 0.0222

Y=Kx(L-e2)= 2.978x870 OR 0.023x870

Y= 2590.66 OR 19.34 mm

=> mm

Fig. 7

-58.9 KN Compressive Force

8.4 KN

-50.5 KN -50.5 KN 14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb125.1/(930x480) +-6.5x6/(480x930^2) + 3.1x6/(930x480^2) 0.3 MPa [HENCE SAFE]

12.51

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

19.34

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 157: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE VII : 119 1 (0.75DL+0.75 LL+0.75 WL1+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 71.251 kN & Moment = 49.483 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-71.251x1000x405-49.483x 10^6 =0

=> K^2- 3K +0.091=0

K= 2.9694 OR 0.0306

Y=Kx(L-e2)= 2.97x870 OR 0.031x870

Y= 2583.40 OR 26.60 mm

=> mm

Fig. 8

19.7 KN Tensile Force

27.6 KN

47.3 KN 47.3 KN

14.3 MPa

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb71.3/(930x480) +-49.5x6/(480x930^2) + -10x6/(930x480^2) 1.2 MPa [HENCE SAFE]

CASE VIII : 127 1 (0.75DL+0.75 LL+0.75 WL1)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 61.911 kN & Moment = 49.465 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 870^2 K 480 (1 1/3K) 61 911 1000 405 49 465 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

26.60

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-61.911x1000x405-49.465x 10^6 =0

=> K^2- 3K +0.087=0

K= 2.9709 OR 0.0291

Y=Kx(L-e2)= 2.971x870 OR 0.03x870

14.3 MPa

Y= 2584.70 OR 25.30 mm

=> mm

Fig. 9

24.6 KN Tensile Force

27.6 KN

52.2 KN 52.2 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb62/(930x480) +-49.5x6/(480x930^2) + -10x6/(930x480^2) 1.1 MPa [HENCE SAFE]

CASE IX : 104 1 (DL+EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 85.106 kN & Moment = 2.569 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-85.106x1000x405-2.569x 10^6 =0

=> K^2- 3K +0.043=0

K= 2.9856 OR 0.0144

Y=Kx(L-e2)= 2.986x870 OR 0.015x870

14.3 MPa

Y= 2597.49 OR 12.51 mm

=> mm

Fig. 10

-42.3 KN Compressive Force

11.2 KN

-31.1 KN -31.2 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb85.2/(930x480) +-2.6x6/(480x930^2) + -4.1x6/(930x480^2) 0.0 MPa [HENCE SAFE]

25.30

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

12.51

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 158: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE X : 108 1 (DL+0.75LL+0.75EQ-X)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 125.025 kN & Moment = 6.494 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-125.025x1000x405-6.494x 10^6 =0

=> K^2- 3K +0.067=0

K= 2.9778 OR 0.0222

Y=Kx(L-e2)= 2.978x870 OR 0.023x870

14.3 MPa

Y= 2590.66 OR 19.34 mm

=> mm

Fig. 10-58.9 KN Compressive Force8.4 KN

-50.5 KN -50.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb125.1/(930x480) +-6.5x6/(480x930^2) + -3.1x6/(930x480^2) 0.1 MPa [HENCE SAFE]

CASE XI : 113 1 (DL+WL3)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 5.908 kN & Moment = 199.854 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

Refer SP 40 Page 24 to 25 for analysis only.

19.34

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

> 1/2 x Fb x(L e2) 2 xK x B x (1 1/3 K) P x ( L/2 e2 ) Mz 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-5.908x1000x405-199.854x 10^6 =0

=> K^2- 3K +0.235=0

K= 2.9197 OR 0.0803

Y=Kx(L-e2)= 2.92x870 OR 0.081x870

14.3 MPa

Y= 2540.16 OR 69.84 mm

=> mm

Fig. 10233.0 KN Tensile Force0.0 KN

233.0 KN 233.0 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb6/(930x480) +199.9x6/(480x930^2) + 0x6/(930x480^2) 2.9 MPa [HENCE SAFE]

CASE XII : 117 1 (DL+WL7)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 1.432 kN & Moment = 571.667 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-1.432x1000x405-571.667x 10^6 =0

=> K^2- 3K +0.664=0

K= 2.7597 OR 0.2403

Y=Kx(L-e2)= 2.76x870 OR 0.241x870

14.3 MPa

Y= 2400.93 OR 209.07 mm

=> mm

Fig. 10713.6 KN Tensile Force0.0 KN

713.6 KN 713.7 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb1.5/(930x480) +571.7x6/(480x930^2) + 0x6/(930x480^2) 8.3 MPa [HENCE SAFE]

69.84

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

209.07

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Page 159: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

CASE XIII : 120 1 (0.75DL+0.75 LL+0.75 WL2+0.75CL)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 15.603 kN & Moment = 419.785 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-15.603x1000x405-419.785x 10^6 =0

=> K^2- 3K +0.494=0

K= 2.8252 OR 0.1748

Y=Kx(L-e2)= 2.826x870 OR 0.175x870

14.3 MPa

Y= 2457.93 OR 152.07 mm

=> mm

Fig. 10504.5 KN Tensile Force30.9 KN

535.4 KN 535.5 KN

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb15.7/(930x480) +-419.8x6/(480x930^2) + -11.2x6/(930x480^2) 6.4 MPa [HENCE SAFE]

CASE XIV : 128 1 (0.75DL+0.75 LL+0.75 WL2)

Calculating the Y & Tension in the Bolt as per SP 40 Page 24 for analysis only.

Compressive Force = 6.262 kN & Moment = 419.767 kNm

=> 1/2 x Fb x(L-e2)^2 xK x B x (1-1/3 K) - P x ( L/2 - e2 ) - Mz = 0

> 1/2 14 25 870^2 K 480 (1 1/3K) 6 262 1000 405 419 767 10^6 0

Refer SP 40 Page 24 to 25 for analysis only.

152.07

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Refer SP 40 Page 24 to 25 for analysis only.

=> 1/2x14.25 x870^2x K x480x(1-1/3K)-6.262x1000x405-419.767x 10^6 =0

=> K^2- 3K +0.49=0

K= 2.8269 OR 0.1731

Y=Kx(L-e2)= 2.827x870 OR 0.174x870

14.3 MPa

Y= 2459.38 OR 150.62 mm

=> mm

Fig. 10

508.9 KN Tensile Force

30.9 KN

539.8 KN 539.9 KN

Permissible bond stress of Plain bars in tension , ζbd = 1.4 N/mm2 IS 456 : 2000 Cl 26.2.1.1

T/(Л x ζbd x (28 )

Thus Doverall = 780.0 mm [OVERALL ANCHORAGE LENGTH REQUIRED IS SUFFICIENT]

Check for Base Plate Under Bearing Pressure

(P/(B x L)) ± (6 x Mz / B x L2) ± (6 x Mx / L x B2) < Fb6.3/(930x480) +-419.8x6/(480x930^2) + -11.2x6/(930x480^2) 6.4 MPa [HENCE SAFE]

150.62

Tension in bolts due to Major Moment, T1 =1/2xFbxYxB ± P=

Tension in bolts due to Minor Moment, T2 =M/(B-e1*2)=

Total Tension in bolts, T =

Calculation for anchor bolt length

Overall Anchorage length required =

Page 160: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

768.4 KN Load Case116 1 (DL+WL6)

96.1 KN

Check For Tension:

Tension per bolt 'Tb' =Flange Force/N = 96.06 kN

Tension Capacity of the Bolt (Tnb)=0.9fub x An=0.9x400xЛ/4x25^2= 176.72 kN IS 800:2007 Cl 10.3.5

< fyb x Asb x Ymb/Ym0=240x Л/4 x 28^2 x (1.25/1.1) 167.94 kN

Hence , Tnb = 167.94 kN

Capacity of Bolt (Tdb)=Tdb= Tnb =167.94 167.94 kN > 96.06 Hence OK

Capacity of Bolt (Tdb)=Tdb= 0.6 x Tnb = 0.6 x167.94 100.76 kN As per IS 800 2007 Cl(11.6.2.3)

Check For Shear:

400 N/mm2

Shear per Bolt 'Tsb'=Shear Force/N = 6.8 kN

No. of Shear Plane with thread intercepting = nn= 0.0

No. of Shear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 810.0 > 15db Reduction for Long Joint required IS 800:2007 Cl 10.3.

Reduction Factor for shear (βij) = 0.93 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 105.84 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3

Design Shear Strength of the Bolt = 0.6 xVdsb= 63.50 kN As per IS 800 2007 Cl(11.6.2.1) [Hence OK]

* Provide 16.0 no.s of 28 mm dia. Bolts

Check For Combined Shear & Tension:

Tension Forc e per Bolt (Tf)= 96.06 kN

Design Tensile Strength of the Bolt (Tdf)= 100.76 kN

Factored Shear Force per Bolt = Vsf = 6.82 kN

Design shear Strength of the bolt = Vdf = 63.50 kN

MAXIMUM FORCE IN BOLTS =

Maximum force in each bolt in tension =

ultimate tensile strength of bolt

Combined Stress Ratio (Shear+ Tension) = (Vsf/ Vdf)2 = 0.01 SAFE

(Tf/ Tdf)2 = 0.91 SAFE

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 = (6.82/63.5)^2+(96.06/100.76)^2 = 0.92 SAFE IS 800:2007 Cl 11.5.3

Calculation of Plastic Secion modulus of Rectangular Section

t/4

t Ac At

b t/4 a1 114.00

Zp=bxt/2xt/4+bxt/2xt/4 =bt2/8+bt2/8=bt2/4 d1 235.00

a1/d1 0.49

fy/fm0<M/Zp => Zp<M/(fy/fm0) => t2 = 4M/(bx(fy/fm0))t = 4M/(bx(fy/fm0))

Page 161: Design Report J#685 Ircon Shell Store R1

Rev. No. :

Date :

Designed By :

Checked By :

Recommded By :

ERA BUILIDSYS LTDJOB NO. : J#685 R1OWNER : RAIL COACH FACTORY 24/01/2012CONSULTANT : IIT, DELHI PRAFULLMAIN CONTRACTOR : IRCON INTERNATIONAL LTD SAURABHPROJECT : RAIL COACH FACTORY RAE BARELI (U.P) SSB

Base Plate Thickness :-

Exterior Panel : Two Continuous Edge is Fixed & Two Contineous Edge is Free Interior Panel :Three Contineous Edge is Fixed & One Edge is Free :-

a1 a1

d1 d1

a1= 114 mm a1= 105 mmd1 = 112.50 mmd1 = 112.50 mm d1 = 237 mm

a1/d1 = 0.987 a1/d1 = 0.44

0.75

Assuming Y/b 1 Assuming Y/b 1

Assuming X/a 0 Assuming X/a 0

Moment Coefficient a3 = 0.257 after interpolation 0.257 Moment Coefficient a3 = 0.0681 after interpolation

For Coefficient See Page 33 of Moment & Reaction for rectangular plate by W.T Moody For Coefficient See Page 7 of Moment & Reaction for rectangular plate by W.T Moody

Me = a3 x s con-max x d12 = 27653.36076 Nmm Mp = a3 x (s con-max x (C-e)/C) x d12 = 31659.3535 Nmm

t requd = (6 x Me/(fy x 0.6) ) 0.5 28.95 mm t requd = (6 x Me/(fy x 0.6) ) 31.0 mm

t requd = 30.97 mm

SUMMARY .

CHECKING OF PLATE THICKNESS BY W.T MOODY

PLATE SIZE = 930x480 mm

PLATE THICKNESS = 32 mm SAFE

Maximum Moment (M) = 571.67 kNm

Axial Force (P) = 1.432 kN

size of weld for Web = Sw = 5 mm

size of weld for Flange = Sf = 5 mm

Ixx of Weld = 2671716565 mm4

Ymax = 455 mm

Area of Weld consider (Aweld)= 32240. mm2 Full weld for shear check

Stresses

Design Strength of fillet Weld = 132.00 N/mm2 = Minimum of [(Fu/√3)/fm0=(610/√3)/1.25] OR [0.6 x fy] As per 800-2007 Cl 11.6.3.1

Bending stress in weld = σb = 97.36 N/mm2 =M x Ymax / Ixx SAFE

Axial stress in weld = σaxial = 0.06 N/mm2 = P/Aweld SAFE

Combine check for axial and bending = 97.36 N/mm2 =(σb2 + σaxial

2)1/2 As per 800-2007 Cl 11.5.4 0.73 < 1 SAFE

DESIGN FOR WELDED CONNECTION BETWEEN COLUMN PLATE

Page 162: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

SECTION 2.5CONNECTION PLATE DESIGN

Page 163: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm44 ymf 1.25750 mm ym1 1.25350 mm ym 1.116 mm ymw 1.258 mm

94.623 kN151.438 kN-m151.606 kN

4 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=28.03 mm IS 800:2007 Cl 10.4.7

lv= 29.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 273.50 kN

Tension per bolt 'Tb' =Flange Force/N = 68.37 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 15.71 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 84.08 kN

ominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 11.8 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 866.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.86 where 0.75≤ βij ≤ 1.0

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Prying Force=Q

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units Frame-1 SW COLUMN CONNECTION PLATE (4.3m From FFL)

Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =

142115CP1

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Stiffner Condition =Yield stress of material 'Fy'=β=

thickness of beam web 'tw' =

Nominal Dia. Of Bolt 'db' =Fillet weld size in flange 'w1' =Throat Size t1 =Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

N A

Page 164: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Design Shear Strength of the Bolt = Vdsb= 124.57 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 163.64 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 124.58 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 74.75 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 84.08 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 11.82 kNDesign shear stress of the bolt = 74.75 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(11.82/74.74)^2+(84.08/98.05)^2 =

= 0.76 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 7.07 N/mm2

FM= M X Ymax

Ix

Y max= (930-20)/2

Y max= 455 mm

Ix= (((350x3.535^3/12)+((350x3.535)(391^2)))X4)+((3.5312)x2)+2x(322x3.535^3/12)

Ix= 1155384834 mm4

FM= 59.64 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 165: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

RESULTANT= 60.88 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)60.88 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 68.37 KN

Moment due to tension at Flange top = (68.37x40xmm)/1000 = 2.73 KN-m

2.73 KN-m

Mdx 61/2

0.6 x fy x b

t = 15.05 mm

930 x 350 x 20 mm

8 nos - 20 mm Dia Bolts

Design Moment Md =

t =

Provide Connection Plate

Provide Bolts

Page 166: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.27 mm Node No.8 mm Load Case6 Connection No.5 mm48 ymf 1.25900 mm ym1 1.25250 mm ym 1.112 mm ymw 1.258 mm

194.778 kN632.367 kN-m80.349 kN

6 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 50 mm > 1.5x D 40.5 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=28.03 mm IS 800:2007 Cl 10.4.7

lv= 53.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 733.56 kN

Tension per bolt 'Tb' =Flange Force/N = 91.69 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 61.59 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 153.28 kN

ominal Tension Capacity of the Bolt (Tnf)= 325.7 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 416.4 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 325.7

Capacity of Bolt (Tdf)= Tnf 195.4 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 12.2 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 1008.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.89 where 0.75≤ βij ≤ 1.0

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units HaunchNominal Dia. Of Bolt 'db' = 92Fillet weld size in flange 'w1' = 116Throat Size t1 = CP-2Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=β=

Prying Force=Q

N A

Page 167: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Design Shear Strength of the Bolt = Vdsb= 234.92 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.57 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 209.48 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 209.49 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 125.69 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 153.28 kNDesign Tensile stress of the Bolt = 195.44 kN

Actual Shear stress per Bolt = 12.17 kNDesign shear stress of the bolt = 125.69 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(12.17/125.69)^2+(153.28/195.43)^2 =

= 0.62 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 10.02 N/mm2

FM= M X Ymax

Ix

Y max= (1140-20)/2

Y max= 560 mm

Ix= (((250x5.656^3/12)+((250x5.656)(462^2)))X4)+((3.5312)x2)+8x(3.535x98^3/12)+4x(392x3.535^3/12)+2x(392x3.535)x150^2))

Ix= 2047492794 mm4

FM= 172.96 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 168: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

RESULTANT= 173.82 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)173.82 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 91.69 KN

Moment due to tension at Flange top = (91.69x50xmm)/1000 = 4.58 KN-m

4.58 KN-m

Mdx 61/2

0.6 x fy x b

t = 17.79 mm

1140 x 420 x 20 mm

16 nos - 27 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 169: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.16 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25500 mm ym1 1.25250 mm ym 1.112 mm ymw 1.258 mm

50.607 kN82.447 kN-m70.27 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 24 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 33.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 196.16 kN

Tension per bolt 'Tb' =Flange Force/N = 24.52 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) -5.31 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 24.52 kN

ominal Tension Capacity of the Bolt (Tnf)= 95.6 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 146.2 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 95.6

Capacity of Bolt (Tdf)= Tnf 57.3 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 3.2 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 608.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.89 where 0.75≤ βij ≤ 1.0

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units 3.67m from haunchNominal Dia. Of Bolt 'db' = 99Fillet weld size in flange 'w1' = 111Throat Size t1 = CP-3Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=β=

Prying Force=Q

N A

Page 170: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Design Shear Strength of the Bolt = Vdsb= 82.19 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.74 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 128.00 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 82.19 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 49.31 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 19.21 kNDesign Tensile stress of the Bolt = 57.34 kN

Actual Shear stress per Bolt = 3.16 kNDesign shear stress of the bolt = 49.31 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(3.16/49.31)^2+(19.21/57.34)^2 =

= 0.12 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 4.12 N/mm2

FM= M X Ymax

Ix

Y max= (680-20)/2

Y max= 330 mm

Ix= (((250x3.535^3/12)+((250x3.535)(262^2)))X4)+((3.5312)x2)+8x(3.535x68^3/12)+2x(352x3.535^3/12)

Ix= 397195554.5 mm4

FM= 68.50 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 171: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

RESULTANT= 68.87 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)68.87 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 24.52 KN

Moment due to tension at Flange top = (24.52x40xmm)/1000 = 0.98 KN-m

0.98 KN-m

Mdx 61/2

0.6 x fy x b

t = 8.65 mm

680 x 380 x 16 mm

16 nos - 16 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 172: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25500 mm ym1 1.25275 mm ym 1.112 mm ymw 1.258 mm

83.642 kN181.17 kN-m90.313 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 33.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 399.00 kN

Tension per bolt 'Tb' =Flange Force/N = 49.87 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 13.35 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 63.22 kN

ominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 5.2 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 608.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.92 where 0.75≤ βij ≤ 1.0

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units 15.67m from haunchNominal Dia. Of Bolt 'db' = 86Fillet weld size in flange 'w1' = 112Throat Size t1 = CP-4Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=β=

Prying Force=Q

N A

Page 173: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Design Shear Strength of the Bolt = Vdsb= 133.93 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 130.91 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 130.91 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 78.55 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 63.22 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 5.22 kNDesign shear stress of the bolt = 78.55 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(5.22/78.54)^2+(63.22/98.05)^2 =

= 0.42 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 6.62 N/mm2

FM= M X Ymax

Ix

Y max= (680-20)/2

Y max= 330 mm

Ix= (((275x3.535^3/12)+((275x3.535)(262^2)))X4)+((3.5312)x2)+8x(3.535x68^3/12)+2x(352x3.535^3/12)

Ix= 421461576.7 mm4

FM= 141.85 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 174: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

RESULTANT= 142.32 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)142.32 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 49.87 KN

Moment due to tension at Flange top = (49.87x40xmm)/1000 = 1.99 KN-m

1.99 KN-m

Mdx 61/2

0.6 x fy x b

t = 12.34 mm

680 x 380 x 16 mm

16 nos - 20 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 175: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.16 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25

400 mm ym1 1.25350 mm ym 1.120 mm ymw 1.25

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 18Fillet weld size in flange 'w1' = 111Throat Size t1 = CP5

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units ICO CAP PLATE

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

8 mm6.76 kN

97.564 kN-m313.453 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 24 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 25.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 389.02 kN

Tension per bolt 'Tb' =Flange Force/N = 48.62 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) -3.72 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 48.62 kN

Nominal Tension Capacity of the Bolt (Tnf)= 95.6 kN 0.9xFub x An IS 800:2007 Cl 10.4.5Nominal Tension Capacity of the Bolt (Tnf)= 146.2 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two value 95.6

Capacity of Bolt (Tdf)= Tnf 57.3 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 0.4 kN

Shear Plane with thread intercepting = nn= 0.0

f Shear Plane without thred intercepting= ns= 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Page 176: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Reduction Factor for shear (βij) = 0.91 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 84.62 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2)

Reduction Factor for Bearing 'Kb'= 0.74 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)Design Bearing Strength of the Bolt =Vdpb= 128.00 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4

Design Shear Strength of Bolt=Vdb= 84.63 kN Min of Vdpb & Vdsb Hence OKperm. Shear strength of bolt = 50.78 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 44.90 kNDesign Tensile stress of the Bolt = 57.34 kN

Actual Shear stress per Bolt = 0.42 kNActual Shear stress per Bolt 0.42 kNDesign shear stress of the bolt = 50.78 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(0.42/50.77)^2+(44.9/57.34)^2 =

= 0.61 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 0.53 N/mm2

FM= M X Ymax

Ix

Y max= (580-20)/2

Y max= 280 mm

Ix= (((350x3.535^3/12)+((350x3.535)(220^2)))X4)+((3.53512)x2)+8x(3.535x60^3/12)+2x(352x3.535^3/12)

Ix= 324417051.9 mm4

FM= 84.21 N/mm2

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 177: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

RESULTANT= 84.21 N/mm2.

Shear Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)84.21 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 48.62 KN

Moment due to tension at Flange top = (48.62x40xmm)/1000 = 1.94 KN-m

1.94 KN-m

Mdx 61/2

0.6 x fy x b

t = 12.18 mm

580 x 380 x 16 mm

16 nos - 16 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 178: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm44 ymf 1.25

400 mm ym1 1.25350 mm ym 1.120 mm ymw 1.25

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaFRAME-1

SI units ICO CONN PLATE (4.3m from FFL)Nominal Dia. Of Bolt 'db' = 239Fillet weld size in flange 'w1' = 112Throat Size t1 = CP6Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

N A

8 mm4.377 kN

23.906 kN-m277.588 kN

4 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 25.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 195.71 kN

Tension per bolt 'Tb' =Flange Force/N = 48.92 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 12.68 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 61.60 kN

Nominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5Nominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two value 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 0.5 kN

Shear Plane with thread intercepting = nn= 0.0

f Shear Plane without thred intercepting= ns= 1.0

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=β=

Prying Force=Q

Page 179: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

Reduction Factor for shear (βij) = 0.94 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 136.98 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2)

Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)Design Bearing Strength of the Bolt =Vdpb= 130.91 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4

Design Shear Strength of Bolt=Vdb= 130.91 kN Min of Vdpb & Vdsb Hence OKperm. Shear strength of bolt = 78.55 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 61.60 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 0.54 kNActual Shear stress per Bolt 0.54 kNDesign shear stress of the bolt = 78.55 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(0.54/78.54)^2+(61.6/98.05)^2 =

= 0.39 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 0.40 N/mm2

FM= M X Ymax

Ix

Y max= (580-20)/2

Y max= 280 mm

Ix= (((350x3.535^3/12)+((350x3.535)(220^2)))X4)+((3.53512)x2)+2x(322x3.535^3/12)

Ix= 322380612.1 mm4

FM= 20.76 N/mm2

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 180: Design Report J#685 Ircon Shell Store R1

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

RESULTANT= 20.78 N/mm2.

Shear Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)20.78 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 48.92 KN

Moment due to tension at Flange top = (48.92x40xmm)/1000 = 1.96 KN-m

1.96 KN-m

Mdx 61/2

0.6 x fy x b

t = 12.73 mm

580 x 350 x 16 mm

8 nos - 20 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 181: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.16 mm Node No.5 mm Load Case4 Connection No.5 mm44 ymf 1.25

700 mm ym1 1.25150 mm ym 1.16 mm ymw 1.25

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 230Fillet weld size in flange 'w1' = 116Throat Size t1 = Canopy CP

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units Canopy CP

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

6 mm45.187 kN67.056 kN-m

1 kN4 PLEASE REFER STIFFNER CONDITION TABLE

3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 24 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 39.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 95.48 kN

Tension per bolt 'Tb' =Flange Force/N = 23.87 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 11.41 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 35.28 kN

Nominal Tension Capacity of the Bolt (Tnf)= 95.6 kN 0.9xFub x An IS 800:2007 Cl 10.4.5Nominal Tension Capacity of the Bolt (Tnf)= 146.2 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two value 95.6

Capacity of Bolt (Tdf)= Tnf 57.3 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 5.6 kN

Shear Plane with thread intercepting = nn= 0.0

f Shear Plane without thred intercepting= ns= 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Page 182: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Reduction Factor for shear (βij) = 0.83 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 76.73 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2)

Reduction Factor for Bearing 'Kb'= 0.74 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)Design Bearing Strength of the Bolt =Vdpb= 128.00 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4

Design Shear Strength of Bolt=Vdb= 76.74 kN Min of Vdpb & Vdsb Hence OKperm. Shear strength of bolt = 46.04 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 35.28 kNDesign Tensile stress of the Bolt = 57.34 kN

Actual Shear stress per Bolt = 5.64 kNActual Shear stress per Bolt 5.64 kNDesign shear stress of the bolt = 46.04 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(5.64/46.04)^2+(35.28/57.34)^2 =

= 0.39 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 4.92 N/mm2

FM= M X Ymax

Ix

Y max= (880-20)/2

Y max= 430 mm

Ix= (((150x3.535^3/12)+((150x3.535)(356^2)))X4)+((3.53512)x2)+2x(154x3.535^3/12)

Ix= 628084300.8 mm4

FM= 45.91 N/mm2

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 183: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

RESULTANT= 46.69 N/mm2.

Shear Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)46.69 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 23.87 KN

Moment due to tension at Flange top = (23.87x40xmm)/1000 = 0.95 KN-m

0.95 KN-m

Mdx 61/2

0.6 x fy x b

t = 12.40 mm

880 x 180 x 16 mm

8 nos - 16 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 184: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm44 ymf 1.25750 mm ym1 1.25475 mm ym 1.120 mm ymw 1.2510 mm

69.569 kN166.749 kN-m45.111 kN

4 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 25.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 239.11 kN

Tension per bolt 'Tb' =Flange Force/N = 59.77 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 18.73 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 78.50 kN

ominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 8.7 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 874.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.86 where 0.75≤ βij ≤ 1.0

Nominal Dia. Of Bolt 'db' =Fillet weld size in flange 'w1' =Throat Size t1 =Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Stiffner Condition =Yield stress of material 'Fy'=β=

thickness of beam web 'tw' =

202115CP7

Prying Force=Q

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units EndFrame-1 SW COLUMN CONNECTION PLATE (4.3m From FFL)

Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

Page 185: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Design Shear Strength of the Bolt = Vdsb= 124.28 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 130.91 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 124.29 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 74.57 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 78.50 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 8.69 kNDesign shear stress of the bolt = 74.57 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(8.69/74.57)^2+(78.5/98.05)^2 =

= 0.65 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 4.36 N/mm2

FM= M X Ymax

Ix

Y max= (930-20)/2

Y max= 455 mm

Ix= (((475x3.535^3/12)+((475x3.535)(395^2)))X4)+((3.5312)x2)+2x(445x3.535^3/12)

Ix= 1435920127 mm4

FM= 52.84 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Combined Stress Ratio (Shear+ Tension) =

Page 186: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= 53.38 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)53.38 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 59.77 KN

Moment due to tension at Flange top = (59.77x40xmm)/1000 = 2.39 KN-m

2.39 KN-m

Mdx 61/2

0.6 x fy x b

t = 12.08 mm

930 x 475 x 16 mm

8 nos - 20 mm Dia Bolts

Design Moment Md =

t =

Provide Connection Plate

Provide Bolts

Page 187: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25350 mm ym1 1.25175 mm ym 1.18 mm ymw 1.256 mm

48.443 kN87.505 kN-m8.803 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=16.82 mm IS 800:2007 Cl 10.4.7

lv= 37.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 248.83 kN

Tension per bolt 'Tb' =Flange Force/N = 31.10 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 22.50 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 53.60 kN

ominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 3.0 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 450.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.96 where 0.75≤ βij ≤ 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 2Fillet weld size in flange 'w1' = 116Throat Size t1 = CP8

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units Haunch

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

Page 188: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Design Shear Strength of the Bolt = Vdsb= 139.66 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 98.18 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 98.19 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 58.91 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 53.60 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 3.02 kNDesign shear stress of the bolt = 58.91 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(3.02/58.91)^2+(53.6/98.05)^2 =

= 0.30 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 4.65 N/mm2

FM= M X Ymax

Ix

Y max= (530-20)/2

Y max= 255 mm

Ix= (((175x3.535^3/12)+((175x3.535)(183^2)))X4)+((3.5312)x2)+8x(3.535x72^3/12)+2x(354x3.535^3/12)

Ix= 157418469.2 mm4

FM= 141.75 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 189: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= 141.98 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)141.98 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 31.10 KN

Moment due to tension at Flange top = (31.1x40xmm)/1000 = 1.24 KN-m

1.24 KN-m

Mdx 61/2

0.6 x fy x b

t = 9.74 mm

530 x 380 x 12 mm

16 nos - 20 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 190: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.16 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25350 mm ym1 1.25175 mm ym 1.18 mm ymw 1.256 mm

9.443 kN27.784 kN-m46.247 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 24 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=14.01 mm IS 800:2007 Cl 10.4.7

lv= 37.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 100.73 kN

Tension per bolt 'Tb' =Flange Force/N = 12.59 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 8.49 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 21.08 kN

ominal Tension Capacity of the Bolt (Tnf)= 95.6 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 146.2 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 95.6

Capacity of Bolt (Tdf)= Tnf 57.3 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 0.6 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 450.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.93 where 0.75≤ βij ≤ 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 9Fillet weld size in flange 'w1' = 116Throat Size t1 = CP9

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units 3.67m from haunch

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

Page 191: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Design Shear Strength of the Bolt = Vdsb= 86.77 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.74 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 80.00 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 80.00 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 48.00 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 21.08 kNDesign Tensile stress of the Bolt = 57.34 kN

Actual Shear stress per Bolt = 0.59 kNDesign shear stress of the bolt = 48.00 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(0.59/48)^2+(21.08/57.34)^2 =

= 0.14 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 0.91 N/mm2

FM= M X Ymax

Ix

Y max= (530-20)/2

Y max= 255 mm

Ix= (((175x3.535^3/12)+((175x3.535)(183^2)))X4)+((3.5312)x2)+8x(3.535x72^3/12)+2x(354x3.535^3/12)

Ix= 157418469.2 mm4

FM= 45.01 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 192: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= 45.03 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)45.03 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 12.59 KN

Moment due to tension at Flange top = (12.59x40xmm)/1000 = 0.50 KN-m

0.50 KN-m

Mdx 61/2

0.6 x fy x b

t = 6.20 mm

530 x 380 x 10 mm

16 nos - 16 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 193: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.16 mm Node No.5 mm Load Case4 Connection No.5 mm48 ymf 1.25350 mm ym1 1.25175 mm ym 1.18 mm ymw 1.256 mm

6.408 kN54.411 kN-m40.465 kN

5 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 24 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=16.82 mm IS 800:2007 Cl 10.4.7

lv= 37.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 172.22 kN

Tension per bolt 'Tb' =Flange Force/N = 21.52 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 11.96 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 33.48 kN

ominal Tension Capacity of the Bolt (Tnf)= 95.6 kN 0.9xFub x An IS 800:2007 Cl 10.4.5ominal Tension Capacity of the Bolt (Tnf)= 146.2 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two v 95.6

Capacity of Bolt (Tdf)= Tnf 57.3 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 0.4 kN

ear Plane with thread intercepting = nn= 0.0

hear Plane without thred intercepting= ns= 1.0

Distance b/w extreme rows of bolt(lj)= 450.0 > 15db Reduction for Long Joint requiIS 800:2007 Cl 10.3.3.1Reduction Factor for shear (βij) = 0.93 where 0.75≤ βij ≤ 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 207Fillet weld size in flange 'w1' = 112Throat Size t1 = CP10

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units 15.67m from haunch

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

Page 194: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Design Shear Strength of the Bolt = Vdsb= 86.77 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2) Reduction Factor for Bearing 'Kb'= 0.74 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)

Design Bearing Strength of the Bolt =Vdpb= 96.00 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4 Design Shear Strength of Bolt=Vdb= 86.78 kN Min of Vdpb & Vdsb Hence OK

perm. Shear strength of bolt = 52.07 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 33.48 kNDesign Tensile stress of the Bolt = 57.34 kN

Actual Shear stress per Bolt = 0.40 kNDesign shear stress of the bolt = 52.07 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(0.4/52.06)^2+(33.48/57.34)^2 =

= 0.34 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 0.62 N/mm2

FM= M X Ymax

Ix

Y max= (530-20)/2

Y max= 255 mm

Ix= (((175x3.535^3/12)+((175x3.535)(183^2)))X4)+((3.5312)x2)+8x(3.535x72^3/12)+2x(354x3.535^3/12)

Ix= 157418469.2 mm4

FM= 88.14 N/mm2

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 195: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull MungleMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= 88.15 N/mm2.

ar Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)88.15 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 21.52 KN

Moment due to tension at Flange top = (21.52x40xmm)/1000 = 0.86 KN-m

0.86 KN-m

Mdx 61/2

0.6 x fy x b

t = 8.10 mm

530 x 380 x 12 mm

16 nos - 16 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 196: Design Report J#685 Ircon Shell Store R1

Frame No.

Location.20 mm Node No.5 mm Load Case4 Connection No.5 mm44 ymf 1.25

650 mm ym1 1.25375 mm ym 1.116 mm ymw 1.25

Fillet weld size in web 'w2' =Throat Size t2=Number of bolt near one flange 'N' =

Depth of connected beam 'd' =

Width of beam flange 'bf' =

thickness of beam flange 'tf' =

Nominal Dia. Of Bolt 'db' = 210Fillet weld size in flange 'w1' = 113Throat Size t1 = CP11

FOUR/EIGHT BOLT MOMENT CONNECTION IS PROVISION AS PER WSD FOR 8.8 GRADE BOLT UTS 800MPaEND FRAME-1

SI units Endwall Column CONN PLATE (4.3m from FFL)

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

N A

6 mm109.541 kN96.249 kN-m39.035 kN

4 PLEASE REFER STIFFNER CONDITION TABLE 3451 (2-for Non pre tensioned bolt & 1-for pre tensioned bolt)

Proof Stressf0=0.7X fu 'f0'=0.7x800= 560 REFER TABLE 1 SNO (iv) ULTIMATE STRENGTH (fu) & clause 10.4.3 for proof stressClause 10.2.4.2 End distance 'Ed'= 40 mm > 1.5x D 30 For Machine Flame cut, sawn & Planed edge

le=1.1xt(provided)x √(βf0/fy)=22.42 mm IS 800:2007 Cl 10.4.7

lv= 29.00 mm Distance b/w centre of bolt to fillet weld of flange.

Check For Tension:Flange Force 'Ff' = M / (d+tf) +T/2 164.04 kN

Tension per bolt 'Tb' =Flange Force/N = 41.00 kN

Q= (lv/(2le))x(Te-βγf0bet^4/(27le^2xlv^2) 13.93 kN IS 800:2007 Cl 10.4.7Total Tension in the bolt = Tb+Q= 54.93 kN

Nominal Tension Capacity of the Bolt (Tnf)= 163.4 kN 0.9xFub x An IS 800:2007 Cl 10.4.5Nominal Tension Capacity of the Bolt (Tnf)= 228.5 kN fyb x Asb x ym1/ym IS 800:2007 Cl 10.4.5

Hence Tnf = Min of above two value 163.4

Capacity of Bolt (Tdf)= Tnf 98.1 kN =0.6 x Tnf IS 800:2007 Cl 11.6.2.3 Hence OK

Check For Shear:Shear per Bolt 'Tsb'=Shear Force/2N = 13.7 kN

Shear Plane with thread intercepting = nn= 0.0

f Shear Plane without thred intercepting= ns= 1.0

β=

Prying Force=Q

thickness of beam web 'tw' =Shear Force 'V' =Bending Moment 'M' =Tension Force 'T' =Stiffner Condition =Yield stress of material 'Fy'=

Page 197: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

Reduction Factor for shear (βij) = 0.88 where 0.75≤ βij ≤ 1.0Design Shear Strength of the Bolt = Vdsb= 128.20 kN (fu/√3)x(nnx Anb+nsx Asb)xβij IS 800:2007 Cl 10.3.3 (Cl 11.6.2)

Reduction Factor for Bearing 'Kb'= 0.61 kb=min of e/3d0,p/3d0-0.25,fub/fu,1 As Per IS 800:2007 Cl 10.3.4 (Cl 11.6.2)Design Bearing Strength of the Bolt =Vdpb= 130.91 kN (2.5 kb d t fu) As Per IS 800:2007 Cl 10.3.4

Design Shear Strength of Bolt=Vdb= 128.20 kN Min of Vdpb & Vdsb Hence OKperm. Shear strength of bolt = 76.92 kN =0.6 x Vdb as per IS800 2007 Cl(11.6.2.1)

Check For Combined Shear & Tension:

Tension stress per Bolt = 54.93 kNDesign Tensile stress of the Bolt = 98.06 kN

Actual Shear stress per Bolt = 13.69 kNActual Shear stress per Bolt 13.69 kNDesign shear stress of the bolt = 76.92 kN

(Vsf/ Vdf)2 + (Tf/ Tdf)

2<1 IS 800:2007 Cl 11.6.2.5(13.69/76.92)^2+(54.93/98.05)^2 =

= 0.35 OK

B. Top flange with stiffner to end plate weld :

FD= SHEAR STRESSESFM= BENDING STRESSESFD= SHEAR FORCE 'V'

∑LENGTH OF WELD(L)x3.535

FD= 8.26 N/mm2

FM= M X Ymax

Ix

Y max= (830-20)/2

Y max= 405 mm

Ix= (((375x3.535^3/12)+((375x3.535)(341^2)))X4)+((3.53512)x2)+2x(349x3.535^3/12)

Ix= 894033085.4 mm4

FM= 43.60 N/mm2

Combined Stress Ratio (Shear+ Tension) =

PROVIDE FILLET WELD AROUND WEB AND FLANGE

Page 198: Design Report J#685 Ircon Shell Store R1

PROJECT Rail Coach Factory at Rai Bareily Recommded By SSBBUILDING SHELL STORE Approved By Anil Seth

CONSULTANT IIT, DELHI Designed By Prafull Mungle

MAIN CONTRACTOR :IRCON INTERNATIONAL LTD Checked By Saurabh Bhardwaj

ERA BUILIDSYS LTDJOB NO. JOB 685 Rev. No. R1OWNER Rail Coach Factory Date 24/01/2012

RESULTANT= (FM2+3 x FD2)^0.5 IS 800: 2007 Cl: 11.5.4

RESULTANT= 45.89 N/mm2.

Shear Strength of weld 'fs' =0.6 x (fu/√3) = 211.31 N/mm2 As per Cl 10.5.7.1.1 . We are using 70xx electrode but using the propertyof 56xx as per Table 1 800-2007 designing on conservative side

maximum perm. Weld stress = 0.4 x fy = 193.2 N/mm2 As per IS 800: 2007 Cl (11.6.3)45.89 N/mm2 < 193.2 N/mm2 SAFE

PROVIDE FILLET WELD AROUND WEB AND FLANGE

C. End Plate Design :

Tension in extreme bolt 'Tb' = 41.00 KN

Moment due to tension at Flange top = (41x40xmm)/1000 = 1.64 KN-m

1.64 KN-m

Mdx 61/2

0.6 x fy x b

t = 11.26 mm

830 x 375 x 16 mm

8 nos - 20 mm Dia Bolts

t =

Provide Connection Plate

Provide Bolts

Design Moment Md =

Page 199: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.6BRACING DESIGN

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 200: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 279

Yield Strength of Steel = fy 250 N/mm2 ROOF@Grid-AtoESize of Bracing Member from IS 1161 for Tubular Steel 100 NB PIPELength of the Compression Member = L 15412 mmEffective Length Coefficient of the member = K x 0.5 0.5 1&2 , 8&9 , 13&14

Factored Compressive Force from staad analysis, Ps = 32 kN Load Case-117 :DL+WL7Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 38.9 mmDiameter of the section = D 114.3 mm

Thickness of the Section= t 4.5 mmSlenderness Ratio = KL/r 198.10 < 350 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 50.30 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 2.23 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 3.20 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.18 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 41.4 N/mm2

BUILDING

X-BRACING

Note:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS 800:2007.

IRCON INTERNATIONAL LTD

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Bay Id

PROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSB

28/12/2011

SHELL STORE Approved By A.K. SETH

Type (X bracing or Strut Pipe or Truss Member)

CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR

ERA BUILIDSYS LTD

Checked By SAURABH

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date

Hence Design Compressive Strength of the Section 41.4 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 24.8 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 25.4 Semi Compact Section

Area of Cross Section = Ae= 1550.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 20.6 N/mm2 < 24.83 N/mm2 Hence Safe

Page 201: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 370

Yield Strength of Steel = fy 250 N/mm2 SideWall@Grid-AtoESize of Bracing Member from IS 1161 for Tubular Steel 100 NB PIPELength of the Compression Member = L 12748 mmEffective Length Coefficient of the member = K x 0.5 0.5 8&9

Factored Compressive Force from staad analysis, Ps = 37.32 kN Load Case-113 :DL+WL3Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 38.9 mmDiameter of the section = D 114.3 mm

Thickness of the Section= t 4.5 mmSlenderness Ratio = KL/r 163.86 < 350 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 73.52 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 1.84 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 2.37 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.26 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 58.8 N/mm2

ERA BUILIDSYS LTD

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date 28/12/2011CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By SAURABHPROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSBBUILDING SHELL STORE Approved By A.K. SETH

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)

X-BRACING

Bay IdNote:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS 800:2007.

Hence Design Compressive Strength of the Section 58.8 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 35.3 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 25.4 Semi Compact Section

Area of Cross Section = Ae= 1550.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 24.1 N/mm2 < 35.27 N/mm2 Hence Safe

Page 202: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 384

Yield Strength of Steel = fy 250 N/mm2 ICO@Grid-CSize of Bracing Member from IS 1161 for Tubular Steel 125 NB PIPELength of the Compression Member = L 13944 mmEffective Length Coefficient of the member = K x 0.5 0.5 8&9

Factored Compressive Force from staad analysis, Ps = 50.58 kN Load Case-105 :DL+EQ +ZBuckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 47.7 mmDiameter of the section = D 139.7 mm

Thickness of the Section= t 4.8 mmSlenderness Ratio = KL/r 146.16 < 350 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 92.40 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 1.64 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 2.00 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.32 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 72.1 N/mm2

ERA BUILIDSYS LTD

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date 28/12/2011CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By SAURABHPROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSBBUILDING SHELL STORE Approved By A.K. SETH

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)

X-BRACING

Bay IdNote:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS 800:2007.

Hence Design Compressive Strength of the Section 72.1 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 43.3 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 29.1 Semi Compact Section

Area of Cross Section = Ae= 2030.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 24.9 N/mm2 < 43.29 N/mm2 Hence Safe

Page 203: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

SECTION 2.7STRUT PIPE DESIGN

Page 204: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 242

Yield Strength of Steel = fy 250 N/mm2 ROOF @ GRID-CSize of Bracing Member from IS 1161 for Tubular Steel 175 NB PIPELength of the Compression Member = L 12000 mmEffective Length Coefficient of the member = K x 0.5 1

Factored Compressive Force from staad analysis, Ps = 63.84 kN Load Case-113 :DL+WL3Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 66.6 mmDiameter of the section = D 193.7 mm

Thickness of the Section= t 5.4 mmSlenderness Ratio = KL/r 180.18 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 60.80 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 2.03 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 2.75 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.22 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 49.4 N/mm2

BUILDING

STRUT PIPE

Note:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS

IRCON INTERNATIONAL LTD

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Bay Id

PROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSB

12/12/2011

SHELL STORE Approved By A.K. SETH

Type (X bracing or Strut Pipe or Truss Member)

CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR

ERA BUILIDSYS LTD

Checked By SAURABH

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date

Hence Design Compressive Strength of the Section 49.4 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 29.6 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 35.9 Semi Compact Section

Area of Cross Section = Ae= 3200.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 20.0 N/mm2 < 29.63 N/mm2 Hence Safe

Page 205: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 219

Yield Strength of Steel = fy 250 N/mm2 ROOF @ GRID-B &DSize of Bracing Member from IS 1161 for Tubular Steel 175 NB PIPELength of the Compression Member = L 12000 mmEffective Length Coefficient of the member = K x 0.5 1

Factored Compressive Force from staad analysis, Ps = 64.737 kN Load Case-117 :DL+WL7Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 66.6 mmDiameter of the section = D 193.7 mm

Thickness of the Section= t 5.4 mmSlenderness Ratio = KL/r 180.18 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 60.80 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 2.03 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 2.75 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.22 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 49.4 N/mm2

ERA BUILIDSYS LTD

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date 12/12/2011CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By SAURABHPROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSBBUILDING SHELL STORE Approved By A.K. SETH

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)

STRUT PIPE

Bay IdNote:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS

Hence Design Compressive Strength of the Section 49.4 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 29.6 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 35.9 Semi Compact Section

Area of Cross Section = Ae= 3200.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 20.2 N/mm2 < 29.63 N/mm2 Hence Safe

Page 206: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 206

Yield Strength of Steel = fy 250 N/mm2 ROOF @ GRID-A&ESize of Bracing Member from IS 1161 for Tubular Steel 175 NB PIPELength of the Compression Member = L 12000 mmEffective Length Coefficient of the member = K x 0.5 1

Factored Compressive Force from staad analysis, Ps = 56.607 kN Load Case-117 :DL+WL7Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 66.6 mmDiameter of the section = D 193.7 mm

Thickness of the Section= t 5.4 mmSlenderness Ratio = KL/r 180.18 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 60.80 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 2.03 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 2.75 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.22 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 49.4 N/mm2

ERA BUILIDSYS LTD

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date 12/12/2011CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By SAURABHPROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSBBUILDING SHELL STORE Approved By A.K. SETH

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)

STRUT PIPE

Bay IdNote:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS

Hence Design Compressive Strength of the Section 49.4 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 29.6 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 35.9 Semi Compact Section

Area of Cross Section = Ae= 3200.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 17.7 N/mm2 < 29.63 N/mm2 Hence Safe

Page 207: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Hollow Pipe 206

Yield Strength of Steel = fy 250 N/mm2 WALL @ GRID-A ,C & E

Size of Bracing Member from IS 1161 for Tubular Steel 150 NB PIPELength of the Compression Member = L 12000 mmEffective Length Coefficient of the member = K x 0.5 1 Betwn Grid-8&9

Factored Compressive Force from staad analysis, Ps = 13.65 kN Load Case-112 :DL+WL2Buckling Class a Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.21Least Radius of Gyration = r 56.7 mmDiameter of the section = D 165.1 mm

Thickness of the Section= t 4.8 mmSlenderness Ratio = KL/r 211.64 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 44.07 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 2.38 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 3.57 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.16 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 227.3 N/mm2

fd= 36.5 N/mm2

ERA BUILIDSYS LTD

JOB NO. J#685 Rev. No. R0OWNER RAIL COACH FACTORY Date 12/12/2011CONSULTANT IIT, DELHI Designed By PRAFULLMAIN CONTRACTOR IRCON INTERNATIONAL LTD Checked By SAURABHPROJECT RAIL COACH FACTORY RAE BARELI (U.P) Recommded By SSBBUILDING SHELL STORE Approved By A.K. SETH

DESIGN OF PIPE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)

STRUT PIPE

Bay IdNote:Considering half length as restrained is provided at mid span of X- Bracing by mutual connection. Connection at the joint isconsidered as restrained against translation at both end but free against rotation at both the end. Hence K=1.0 from table 11 IS

Hence Design Compressive Strength of the Section 36.5 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 21.9 N/mm2 IS 800:2007 Cl 11.3.1ε= 1.0

88ε2= 88.0

D/t= 34.4 Semi Compact Section

Area of Cross Section = Ae= 2420.0 mm2

Actual Compressive Stress, fc = Ps/Ae = 5.6 N/mm2 < 21.93 N/mm2 Hence Safe

Page 208: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.8PURLIN DESIGN

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 209: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

INTERMIDIATE BAY PURLIN DESIGN

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 210: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTORPROJECTBUILDING

INPUT FOR DESIGN

Width of the Building, B = 40 m

Length of the Building, D = 156 m

Height of the Building, H = 13.7 m

Bay Spacing,L = 12.00 m

Max. Purlin Spacing, Ps = 1.8 m

Roof Slope, In X Direction = 10 Kx = 0.995

In Y Direction = 1 Ky = 0.100

Dead Load Intensity, DL = 20 Kg/m2

Live Load Intensity, LL = 95 Kg/m2

Wind Load Intensity,WL = 143.36 Kg/m2

Wind Load Intensity,WL for strength = -1.443 (FROM IS 875-Part 3)

Yield Stress Of Steel, Fy = 345 MPa

SHELL STORE Approved By ANIL SETH

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.B

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

ERA BUILIDSYS LTD

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

No. of sag Rods at Intermediate Purlin = 7Wind Load Intensity,WL for deflection = 143.36192 Kg/m2

TRY

t d b1 b2 L1 L2 D

Actual Sizes (As per Standard) 3.15 243.7 64 66 18 18 250

Effective Sizes for Stress Calc. Clause 5.2.1.1 3.15 243.7 64 66 18 18 250

Effective Sizes for Deflection Calc.Clause 5.2.1.1 3.15 243.7 64 66 18 18 250

Centre Of Gravity, Y = 12.56 cm = 6.28 cm

Moment of Inertia, Ixx = 1126.40 cm4 = 89.47 cm4

Sectional Modulus, Zxxtop = 89.67 cm3 = 14.24 cm3

Sectional Modulus, Zxxbot = 90.55 cm3 = 13.97 cm3

Cross Sectional Area, A = 12.71 cm2 = 9.98 Kg.

Iyc, M.I. of compression flange about gravity axis = 43.57 cm4 cb = 1

Depth of Section = 250 mm

a = 1.5 m

(Cl. 6.3, IS:801- 1975)

SECTIONAL PROPERTIES OF PURLINS:(AS PER CLAUSE 5.2 OF IS 801-1975)

Z-250X3.15

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

Weight/m

4

Page 211: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Total Load, DL+LL Case [(DL + LL) x Kx] x Ps = 205.97 Kg/m

Total Load, DL+WL Case for strength [(DL x Kx + WL x Cp1) x Ps] x 0.75] = -252.41 Kg/mTotal Load, DL+WL Case for deflection [(DL x Kx + WL x Cp1) x Ps] = -336.55 Kg/m

= 20.60 Kg/m

Maximum Span Moment, Mspan = 1319 Kg-m FROM STAAD ANALYSIS 1319.113

Maximum Span Moment over Sag Rod, Msag = 2.03 Kg-m

Maximum moment capacity of Section, Mmax = 1725 Kg-m

maximum moment at Support = 0 Kg-m FROM STAAD ANALYSIS 0

maximum moment at 0.385m Lap 1 = 1138 Kg-m FROM STAAD ANALYSIS 1137.595

maximum moment at 0.740m Flange Brace Location = 2158 Kg-m FROM STAAD ANALYSIS 2158.382

maximum moment at 0.740m Lap 2 = 2113 Kg-m FROM STAAD ANALYSIS 2112.954

DESIGN OF INTERMEDIATE SPAN PURLINS: (AS PER IS 801-1975 & IS 800-2007)

LOAD CALCULATIONS:Major Loads, Load in Vertical Plane:

Minor Loads, Loads in Inclined Plane:

Moment At Varoius Locations:

maximum moment at 1.175m Lap 3 = 1600 Kg-m FROM STAAD ANALYSIS 1600.433

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.76 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.33 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.63 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.61 SAFE

CHECK FOR SECTION FOR MOMENT AT 1.175m As Providing Lap of 1.175m = SAFE STRESS RATIO 0.93 SAFEPROVIDE LAP 3

d/t 77.37 < 4590/√3450 78.14534952

Maximum average shear stress, Fv = 1275 √Fy/(d/t) clause 6.4.1a

= 968.00 kg/cm2 < 1380 kg/cm2 ok

Shear force @ support = 2754.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 2851.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 2940.9 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 1313.4 Kg LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 1212.7 Kg LOAD FROM STAAD ANALYSIS

Developed shear stress @ support , fv, shear force / Aw = 179.39 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 185.72 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 135.31 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 60.43 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 111.59 kg/cm2 SAFE

ALLOWABLE STRESSES IN WEB OF PURLINS:(AS PER CLAUSE 6.4 OF IS 801-1975)

Shear stresses in Web:

4

Page 212: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Maximum Bending stress, Fbw = 0.6 x Fy CLAUSE 6.1 PAGE 11 IS-801-1975

= 2070 Kg/cm2

Stress on the net section in compression on Extreme fibres= F = 0.6 x Fy (Cl 6.1, IS 801:1975)

= 2070 Kg/cm2

Allowable maximum stresses for laterally unbraced beams: CLAUSE 6.3 (b), IS-801-1975

Unsupported length L = a= = 1.5 m

L2 Sxc/(d Iyc) = 1852.40

0.18 π2 E cb/ fy = 1029.87

0.9 π2 E cb/ fy = 5149.36

Fb=2/3 fy - fy 2/(2.7 π2 E cb) L2 Sxc /(d Iyc) = 1923.58

Therefore, allowable compressive stress in extreme fibres in flexure = 1923.58 Kg/cm2

Bending Stress in Web: CLAUSE 6.1 PAGE 11 IS-801-1975

Allowable Compressive Stress in Extreme fibres in Flexure : CLAUSE 6.3 PAGE 11 IS-801-1975

= 1471.0 Kg/cm2 SAFE

= 634.3 Kg/cm2 SAFE

= 1203.5 Kg/cm2 SAFE

= 1178.1 Kg/cm2 SAFE

= 1784.8 Kg/cm2 SAFE

= 14.6 Kg/cm2 SAFE

Total Bending stress, fbw = 1799.3 Kg/cm2 SAFE

fbw2 fv

2 SAFE

Fbw2 Fv

2

Developed Bending Stress Vertical Plane, M @0.780 / Zxmin (LAP 2)

Developed Bending Stress Vertical Plane, M @1.175 / Zxmin (LAP 3)

Developed Bending Stress Inclined Plane, Msag / Zymin

Combined Bending and Shear Stress in Web: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

= 0.94

Developed Bending Stress Vertical Plane, M @0.740 / Zxmin

Developed Bending Stress Vertical Plane, Mspan / Zxmin

Developed Bending Stress Vertical Plane, M @0.385 / Zxmin (LAP 1)

4

Page 213: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Centre Of Gravity, Y = 12.56 cm = 6.28 cm

Moment of Inertia, Ixx = 1126.40 cm4 = 89.47

Sectional Modulus, Zxxtop = 89.67 cm3 = 13.97

Sectional Modulus, Zxxbot = 90.55 cm3 = 14.24 cm3

Cross Sectional Area, A = 12.71 cm2 = 9.98 Kg.

= 48 mm

= 60 mm

= 80 mm

= 36.6 mm SAFE 36.648

= 21.1 mm SAFE 21.104

= 58 2 mm SAFE 58 248Actual Deflection (FROM STAAD ANALYSIS) DL+WL

Weight/m

Permissible Deflection, Span/250 AS PER PAGE 159 TENDER DL+LL

Permissible Deflection, Span/200 AS PER PAGE 159 TENDER DL+LL+WL

Permissible Deflection, Span/150 AS PER PAGE 31 IS-800-2007 TABLE-6

Actual Deflection (FROM STAAD ANALYSIS) DL+LL

Actual Deflection(FROM STAAD ANALYSIS) DL+0.8LL+0.8WL

Sectional Modulus, Zyyrigh

DEFLECTION CHECK : (AS PER CLAUSE 5.2.1.1 & TABLE 6 IN IS 800:2007)

Sectional Properties:

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

= 58.2 mm SAFE 58.248Actual Deflection (FROM STAAD ANALYSIS) DL+WL

PROVIDE Z-250X3.15 PURLIN WITH LAP 3@1175MM

4

Page 214: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

END BAY PURLIN DESIGN

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 215: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTORPROJECTBUILDING

INPUT FOR DESIGN

Width of the Building, B = 40 m

Length of the Building, D = 156 m

Height of the Building, H = 13.7 m

Bay Spacing,L = 12.00 m

Max. Purlin Spacing, Ps = 1.8 m

Roof Slope, In X Direction = 10 Kx = 0.995

In Y Direction = 1 Ky = 0.100

Dead Load Intensity, DL = 20 Kg/m2

Live Load Intensity, LL = 95 Kg/m2

Wind Load Intensity,WL = 143.36 Kg/m2

Wind Load Intensity,WL for strength = -1.443 (FROM IS 875-Part 3)

Yield Stress Of Steel, Fy = 345 MPa

SHELL STORE Approved By ANIL SETH

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.B

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

ERA BUILIDSYS LTD

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

No. of sag Rods at Intermediate Purlin = 7Wind Load Intensity,WL for deflection = 143.36192 Kg/m2

TRY

t d b1 b2 L1 L2 D

Actual Sizes (As per Standard) 3.5 243 64 66 18 18 250

Effective Sizes for Stress Calc. Clause 5.2.1.1 3.5 243 64 66 18 18 250

Effective Sizes for Deflection Calc.Clause 5.2.1.1 3.5 243 64 66 18 18 250

Centre Of Gravity, Y = 12.56 cm = 6.26 cm

Moment of Inertia, Ixx = 1242.34 cm4 = 97.56 cm4

Sectional Modulus, Zxxtop = 98.90 cm3 = 15.58 cm3

Sectional Modulus, Zxxbot = 99.88 cm3 = 15.28 cm3

Cross Sectional Area, A = 14.07 cm2 = 11.04 Kg.

Iyc, M.I. of compression flange about gravity axis = 47.49 cm4 cb = 1

Depth of Section = 250 mm

a = 1.5 m

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

Weight/m

(Cl. 6.3, IS:801- 1975)

SECTIONAL PROPERTIES OF PURLINS:(AS PER CLAUSE 5.2 OF IS 801-1975)

Z-250X3.5

4

Page 216: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Total Load, DL+LL Case [(DL + LL) x Kx] x Ps = 205.97 Kg/m

Total Load, DL+WL Case for strength [(DL x Kx + WL x Cp1) x Ps] x 0.75] = -252.41 Kg/mTotal Load, DL+WL Case for deflection [(DL x Kx + WL x Cp1) x Ps] = -336.55 Kg/m

= 20.60 Kg/m

Maximum Span Moment, Mspan = 1319 Kg-m FROM STAAD ANALYSIS 1319.113

Maximum Span Moment over Sag Rod, Msag = 2.03 Kg-m

Maximum moment capacity of Section, Mmax = 1898 Kg-m

maximum moment at Support = 0 Kg-m FROM STAAD ANALYSIS 0

maximum moment at 0.385m Lap 1 = 1138 Kg-m FROM STAAD ANALYSIS 1137.595

maximum moment at 0.740m Flange Brace Location = 2158 Kg-m FROM STAAD ANALYSIS 2158.382

maximum moment at 0.740m Lap 2 = 2113 Kg-m FROM STAAD ANALYSIS 2112.954

DESIGN OF INTERMEDIATE SPAN PURLINS: (AS PER IS 801-1975 & IS 800-2007)

LOAD CALCULATIONS:Major Loads, Load in Vertical Plane:

Minor Loads, Loads in Inclined Plane:

Moment At Varoius Locations:

maximum moment at 1.175m Lap 3 = 1600 Kg-m FROM STAAD ANALYSIS 1600.433

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.70 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.30 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.57 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.56 SAFE

CHECK FOR SECTION FOR MOMENT AT 1.175m As Providing Lap of 1.175m = SAFE STRESS RATIO 0.84 SAFEPROVIDE LAP 3

d/t 69.43 < 4590/√3450 78.14534952

Maximum average shear stress, Fv = 1275 √Fy/(d/t) clause 6.4.1a

= 1078.65 kg/cm2 < 1380 kg/cm2 ok

Shear force @ support = 2754.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 2851.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 2940.9 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 1313.4 Kg LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 1212.7 Kg LOAD FROM STAAD ANALYSIS

Developed shear stress @ support , fv, shear force / Aw = 161.92 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 167.63 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 121.77 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 54.38 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 100.43 kg/cm2 SAFE

Shear stresses in Web:

ALLOWABLE STRESSES IN WEB OF PURLINS:(AS PER CLAUSE 6.4 OF IS 801-1975)

4

Page 217: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Maximum Bending stress, Fbw = 0.6 x Fy CLAUSE 6.1 PAGE 11 IS-801-1975

= 2070 Kg/cm2

Stress on the net section in compression on Extreme fibres= F = 0.6 x Fy (Cl 6.1, IS 801:1975)

= 2070 Kg/cm2

Allowable maximum stresses for laterally unbraced beams: CLAUSE 6.3 (b), IS-801-1975

Unsupported length L = a= = 1.5 m

L2 Sxc/(d Iyc) = 1874.33

0.18 π2 E cb/ fy = 1029.87

0.9 π2 E cb/ fy = 5149.36

Fb=2/3 fy - fy 2/(2.7 π2 E cb) L2 Sxc /(d Iyc) = 1918.59

Therefore, allowable compressive stress in extreme fibres in flexure = 1918.59 Kg/cm2

Bending Stress in Web: CLAUSE 6.1 PAGE 11 IS-801-1975

Allowable Compressive Stress in Extreme fibres in Flexure : CLAUSE 6.3 PAGE 11 IS-801-1975

= 1333.8 Kg/cm2 SAFE

= 575.1 Kg/cm2 SAFE

= 1091.2 Kg/cm2 SAFE

= 1068.2 Kg/cm2 SAFE

= 1618.2 Kg/cm2 SAFE

= 13.3 Kg/cm2 SAFE

Total Bending stress, fbw = 1631.5 Kg/cm2 SAFE

fbw2 fv

2 SAFE

Fbw2 Fv

2

Developed Bending Stress Vertical Plane, M @0.780 / Zxmin (LAP 2)

Developed Bending Stress Vertical Plane, M @1.175 / Zxmin (LAP 3)

Developed Bending Stress Inclined Plane, Msag / Zymin

Combined Bending and Shear Stress in Web: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

= 0.86

Developed Bending Stress Vertical Plane, Mspan / Zxmin

Developed Bending Stress Vertical Plane, M @0.385 / Zxmin (LAP 1)

Developed Bending Stress Vertical Plane, M @0.740 / Zxmin

4

Page 218: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL MUNGLE

DESIGN OF ROOF PURLIN

EBL-J-685 Rev. No. R0

Centre Of Gravity, Y = 12.56 cm = 6.26 cm

Moment of Inertia, Ixx = 1242.34 cm4 = 97.56

Sectional Modulus, Zxxtop = 98.90 cm3 = 15.28

Sectional Modulus, Zxxbot = 99.88 cm3 = 15.58 cm3

Cross Sectional Area, A = 14.07 cm2 = 11.04 Kg.

= 48 mm

= 60 mm

= 80 mm

= 36.6 mm SAFE 36.648

= 21.1 mm SAFE 21.104

= 58 2 mm SAFE 58 248Actual Deflection (FROM STAAD ANALYSIS) DL+WL

Weight/m

Permissible Deflection, Span/250 AS PER PAGE 159 TENDER DL+LL

Permissible Deflection, Span/200 AS PER PAGE 159 TENDER DL+LL+WL

Permissible Deflection, Span/150 AS PER PAGE 31 IS-800-2007 TABLE-6

Actual Deflection (FROM STAAD ANALYSIS) DL+LL

Actual Deflection(FROM STAAD ANALYSIS) DL+0.8LL+0.8WL

DEFLECTION CHECK : (AS PER CLAUSE 5.2.1.1 & TABLE 6 IN IS 800:2007)

Sectional Properties:

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

= 58.2 mm SAFE 58.248Actual Deflection (FROM STAAD ANALYSIS) DL+WL

PROVIDE Z-250X3.5 PURLIN WITH LAP 3@1175MM

4

Page 219: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.9GIRT DESIGN

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 220: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTORPROJECTBUILDING

INPUT FOR DESIGN

Width of the Building, B = 40 m

Length of the Building, D = 156 m

Height of the Building, H = 13.7 m

Bay Spacing,L = 12.00 m

Max. Purlin Spacing, Ps = 1.5 m

Dead Load Intensity, DL = 20 Kg/m2

Wind Load Intensity,WL = 143.36 Kg/m2

Wind Load Intensity,WL for strength = -1.2 (FROM IS 875-Part 3)

Yield Stress Of Steel, Fy = 345 MPa

SAURABH BHARDWAJRAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.BSHELL STORE Approved By ANIL SETH

ERA BUILIDSYS LTD

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By

No. of sag Rods at Intermediate Purlin = 7

Wind Load Intensity,WL for deflection = 143.36192 Kg/m2

TRYt d b1 b2 L1 L2 D

Actual Sizes (As per Standard) 3.15 193.7 64 66 18 18 200Effective Sizes for Stress Calc. Clause 5.2.1.1 3.15 193.7 64 66 18 18 200

Effective Sizes for Deflection Calc.Clause 5.2.1.1 3.15 193.7 64 66 18 18 200

Centre Of Gravity, Y = 10.06 cm = 6.29 cm

Moment of Inertia, Ixx = 662.46 cm4 = 89.45 cm4

Sectional Modulus, Zxxtop = 65.88 cm3 = 14.23 cm3

Sectional Modulus, Zxxbot = 66.62 cm3 = 13.98 cm3

Cross Sectional Area, A = 11.13 cm2 = 8.74 Kg.

Iyc, M.I. of compression flange about gravity axis = 43.67 cm4 cb = 1

Depth of Section = 200 mm

a = 1.5 m

SECTIONAL PROPERTIES OF PURLINS:(AS PER CLAUSE 5.2 OF IS 801-1975)

Z-200X3.15

Centre Of Gravity, X

Moment of Inertia, Iyy

(Cl. 6.3, IS:801- 1975)

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

Weight/m

5

Page 221: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR SAURABH BHARDWAJ

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By

Total Load, DL Case [DL ] x Ps = 30.00 Kg/mTotal Load, WL Case for strength [(WL x Cp1) x Ps] x 0.75] = -193.54 Kg/mTotal Load, WL Case for deflection [(WL x Cp1) x Ps] = -258.05 Kg/m

= 30.00 Kg/m

Maximum Span Moment, Mspan = 1130 Kg-m FROM STAAD ANALYSIS 1130.0712

Maximum negative Moment near Support, Msupp = 0 Kg-m FROM STAAD ANALYSIS 0

Maximum moment capacity of Section, Mmax = 1291 Kg-m

maximum moment at Support = 0 Kg-m FROM STAAD ANALYSIS 0

DESIGN OF INTERMEDIATE SPAN PURLINS: (AS PER IS 801-1975 & IS 800-2007)

LOAD CALCULATIONS:Major Loads, Load in Vertical Plane:

Minor Loads :

Moment At Varoius Locations: Major Axis

maximum moment at 0.385m Lap 1 = 976 Kg-m FROM STAAD ANALYSIS 975.79913

maximum moment at 0.740m Flange Brace Location = 1905 Kg-m FROM STAAD ANALYSIS 1904.6946

maximum moment at 0.780m Lap 2 = 1858 Kg-m FROM STAAD ANALYSIS 1858.3008

maximum moment at 1.175m Lap 3 = 1256 Kg-m FROM STAAD ANALYSIS 1255.7933

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.88 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.38 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.74 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.72 SAFE

CHECK FOR SECTION FOR MOMENT AT 1.175m As Providing Lap of 1.175m = SAFE STRESS RATIO 0.97 SAFE

PROVIDE LAP 3

Moment At Varoius Locations: Minor Axis

Maximum Span Moment, = 6.93 Kg-m

Maximum Moment near Support, Msupp = 0.00 Kg-m

Maximum Moment capacity of Section, Mmax = 273.88 Kg-m

maximum moment at Support = 0.00 Kg-m

maximum moment at 0.385m Lap 1 = 6.93 Kg-m

maximum moment at 0.740m Flange Brace Locat= 6.93 Kg-m

maximum moment at 0.780m Lap 2 = 6.93 Kg-m

maximum moment at 1.175m Lap 3 = 6.93 Kg-m

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

5

Page 222: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR SAURABH BHARDWAJ

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.03 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.01 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.01 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.01 SAFECHECK FOR SECTION FOR MOMENT AT 1.175m = SAFE STRESS RATIO 0.03 SAFE

d/t 61.49 < 4590/√3450 78.14534952

Maximum average shear stress, Fv = 1275 √Fy/(d/t) clause 6.4.1a

1217 87 kg/cm2 < 1380 kg/cm2 ok

ALLOWABLE STRESSES IN WEB OF PURLINS:(AS PER CLAUSE 6.4 OF IS 801-1975)

Shear stresses in Web:

= 1217.87 kg/cm < 1380 kg/cm ok

Shear force @ support = 2199.1 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 2273.6 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 2342.2 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 1010.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 933.8 Kg LOAD FROM STAAD ANALYSIS

Developed shear stress @ support , fv, shear force / Aw = 180.21 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 186.31 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 191.94 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 82.79 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 153.04 kg/cm2 SAFE

Shear force @ support = 25.80 LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 25.80 LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 25.80 LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 25.80 LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 25.80 LOAD FROM STAAD ANALYSIS

Shear At Varoius Locations: Major Axis

Shear At Varoius Locations: Minor Axis

5

Page 223: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR SAURABH BHARDWAJ

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By

Developed shear stress @ support , fv, shear force / Aw = 2.11 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 2.11 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 2.11 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 2.11 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 4.23 kg/cm2 SAFE

Maximum Bending stress, Fbw = 0.6 x Fy CLAUSE 6.1 PAGE 11 IS-801-1975

= 2070 Kg/cm2

Stress on the net section in compression on Extreme fibres= F = 0.6 x Fy (Cl 6.1, IS 801:1975)

2070 Kg/cm2

Bending Stress in Web: CLAUSE 6.1 PAGE 11 IS-801-1975

Allowable Compressive Stress in Extreme fibres in Flexure : CLAUSE 6.3 PAGE 11 IS-801-1975

= 2070 Kg/cm

Allowable maximum stresses for laterally unbraced beams: CLAUSE 6.3 (b), IS-801-1975

Unsupported length L = a= = 1.5 m

L2 Sxc/(d Iyc) = 1697.23

0.18 π2 E cb/ fy = 1029.87

0.9 π2 E cb/ fy = 5149.36

Fb=2/3 fy - fy 2/(2.7 π2 E cb) L2 Sxc /(d Iyc) = 1958.92

Therefore, allowable compressive stress in extreme fibres in flexure = 1958.92 Kg/cm2

= 1715.4 Kg/cm2 SAFE

= 740.6 Kg/cm2 SAFE

= 1445.6 Kg/cm2 SAFE= 1410.4 Kg/cm2 SAFE= 1906.2 Kg/cm2 SAFE

= 49.6 Kg/cm2 SAFE

= 24.8 Kg/cm2 SAFE

= 24.8 Kg/cm2 SAFE

= 24.8 Kg/cm2 SAFE

= 49.6 Kg/cm2 SAFE

Developed Bending Stress Major Plane, M @0.780 / Zxmin (LAP 2)

Developed Bending Stress Major Plane, M @1.175 / Zxmin (LAP 3)

Developed Bending Stress Minor Plane, Mspan / Zymin

Developed Bending Stress Minor Plane, M @0.385 / Zymin (LAP 1)

Developed Bending Stress Minor Plane, M @0.740 / Zymin

Developed Bending Stress Minor Plane, M @0.780 / Zymin (LAP 2)

Developed Bending Stress Minor Plane, M @1.175 / Zymin (LAP 3)

Developed Bending Stress Major Plane, M @0.740 / Zxmin

Developed Bending Stress Major Plane, M span / Zxmin

Developed Bending Stress Major Plane, M @0.385 / Zxmin (LAP 1)

5

Page 224: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR SAURABH BHARDWAJ

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By

@1.175M

fbw2 fv

2

Fbw2 Fv

2

@1.175M

fbw2 fv

2

Fbw2 Fv

2

= 0.98

Combined Bending and Shear Stress in Web Major Axis: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

Combined Bending and Shear Stress in Web Minor Axis: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

SAFE

SAFE= 0.03

Combined Bending and Shear Stress in Web Major Axis + Minor Axis: @1.175M

MAJOR AXIS STRESS RATIO2 + MINOR AXIS STRESS RATIO2

Centre Of Gravity, Y = 10.06 cm = 6.29 cm

Moment of Inertia, Ixx = 662.46 cm4 = 89.45

Sectional Modulus, Zxxtop = 65.88 cm3 = 13.98

Sectional Modulus, Zxxbot = 66.62 cm3 = 14.23 cm3

Cross Sectional Area, A = 11.13 cm2 = 8.74 Kg.

= 48 mm= 60 mm= 0.069 mm SAFE= 53.3 mm SAFE

Sectional Modulus, Zyyrigh

DEFLECTION CHECK : (AS PER CLAUSE 5.2.1.1 & TABLE 6 IN IS 800:2007)

Sectional Properties:

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

PROVIDE Z-200X3.15 GIRT WITH LAP 3@1175MM

Weight/m

Permissible Deflection, Span/250 AS PER PAGE 159 TENDER DLPermissible Deflection, Span/150 AS PER PAGE 29 IS -800-2007

Actual Deflection (FROM STAAD ANALYSIS) DLActual Deflection(FROM STAAD ANALYSIS) WL

0.98 SAFE

5

Page 225: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTORPROJECTBUILDING

INPUT FOR DESIGN

Width of the Building, B = 40 m

Length of the Building, D = 156 m

Height of the Building, H = 13.7 m

Bay Spacing,L = 10.00 m

Max. Purlin Spacing, Ps = 1.8 m

Dead Load Intensity, DL = 20 Kg/m2

Wind Load Intensity,WL = 143.36 Kg/m2

Wind Load Intensity,WL for strength = -1.2 (FROM IS 875-Part 3)

Yield Stress Of Steel, Fy = 345 MPa

ERA BUILIDSYS LTD

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJRAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.BSHELL STORE Approved By ANIL SETH

No. of sag Rods at Intermediate Purlin = 6

Wind Load Intensity,WL for deflection = 143.36192 Kg/m2

TRYt d b1 b2 L1 L2 D

Actual Sizes (As per Standard) 3.15 193.7 64 66 18 18 200Effective Sizes for Stress Calc. Clause 5.2.1.1 3.15 193.7 64 66 18 18 200

Effective Sizes for Deflection Calc.Clause 5.2.1.1 3.15 193.7 64 66 18 18 200

Centre Of Gravity, Y = 10.06 cm = 6.29 cm

Moment of Inertia, Ixx = 662.46 cm4 = 89.45 cm4

Sectional Modulus, Zxxtop = 65.88 cm3 = 14.23 cm3

Sectional Modulus, Zxxbot = 66.62 cm3 = 13.98 cm3

Cross Sectional Area, A = 11.13 cm2 = 8.74 Kg.

Iyc, M.I. of compression flange about gravity axis = 43.67 cm4 cb = 1

Depth of Section = 200 mm

a = 1.43 m

(Cl. 6.3, IS:801- 1975)

SECTIONAL PROPERTIES OF PURLINS:(AS PER CLAUSE 5.2 OF IS 801-1975)

Z-200X3.15

Centre Of Gravity, X

Moment of Inertia, Iyy

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

Weight/m

5

Page 226: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

Total Load, DL Case [DL ] x Ps = 36.00 Kg/mTotal Load, WL Case for strength [(WL x Cp1) x Ps] x 0.75] = -232.25 Kg/mTotal Load, WL Case for deflection [(WL x Cp1) x Ps] = -309.66 Kg/m

= 36.00 Kg/m

Maximum Span Moment, Mspan = 804 Kg-m FROM STAAD ANALYSIS 803.88718

Maximum negative Moment near Support, Msupp = 0 Kg-m FROM STAAD ANALYSIS 0

Maximum moment capacity of Section, Mmax = 1314 Kg-m

maximum moment at Support = 0 Kg-m FROM STAAD ANALYSIS 0

DESIGN OF INTERMEDIATE SPAN PURLINS: (AS PER IS 801-1975 & IS 800-2007)

LOAD CALCULATIONS:Major Loads, Load in Vertical Plane:

Minor Loads :

Moment At Varoius Locations: Major Axis

maximum moment at 0.385m Lap 1 = 662 Kg-m FROM STAAD ANALYSIS 662.25866

maximum moment at 0.740m Flange Brace Location = 1303 Kg-m FROM STAAD ANALYSIS 1303.1048

maximum moment at 0.780m Lap 2 = 1264 Kg-m FROM STAAD ANALYSIS 1264.0524

maximum moment at 1.175m Lap 3 = 895 Kg-m FROM STAAD ANALYSIS 895.04334

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.61 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.25 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.50 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.96 SAFE

CHECK FOR SECTION FOR MOMENT AT 1.175m As Providing Lap of 1.175m = SAFE STRESS RATIO 0.68 SAFE

PROVIDE LAP 2

Moment At Varoius Locations: Minor Axis

Maximum Span Moment, Mspan = 39.77 Kg-m 39.77

Maximum Moment near Support, Msupp = 0.00 Kg-m 0.00

Maximum Moment capacity of Section, Mmax = 278.81 Kg-m

maximum moment at Support = 0.00 Kg-m 0.00

maximum moment at 0.385m Lap 1 = 39.77 Kg-m 39.77

maximum moment at 0.740m Flange Brace Locat= 39.77 Kg-m 39.77

maximum moment at 0.780m Lap 2 = 39.77 Kg-m 39.77

maximum moment at 1.175m Lap 3 = 39.77 Kg-m 39.77FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

FROM STAAD ANALYSIS

5

Page 227: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

CHECK FOR SECTION FOR MOMENT AT MID SPAN = SAFE STRESS RATIO 0.14 SAFE

CHECK FOR SECTION FOR MOMENT AT .385m = SAFE STRESS RATIO 0.07 SAFE

CHECK FOR SECTION FOR MOMENT AT .740m = SAFE STRESS RATIO 0.07 SAFE

CHECK FOR SECTION FOR MOMENT AT .780m = SAFE STRESS RATIO 0.14 SAFECHECK FOR SECTION FOR MOMENT AT 1.175m = SAFE STRESS RATIO 0.14 SAFE

d/t 61.49 < 4590/√3450 78.14534952

Maximum average shear stress, Fv = 1275 √Fy/(d/t) clause 6.4.1a

1217 87 kg/cm2 < 1380 kg/cm2 ok

ALLOWABLE STRESSES IN WEB OF PURLINS:(AS PER CLAUSE 6.4 OF IS 801-1975)

Shear stresses in Web:

= 1217.87 kg/cm < 1380 kg/cm ok

Shear force @ support = 1675.3 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 1764.9 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 1847.6 Kg LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 980.1 Kg LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 888.3 Kg LOAD FROM STAAD ANALYSIS

Developed shear stress @ support , fv, shear force / Aw = 137.28 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 144.63 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 151.40 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 160.63 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 145.59 kg/cm2 SAFE

Shear force @ support = 24.57 LOAD FROM STAAD ANALYSIS

Shear force @ .385m = 24.57 LOAD FROM STAAD ANALYSIS

Shear force @ .740m = 24.57 LOAD FROM STAAD ANALYSIS

Shear force @ .780m = 24.57 LOAD FROM STAAD ANALYSIS

Shear force @ 1.175m = 24.57 LOAD FROM STAAD ANALYSIS

Shear At Varoius Locations: Major Axis

Shear At Varoius Locations: Minor Axis

5

Page 228: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

Developed shear stress @ support , fv, shear force / Aw = 2.01 kg/cm2 SAFE

Developed shear stress @ .385 , fv, shear force / Aw = 2.01 kg/cm2 SAFE

Developed shear stress @ .740 , fv, shear force / Aw = 2.01 kg/cm2 SAFE

Developed shear stress @ .780 , fv, shear force / Aw = 4.03 kg/cm2 SAFE

Developed shear stress @ 1.175 , fv, shear force / Aw = 4.03 kg/cm2 SAFE

Maximum Bending stress, Fbw = 0.6 x Fy CLAUSE 6.1 PAGE 11 IS-801-1975

= 2070 Kg/cm2

Stress on the net section in compression on Extreme fibres= F = 0.6 x Fy (Cl 6.1, IS 801:1975)

2070 Kg/cm2

Bending Stress in Web: CLAUSE 6.1 PAGE 11 IS-801-1975

Allowable Compressive Stress in Extreme fibres in Flexure : CLAUSE 6.3 PAGE 11 IS-801-1975

= 2070 Kg/cm

Allowable maximum stresses for laterally unbraced beams: CLAUSE 6.3 (b), IS-801-1975

Unsupported length L = a= = 1.43 m

L2 Sxc/(d Iyc) = 1542.52

0.18 π2 E cb/ fy = 1029.87

0.9 π2 E cb/ fy = 5149.36

Fb=2/3 fy - fy 2/(2.7 π2 E cb) L2 Sxc /(d Iyc) = 1994.15

Therefore, allowable compressive stress in extreme fibres in flexure = 1994.15 Kg/cm2

= 1220.2 Kg/cm2 SAFE

= 502.6 Kg/cm2 SAFE

= 989.0 Kg/cm2 SAFE= 1918.7 Kg/cm2 SAFE= 1358.6 Kg/cm2 SAFE

= 284.4 Kg/cm2 SAFE

= 142.2 Kg/cm2 SAFE

= 142.2 Kg/cm2 SAFE

= 284.4 Kg/cm2 SAFE

= 284.4 Kg/cm2 SAFE

Developed Bending Stress Minor Plane, Mspan / Zymin

Developed Bending Stress Major Plane, M span / Zxmin

Developed Bending Stress Major Plane, M @0.385 / Zxmin (LAP 1)

Developed Bending Stress Major Plane, M @0.740 / Zxmin

Developed Bending Stress Major Plane, M @0.780 / Zxmin (LAP 2)

Developed Bending Stress Major Plane, M @1.175 / Zxmin (LAP 3)

Developed Bending Stress Minor Plane, M @0.385 / Zymin (LAP 1)

Developed Bending Stress Minor Plane, M @0.740 / Zymin

Developed Bending Stress Minor Plane, M @0.780 / Zymin (LAP 2)

Developed Bending Stress Minor Plane, M @1.175 / Zymin (LAP 3)

5

Page 229: Design Report J#685 Ircon Shell Store R1

JOB NO.OWNERCONSULTANTMAIN CONTRACTOR

DESIGN OF WALL GIRT

EBL-J-685 Rev. No. R0

RAI COACH FACTORY Date 28/12/2011

IIT DELHI Designed By PRAFULL

IRCON INTERNATIONAL LIMITED Checked By SAURABH BHARDWAJ

@0.780M

fbw2 fv

2

Fbw2 Fv

2

@0.780M

fbw2 fv

2

Fbw2 Fv

2

Combined Bending and Shear Stress in Web Major Axis: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

0.97 SAFE

Combined Bending and Shear Stress in Web Minor Axis: CLAUSE 6.4.2 PAGE 16 IS-801-1975 and clause 6.1.2.2

= 0.14 SAFE

=

Combined Bending and Shear Stress in Web Major Axis + Minor Axis: @0.780M

MAJOR AXIS STRESS RATIO2 + MINOR AXIS STRESS RATIO2

Centre Of Gravity, Y = 10.06 cm = 6.29 cm

Moment of Inertia, Ixx = 662.46 cm4 = 89.45

Sectional Modulus, Zxxtop = 65.88 cm3 = 13.98

Sectional Modulus, Zxxbot = 66.62 cm3 = 14.23 cm3

Cross Sectional Area, A = 11.13 cm2 = 8.74 Kg.

= 40 mm= 50 mm= 0.1 mm SAFE= 30.9 mm SAFE

Moment of Inertia, Iyy

0.98 SAFE

DEFLECTION CHECK : (AS PER CLAUSE 5.2.1.1 & TABLE 6 IN IS 800:2007)

Sectional Properties:

Centre Of Gravity, X

Actual Deflection(FROM STAAD ANALYSIS) WLPROVIDE Z-200X3.15 GIRT WITH LAP 2@780MM

Sectional Modulus, Zyyleft

Sectional Modulus, Zyyrigh

Weight/m

Permissible Deflection, Span/250 AS PER PAGE 159 TENDER DLPermissible Deflection, Span/150 AS PER PAGE 29 IS -800-2007

Actual Deflection (FROM STAAD ANALYSIS) DL

5

Page 230: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.10Eave Gutter & Downtake Pipe Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 231: Design Report J#685 Ircon Shell Store R1

EAVE GUTTER (run)

ROOF'S RAINWATER RUN-OFF W L

ROOF CATCHMENT AREA PER OUTLET A = 20 x 12 = 240.00 m2

TAKING RAINFALL INTENSITY I = 100 mm/hr W=(Width of Building /2)in m (Pitched Roof)= 2.78E-05 m/s L=Bay Spacing in m

ROOF RAINWATER DISCHARGE QR = A x I= 0.006667 m3/s

GUTTER'S DISCHARGE CAPACITY

TRY SIZE WIDTH 225 x DEPTH 200

WETTED PERIMETER P = 0.4 + 0.225 200= 0.625 m 225

CROSS-SECTIONAL AREA A = 0.2 x 0.225= 0.045 m2

HYDRAULIC RADIUS R = A/P= 0.072 m

ROUGHNESS COEFFICIENT n = 0.015 (FOR GALVANISED STEEL)

TAKING GUTTER GRADIENT S = 1 : 300= 0.003333

GUTTER DISCHARGE CAPACITY QR = 1/n * A * R(2/3) * S(1/2)

= 0.029977 > 0.006667

square90 mm

DOWNSPOUT AREA = 8100 mm2

GUTTER DEPTH 200 x WIDTH 225

SIZE SELECTED = 200 x 225 mm.

For single downspout of 90 mm square pipe.

Roof run governs:DS = 19(a)(28/13)*(m)(16/13)*(33450/CWI) (10/13)

= 19.45 mDownspout governs:

DS = 44 A/CWI= 16.20 m

Therefore 1 nos of downspout pipe of 90 mm square is sufficient for 16.2 c/c and we are providing @ 12m c/c. Hence OK

Downspout spacing as per Copper Development Association Formulae. Refer Zameel design manual.

The permissibile gutter discharge is 4.5 times the actual discharge coming from the roof

DIMENSION OF PIPE =

JOB NAME-RAIL COACH FACTORYTYPICAL GUTTER & DOWNTAKE CALCULATION

GUTTER SIZING CALCULATIONS

SHAPE OF PIPE=

Page 232: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.11Ridge Vent & Turbo Vent Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 233: Design Report J#685 Ircon Shell Store R1

Ridge Vents Design

JOB 685 ( IRCON)

RCF

Rai Bareily

RIDGE VENTILATOR DESIGN FOR SHELL STORE R1

Calculation for Exhaust Capacity of 600 mm Throat Ridge Vent

= 40.00 m= 156.00 m= 15.00 m= 17.00 m

ERA BUILDING SYSTEMS LTD

PROJECT:-

CLIENT:-

Design Assumptions :-

LOCATION:-

Building Width WBuilding Length LBuilding Eave Height EH

1. Ridge Ventilators of dia 600mm are designed for 4.5 Air changes/Hour

2. Turbo Ventilators of dia 600mm are designed for 0.5 Air changes/HourTotal- 5 Air Changes/Hour

Building Ridge Height RH= 16.00 m= 1 10 = 3.00 m= 99840.00 m3

600.00 mm= 4.5 / Hour= 5 0c= 0.805

Q required = V x N = 52 Nos.R x Vent length x 3600

Q max = Building Length = 52 Nos.Vemtilator length

Roof Slope

Volume of Building V = W x L x SH

(m3/s per meter run)

No. of Air Changes Required N

Exhaust Capacity (refer attached table and graph) RTemperature Difference Required ΔT

Stack Height SH = [EH+RH]/2

Assume, Ridge vent size

Ventilator length

Page 234: Design Report J#685 Ircon Shell Store R1

Ridge Vents Design

600900

1200

Ridge Vent 600 Ridge Vent 900 Ridge Vent 12006 0.477 0.716 0.954

12 0.674 1.011 1.348

Ridge Vent 600 Ridge Vent 900 Ridge Vent 12006 0.477 0.716 0.954

12 0.674 1.011 1.348

Page 235: Design Report J#685 Ircon Shell Store R1

Ridge Vents Design

Graph only for ΔT = 5oC

y = 0.04925000x + 0.42000000

y = 0.06566667x + 0.56000000R² = 1.00000000

0 8

1

1.2

1.4

1.63/sec pe

r meter ru

n)

Ridge Vent 600

Ridge Vent 900

Ridge Vent 1200

y = 0.03283333x + 0.28000000R² = 1.00000000

R² = 1.00000000

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14

Exha

ust C

apacity

 (m3

Stack Height (m)

Page 236: Design Report J#685 Ircon Shell Store R1

Turbo Vents Design

JOB 685 ( IRCON)

RCF

Rai Bareily

TURBO VENTILATOR DESIGN FOR MACHINE SHOP R1

Calculation for Exhaust Capacity of 600 mm Throat Turbo Vent

= 40.00 m= 156.00 m= 15.00 mBuilding Eave Height EH

1. Ridge Ventilators of dia 600mm are designed for 4.5 Air changes/Hour

2. Turbo Ventilators of dia 600mm are designed for 0.5 Air changes/HourTotal- 5 Air Changes/Hour

ERA BUILDING SYSTEMS LTD

PROJECT:-

CLIENT:-

LOCATION:-

Design Assumptions :-

Building Width WBuilding Length L

= 17.00 m= 16.00 m 52.493 ft= 1 10= 99840.00 m3

600.00 mm 24 in= 0.5 / Hour= 5 0c= 1951.457 ft3/min

R = 0.921 m3/sec

Q required = V x N = 16 Nos.R x 3600

Building Ridge Height RHStack Height SH = [EH+RH]/2Roof Slope

Exhaust Capacity (refer attached table and graph) R

Volume of Building V = W x L x SHAssume, Turbo vent sizeNo. of Air Changes Required NTemperature Difference Required ΔT

Page 237: Design Report J#685 Ircon Shell Store R1

Turbo Vents Design

5 6.5 81252 1552 18521372 1672 19721476 1776 20761564 1864 2164

600

Turbo Vent 300 Turbo Vent 60010 155220 167230 177640 1864

Turbo Vent 300 Turbo Vent 60010 155220 167230 177640 1864

Page 238: Design Report J#685 Ircon Shell Store R1

Turbo Vents Design

Graph only for ΔT = 5oC and Wind velocity 6.5 kMPH

y =  ‐ 0.080x2 + 14.400x + 1,416.000R² = 1.0001200

1400

1600

1800

2000

ty (ft3/m

in)

Turbo Vent 600Turbo Vent 600

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45

Exha

ust C

apacit

Stack Height (ft)

Page 239: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.12Flange Brace Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 240: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

Flange Brace Design @ Rafter level

Page 241: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Single Angle 136

Yield Strength of Steel = fy 345 N/mm2 ROOF FLANGE BRACESize of Bracing Member from SP6_1 for Rolled Steel ISA 65656Length of the Compression Member = L 1244 mmEffective Length Coefficient of the member = K x 0.5 1 ALL FLANGE BRACING

Factored Compressive Force from staad analysis, Ps = 19 kN LOAD COMB 114 DL + WL4Buckling Class c Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.49Least Radius of Gyration = r 12.6 mmDepth of the Section= D 65 mm

Thickness of the Section= t 6 mmSlenderness Ratio = KL/r 98.73 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 202.50 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 1.31 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 1.62 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.39 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0

DESIGN OF PIPE/SINGLE ANGLE/DOUBLE ANGLE/STAR ANGLE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)Bay Id

Note:Connection at the joint is considered as restrained against translation at both end but free against rotation at both theend. Hence K=1.0 from table 11 IS 800:2007.

PROJECT RAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.B

BUILDING SHELL STORE Approved By ANIL.SETH

CONSULTANT IIT Designed By PRAFULL MUNGLEMAIN CONTRACTOR IRCON Checked By SAURABH BHARDWAJ

OWNER RAIL COACH FACTORY Date 28/12/2011

ERA BUILIDSYS LTD

JOB NO. EBL-J-685 Rev. No. R0

γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 313.6 N/mm2

fd= 121.3 N/mm2

Hence Design Compressive Strength of the Section 121.3 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 72.8 N/mm2 IS 800:2007 Cl 11.3.1ε= 0.5

15.7ε= 8.2 25ε= 13.1275

D/t= 10.8 (D+D)\2= 21.6667 Slender Section

Area of Cross Section = Ae= 744.0 mm2

0.351020327Actual Compressive Stress, fc = Ps/Ae = 25.5 N/mm2 < 73 N/mm2 Hence Safe

Page 242: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLEMain ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAYBuilding SHELL STORE Approved By ANIL K. SETH

Flange Brace Design @ Column level

Page 243: Design Report J#685 Ircon Shell Store R1

Typr of Bracing member Single Angle 20

Yield Strength of Steel = fy 345 N/mm2 WALL FLANGE BRACE

Size of Bracing Member from SP6_1 for Rolled Steel ISA 65656Length of the Compression Member = L 1053 mmEffective Length Coefficient of the member = K x 0.5 1 ALL FLANGE BRACING

Factored Compressive Force from staad analysis, Ps = 21 kN LOAD COMB 116 DL + WL6Buckling Class c Table 7 IS 800:2007 Cl 7.1.1Imperfection Ratio = α 0.49Least Radius of Gyration = r 12.6 mmDepth of the Section= D 65 mm

Thickness of the Section= t 6 mmSlenderness Ratio = KL/r 83.57 < 250 Hence OK

Euler Buckling Stress = fcc = Л2xE/(KL/r)2 = 282.63 N/mm2 IS 800:2007 Cl 7.1.2.1Non diamensional effective slenderness ratio=λ = fy/fcc 1.10 IS 800:2007 Cl 7.1.2.1

Φ = 0.5 { 1 + α (λ - 0.2) + λ2) 1.33 IS 800:2007 Cl 7.1.2.1Stress Reduction Factor = Ҳ = 1/ (Φ +(Φ-λ)^0.5) 0.48 IS 800:2007 Cl 7.1.2.1

Design Compressive Strength of the Section = fd = Ҳ fy/γm0 ≤ fy/γm0γ 0= 1 1 From Table 4 IS 800:2007

DESIGN OF PIPE/SINGLE ANGLE/DOUBLE ANGLE/STAR ANGLE COMPRESSION MEMBER AS PER IS 800:2007 WSD

Member No.(From Staad)

Member Location (Wall/Roof)

Type (X bracing or Strut Pipe or Truss Member)Bay Id

Note:Connection at the joint is considered as restrained against translation at both end but free against rotation at both theend. Hence K=1.0 from table 11 IS 800:2007.

PROJECT RAIL COACH FACTORY RAEBARELI UTTAR PRADESH Recommded By SYAM.B

BUILDING SHELL STORE Approved By ANIL.SETH

CONSULTANT IIT Designed By PRAFULL MUNGLEMAIN CONTRACTOR IRCON Checked By SAURABH BHARDWAJ

OWNER RAIL COACH FACTORY Date 28/12/2011

ERA BUILIDSYS LTD

JOB NO. EBL-J-685 Rev. No. R0

γm0= 1.1 From Table 4 IS 800:2007

fy/γm0 313.6 N/mm2

fd= 151.1 N/mm2

Hence Design Compressive Strength of the Section 151.1 N/mm2 IS 800:2007 Cl 7.1.2.1

Permissible Compressive Stress, fc = 0.6xfcd 90.6 N/mm2 IS 800:2007 Cl 11.3.1ε= 0.5

15.7ε= 8.2 25ε= 13.1275

D/t= 10.8 (D+D)\2= 21.6667 Slender Section

Area of Cross Section = Ae= 744.0 mm2

0.311397209

Actual Compressive Stress, fc = Ps/Ae = 28.2 N/mm2 < 91 N/mm2 Hence Safe

Page 244: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.13Sag Rod Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 245: Design Report J#685 Ircon Shell Store R1

JOB NO. Rev. No. :OWNER Date :CONSULTANT Designed By :MAIN CONTRACTOR Checked By :PROJECT Recommded By :BUILDING Approved By :

Design InputSag rod diameter (D) 16.00 mmNet diameter (d) 14.00 mm RidgeYield strength of sag rod (fy) 240.00 N/mm2Purlin Span 12.00 m n= 12  purlinsPurlin Spacing (l) 1.80 mNo. of purlin on one side of ridge (n) 12No. of sag rod (n') 7 Sag RodSag rod spacing (a) 1.500 m

Sag Rod Design Near ApexEBL-J-685 R1RAIL COACH FACTORY 19.01.12IIT DELHI PrafullIRCON SSBRAIL COACH FACTORY RAEBARELI U.P SSBSHELL STORE AK Seth

l f i fl f i i i d b h d h i i d id d f i lif di i i h b fl

Try with 16mm dia Sag rod for all spans till eaves (On both sides of the ridge) .

LoadingDead Load (DL) 30.00 kg/m2Live Load (LL) 75.00 kg/m2Collateral Load (CL) 20.00 kg/m2Wind Load (WL) 143.33 kg/m2Wind Coefficient (Cp) ‐1.443Roof Slope 1:10Inclined Angle (θ) 5.71o

Sinθ 0.099503719Cosθ 0.99503719Load perpendicular to major axis(w) =Cosθ* (DL+CL) +WL= ‐157.07 kg/m2 (Suction)  Cosθ* (DL+CL) +WL    Section Properties and Check for Tension (IS 801:1975)

Net Area of sag rod (An) 153.94 mm2 t 3.15Ixy of Z section (purlin) 1811644.72 mm4 Z‐250X3.15 d 243.7Ixx of Z section (purlin) 11264000.00 mm4 Z‐250X3.15 b1 64.0K' =Ixy/Ixx 0.161 b2 66P1 =1.5*K'*a*w = 1125.46  kg (Cl. 8.2.2, IS 801:1975)  L1     18Area of flange (Af) 2.646 cm2 Z‐250X3.15 D 250

Total Load on sag rod @ ridge = P1 + P2 = 1125.46  kgAllowable tensile force carrying capacity  =0.6*fy*An*1.33 = 3005.32  kg >  1125.46 kg SAFE (33% increse Cl. 6.1.2.1, IS 801:1975)

As per Clause 8.2 of IS801, Compression flange of Z‐Section is restrained by troughed sheeting. Anti sag rods are provided for DL+CL+WL in uplift condition to restrain the bottom flange.

Z‐250X3.15

Page 246: Design Report J#685 Ircon Shell Store R1
Page 247: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.14Sheeting Screw Design

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 248: Design Report J#685 Ircon Shell Store R1

CONSULTANT IIT DELHIMAIN CONTRACTOR IRCONPROJECT:-

Reference

Design Calculation for Sheet fixing Screws (Self Drilling Srews)

Basic Wind Speed Vb = 47 m/s (IS-875 Part 3 -1987 Appendix A Cl 5.2)

Terrain Category = 1 (IS-875 Part 3 -1987 Cl 5.3.2)

Terrain Class = C (IS-875 Part 3 -1987 Cl 5.3.2)

Risk Coefficient (For 100 yrs) k1 = 1 (IS-875 Part 3 -1987 Table 1 Cl 5.3.1)

Terrain Factor k2 = 1.03 (IS-875 Part 3 -1987 Table 1 Cl 5.3.2.2)

Topography Factor k3 = 1 (IS-875 Part 3 -1987 Cl 5.3.3)

Design Wind Speed Vz = Vb x k1 x k2 x k3 (IS-875 Part 3 -1987 Cl 5.3)= 48.41 m/s

Wind Pressure Pz = 0 6 x Vz2 (IS-875 Part 3 -1987 Cl 5 4)

REVISION NO.:- R1LOCATION RAEBARELI

ERA BUILDING SYSTEMS LTD

BUILDING:- SHELL STORE

OWNER:- RAIL COACH FACTORY

EBS/PEB/J-685

Wind Pressure Pz 0.6 x Vz (IS-875 Part 3 -1987 Cl 5.4)= 143.34 kg/m2

Local Wind Coefficient Cp = (1.4+0.5) (IS-875 Part 3 -1987 Table 1 Cl 6.2.2.2)= 1.9

Design Wind Pressure Pd = 1.9 x Pz (IS-875 Part 3 -1987 Cl 6.2.1)= 272.34 kg/m2

C/C spacing of Screws on a Purlin = 300 mm

Purlin Spacing = 1800 mm

Tributory Area for 1 Screw A = 0.3 x 1.8= 0.54 m2

Force on 1 Screw F = Pd x A= 147.062 kg

Allowable Pull-put Load Fz = 2800 N

= 285.42 kg

Unfactored Allowable Pull-out Load = 147.06 kg < 285.42 kg

HENCE SAFE

(Refer attached the standard code i.e. AS 3566.1 2002 Table 2.4 the allowable pullout

capacity per bolt ST 5.5 No 12 is 2.8kN)

Page 249: Design Report J#685 Ircon Shell Store R1

CONSULTANT IIT DELHIMAIN CONTRACTOR IRCONPROJECT:-

Design Calculation for Sheet Stitching Screws (Self Tapping Screws)

Wind Load Calculation Reference

Basic Wind Speed Vb = 47 m/s (IS-875 Part 3 -1987 Appendix A Cl 5.2)

Terrain Category = 1 (IS-875 Part 3 -1987 Cl 5.3.2)

Terrain Class = C (IS-875 Part 3 -1987 Cl 5.3.2)

Risk Coefficient (For 100 yrs) k1 = 1 (IS-875 Part 3 -1987 Table 1 Cl 5.3.1)

Terrain Factor k2 = 1.03 (IS-875 Part 3 -1987 Table 1 Cl 5.3.2.2)

Topography Factor k3 = 1 (IS-875 Part 3 -1987 Cl 5.3.3)

Design Wind Speed Vz = Vb x k1 x k2 x k3 (IS-875 Part 3 -1987 Cl 5.3)= 48.41 m/s

REVISION NO.:- R1LOCATION RAEBARELI

ERA BUILDING SYSTEMS LTD

OWNER:- RAIL COACH FACTORY

EBS/PEB/J-685BUILDING:- SHELL STORE

Wind Pressure Pz = 0.6 x Vz2 (IS-875 Part 3 -1987 Cl 5.4)= 143.34 kg/m2

Local Wind Coefficient Cp = (1.4+0.5) (IS-875 Part 3 -1987 Table 1 Cl 6.2.2.2)= 1.9

Design Wind Pressure Pd = 1.9 x Pz (IS-875 Part 3 -1987 Cl 6.2.1)= 272.34 kg/m2

C/C spacing of Screws along length p = 300 mm

Eff. length for 1 Screw = 1800 mm Purlin spacing

Effective Area for 1 Screw A = 0.3 x 1.8= 0.54 m2

Force on 1 Screw F = Pd x A= 147.06 kg

Page 250: Design Report J#685 Ircon Shell Store R1

CONSULTANT IIT DELHIMAIN CONTRACTOR IRCONPROJECT:-

REVISION NO.:- R1

ERA BUILDING SYSTEMS LTD

OWNER:- RAIL COACH FACTORY

EBS/PEB/J-685BUILDING:- SHELL STORE

Design Calculation Sheet For bearing

Check for Sheet in Bearing

Thread Dia. of Screw ds = 4.8 mm

Gross Area of Screw ag = 18.10 mm2

Root Dia. of Screw dr = 3.36 mm (Assumed 0.7 times the dia of Screw)

Root Area of Screw ar = 8.87 mm2

Stress on Sheet under Screw Head f = F/(ag-ar)

= 156.32 N/mm2

Yield Strength of Sheet fy = 300 N/mm2 AS PER REVISED BOQ.

Permissible Bearing Strength of Sheet σb = 0.75 x fy = 225.00 N/mm2

= 156.32 N/mm2 < 225.00 N/mm2 HENCE SAFE

Check for Sheet in Shear

Restraining forces = Screw spacing x Purlin Spacing x Minor Axis Load x Width on one side of ridgeNo of screws on one side of ridge

Roof Slope in x = 10roof Slope in y = 1KY = 0.0995Screw Spacing = 300 mm

Minor Axis Load = 12.438 kg/sqm2= (0.2 x 1.8 x 12.43 x 20 )/12

Inclined forces @ screw = 11.1942 kg

Permissible Shear Strength of Sheet σs = 0.4 x fy

= 120.00 N/mm2

Allowable Force on Sheet along the periphery = σs x ( π x ds) x 1*tsheet

of screw = 92.23 kg > 11.19 kg HENCE SAFE

Page 251: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.15Puff Panel Specification

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 252: Design Report J#685 Ircon Shell Store R1

T R A D I T I O N A L

R O O F

Self-tapping screw Ø 6,3with PVC headPVC washer

Panel

Structure

Prepainted aluminiumcap unit withbuilt-in seal

Glamet ®

Self-supporting metal panel, insulated withpolyurethane, for pitched roofs with a minimumslope of 7%.For additional technical information, refer to theGLAMET® technical manual.

Major product technical approval:Zulassung Dibt Z - 10.4 - 241.

20

40

Steel external face

Steel internal face

38

S

333,3 333,3 333,3

1000

Seal

= =

GLAMET®

Micro-ribbed finish

62,5

Staved finish

25

10

GLAMET®

fastening

Page 253: Design Report J#685 Ircon Shell Store R1

11

Profiled polyurethane-insulated roof system, slope p ≥ 7%

3,25 2,80 2,50 2,30 2,00 1,80 1,60

3,60 3,10 2,80 2,55 2,30 2,00 1,75

4,00 3,50 3,15 2,85 2,55 2,25 2,00

4,40 3,90 3,45 3,15 2,80 2,50 2,20

5,20 4,60 4,10 3,75 3,30 2,95 2,60

5,75 5,10 4,55 4,10 3,65 3,25 2,85

2,90 2,50 2,25 2,05 1,,85 1,60 1,40

3,20 2,80 2,50 2,30 2,05 1,80 1,60

3,60 3,10 2,80 2,55 2,30 2,00 1,75

4,00 3,45 3,10 2,80 2,50 2,20 1,90

4,80 4,10 3,70 3,30 2,95 2,60 2,20

5,30 4,50 4,00 3,60 3,25 2,85 2,40

0,51 0,59

0,40 0,46

0,33 0,38

0,28 0,33

0,22 0,25

0,18 0,21

7,45

7,83

8,21

8,59

9,35

10,11

30

40

50

60

80

100

60 80 100 120 150 200 250 60 80 100 120 150 200 250

l =

l =

l =

l =

l =

l =

p = (daN/m2)

l l l

p p p

l

p

S mm Watt

m2 °C

Panelweightkg/m2

0,6 + 0,5

Kcalm2h °C

K

aluminium - steel

3,05 2,60 2,35 2,10 1,90 1,70 1,50

3,40 2,90 2,60 2,40 2,15 1,85 1,65

3,80 3,30 2,90 2,65 2,40 2,10 1,85

4,20 3,65 3,20 2,95 2,65 2,30 2,05

4,95 4,30 3,85 3,45 3,15 2,75 2,40

5,45 4,75 4,25 3,85 3,45 3,05 2,65

2,80 2,40 2,15 1,95 1,75 1,50 1,35

3,10 2,70 2,40 2,20 1,95 1,70 1,50

3,45 3,00 2,70 2,45 2,20 1,90 1,65

3,85 3,30 2,95 2,70 2,40 2,10 1,80

4,60 3,95 3,50 3,15 2,85 2,45 2,10

5,05 4,35 3,85 3,45 3,05 2,60 2,25

0,51 0,59

0,40 0,46

0,33 0,38

0,28 0,33

0,22 0,25

0,18 0,21

4,96

5,34

5,72

6,10

6,86

7,62

30

40

50

60

80

100

60 80 100 120 150 200 250 60 80 100 120 150 200 250

l =

l =

l =

l =

l =

l =

p = (daN/m2)

l l l

p p p

l

p

S mm Watt

m2 °C

Panelweightkg/m2

0,6 + 0,6

Kcalm2h °C

K

aluminium - aluminium

4,20 3,65 3,20 2,90 2,60 2,25 2,00 1,80

4,50 3,90 3,50 3,20 2,85 2,45 2,20 1,95

4,75 4,10 3,65 3,35 3,00 2,60 2,30 2,05

5,00 4,30 3,90 3,55 3,15 2,75 2,45 2,20

5,50 4,70 4,40 3,95 3,45 3,05 2,75 2,45

6,20 5,40 4,90 4,45 3,95 3,45 3,05 2,75

4,70 4,10 3,65 3,30 2,90 2,50 2,25 2,05

5,00 4,40 3,90 3,55 3,20 2,75 2,45 2,25

5,30 4,60 4,10 3,75 3,35 2,90 2,60 2,40

5,60 4,85 4,35 3,95 3,55 3,05 2,75 2,55

6,20 5,30 4,80 4,35 3,95 3,35 3,05 2,80

7,05 6,05 5,45 4,95 4,45 3,80 3,45 3,20

0,51 0,59

0,40 0,46

0,33 0,38

0,28 0,33

0,22 0,25

0,18 0,21

9,42

9,80

10,18

10,56

11,32

12,08

30

40

50

60

80

100

l =

l =

l =

l =

l =

l =

p = (daN/m2)

l l l

p p p

l

p

S mm Watt

m2 °C

Panelweightkg/m2

0,5 + 0,4

Kcalm2h °C

K

steel - steel

Table of safe spansValues guaranteed with external face in steel, 0.5 mm thick, and internal face in steel, 0.4 mm thick orwith both faces in aluminium 0,6 mm thick with external face in aluminium, 0.6 mm thick, and internalface in steel, 0.5 mm thick. The spans l (m) as a function of a uniformly distributed overload p (daN/m2),have been obtained from load tests carried out in Metecno laboratories, and provide a deflection f ≤ l/200with a safety coefficient that complies with the UEAtc standards for insulated panels, which have beenestablished and are implemented by primary European Certifying Organizations.With external and/or internal steel thicknesses inferior to the above mentioned ones, the guarantee on theadmissible loads for the spans indicated in the table is maintained, while it is not maintained on thedeflection limit and the safety coefficient.

60 80 100 120 150 200 250 30060 80 100 120 150 200 250 300

prafull.b
Rectangle
prafull.b
Highlight
prafull.b
Rectangle
prafull.b
Rectangle
prafull.b
Rectangle
prafull.b
Highlight
Page 254: Design Report J#685 Ircon Shell Store R1

W A L L

D E S I G N

49

60 80 100 120 150

PUR-insulated wall panelsMonowall®

Self-supporting metal panels insulated with PUR for use in industrial andcommercial buildings, refrigerated rooms with positive temperature, andpartitions in general.For additional technical information, refer to the MONOWALL®

technical manual.

Major product technical approval:Zulassung Dibt Z - 10.4 - 241. Avis Tecnique CSTB AT-2/05-152

IMPORTANT: In the assembly stage, attention to the correct positioningof the painted side: the side marked with “INTERNAL”must face the internalside.

48

1,75 1,60 1,50 1,40 1,30

2,25 2,10 1,90 1,80 1,65

2,80 2,60 2,40 2,20 2,00

3,10 2,90 2,70 2,50 2,20

3,45 3,20 2,95 2,75 2,40

3,80 3,55 3,30 3,00 2,60

4,50 4,00 3,70 3,35 2,90

4,90 4,45 4,10 3,75 3,20

5,50 4,90 4,50 4,10 3,50

2,05 1,90 1,75 1,65 1,55

2,60 2,45 2,30 2,05 1,85

3,20 3,00 2,80 2,50 2,20

3,40 3,20 3,00 2,80 2,50

3,90 3,65 3,40 3,10 2,75

4,40 4,10 3,75 3,45 3,00

5,20 4,65 4,25 3,90 3,35

5,80 5,15 4,75 4,30 3,70

6,40 5,70 5,25 4,75 4,05

60 80 100 120 150

0,66 0,77

0,56 0,65

0,48 0,56

0,43 0,50

0,35 0,41

0,29 0,34

0,22 0,26

0,18 0,21

0,15 0,18

7,70 11,08

7,89 11,23

8,08 1,46

8,27 11,65

8,65 12,03

9,03 12,41

9,79 13,17

10,59 13,99

11,35 14,75

25

30

35

40

50

60

80

100

120

l =

l =

l =

l =

l =

l =

l =

l =

l =

p = (daN/m2)

l l l

p p p

l

p

S mm Watt

m2 °C

Panelweightkg/m2

0,4 + 0,4 0,6 + 0,6

Kcalm2h °C

K

Table of safe spansValues guaranteed with steel sheets as thick as indicated. Spans l in metres, as a function of a uniformlydistributed load p (daN/m2), have been obtained from experimental data and calculated to provide a deflectionlimit: f ≤ l/200 of the span and a minimum safety coefficient that complies with the UEAtc standards for insulatedpanels, which have been established and are implemented by primary European Certifying Organizations.

steel - steel (thickness 0,4 + 0,4)

60 80 100 120 150

2,34 2,06 1,84 1,67 1,49

2,76 2,44 2,19 1,99 1,77

3,16 2,79 2,51 2,29 2,04

3,79 3,35 3,01 2,75 2,45

4,30 3,79 3,41 3,11 2,77

4,74 4,19 3,77 3,44 3,06

2,75 2,39 2,11 1,90 1,66

3,26 2,84 2,52 2,27 1,99

3,74 3,26 2,90 2,62 2,32

4,34 3,78 3,36 3,04 2,69

4,86 4,24 3,77 3,41 3,02

5,31 4,63 4,12 3,72 3,29

60 80 100 120 150

0,43 0,50

0,35 0,41

0,29 0,34

0,22 0,26

0,18 0,21

0,15 0,18

4,99

5,37

5,75

6,51

7,27

8,03

40

50

60

80

100

120

l =

l =

l =

l =

l =

l =

p = (daN/m2)

l l l

p p p

l

p

S mm Watt

m2 °C

Panelweightkg/m2

0,6 + 0,6

Kcalm2h °C

K

aluminium - aluminium (thickness 0,6 + 0,6)

S

Seal

Side 1

Side 2

1000

102062,562,562,5

MONOWALL® AC “Micro-ribbed finish”

62,5

25

MONOWALL® AC “Staved finish”

Side 1

Side 2

Seal25

S

PRODUCED IN:I T A L YG E R M A N YS P A I N

prafull.b
Rectangle
prafull.b
Rectangle
prafull.b
Rectangle
Page 255: Design Report J#685 Ircon Shell Store R1

ERA BUILDING SYSTEMS LTD., NOIDA

Building SHELL STORE Approved By ANIL K. SETH

SECTION 2.16Screw Specification

Main ContractorIRCON INTERNATIONAL LTD Checked By SAURABH BHARDWAJProject RAIL COACH FACTORY RAE BARELI (U.PRecommded BS.S BANDYOPADHYAY

Date 7-Feb-2011Consultant IIT, DELHI Design By PRAFULL MUNGLE

Job No. EBSL-PEB- 685Owner RAIL COACH FACTORY

Page 256: Design Report J#685 Ircon Shell Store R1

6-397-0118-8 ( 1 : 1 )

6-397-0126-6 ( 1 : 1 )

6-397-0125-5 ( 1 : 1 )

6-397-0028-8 ( 1 : 1 )

Product Technical Data Sheet

DDS-057

A Division of ITW Buildex Australia Pty Ltd.ACN 004 235 036 ABN 63 004 235 063 Page 1 of 2

Buildex

Bi Metal Teks Product Matrix

Buildex, Teks and Climaseal are Buildex registered Trademarks

Status Released | Written By John Mallet | Date Written 14/02/2011 | Current Issue 9 | Current Issue Date 21/03/2011

www.buildex.com.auSheet Template: data sheet front page

(28,0)

(20)

(50,0)

n14,0

n19,0

n19,0

7,5Min.

33,0 Min.

11,0Min.

14,0

14,00

12,0

2Pt x 3.0 mmDrillng Capacity

3Pt x 6.0 mmDrilling Capacity

3Pt x 6.0 mmDrilling Capacity

M 5,5 - 14 TPI Thread

M 5,5 - 14 TPI Thread

M4,8 -16 TPI Thread

24,014,0Min.

(41,00)

M5,5 - 24 TPI Thread

5Pt x 12.5 mmDrilling Capacity

n19,0

Page 257: Design Report J#685 Ircon Shell Store R1

6-397-0124-4 ( 1 : 1 )

6-397-0119-9 ( 1 : 1 )

6-397-0122-2 ( 1 : 1 )

6-397-0121-1 ( 1 : 1 )

Product Technical Data Sheet

DDS-057

A Division of ITW Buildex Australia Pty Ltd.ACN 004 235 036 ABN 63 004 235 063 Page 2 of 2

Buildex

Bi Metal Teks Product Matrix

Buildex, Teks and Climaseal are Buildex registered Trademarks

Status Released | Written By John Mallet | Date Written 14/02/2011 | Current Issue 9 | Current Issue Date 21/03/2011

www.buildex.com.auSheet Template: data sheet front page

n19,0

M 5,5 - 14 TPI Thread3Pt x 6.0 mm

Drilling Capacity

(133,00)

116,0 Min.

(80)14,0

n19,0

M 5,5 - 14 TPI Thread

3Pt x 6.0 mmDrilling Capacity

n19,0

M 5,5 - 14 TPI Thread

3Pt x 6.0 mmDrilling Capacity

(62,00)

45,0 Min.

(25,0) 14,0

M 5,5 - 14 TPI Thread 3Pt x 6.0 mmDrilling Capacity

n19,0(60,0) 14,00

96,00 Min.

(113,00)

(42,0)

65,0 Min.

(82,0)

14,00

prafull.b
Rectangle