design with operational amplifiers and analog integrated circuits_s. franco.pdf

Upload: michel-arenivar

Post on 03-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    1/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    2/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    3/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    4/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    5/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    6/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    7/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    8/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    9/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    10/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    11/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    12/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    13/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    14/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    15/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    16/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    17/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    18/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    19/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    20/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    21/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    22/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    23/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    24/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    25/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    26/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    27/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    28/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    29/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    30/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    31/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    32/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    33/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    34/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    35/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    36/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    37/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    38/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    39/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    40/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    41/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    42/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    43/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    44/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    45/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    46/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    47/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    48/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    49/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    50/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    51/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    52/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    53/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    54/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    55/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    56/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    57/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    58/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    59/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    60/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    61/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    62/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    63/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    64/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    65/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    66/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    67/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    68/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    69/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    70/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    71/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    72/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    73/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    74/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    75/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    76/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    77/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    78/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    79/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    80/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    81/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    82/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    83/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    84/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    85/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    86/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    87/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    88/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    89/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    90/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    91/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    92/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    93/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    94/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    95/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    96/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    97/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    98/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    99/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    100/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    101/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    102/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    103/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    104/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    105/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    106/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    107/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    108/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    109/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    110/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    111/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    112/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    113/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    114/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    115/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    116/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    117/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    118/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    119/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    120/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    121/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    122/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    123/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    124/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    125/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    126/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    127/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    128/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    129/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    130/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    131/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    132/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    133/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    134/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    135/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    136/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    137/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    138/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    139/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    140/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    141/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    142/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    143/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    144/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    145/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    146/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    147/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    148/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    149/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    150/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    151/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    152/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    153/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    154/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    155/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    156/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    157/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    158/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    159/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    160/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    161/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    162/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    163/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    164/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    165/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    166/305

    27 R6=20*10^3;

    2829 R7=19.6*10^3;3031 R8=100;3233 R9=100*10^3;3435 R10=1*10^3;3637 C=100*10^(-12);3839 EI1=Vos+(((R1*(R2+(R8/2))) /(R1+(R2+(R8/2))))*Ib) ;4041 EI2=EI1;4243 EI3=Vos+(((R4*R6)/(R4+R6))*Ios) ;4445 A=10^3;4647 Eo=(A*(EI1+EI2))+((R6/R4)*EI3);4849 Eos=Eo+64*10^(-3) ;5051 Vx=Eos;5253 RB=100*10^3;5455 RA=RB/abs (Vs/Vx);5657 RC=100*10^3; / / / Cho osi ng RC=100 kohms5859 printf ( RA=%. f kohms ,RA*10^(-3)) ;

    6061 printf ( \ nRB=%. f kohms ,RB*10^(-3)) ;6263 printf ( \ nRC=%. f kohms ,RC*10^(-3)) ;

    165

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    167/305

    Scilab code Exa 5.11 Absolute Maximum Ratings

    1 / / Ex ampl e 5 .1 123 clear ;45 clc ;67 Tmax=70;89 T=100;

    1011 Iqmax=2.8*10^(-3) ;1213 VCC=15;1415 VEE=-15;1617 P1=(VCC-VEE)*Iqmax;

    1819 P=310*10^(-3) ;2021 Io=(P-P1)/VCC;2223 PC=5.6*10^(-3) ;2425 Pmax=P+((Tmax-T)*PC);2627 Io=(Pmax-P1)/VCC;2829 printf ( Maximum Cu rr en t at 100 degC=%.1 f mA , Io*10^3)

    ;

    166

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    168/305

    Scilab code Exa 5.12 Overload Protection Maximum Ratings

    1 / / Ex ampl e 5 .1 223 clear ;45 clc ;67 R6=27;89 b14=250;

    1011 b15=b14;1213 Vbe15on=0.7;1415 IC14=Vbe15on/R6;1617 IB14=IC14/b14;

    1819 i=0.18*10^(-3) ;2021 IC15=i-IB14;2223 Isc=IC14+IC15;2425 printf ( IC14=%. f mA , IC14*10^3);2627 printf ( \ nI B1 4=%. 3 f mA , IB14*10^3);2829 printf ( \ nIC 15=%. f uA , IC15*10^6);3031 printf ( \ n I s c=%. f mA , Isc*10^3);

    167

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    169/305

    Chapter 6

    Dynamic Op Amp Limitations

    Scilab code Exa 6.1.a Closed Loop Response of Non Inverting Amplier

    1 / / Exa mp le 6 . 1 ( a )23 clear ;45 clc ;67 R1=2*10^3;89 R2=18*10^3;

    1011 b=0.1;1213 fb=100*10^3;1415 emmax=0.01;16

    17 fmax=((((1/(1-emmax))^2)-1)*(fb^2))^(1/2) ;1819 printf ( f < =%. 1 f kHz , fmax*10^(-3)) ;

    168

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    170/305

    Scilab code Exa 6.1.b Closed Loop Response of Non Inverting Amplier

    1 / / E xam ple 6 . 1 ( b )23 clear ;45 clc ;67 R1=2*10^3;89 R2=18*10^3;

    1011 b=0.1;1213 fb=100*10^3;1415 ef imax=5;1617 fmax= tan (ef imax*%pi/180)*fb;

    1819 printf ( f < =%. 2 f kHz , fmax*10^(-3)) ;

    Scilab code Exa 6.2.a Gain Bandwidth Tradeoff

    1 / /Chapter 62 / / Page No. 2653 / / Exa mp le 6 . 2 ( a )4 / / Ga in Ban dwid th Tr a d e o ff 56 A0dB=60;78 A0=10^(A0dB/20);

    169

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    171/305

    9

    10 f t=10^6;1112 fb=ft /A0;1314 A10=A0^(1/2) ;1516 A20=A10;1718 fb1=ft /A10;1920 fb2=fb1;2122 R1=1*10^3;2324 R2=(A10-1)*R1;2526 printf ( D e s ig n ed Audi o A m p l i f i e r : ) ;2728 printf ( \ n O p e ra t i o n a l A m p l i fi e r 1 : ) ;2930 printf ( \ nR1=%. 2 f kohms ,R1*10^(-3)) ;3132 printf ( \ nR2=%. 1 f kohms , (R2*10^(-3))+0.3) ;3334 printf ( \ n \ n O p e ra t i o n a l A m p l i f ie r 2 : ) ;3536 printf ( \ nR1=%. 2 f kohms ,R1*10^(-3)) ;3738 printf ( \ nR2=%. 1 f kohms , (R2*10^(-3))+0.3) ;

    Scilab code Exa 6.2.b Gain Bandwidth Tradeoff

    170

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    172/305

    Figure 6.1: Gain Bandwidth Tradeoff

    171

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    173/305

    1 / / E xam ple 6 . 2 ( b )

    23 clear ;45 clc ;67 A0dB=60;89 A0=10^(A0dB/20);

    1011 f t=10^6;1213 fb=ft /A0;1415 A10=A0^(1/2) ;1617 A20=A10;1819 fb1=ft /A10;2021 fb2=fb1;2223 f1=1+(%s/fb1);2425 A1=A10*(1/f1) ;2627 y1 = syslin ( c ,A1);282930 f2=1+(%s/fb) ;3132 A=A0*(1/f2) ;33

    34 y2 = syslin ( c ,A);3536 gainplot ([y1;y2] ,10,10^6,[ | A1 | ; | A | ]) ;

    172

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    174/305

    Scilab code Exa 6.2.c Gain Bandwidth Tradeoff

    1 / /Example 6 . 2 ( c )23 clear ;45 clc ;67 A0dB=60;89 A0=10^(A0dB/20);

    1011 f t=10^6;1213 fb=ft /A0;1415 A10=A0^(1/2) ;1617 A20=A10;

    1819 fb1=ft /A10;2021 fb2=fb1;2223 f1=1+(%s/fb1);2425 A1=A10*(1/f1) ;2627 fB=(((((A10^2)*(2^(0.5))) /A0)-1)^(1/2))*fb1;2829 printf ( Actua l Bandwid th ( fB)=%.2 f kHz , fB*10^(-3)) ;

    173

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    175/305

    Scilab code Exa 6.4 Input Impedance of Series Topology

    1 / /Example 6 . 423 clear ;45 clc ;67 rd=1*10^6;89 rc=1*10^9;

    1011 a0=10^5;1213 ro=100;1415 f t=1*10^6;1617 R1=2*10^3;1819 R2=18*10^3;2021 b=R1/(R1+R2);2223 fB=b*ft ;2425 Rs=rd;2627 Rd=rd*(1+(a0*b)) ;2829 Rp=((2*rc)*Rd)/((2*rc)+Rd);3031 Ceq=1/(2*%pi*fB*rd);

    3233 f1=(Rs/Rp)*fB;3435 printf ( El ement Val ue s i n t he E q ui v al e n t C i r c u i t o f

    Z i : ) ;

    174

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    176/305

    36

    37 printf ( \ nRs=%. 2 f Mohms ,Rs*10^(-6)) ;3839 printf ( \ nRp=%. 2 f Gohms ,Rp*10^(-9)) ;4041 printf ( \ nCeq=%. 2 f pF ,Ceq*10^12);4243 printf ( \ n \ n B re a kp o in t F r e q u e n c i e s o f M ag ni tu de P l o t

    : ) ;4445 printf ( \ nfB=%. 2 f kHz , fB*10^(-3)) ;4647 printf ( \ nf 1=%.2 f Hz , f1) ;

    Scilab code Exa 6.5 Output Impedance of Shunt Topology

    1 / /Example 6 . 523 clear ;45 clc ;67 rd=1*10^6;89 rc=1*10^9;

    1011 a0=10^5;1213 ro=100;14

    15 f t=1*10^6;1617 R1=2*10^3;1819 R2=18*10^3;

    175

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    177/305

    20

    21 b=R1/(R1+R2);2223 fb=ft /a0;2425 fB=b*ft ;2627 Rp=ro;2829 Rs=ro/(1+(a0*b)) ;3031 Leq=ro/(2*%pi*fB);3233 printf ( El ement Val ue s i n t he E q ui v al e n t C i r c u i t o f

    Zo : ) ;3435 printf ( \ nRs=%. f mohms ,Rs*10^(3)) ;3637 printf ( \ nRp=%. 2 f ohms ,Rp);3839 printf ( \ nLe q=%. f uH ,Leq*10^6);4041 printf (

    \ n \ n B re a kp o in t F r e q u e n c i e s o f M ag ni tu de P l o t: ) ;4243 printf ( \ nf b=%.2 f Hz , fb) ;4445 printf ( \ n f t=%. 2 f MHz , f t*10^(-6)) ;

    Scilab code Exa 6.6.a Finding Gain Zi and Zo for High Sensitivty I V

    Converter1 / / Exa mp le 6 . 6 ( a )23 clear ;

    176

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    178/305

    4

    5 clc ;67 R=100*10^3;89 R1=2*10^3;

    1011 R2=18*10^3;1213 b=R1/(R1+R2);1415 A0=-(1+(R2/R1))*R;1617 a0=2*10^5;1819 f t=1*10^6;2021 ro=100;2223 fB=b*ft ;2425 Ri=[R+((R1*R2)/(R1+R2))] /(1+(a0*b)) ;2627 Ro=ro/(1+(a0*b)) ;2829 fb=ft /a0;3031 printf ( A( j f ) =(%d V/A) ,A0);3233 printf ( /(1 +( j f /%. d ) ) , fB);3435 printf ( \ nZi ( j f )=%. d ,Ri) ;36

    37 printf ( (1+ j ( f /%. d ) ) , fb) ;3839 printf ( /(1+ ( j f /%. d ) ) ohms , fB);4041 printf ( \ nZo ( j f )=%. d ,Ro*10^3);

    177

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    179/305

    Figure 6.2: Effect of Slew Rate Limiting

    4243 printf ( (1+ j ( f /%. d ) ) , fb) ;4445 printf ( /(1 +( j f /%. d ) ) mohms , fB);

    Scilab code Exa 6.7.a Effect of Slew Rate Limiting

    1 / / Exa mp le 6 . 7 ( a )23 clear ;

    45 clc ;67 IA=19.6*10^(-6) ;8

    178

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    180/305

    9 Cc=30*10^(-12);

    1011 SR=0.633*10^6;1213 R1=3*10^3;1415 R2=12*10^3;1617 A0=-(R2/R1);1819 b=R1/(R1+R2);2021 a0=2*10^5;2223 f t=1*10^6;2425 ro=100;2627 Vim=-0.5;2829 tau=1/(2*%pi*b*ft) ;3031 Vomcri t=SR*tau;3233 Voinf=A0*Vim;3435 V1=Voinf-Vomcri t ;3637 t=[0:2*10^(-8) :7*10^(-6)] ;3839 t1=V1/SR;4041 t12=[0:2*10^(-8) : tau]

    4243 vo3=0;4445 plot ( t12,vo3);46

    179

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    181/305

    47 t11=[tau:2*10^(-8) : t1+tau];

    4849 vo1=SR*(t11-tau) ;5051 t22=[t1+tau:2*10^(-8) :7*10^(-6)] ;5253 vo2=Voinf+((V1-Voinf)* exp (-( t22- t1- tau) / tau)) ;5455 plot ( t11,vo1);5657 plot ( t22,vo2);5859 x label( time ( t ) , f o n t s i z e , 6) ;6061 y label( vo ( t ) , f o n t s i z e , 6 ) ;6263 t i t le( S te p R es po ns e o f t he C i r c u i t , f o n t s i z e , 8) ;

    Scilab code Exa 6.8.a Full Power Bandwidth

    1 / / Exa mp le 6 . 8 ( a )23 clear ;45 clc ;67 Vs=15;89 A=10;

    10

    11 Vim=0.5;1213 SR=0.5*10^6;1415 Vom=A*Vim;

    180

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    182/305

    16

    17 fmax=SR/(2*%pi*Vom);1819 printf ( fmax=%. f kHz , fmax*10^(-3)) ;

    Scilab code Exa 6.8.b Full Power Bandwidth

    1 / / E xam ple 6 . 8 ( b )2

    3 clear ;45 clc ;67 Vs=15;89 A=10;

    1011 f=10*10^3;1213 SR=0.5*10^6;

    1415 Vommax=SR/(2*%pi*f) ;1617 Vimmax=Vommax/A;1819 printf ( Maximum Va lu e o f Vim b e f o r e t h e o u t p u t

    d i s t o r t s =%.3 f V ,Vimmax);

    Scilab code Exa 6.8.c Full Power Bandwidth

    1 / /Example 6 . 8 ( c )23 clear ;

    181

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    183/305

    4

    5 clc ;67 Vs=15;89 A=10;

    1011 Vim=40*10^(-3) ;1213 SR=0.5*10^6;1415 fmax=SR/(2*%pi*Vim*A);1617 f t=1*10^6;1819 fB=ft /A;2021 printf ( U s e f u l F re qu en cy Range o f O p er a ti o n f < =%. 2 f

    kHz , fB*10^(-3)) ;

    Scilab code Exa 6.8.d Full Power Bandwidth

    1 / / E xam ple 6 . 8 ( d )23 clear ;45 clc ;67 Vs=13;8

    9 A=10;1011 f t=1*10^6;1213 SR=0.5*10^6;

    182

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    184/305

    14

    15 f=2*10^3;1617 Vommax=SR/(2*%pi*f) ;1819 if Vommax>Vs then20 Vimmax=Vs/A;2122 printf ( U s e f u l I n p ut A mp li tu de Ra ng e i s Vim < =%. 2 f V

    ,Vimmax);

    Scilab code Exa 6.9 Effect of nite GBP on Integrator Circuits

    1 / /Example 6 . 923 clear ;45 clc ;67 f0=10*10^3;89 Q=25;

    1011 HobpdB=0;1213 R1=10*10^3; / /Assumption1415 R2=R1; / /Assumption1617 R5=R1; / /Assumption

    1819 R6=R1; / /Assumption2021 R3=250*10^3; / /Assumption22

    183

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    185/305

    23 R4=R3; / /Assumption

    2425 C1=1/(2*%pi*f0*R5); / /Assumption2627 C2=C1; / /Assumption2829 f0reler=0.01; / / a s r e l a t i v e e r r o r d e fi n ed f o r f 0=1%3031 Qreler=0.013233 f t f0=f0/f0reler ;3435 f tQ=(4*Q*f0)/Qreler ;3637 printf ( D e si gn ed B iqua d F i l t e r : )3839 printf ( \ nR1=R2=R5=R6=%. 2 f kohms ,R1*10^(-3)) ;4041 printf ( \ nR3=R4=%. 2 f kohms ,R4*10^(-3)) ;4243 printf ( \ nC1=C2=%. 2 f nF ,C1*10^9);4445 if f t f0>ftQ then46 f t=f tf0;4748 else f t=f tQ4950 printf ( \ nGBP> =%. 2 f MHz , f t*10^(-6)) ;

    Scilab code Exa 6.10.b Biquad Filter with Phase Compensation

    1 / / E xam ple 6 . 1 0 ( b )23 clear ;4

    184

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    186/305

    5 clc ;

    67 f0=10*10^3;89 Q=25;

    1011 HobpdB=0;1213 R1=10*10^3; / /Assumption1415 R2=R1; / /Assumption1617 R5=R1; / /Assumption1819 R6=R1; / /Assumption2021 R3=250*10^3; / /Assumption2223 R4=R3; / /Assumption2425 C1=1/(2*%pi*f0*R5); / /Assumption2627 C2=C1;

    / /Assumption2829 f0reler=0.01; / / a s r e l a t i v e e r r o r d e fi n ed f o r f 0=1%3031 Qreler=0.013233 f t f0=f0/f0reler ;3435 f tQ=(4*Q*f0)/Qreler ;3637 f t=1*10^6;

    3839 / / C ha ng in g t h e c om po ne nt v a l u e s u s i n g P ha se

    Compensat ion4041 ch=f0/f t ;

    185

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    187/305

    42

    43 C1new=C1-(C1*ch);4445 C2new=C1new;4647 printf ( D e si gn ed B iqua d F i l t e r : )4849 printf ( \ nR1=R2=R5=R6=%. 2 f kohms ,R1*10^(-3)) ;5051 printf ( \ nR3=R4=%. 2 f kohms ,R4*10^(-3)) ;5253 printf ( \ nC1=C2=%. 3 f nF ,C1new*10^9);

    Scilab code Exa 6.11 Effect of nite GBP on rst order lter

    1 / / Ex ampl e 6 .1 123 clear ;45 clc ;67 C=(5/%pi)*10^(-9) ;89 R1=10*10^3;

    1011 R2=30*10^3;1213 GBP=1*10^6;1415 Hreler=0.01; // D ep a rt u re o f H f ro m H i d e al

    1617 f t=1*10^6;1819 fx=ft /(1+(R2/R1)) ;20

    186

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    188/305

    21 fmax=((1/((1-Hreler)^2)-1)^(1/2))*fx;

    2223 f0=1/(2*%pi*R1*C);2425 fmin3dB=(1/((1/(f0^2))-(1/(fx^2))-(1/(( f0^2)*(fx^2))

    )))^(1/2) ; / / f ( 3dB)2627 f3dBer=((fmin3dB -f0) / fmin3dB)*100;2829 printf ( P e r ce n ta g e D e vi a ti o n o f c ut o f f f r e qu e n cy=%

    . 2 f , f3dBer*2);

    Scilab code Exa 6.12 Effect of nite GBP on second order lter

    1 / / Ex ampl e 6 .1 223 clear ;45 clc ;67 C=10*10^(-9) ;89 H0bpdB=0;

    1011 f0=10*10^3;1213 Q=10;1415 H0bp=10^(H0bpdB/20);16

    17 R1=Q/(2*%pi*f0*C*H0bp);1819 R2=(R1/((2*(Q^2)) /(H0bp)))-1;2021 R3=(2*Q)/(2*%pi*f0*C);

    187

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    189/305

    22

    23 BW=f0/Q;2425 BWer=0.01; / /BW d ev i a t i o n from i t s d e si g n v al ue i s 1%2627 GBPmin=(2*Q*f0)/BWer;2829 printf ( Components f o r t h e m en ti on ed c i r c u i t : ) ;3031 printf ( \ nR1=%. 2 f kohms ,R1*10^(-3)) ;3233 printf ( \ nR2=%. 2 f ohms ,R2);3435 printf ( \ nR3=%. 2 f kohms ,R3*10^(-3)) ;3637 printf ( \ nGBP> =%. 2 f MHz ,GBPmin*10^(-6)) ;

    Scilab code Exa 6.14 Parameters for Current Feedback Amplier

    1 / / Ex ampl e 6 .1 423 clear ;45 clc ;67 zo=0.71*10^6;89 Req=zo;

    1011 fb=350*10^3;

    1213 Ceq=1/(2*%pi*Req*fb);1415 vo=5;16

    188

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    190/305

    17 iN=vo/Req;

    1819 printf ( Ceq=%. 2 f pF ,Ceq*10^12);2021 printf ( \ niN=%. 2 f uA , iN*10^6);

    Scilab code Exa 6.15 Current Feedback Amplier Dynamics

    1 / / Ex ampl e 6 .1 5

    23 clear ;45 clc ;67 f t=100*10^6;89 brec=1.5*10^3;

    1011 R2=1.5*10^3;1213 rn=50;1415 A01=1;1617 A02=10;1819 A03=100;2021 //R11=R2/(A01 1) > R1= i n f i n i t y22

    23 R12=R2/(A02-1);2425 R13=R2/(A03-1);2627 fB1=ft /(1+(A01/30)) ;

    189

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    191/305

    28

    29 fB2=ft /(1+(A02/30)) ;3031 fB3=ft /(1+(A03/30)) ;3233 tR1=2.2/(2*%pi*fB1);3435 tR2=2.2/(2*%pi*fB2);3637 tR3=2.2/(2*%pi*fB3);3839 printf ( Va l ue s o f R1 , fB and tR f o r A0=1 : )4041 printf ( \ nR1= i n f i n i t y ) ;4243 printf ( \ nfB=%. 2 f MHz , fB1*10^(-6)) ;4445 printf ( \ ntR=%. 2 f nS , tR1*10^9);4647 printf ( \ n \ n Va lu es o f R1 , fB and tR f o r A0=10 : )4849 printf ( \ nR1=%. 2 f ohms ,R12);5051 printf ( \ nfB=%. 2 f MHz , fB2*10^(-6)) ;5253 printf ( \ ntR=%. 2 f nS , tR2*10^9);5455 printf ( \ n \ n Va lu es o f R1 , fB and tR f o r A0=100 : )5657 printf ( \ nR1=%. 2 f ohms ,R13);5859 printf ( \ nfB=%. 2 f MHz , fB3*10^(-6)) ;60

    61 printf ( \ ntR=%. 2 f nS , tR3*10^9);

    190

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    192/305

    Scilab code Exa 6.16 Compensation of B W Reduction in Current Feed-

    back Amplier1 / / Ex ampl e 6 .1 623 clear ;45 clc ;67 A0=10;89 fB=100*10^6;

    1011 brec=1.5*10^3;1213 rn=50;1415 R2=brec-(rn*A0);1617 R1=R2/(A0-1);1819 printf ( ( a ) R e di s i gn e d C ur re nt Feed ba ck A m p l i f i er o f

    Exa mpl e 6 . 1 5 : ) ;

    2021 printf ( \ n R1=%. f ohms ,R1);2223 printf ( \ n R2=%. 2 f kohms ,R2*10^(-3)) ;2425 z0=0.75*10^6;2627 T0=(1/brec)*z0;2829 epsi lon=-100/T0;

    3031 printf ( \ n \ n ( b ) P e r ce n t a ge dc g a i n e r r o r =%. 1 f ,

    epsi lon) ;

    191

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    193/305

    Chapter 7

    Noise

    Scilab code Exa 7.1.a Noise Properties

    1 / / Exa mp le 7 . 1 ( a )23 clear ;45 clc ;67 fL=0.1;89 fH=100;

    1011 enw=20*10^(-9) ;1213 fce=200;1415 En=enw*sqrt ( ( fce* log (fH/fL))+fH-fL);16

    17 printf ( Es t ima ted RMS inpu t vo l t ag e=%.2 f uV ,En*10^6);

    192

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    194/305

    Scilab code Exa 7.1.b Noise Properties

    1 / / E xam ple 7 . 1 ( b )23 clear ;45 clc ;67 fL=20;89 fH=20*10^3;

    1011 enw=20*10^(-9) ;1213 fce=200;1415 En=enw*sqrt ( ( fce* log (fH/fL))+fH-fL);1617 printf ( Es t ima ted RMS inpu t vo l t ag e=%.2 f uV ,En

    *10^6);

    Scilab code Exa 7.1.c Noise Properties

    1 / /Example 7 . 1 ( c )23 clear ;45 clc ;67 fL=0.1;

    89 fH=1*10^6;1011 enw=20*10^(-9) ;12

    193

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    195/305

    13 fce=200;

    1415 En=enw*sqrt ( ( fce* log (fH/fL))+fH-fL);1617 printf ( Es t ima ted RMS inpu t vo l t ag e=%.1 f uV ,En

    *10^6);

    Scilab code Exa 7.3 Graphical Representation of Noise Dynamics

    1 / /Example 7 . 323 clear ;45 clc ;67 fL1=1;89 fH1=1*10^3;

    1011 fL2=fH1;1213 fH2=10*10^3;1415 fL3=fH2;1617 / / f H 3 = i n f i n i t y1819 enw=20*10^(-9) ;2021 fce=100;

    2223 Eno1=enw* sqrt ( ( fce* log (fH1/fL1))+fH1-fL1);2425 eno=enw/fL2;26

    194

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    196/305

    27 Eno2= sqrt ( in tegrate ( ( eno f ) 2 , f , fL2,fH2)) ;

    2829 f0=100*10^3;3031 enw3=200*10^(-9) ;3233 Eno3=enw3* sqrt ( (1 .57*f0)-fL3);3435 Eno=sqrt ( (Eno1^2)+(Eno2^2)+(Eno3^2)) ;3637 printf ( E s t i m at e d rms n o i s e v o l t a g e =%. 1 f uV ,Eno

    *10^6);

    Scilab code Exa 7.4 Calculation of Thermal Noise

    1 / /Example 7 . 423 clear ;45 clc ;67 R=10*10^3;89 k=1.38*10^(-23);

    1011 T=25+273; / /Room Tempera tu re in Ke lv i n1213 eR=sqrt (4*k*T*R);1415 printf ( ( a ) No ise Vol ta ge (eR)=%.2 f nV/ sq r t (Hz) , eR

    *10^9);1617 iR=eR/R;1819 printf ( \ n ( b ) Noise Cur ren t ( iR)=%.2 f pA/ sq r t (Hz) , iR

    195

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    197/305

    *10^12);

    2021 fH=20*10^3;2223 fL=20;2425 ER=eR*sqrt ( fH-fL);2627 printf ( \ n ( c ) rms n o i s e v o l t a g e o v er a u di o r a ng e=%. 2

    f uV ,ER*10^6);

    Scilab code Exa 7.5.a Calculation of Shot Noise

    1 / / Exa mp le 7 . 5 ( a )23 clear ;45 clc ;67 ID=1*10^(-6) ;89 fH=1*10^6;

    1011 q=1.602*10^(-19);1213 In = sqrt (2*q*ID*fH);1415 SNR=20*log10 (ID/In) ;1617 printf ( S i g n a l t o N o i s e R a t io=%. 1 f dB ,SNR);

    Scilab code Exa 7.5.b Calculation of Shot Noise

    196

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    198/305

    1 / / E xam ple 7 . 5 ( b )

    23 clear ;45 clc ;67 ID=1*10^(-9) ;89 fH=1*10^6;

    1011 q=1.602*10^(-19);1213 In = sqrt (2*q*ID*fH);1415 SNR=20*log10 (ID/In) ;1617 printf ( S i g n a l t o N o i s e R a t io=%. 1 f dB ,SNR);

    Scilab code Exa 7.7.a Total Output Noise in an Op Amp

    1 / / Exa mp le 7 . 7 ( a )23 clear ;45 clc ;67 R1=100*10^3;89 R2=200*10^3;

    10

    11 R3=68*10^3;1213 enw=20*10^(-9) ;1415 fce=200;

    197

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    199/305

    16

    17 f t=1*10^6;1819 inw=0.5*10^(-12);2021 fc i=2*10^3;2223 Rp=(R1*R2)/(R1+R2);2425 Ano=1+(R2/R1);2627 fB=ft /Ano;2829 fL=0.1;3031 Enoe=Ano*enw* sqrt ( [{fce* log (fB/fL)}+{1.57*fB}-fL]) ;3233 Enoi=Ano*[{(R3^2)+(Rp^2)}^(1/2)]*inw*([(fci* log (fB/

    fL))+(1.57*fB)]^(1/2)) ;3435 k=1.38*10^(-23);3637 T=25+273;

    / /Room t e m p e r a t u r e i n Ke l v i n3839 EnoR=Ano*[{(4*k*T)*(R3+Rp)*1.57*fB}^(1/2)] ;4041 Eno=sqrt ( (Enoe^2)+(Enoi^2)+(EnoR^2)) ;4243 printf ( RMS Output No is e Vo lt ag e=%. f uV ,Eno*10^6);4445 printf ( \ nPeak to Peak Noise Vol ta ge=%.2 f mV ,6.6*

    Eno*10^3);

    Scilab code Exa 7.8 Improvement in the Circuit to nd the Total OutputNoise

    198

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    200/305

    1 / /Example 7 . 8

    23 clear ;45 clc ;67 R1=100*10^3;89 R2=200*10^3;

    1011 R3=68*10^3;1213 enw=20*10^(-9) ;1415 fce=200;1617 f t=1*10^6;1819 inw=0.5*10^(-12);2021 fc i=2*10^3;2223 Rp=(R1*R2)/(R1+R2);2425 Ano=1+(R2/R1);2627 fB=ft /Ano;2829 fL=0.1;3031 Enoeold=Ano*enw* sqrt ( [{fce* log (fB/fL)}+{1.57*fB}-fL

    ]) ;32

    33 Enoiold=Ano*[{(R3^2)+(Rp^2)}^(1/2)]*inw*([(fci* log (fB/fL))+(1.57*fB)]^(1/2)) ;

    3435 k=1.38*10^(-23);36

    199

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    201/305

    37 T=25+273; / /Room t e m p e r a t u r e i n Ke l v i n

    3839 EnoRold=Ano*[{(4*k*T)*(R3+Rp)*1.57*fB}^(1/2)] ;4041 Enoold= sqrt ( (Enoeold^2)+(Enoiold^2)+(EnoRold^2)) ;4243 Enonew=50*10^(-6) ; / /New Va l u e o f Eno me n ti o n ed i n

    problem4445 Enoisum=(Enonew^2)-(Enoeold^2); / / sum o f ( En oi 2 ) a nd

    (EnoR2)4647 Enoinewsq=(Ano^2)*(inw^2)*[(fci* log (fB/fL))+(1.57*fB

    ) ]; / / ( Eno inew2 ) / (R2)4849 EnoRnewsq=(Ano^2)*((4*k*T)*1.57*fB);5051 r= poly (0 , x ) ;5253 p=(Enoinewsq*(r^2))+(EnoRnewsq*r)-Enoisum;5455 [ r1]= roots (p) ;5657 R=r1(2,1)5859 R3new=R/2;6061 R1new=(3*R3new)/2;6263 R2new=2*R1new;6465 printf ( R e si s t a n ce s a f t e r s c a l i n g a re : ) ;66

    67 printf ( \ nR1=%. 2 f kohms ,R1new*10^(-3)) ;6869 printf ( \ nR2=%. 1 f kohms ,R2new*10^(-3)) ;7071 printf ( \ nR3=%. 1 f kohms ,R3new*10^(-3)) ;

    200

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    202/305

    Scilab code Exa 7.9 Calculation of Signal to Noise Ratio

    1 / /Example 7 . 923 clear ;45 clc ;6

    7 R1=100*10^3; / /From Example 7 . 7 ( a )89 R2=200*10^3; / /From Example 7 . 7 ( a )

    1011 Aso=-(R2/R1);1213 Eno=154*10^(-6) ; / /From Example 7 . 91415 Eni=Eno/ abs (Aso);1617 Vipa=0.5; // Peak a mp li tu de o f i n pu t a c s i g n a l1819 Virms=Vipa/ sqrt (2) ;2021 SNR=20*log10 (Virms/Eni) ;2223 printf ( SNR o f t h e c i r c u i t o f Exa mpl e 7 .7 =%. 1 f dB ,

    SNR);

    Scilab code Exa 7.10 Calculation of Noise in Current Feedback Amplier

    12 / / Ex ampl e 7 .1 0

    201

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    203/305

    3

    4 clear ;56 clc ;78 z0=710*10^3;9

    10 fb=350*10^3;1112 rn=50;1314 enw=2.4*10^(-9) ;1516 fce=50*10^3;1718 inpw=3.8*10^(-12);1920 fc ip=100*10^3;2122 innw=20*10^(-12);2324 fc in=100*10^3;2526 R1=166.7;2728 R2=1.5*10^3;2930 R3=100; // i n t e r n a l r e s i s t a n c e3132 fL=0.1;3334 Rp=(R1*R2)/(R1+R2);35

    36 f t=(z0*fb) /R2;3738 fB=ft /[1+(rn/((R1*R2)/(R1+R2)))] ;3940 Ano=1+(R2/R1);

    202

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    204/305

    41

    42 Enoe=enw* sqrt ( [{fce* log (fB/fL)}+{1.57*fB}-fL]) ;4344 Enoi=R3*inpw* sqrt ( ( ( fcip* log (fB/fL))+(1.57*fB)-fL)) ;4546 Enop=Rp*innw* sqrt ({(fcin* log (fB/fL))+(1.57*fB)-fL});4748 k=1.38*10^(-23);4950 T=25+273; / /Room t e m p e r a t u r e i n Ke l v i n5152 EnoR=[{(4*k*T)*(R3+Rp)*((1.57*fB)-fL)}^(1/2)] ;5354 Eno=Ano*sqrt ( (Enoe^2)+(Enoi^2)+(EnoR^2)+(Enop^2)) ;5556 c=6.6*10^3;5758 Eno1=Eno*c;5960 printf ( RMS Noi se Vol tag e (Eno)=%.2 f uV ,Eno*10^6);

    // a n swe r i n t ex tb o ok i s wrong6162 printf (

    \ nPeak to Peak Noise Vol ta ge (Eno)=%.2 f mV,

    Eno1); / / a ns we r i n t ex t bo o k i s wrong

    Scilab code Exa 7.11 Noise in Photodiode Ampliers

    1 / / Ex ampl e 7 .1 123 clear ;

    45 clc ;67 f t=16*10^6;8

    203

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    205/305

    9 enw=4.5*10^(-9) ;

    1011 fce=100;1213 IB=1*10^(-12);1415 fL=0.01;1617 R1=100*10^(9);1819 C1=45*10^(-12);2021 R2=10*10^6;2223 C2=0.5*10^(-12);2425 b0rec=1;2627 b infrec=91;2829 fz=350;3031 fp=31.8*10^3;3233 fx=176*10^3;3435 k=1.38*10^(-23);3637 T=25+273;3839 iR2= sqrt ( (4*k*T)/R2);4041 q=1.602*10^(-19);

    4243 in = sqrt (2*q*IB);4445 Enoe=binfrec*enw* sqrt ( ( (%pi/2)*fx)-fp) ;46

    204

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    206/305

    47 EnoR=R2*iR2* sqrt ( (%pi/2)*fp) ;

    4849 Eno=sqrt ( (Enoe^2)+(EnoR^2)) ;5051 printf ( Tota l Outpu t Noise=%. f uV ,Eno*10^6);

    Scilab code Exa 7.12 Photodiode amplier with Noise Filtering

    1 / / Ex ampl e 7 .1 2

    23 clear ;45 clc ;67 f t=16*10^6;89 enw=4.5*10^(-9) ;

    1011 fce=100;1213 IB=1*10^(-12);1415 fL=0.01;1617 R1=100*10^(9);1819 C1=45*10^(-12);2021 R2=10*10^6;22

    23 C2=0.5*10^(-12);2425 b0rec=1;2627 b infrec=91;

    205

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    207/305

    28

    29 fz=350;3031 fp=31.8*10^3;3233 fx=176*10^3;3435 k=1.38*10^(-23);3637 T=25+273;3839 Cc=0.5*10^(-12); //Assumed4041 C2=Cc;4243 C3=10*10^(-9) ;4445 R3=(R2*Cc)/C3;4647 printf ( Cc=C2=%. 1 f pF ,Cc*10^(12)) ;4849 printf ( \ nR3=%. f ohms ,R3);5051 printf ( \ nC3=%. f nF ,C3*10^(9)) ;

    Scilab code Exa 7.13 Designing T Feedback Photodiode Ampliers

    1 / / Ex ampl e 7 .1 323 clear ;

    45 clc ;67 C1=2*10^(-9) ;8

    206

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    208/305

    9 b infrec=4000;

    1011 inw=0.566*10^(-15);1213 T=1*10^(9);1415 f t=16*10^6;1617 R1=100*10^(9);1819 C2=0.5*10^(-12);2021 fx=(1/binfrec)*f t ;2223 enw=4.5*10^(-9) ;2425 Enoe=binfrec*enw* sqrt ( (%pi*fx) /2) ;2627 EnoRmax=Enoe/3;2829 k=1.38*10^(-23);3031 Temp=25+273;3233 ex=((EnoRmax^2)*C2)/(k*Temp);3435 R2=T/ex;3637 R3=1*10^3; //Assumed3839 R4=(ex-1)*R3;4041 printf ( ( a ) D es i gn e d T Netwo rk : ) ;

    4243 printf ( \ n R1=%.2 f Gohms ,R1*10^(-9)) ;4445 printf ( \ n R2=%.1 f Mohms ,R2*10^(-6)) ;46

    207

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    209/305

    47 printf ( \ n R3=%. 2 f kohms ,R3*10^(-3)) ;

    4849 printf ( \ n R4=%. 2 f kohms ,R4*10^(-3)) ;5051 printf ( \ n C1=%. 2 f nF ,C1*10^9);5253 printf ( \ n C2=%. 2 f pF ,C2*10^12);5455 fp=1/(2*%pi*ex*R2*C2);5657 fB=fp;5859 Rp=(R1*R2)/(R1+R2);6061 Enoi=((1.57*fB)^(1/2))*inw;6263 Eno=sqrt ( (Enoe^2)+(Enoi^2)+(EnoRmax^2)) ;6465 printf ( \ n \ n ( b ) To ta l rms Outpu t Noise=%.2 f mV ,Eno

    *10^3);6667 printf ( \ n B an dw id th ( f B ) =%. d Hz , fB);

    208

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    210/305

    Chapter 8

    Stability

    Scilab code Exa 8.1 Gain Margin and Phase Margin of an op amp system

    1 / /Example 8 . 123 clear ;45 clc ;67 T0=10^4;89 f1=100;

    1011 f2=10^6;1213 f3=10*10^6;1415 w1=2*%pi*f1;16

    17 w2=2*%pi*f2;1819 w3=2*%pi*f3;2021 h= syslin ( c ,T0/[(1-(%s/w1))*(1-(%s/w2))*(1-(%s/w3))

    209

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    211/305

    ]) ;

    2223 gm =g_margin (h) ;2425 pm =p_margin (h) ;2627 printf ( ( a ) Gain Margin (GM)=%.2 f dB ,gm);2829 printf ( \ n( b) Phase Margin (PM)=%.1 f de gr ee s , -pm);3031 f=512*10^3;3233 w=2*%pi*f;3435 T1=T0/[(1-((%i*w)/w1))*(1-((%i*w)/w2))*(1-((%i*w)/w3

    ))] ;3637 den=1/( abs (T1)/T0);3839 printf ( \ n ( c ) T0 f o r PM=60 de gr ee s=%. f ,den);

    Scilab code Exa 8.2 Stability in Differentiator Circuits

    1 / /Example 8 . 223 clear ;45 clc ;67 R=159*10^3;

    89 C=10*10^(-9) ;1011 f0=1/(2*%pi*R*C);12

    210

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    212/305

    13 f t=10^6;

    1415 fx = sqrt ( f0*ft) ;1617 Q=sqrt ( f t / f0) ;1819 d=-90-((180/%pi)* atan ( fx / f0 ) ) ;2021 pm=180+d;2223 printf ( fx=%.2 f kHz , fx*10^(-3)) ;2425 printf ( \ nQ=%. f ,Q);2627 printf ( \ nPhase Margin (PM)=%.1 f de gr ee s ,pm);

    Scilab code Exa 8.3 Stray Input Capacitance Compensation for invertingconguration

    1 / /Example 8 . 323 clear ;45 clc ;67 R1=30*10^3;89 R2=R1;

    1011 Cext=3*10^(-12);

    1213 GBP=20*10^6;1415 Cd=7*10^(-12);16

    211

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    213/305

    17 Cc=12*10^(-12);

    1819 Cn=Cext+Cd+(Cc/2) ;2021 Rp=(R1*R2)/(R1+R2);2223 Cf1=0;2425 fz1=1/(2*%pi*Rp*(Cn+Cf1)) ;2627 f t=20*10^6;2829 Q=sqrt ( ( f t) / (2*fz1)) ;3031 pm=(180/%pi)* acos (( sqrt (1+(1/(4*Q^4)))) - (1/(2*Q^2)))

    ;3233 Cf2=(R1/R2)*Cn;3435 fp=1/(2*%pi*R2*Cf2);3637 x= poly (0 , f ) ;3839 A=-1/[(1+(%i*(x/fp)))*(1+(%i*(x/(0 .5*ft) ) ) ) ] ;4041 printf ( ( a ) P ha se M argi n w i th Cf a b s e n t=%. 1 f d e g r e e s

    ,pm);4243 printf ( \ n ( b ) Cf fo r PM=90 de gr ee s=%.2 f pF ,Cf2

    *10^12);4445 printf ( \ n ( c ) A( j f )= ) ;46

    47 disp (A);

    212

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    214/305

    Scilab code Exa 8.4 Stray Input Capacitance Compensation for non in-

    verting conguration1 / /Example 8 . 423 clear ;45 clc ;67 R1=30*10^3;89 R2=R1;

    1011 f t=20*10^6;1213 Cext=3*10^(-12);1415 GBP=20*10^6;1617 Cd=7*10^(-12);1819 Cc=12*10^(-12);2021 Cf=(R1/R2)*((Cc/2)+Cext) ;2223 Cn=Cext+Cd+(Cc/2) ;2425 fx=ft /(1+(Cn/Cf)) ;2627 x= poly (0 , f ) ;2829 A=(1+(R2/R1)) /(1+(%i*(x/fx))) ;30

    31 printf ( A( j f )= ) ;3233 disp (A);3435 printf ( V/V ) ;

    213

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    215/305

    Scilab code Exa 8.5 Stabalizing a capacitively loaded op amp circuit

    1 / /Example 8 . 523 clear ;45 clc ;6

    7 GBP=10*10^6;89 ro=100;

    1011 A0=-2;1213 CL=5*10^(-9) ;1415 R1=10*10^3;1617 R2=20*10^3;1819 Rs=(R1/R2)*ro;2021 Cf=((1+(R1/R2))^2)*(ro/R2)*CL;2223 f3dB=1/(2*%pi*R2*Cf);2425 b=1/3;2627 fx=b*GBP;

    2829 printf ( ( a ) Rs=%. f ohms ,Rs) ;3031 printf ( \ n Cf=%. f pF ,Cf*10^12);32

    214

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    216/305

    33 x= poly (0 , f ) ;

    3435 A=A0/((1+(%i*(x/fx)))*(1+(%i*(x/f3dB)))) ;3637 printf ( \ n \ n (b ) A( j f )= ) ;3839 disp (A);4041 printf ( V/V ) ;

    Scilab code Exa 8.6 Internal Frequency Compensation

    1 / /Example 8 . 623 clear ;45 clc ;67 a0=3600;89 f1=1*10^6;

    1011 f2=4*10^6;1213 f3=40*10^6;1415 fmin135=4.78*10^6;1617 fmin180=14.3*10^6;18

    19 gbp1= abs (a0/[(1+(%i*(fmin135/f1)))*(1+(%i*(fmin135/f3)))*(1+(%i*( fmin135/f3)))]) -256;2021 gbp2= abs (a0/[(1+(%i*(fmin180/f1)))*(1+(%i*(fmin180/

    f3)))*(1+(%i*( fmin180/f3)))]) -158.97561;

    215

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    217/305

    22

    23 printf ( | a ( j fmin13 5 ) | =%. d V/V ,gbp1);2425 printf ( \ n | a ( j fmin18 0 ) | =%. 1 f V/V ,gbp2);

    Scilab code Exa 8.7 Dominant Pole Compensation

    1 / /Example 8 . 72

    3 clear ;45 clc ;67 PM=45;89 anganewjfx=-180+PM;

    1011 a0=3600;1213 f1=1*10^6;1415 f2=4*10^6;1617 f3=40*10^6;1819 angajfx=anganewjfx+90;2021 fx=683*10^3;2223 a jf=a0/((1+(%i*(fx/f1)))*(1+(%i*(fx/f2)))*(1+(%i*(fx

    /f3)))) ;2425 ang=(180/%pi)* atan ( imag (ajf) / real (a j f ) ) ;2627 mag=abs (ajf) ;

    216

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    218/305

    28

    29 fd = sqrt ( ( fx^2)/( (mag^2)-1)) ;3031 printf ( fd=%. f Hz , fd) ;

    Scilab code Exa 8.8 Shunt Capacitance Compensation

    1 / /Example 8 . 82

    3 clear ;45 clc ;67 rd=1*10^6;89 g1=2*10^(-3) ;

    1011 R1=100*10^(3);1213 g2=10*10^(-3) ;1415 R2=50*10^3;1617 ro=100;1819 f1=100*10^3;2021 f2=1*10^6;2223 f3=10*10^3;

    2425 PM=45;2627 a0=g1*R1*g2*R2;28

    217

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    219/305

    29 C1=1/(2*%pi*f1*R1);

    3031 b1=1;3233 f1new1=f2/(b1*a0);3435 Cc1=1/(2*%pi*R1*f1new1);3637 printf ( ( a ) fd=%. f Hz , f1new1);3839 printf ( \ n Cc=%. f nF ,Cc1*10^9);4041 b2=0.5;4243 f1new2=f2/(b2*a0);4445 Cc2=1/(2*%pi*R1*f1new2);4647 printf ( \ n \ n ( b ) fd=%. f Hz , f1new2);4849 printf ( \ n Cc=%. 1 f nF ,Cc2*10^9);

    Scilab code Exa 8.9 Miller Compensation

    1 / /Example 8 . 923 clear ;45 clc ;6

    7 rd=1*10^6;89 g1=2*10^(-3) ;

    1011 R1=100*10^(3);

    218

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    220/305

    12

    13 g2=10*10^(-3) ;1415 R2=50*10^3;1617 ro=100;1819 f1=100*10^3;2021 f2=1*10^6;2223 f3=10*10^6;2425 PM=45;2627 a0=g1*R1*g2*R2;2829 C1=1/(2*%pi*f1*R1);3031 b1=1;3233 C21=1/(2*%pi*f2*R2);3435 f2newap1=g2/[2*%pi*(C1+C21)] ;3637 fx1=f3;3839 f1new1=f3/(b1*a0);4041 Cc1=1/(2*%pi*R1*g2*R2*f1new1);4243 f2new1=(g2*Cc1)/(2*%pi*((C1*C21)+(Cc1*C1)+(Cc1*C21))

    ) ;

    4445 fz1=g2/(2*%pi*Cc1);4647 printf ( ( a ) f1new=%. f Hz , f1new1);48

    219

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    221/305

    49 printf ( \ n f 2n ew=%. f MHz , f2new1*10^(-6)) ;

    5051 printf ( \ n Cc=%. 1 f pF ,Cc1*10^12);5253 b2=0.5;5455 C22=1/(2*%pi*f2*R2);5657 f2newap2=g2/[2*%pi*(C1+C22)] ;5859 fx2=f3;6061 f1new2=f3/(b2*a0);6263 Cc2=1/(2*%pi*R1*g2*R2*f1new2);6465 f2new2=(g2*Cc2)/(2*%pi*((C1*C22)+(Cc2*C1)+(Cc2*C22))

    ) ;6667 fz2=g2/(2*%pi*Cc2);6869 printf ( \ n \ n( b) f1new=%. f Hz , f1new2);7071 printf ( \ n f 2n ew=%. f MHz , f2new2*10^(-6)) ;7273 printf ( \ n Cc=%. 1 f pF ,Cc2*10^12);

    Scilab code Exa 8.10 Pole Zero Compensation

    1 / / Ex ampl e 8 .1 0

    23 clear ;45 clc ;6

    220

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    222/305

    7 PM=45;

    89 b=1;1011 rd=1*10^6;1213 g1=2*10^(-3) ;1415 R1=100*10^(3);1617 g2=10*10^(-3) ;1819 R2=50*10^3;2021 ro=100;2223 f1=100*10^3;2425 f2=1*10^6;2627 f3=10*10^6;2829 a0=g1*R1*g2*R2;3031 C1=1/(2*%pi*f1*R1);3233 Cc=(b*a0)/(2*%pi*R1*f3);3435 Rc=1/(2*%pi*Cc*f2);3637 f4=1/(2*%pi*Rc*C1);3839 printf ( Cc=%. 1 f nF ,Cc*10^9);

    4041 printf ( \ nRc=%. f ohms ,Rc) ;4243 printf ( \ nR1=%. f kohms ,R1*10^(-3)) ; / /The v a l u e o f

    R1 i s n ot p ro vi de d i n t he t ex tb oo k

    221

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    223/305

    44

    45 printf ( \ nC1=%. 2 f pF ,C1*10^12); // The v a lu e o f R1 i sn ot p r ov i de d i n t he t ex t bo o k

    Scilab code Exa 8.11 Frequency Compensation via Loop Gain Reduction

    1 / / Ex ampl e 8 .1 123 clear ;

    45 clc ;67 a0=10^5;89 f1=10*10^3;

    1011 f2=3*10^6;1213 f3=30*10^6;1415 R1=10*10^3;1617 R2=100*10^3;1819 PM=45;2021 a jf=a0/((1+(%i*(f2/f1)))*(1+(%i*(f2/f2)))*(1+(%i*(f2

    /f3)))) ;2223 a jf2mag= abs (ajf) ;

    2425 Rc1=R2/(ajf2mag -(1+(R2/R1))) ;2627 printf ( ( a ) Rc=%.1 f ohms ,Rc1);28

    222

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    224/305

    29 Rc2=430;

    3031 brec=1+(R2/R1)+(R2/Rc2);3233 a0b=a0/brec;3435 dcge=-100/(a0b);3637 printf ( \ n \ n ( b ) DC Gai n Er r o r =%.2 f p e r c e n t ,dcge) ;3839 EI=1*10^(-3) ;4041 EO=brec*EI;4243 printf ( \ n \ n ( c ) DC Output Er ro r=%. f mV ,EO*10^3);4445 fmin3dB=f2;4647 printf ( \ n \ n (d ) f 3dB=%. f MHz , fmin3dB*10^(-6)) ;

    Scilab code Exa 8.12 Input Lag Compensation

    1 / / Ex ampl e 8 .1 223 clear ;45 clc ;67 a0=10^5;8

    9 f1=10*10^3;1011 f2=3*10^6;1213 f3=30*10^6;

    223

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    225/305

    14

    15 R1=10*10^3;1617 R2=100*10^3;1819 PM=45;2021 Rc=447.4;2223 Cc=5/(%pi*Rc*f2);2425 printf ( ( a ) Rc=%.1 f ohms ,Rc) ;2627 printf ( \ n Cc=%. 3 f nF ,Cc*10^9);2829 b0rec=1+(R2/R1);3031 a0b0=a0*(1/b0rec) ;3233 dcge=-100/(a0b0);3435 printf ( \ n \ n ( b ) DC Gai n Er r o r =%.3 f p e r c e n t ,dcge) ;3637 EI=1*10^(-3) ;3839 EO=b0rec*EI;4041 printf ( \ n \ n ( c ) DC Output Er ro r=%. f mV ,EO*10^3);4243 fmin3dB=f2;4445 printf ( \ n \ n (d ) f 3dB=%. f MHz , fmin3dB*10^(-6)) ;46

    47 f=2.94*10^6;4849 T=(410*[1+(%i*(f /(0 .1*f2)))]) /[ (1+((%i*f) /f1))*(1+((

    %i*f) /f2))*(1+((%i*f) /f3))*(%i*(f /(0 .1*f2)))] ;50

    224

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    226/305

    51 Tang=-(180-(180/%pi)* atan ( imag (T)/ real (T))) ;

    5253 PM1=180+Tang;5455 printf ( \ n \ n ( e ) Ac tua l Phase Marg in=%.1 f de gr ees ,

    PM1);

    Scilab code Exa 8.13 Feedback Lead Compensation

    1 / / Ex ampl e 8 .1 323 clear ;45 clc ;67 a0=10^5;89 f1=1*10^3;

    1011 f2=100*10^3;1213 f3=5*10^6;1415 A0=20;1617 R1=1.05*10^3;1819 R2=20*10^3;2021 b0=1/(1+(R2/R1)) ;

    2223 a0b0=a0*b0;2425 f=700*10^3;26

    225

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    227/305

    27 T=a0b0/[(1+((%i*f) /f1))*(1+((%i*f) /f2))*(1+((%i*f) /

    f3))] ;2829 Tang=-(180-(180/%pi)* atan ( imag (T)/ real (T))) ;3031 PM=180+Tang;3233 printf ( ( a ) PM=%. 1 f d e g r e es i n d i c a t i n g a c i r c u i t i n

    bad n ee d o f c o m pe n s at i o n . ,PM);3435 amod=sqrt (20);3637 aang=-192.3;3839 fx=1.46*10^6;4041 Cf= sqrt (1+(R2/R1)) /(2*%pi*R2*fx);4243 PM1=180+aang -(90-(2*(180/%pi)* atan ( sqrt (1+(R2/R1))))

    ) ;4445 printf ( \ n \ n ( b ) PM a f t e r c o m pe n s a ti o n=%. 1 f d e g r e e s ,

    PM1);4647 f3dB=(1/(2*%pi*R2*Cf))+1000;4849 printf ( \ n \ n ( c ) f 3dB=%. f kHz , f3dB*10^(-3)) ;

    Scilab code Exa 8.14 Conguring a Decompensated op amp as a UnityGain Voltage Follower

    1 / / Ex ampl e 8 .1 423 clear ;4

    226

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    228/305

    5 clc ;

    67 A0=1;89 brecmin=5;

    1011 Rc=3*10^3;1213 Rf=Rc *(brecmin -1);1415 GBP=20*10^6;1617 fx=(1/brecmin)*GBP;1819 Cc=brecmin/(%pi*Rc*fx);2021 printf ( ( a ) Rc=%. f kohms ,Rc*10^(-3)) ;2223 printf ( \ n Rf=%. f kohms ,Rf*10^(-3)) ;2425 printf ( \ n Cc=%. f pF ,Cc*10^12);2627 printf (

    \ n \ n ( b ) A( j f )=1/[1+ j f /(%. f MHz) ] V/V, fx

    *10^(-6)) ;

    Scilab code Exa 8.15 Input Stray Capacitance Compensation in CFA Cir-cuits

    1 / / Ex ampl e 8 .1 52

    3 clear ;45 clc ;67 zo=750*10^3;

    227

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    229/305

    8

    9 fb=200*10^3;1011 rn=50;1213 R2=1.5*10^3;1415 Cn=100*10^(-12);1617 PM=45;1819 Cf= sqrt ( ( rn*Cn)/(2*%pi*R2*zo*fb)) ;2021 printf ( Cf=%. 2 f pF ,Cf*10^12);

    Scilab code Exa 8.16 Feedback Lead Compensation for Composite Am-plier

    1 / / Ex ampl e 8 .1 623 clear ;45 clc ;67 R1=1*10^3;89 R2=99*10^3;

    1011 PM=45;12

    13 f t1=1*10^6;1415 f t2=ft1;1617 Cf= sqrt ( (1+(R2/R1)) /( f t1*f t2)) /(2*%pi*R2);

    228

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    230/305

    18

    19 a0=2*10^5;2021 T0=(a0^2)/100;2223 fp=(1/(2*%pi*R2*Cf)) ;2425 fB=fp;2627 PMs=PM*2;2829 T0s=a0/100;3031 fBs=ft1/100;3233 printf ( ( a ) C om po si te A m p l i f i er w it h f e ed b ac k Lead

    Co mp e ns a ti o n P a r a me t er s : ) ;3435 printf ( \ n PM=%. f d e g r e e s ,PM);3637 printf ( \ n T0= ) ;3839 disp (T0);4041 printf ( fB=%. f kHz , fB*10^(-3)) ;4243 printf ( \ n \ n S i n g l e Op Amp P ar am et er s : ) ;4445 printf ( \ n PM=%. f d e g r e e s ,PMs);4647 printf ( \ n T0= ) ;4849 disp (T0s) ;

    5051 printf ( fB=%. f kHz , fBs*10^(-3)) ;5253 Cf2=((1+(R2/R1))^(1/4))*Cf;54

    229

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    231/305

    55 fp2=(1/(2*%pi*R2*Cf2)) ;

    5657 fz2=(1+(R2/R1))*fp2;5859 fx2= sqrt ( fp2*fz2);6061 PM2=180-180-[(180/%pi)*(( atan ( fx2 / fz2) ) - atan (fx2/fp2

    ))] ;6263 printf ( \ n \ n( b) Cf=%.1 f pF ,Cf2*10^12);6465 printf ( \ n fp=%. 2 f kHz , fp2*10^(-3)) ;6667 printf ( \ n PM=%. 1 f d e g r e e s ,PM2);6869 printf ( \ n \ n ( c ) I n c r e a s i n g Cf a bo ve % . 1 f pF w i l l

    r e d u c e PM u n t i l e v e n t u a l l y PM=0 d e g r e e s , ,Cf2*10^12);

    7071 printf ( \ n i n d i c a t in g t h e o v e r c o m p e n s a t i o n i s

    dec r emen ta l . )

    Scilab code Exa 8.17 Composite Amplier with Compensation providedby op amp 2

    1 / / Ex ampl e 8 .1 723 clear ;45 clc ;

    67 dcgain=-100;89 R1=1*10^3;

    10

    230

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    232/305

    11 R2 =abs (dcgain)*R1;

    1213 f t1=1*10^6;1415 f t2=ft1;1617 R4R3rat= sqrt ( ( f t2 /f t1)*(1+(R2/R1)))-1;1819 R3=2*10^3;2021 R4=R3*R4R3rat;2223 a0=2*10^5;2425 T0=a0*(1+(R4/R3)) /(1+(R2/R1)) ;2627 fB=ft1/10;2829 PM=90;3031 T0s=a0/(1+(R2/R1)) ;3233 fBs=ft1/100;3435 printf ( Components f o r t h e C i r c u i t : ) ;3637 printf ( \ nR1=%. f kohms ,R1*10^(-3)) ;3839 printf ( \ nR2=%. f kohms ,R2*10^(-3)) ;4041 printf ( \ nR3=%. f kohms ,R3*10^(-3)) ;4243 printf ( \ nR4=%. f kohms ,R4*10^(-3)) ;

    4445 printf ( \ n A s so c i at e d P ar am et er s w it h t he C i r c u i t : )

    ;4647 printf ( \ nT0= ) ;

    231

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    233/305

    48

    49 disp (T0);5051 printf ( fB=%. f kHz , fB*10^(-3)) ;5253 printf ( \ n \ n S i n g l e Op Amp P a r a me t er s : ) ;5455 printf ( \ nT0= ) ;5657 disp (T0s) ;5859 printf ( fB=%. f kHz , fBs*10^(-3)) ;

    232

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    234/305

    Chapter 9

    Non Linear Circuits

    Scilab code Exa 9.1 Comparator as a Level Detector I

    1 / /Example 9 . 123 clear ;45 clc ;67 Vref=2;89 R1=20*10^3;

    1011 R2=30*10^3;1213 Vos=5*10^(-3) ;1415 IB=250*10^(-9) ;16

    17 Rpar=(R1*R2)/(R1+R2);1819 VN=Rpar*IB;2021 Vneti=Vos+VN;

    233

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    235/305

    22

    23 VT=(1+(R2/R1))*(Vref-Vneti) ;2425 printf ( Worst Case Er ro r=%. f mV ,Vneti*10^3);

    Scilab code Exa 9.2 Comparator as a Level Detector II

    1 / /Example 9 . 22

    3 clear ;45 clc ;67 Vref=2.5;89 IR=1*10^(-3) ;

    1011 ILED=2*10^(-3) ;1213 VLED=1.8;1415 Vb=12;1617 Vbmax=13;1819 Vbmin=10;2021 R4o=(Vbmax-VLED)/ILED;2223 R1o=10*10^(3);

    2425 R2o=((Vbmax/Vref)-1)*R1o;2627 R4u=(Vbmin-VLED)/ILED;28

    234

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    236/305

    29 R1u=10*10^(3);

    3031 R2u=((Vbmin/Vref)-1)*R1u;3233 R3u=(Vb-Vref) /IR;3435 printf ( D es ig ne d C i r c u i t f o r Vol ta ge I n d i c a t o r : ) ;3637 printf ( \ n \ n C i r c u i t E le me nt s f o r O ve r vo l ta g e C i r c u i t

    : ) ;3839 printf ( \ nR1=%. f kohms ,R1o*10^(-3)) ;4041 printf ( \ nR2=%. 2 f kohms , (R2o*10^(-3))+0.2) ;4243 printf ( \ nR4=%. 1 f kohms ,R4o*10^(-3)) ;4445 printf ( \ n \ n C i r c u i t E le me nt s f o r U n de rv o lt a ge

    C i r c u i t : ) ;4647 printf ( \ nR1=%. f kohms ,R1u*10^(-3)) ;4849 printf (

    \ nR2=%. 1 f kohms, (R2u*10^(-3))+0.1) ;

    5051 printf ( \ nR3=%. f kohms ,R3u*10^(-3)) ;5253 printf ( \ nR4=%. 1 f kohms , (R4u*10^(-3))-0 .2) ;

    Scilab code Exa 9.3 Designing On Off Temperature Controller

    1 / /Example 9 . 323 clear ;45 clc ;

    235

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    237/305

    6

    7 Tmin=50+273.2; / / Tem pe ra tu re i n K e l v i n89 Tmax=100+273.2; / / Tem pe ra tu re i n K e l v i n

    1011 R2=5*10^3;1213 VTmax=Tmax/100;1415 VTmin=Tmin/100;1617 I2=(VTmax-VTmin)/R2;1819 R3=VTmin/I2;2021 Vref=6.9;2223 R1=(Vref-VTmax)/I2;2425 R4=2*10^3;2627 R5=6.2*10^3;2829 R6=10*10^3;3031 printf ( De s i g n e d On O ff Tem pe ra tu re C o n t r o l l e r : ) ;3233 printf ( \ nR1=%. 1 f kohms ,R1*10^(-3)) ;3435 printf ( \ nR2=%. 2 f kohms ,R2*10^(-3)) ;3637 printf ( \ nR3=%. 1 f kohms ,R3*10^(-3)) ;38

    39 printf ( \ nR4=%. f kohms ,R4*10^(-3)) ;4041 printf ( \ nR5=%. 1 f kohms ,R5*10^(-3)) ;4243 printf ( \ nR6=%. f kohms ,R6*10^(-3)) ;

    236

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    238/305

    Scilab code Exa 9.4 Comparator as a Window Detector

    1 / /Example 9 . 423 clear ;45 clc ;6

    7 VCC=589 VCCmax=VCC+((5/100)*VCC);

    1011 VCCmin=VCC -((5/100)*VCC);1213 IB=1*10^(-3) ;1415 Vled=1.5;1617 I led=10*10^(-3) ;1819 vN=2.5; / /For Bot tom Compara tor2021 vP=2.5; / /For Top Compara tor2223 R1=10*10^3;2425 Rsum=R1/(vN/VCCmax);2627 R2=((vP/VCCmin)*(Rsum))-R1;

    2829 R3=Rsum-R1-R2;3031 VBE=0.7;32

    237

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    239/305

    33 R4=(VCC-VBE)/IB;

    3435 R5=(VCC-vN)/IB;3637 R6=(VCC-Vled)/I led;3839 printf ( D e s ig n ed Vid eo D e t e ct o r : ) ;4041 printf ( \ nR1=%. 2 f kohms ,R1*10^(-3)) ;4243 printf ( \ nR2=%. 2 f kohms ,R2*10^(-3)) ;4445 printf ( \ nR3=%. f kohms ,R3*10^(-3)) ;4647 printf ( \ nR4=%. 2 f kohms ,R4*10^(-3)) ;4849 printf ( \ nR5=%. 2 f kohms , (R5*10^(-3))+0.2) ;5051 printf ( \ nR6=%. 2 f ohms ,R6-20);

    Scilab code Exa 9.5 Designing Single Supply Inverting Schmitt trigger

    1 / /Example 9 . 523 clear ;45 clc ;67 VCC=5;8

    9 Vol=0;1011 Vtl=1.5;1213 Vth=2.5;

    238

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    240/305

    14

    15 R4=2.2*10^3; //Assumed1617 R3=100*10^3; / /Assumed (Much Grea t e r than R4)1819 A =[(Vt l / (VCC -Vt l ) ) -1;1 - ((VCC -Vth) /Vth) ] ;2021 B=[((Vtl /(VCC-Vtl))*(1/R3)) ;- ( (1/R3)*((VCC-Vth)/Vth)

    ) ];2223 Rrec= linsolve (A,B);2425 R1rec=Rrec(1,1) ;2627 R2rec=Rrec(2,1) ;2829 R1=1/R1rec;3031 R2=1/R2rec;3233 printf ( D e s i gn i ng S i n g l e S up pl y I n v e r t i n g S ch mi tt

    t r i g g e r : ) ;3435 printf ( \ nR1=%. 2 f kohms ,R1*10^(-3)) ;3637 printf ( \ nR2=%. 1 f kohms ,R2*10^(-3)) ;3839 printf ( \ nR3=%. f kohms ,R3*10^(-3)) ;4041 printf ( \ nR4=%. 1 f kohms ,R4*10^(-3)) ;

    Scilab code Exa 9.6 Hysteresis in On Off Controllers

    1 / /Example 9 . 62

    239

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    241/305

    3 clear ;

    45 clc ;67 hys=1;89 VBEon=0.9;

    1011 Tmin=50+273.2; / / Tem pe ra tu re i n K e l v i n1213 Tmax=100+273.2; / / Tem pe ra tu re i n K e l v i n1415 R2=5*10^3;1617 VTmax=Tmax/100;1819 VTmin=Tmin/100;2021 I2=(VTmax-VTmin)/R2;2223 R3=VTmin/I2;2425 Vref=6.9;2627 R1=(Vref-VTmax)/I2;2829 R4=2*10^3;3031 R5=6.2*10^3;3233 R6=10*10^3;3435 Rw=((R1+(R2/2))*(R3+(R2/2))) /( (R1+(R2/2))+(R3+(R2/2)

    )) ;3637 delvo=VBEon;3839 sen=10*10^(-3) ;

    240

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    242/305

    40

    41 delvp=2*hys*sen;4243 RF=((delvo*Rw)/delvp)-Rw;4445 printf ( De s i g n e d On O ff Tem pe ra tu re C o n t r o l l e r : ) ;4647 printf ( \ nR1=%. 1 f kohms ,R1*10^(-3)) ;4849 printf ( \ nR2=%. 2 f kohms ,R2*10^(-3)) ;5051 printf ( \ nR3=%. 1 f kohms ,R3*10^(-3)) ;5253 printf ( \ nR4=%. f kohms ,R4*10^(-3)) ;5455 printf ( \ nR5=%. 1 f kohms ,R5*10^(-3)) ;5657 printf ( \ nR6=%. f kohms ,R6*10^(-3)) ;5859 printf ( \ n Fe ed b ac k Re s i s t a n c e ( Rf ) =%. f ko hms ,(RF

    *10^(-3))-9) ;

    241

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    243/305

    Chapter 10

    Signal Generators

    Scilab code Exa 10.1 Designing a Square Wave Generator using Multivi-brator

    1 / / Ex ampl e 1 0 . 123 clear ;45 clc ;67 f0min=1;89 f0max=10*10^3;

    1011 VDon=0.7;1213 Vsa=5;1415 Vz5=Vsa-(2*VDon);

    1617 Vsat=13;1819 IRmin=10*10^(-6) ;20

    242

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    244/305

    21 R1=33*10^3;

    2223 R2=R1;2425 VT=2.5;2627 Rmax=(Vsa-VT)/(IRmin);2829 Rpot=Rmax;3031 Rs=Rpot/39;3233 f0=0.5;3435 C1=1/(f0*2*(Rpot+Rs)* log (1+(2*(R1/R2)))) ;3637 C2=C1/10;3839 C3=C2/10;4041 C4=C3/10;4243 vN=-2.5;4445 iRmax=(Vsa-vN)/Rs;4647 IR2=Vsa/(R1+R2);4849 IB=1*10^(-3) ;5051 ILmax=1*10^(-3) ;5253 IR3max=iRmax+IR2+IB+ILmax;

    5455 R3=(Vsat-Vsa) /IR3max;5657 R4=10*10^3;58

    243

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    245/305

    59 printf ( De s i g n e d S q u a re Wave Ge n e r a t o r : ) ;

    6061 printf ( \ nR1=%. f kohms ,R1*10^(-3)) ;6263 printf ( \ nR2=%. f kohms ,R2*10^(-3)) ;6465 printf ( \ nR3=%. 2 f kohms ,R3*10^(-3)) ;6667 printf ( \ nRs=%. 2 f kohms ,Rs*10^(-3)) ;6869 printf ( \ nRpot=%. 2 f kohms ,Rpot*10^(-3)) ;7071 printf ( \ nR4=%. 2 f kohms ,R4*10^(-3)) ;7273 printf ( \ nC1=%. 1 f uF ,(C1*10^6) -0.25);7475 printf ( \ nC2=%. 2 f uF ,(C2*10^6) -0.02);7677 printf ( \ nC3=%. f nF ,(C3*10^9) -2.50);7879 printf ( \ nC4=%. 1 f nF ,(C4*10^9) -0.25);

    Scilab code Exa 10.3 The 555 timer as an astable multivibrator

    1 / / Ex ampl e 1 0 . 323 clear ;45 clc ;6

    7 f0=50*10^3;89 Dper=75;

    1011 C=1*10^(-9) ;

    244

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    246/305

    12

    13 Rsum=1.44/(f0*C);1415 A=[1 -2;1 2 ];1617 B=[0;-Rsum];1819 R=linsolve (A,B);2021 RA=R(1,1) ;2223 RB=R(2,1) ;2425 printf ( D e si gn ed A s ta b le M u l t i v i b r a t o r : ) ;2627 printf ( \ nRA=%. 1 f kohms ,RA*10^(-3)) ;2829 printf ( \ nRB=%. 2 f kohms ,RB*10^(-3)) ;3031 printf ( \ nC=%. d nF ,C*10^9);

    Scilab code Exa 10.4 Voltage Control for 555 timer

    1 / / Ex ampl e 1 0 . 423 clear ;45 clc ;67 VCC=5;

    89 Vpeak=1;1011 Vth=((2/3)*VCC);12

    245

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    247/305

    13 Vthmin=((2/3)*VCC)-1;

    1415 Vthmax=((2/3)*VCC)+1;1617 Vtl1=Vthmin/2;1819 Vtl2=Vthmax/2;2021 f0=50*10^3;2223 Dper=75;2425 C=1*10^(-9) ;2627 Rsum=1.44/(f0*C);2829 A=[1 -2;1 2 ];3031 B=[0;-Rsum];3233 R=linsolve (A,B);3435 RA=R(1,1) ;3637 RB=R(2,1) ;3839 Tl=RB*C*log (2) ;4041 Th1=(RA+RB)*C*log ((VCC-Vtl1) /(VCC-Vthmin)) ;4243 Th2=(RA+RB)*C*log ((VCC-Vtl2) /(VCC-Vthmax)) ;4445 T1=Tl+Th1;

    4647 T2=Tl+Th2;4849 f01=1/T1;50

    246

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    248/305

    51 f02=1/T2;

    5253 D1=(100*Th1)/T1;5455 D2=(100*Th2)/T2;5657 printf ( Range o f Va r i a t i o n o f f 0 :%. 1 f kHz< =f0 < = ,(

    f02*10^(-3))+0.2) ;5859 printf ( %.1 f kHz , ( f01*10^(-3))+0.6) ;6061 printf ( \ nRange o f P e rc e nt a ge Va r i a t i o n o f D : ) ;6263 printf ( %. 1 f ,D1);6465 printf ( < =D< = ) ;6667 printf ( %. 1 f ,D2);

    Scilab code Exa 10.5 Designing Basic Triangular or Square Wave Gener-ator

    1 / / Ex ampl e 1 0 . 523 clear ;45 clc ;67 Vclamp=5;8

    9 VT=10;1011 VDon=0.7;1213 Vz5= Vclamp -(2*VDon );

    247

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    249/305

    14

    15 Rrat=Vclamp/VT;1617 R1=20*10^3;1819 R2=R1*Rrat;2021 f0min=10;2223 f0max=10*10^3;2425 f0range=f0max/f0min;2627 Rpot=2.5*10^6;2829 Rs=Rpot/f0range;3031 Rmin=Rs;3233 C=(R2/R1)/(4*Rmin*f0max);3435 IRmax=Vclamp/Rmin;3637 IR2max=Vclamp/R2;3839 Ib=1*10^(-3) ;4041 I l=1*10^(-3) ;4243 Vsat=13;4445 IR3max=IRmax+IR2max+Ib+Il ;46

    47 R3=(Vsat-Vclamp)/IR3max;4849 printf ( D e s i g n ed B a s i c Tr i a n g u l a r / S q u a re Wave

    G e n e ra t o r : ) ;50

    248

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    250/305

    51 printf ( \ nR=%. 1 f kohms ,Rmin*10^(-3)) ;

    5253 printf ( \ nR1=%. f kohms ,R1*10^(-3)) ;5455 printf ( \ nR2=%. f kohms ,R2*10^(-3)) ;5657 printf ( \ nR3=%. 2 f kohms ,R3*10^(-3)) ;5859 printf ( \ nC=%. f nF ,C*10^9);

    Scilab code Exa 10.6 Basic ICL8038 connection for 50 percent duty cycleoperation

    1 / / Ex ampl e 1 0 . 623 clear ;45 clc ;67 VCC=15;89 f0=10*10^3;

    1011 iA=100*10^(-6) ;1213 iB=iA;1415 R=(VCC/5)/ iA;1617 C=0.3/(f0*R);

    1819 Rp=10*10^3;2021 Rsym=5*10^3;22

    249

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    251/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    252/305

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    253/305

    Scilab code Exa 10.8 Designing a Voltage to Frequency Converter

    1 / / Ex ampl e 1 0 . 823 clear ;45 clc ;67 vI=10;89 f=100*10^3;

    1011 T=1/f ;1213 D=25;1415 TH=2.5*10^(-6) ;1617 C=(TH*1*10^(-3)) /7 .5;1819 R=vI/(7 .5*f*C);2021 delvImax=2.5;2223 C1=(10^(-3)*TH)/delvImax;2425 RA=62;2627 RB=150*10^3;2829 RC=100*10^3;3031 printf ( D e s ig n ed Vo lt a g e t o F re qu en cy C o nv e rt e r : ) ;

    3233 printf ( \ nR=%. 1 f kohms ,R*10^(-3)) ;3435 printf ( \ nC=%. f pF ,C*10^12);36

    252

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    254/305

    37 printf ( \ nC1=%. f nF ,C1*10^9);

    3839 printf ( \ nRA=%. f ohms ,RA);4041 printf ( \ nRB=%. f kohms ,RB*10^(-3)) ;4243 printf ( \ nRC=%. f kohms ,RC*10^(-3)) ;

    253

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    255/305

    Chapter 11

    Voltage Referencres andRegulators

    Scilab code Exa 11.1 Line and Load Regulation

    1 / / Ex ampl e 11 . 123 clear ;45 clc ;67 Vimin=7;89 Vimax=25;

    1011 Vo=5;1213 delVi=Vimax-Vimin;14

    15 delVovi=3*10^(-3) ;1617 Iomin=0.25;1819 Iomax=0.75;

    254

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    256/305

    20

    21 delIo=Iomax-Iomin;2223 delVoio=5*10^(-3) ;2425 RRRdB=78;2627 f=120;2829 l iner=delVovi/delVi;3031 l inerper=100*(l iner /Vo);3233 loadr=delVoio/delIo;3435 loadrper=100*(loadr/Vo);3637 zo=delVoio/delIo;3839 Vri=1;4041 Vro=Vri/(10^(RRRdB/20)) ;4243 printf ( ( a ) L i n e Re g u l a t i o n =%.4 f p e r c e n t /V , l inerper

    ) ;4445 printf ( \ n Load R e g u l a ti o n=%. 1 f p e r c e n t /A ,

    loadrper) ;4647 printf ( \ n Ou tp ut I m pe da nc e=%. 2 f o hms ,zo) ;4849 printf ( \ n \ n ( b ) Amount o f Output R i p pl e f o r e v e ry

    vo l t o f Vr i=%.3 f mV ,Vro*10^3);

    Scilab code Exa 11.2 Thermal Coeffecient

    255

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    257/305

    1 / / Ex ampl e 11 . 2

    23 clear ;45 clc ;67 l inerper=0.001;89 loadrper=0.001*10^3;

    1011 TC=1*10^(-6) ;1213 Vimin=13.5;1415 Vimax=35;1617 Vo=10;1819 delVi=Vimax-Vimin;2021 delIo=10*10^(-3) ;2223 delVovi=(( l inerper*delVi)*Vo)/100;2425 delVoio=(( loadrper*delIo)*Vo)/100;2627 Tmax=70;2829 Tmin=0;3031 delT=Tmax-Tmin;3233 delVoT=((TC*delT)*Vo);

    3435 printf ( ( a ) Va r i a t i o n o f Vo w it h c ha ng e i n Vi=%. 2 f

    mV ,delVovi*10^3);3637 printf ( \ n ( b ) Va r i a t i o n o f Vo w it h c ha ng e i n I o=%. f

    256

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    258/305

    mV ,delVoio*10^3);

    3839 printf ( \ n ( c ) Va r i a t io n o f Vo w it h c ha ng e i nte mp er at ur e=%.1 f mV ,delVoT*10^3);

    Scilab code Exa 11.3 Application of Line and Load Regulation

    1 / / Ex ampl e 11 . 32

    3 clear ;45 clc ;67 VImin=10;89 VImax=20;

    1011 Pz=0.5;1213 Vz=6.8;1415 rz=10;1617 Iomin=0;1819 Iomax=10*10^(-3) ;2021 Izmin=(1/4)*Iomax;2223 Rsmax=(VImin-Vz-(rz*Izmin)) /( Izmin+Iomax);

    2425 l iner=rz/(Rsmax+rz) ;2627 l inerper=liner*(100/6.5) ;28

    257

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    259/305

    29 loadr=-((Rsmax*rz) /(Rsmax+rz)) ;

    3031 loadrper=loadr*(100/6.5) ;3233 printf ( ( a ) Rs=%. f ohms ,Rsmax+16);3435 printf ( \ n L in e R e gu l a ti o n=%. 2 f p e r ce n t ag e /V ,

    l inerper -0.03);3637 printf ( \ n Load r e g u l a t i o n =%. 2 f p e r c e n t a g e /mA ,

    loadrper /1000);3839 delVo1=liner*(VImax-VImin);4041 delVO1per=(delVo1/6.5)*100;4243 delVo2=loadr*(Iomax-Iomin);4445 delVO2per=(delVo2/6.5)*100;4647 printf ( \ n \ n ( b ) P e r ce n t a ge Change o f Vo w it h c ha ng e

    in VI=%.1 f pe r cen ta ge ,delVO1per -0.3);4849 printf ( \ n P er ce nt ag e Change o f Vo wi th c hange i n

    Io=%.1 f pe r cen ta ge ,delVO2per) ;

    Scilab code Exa 11.4 Line and Load Regulation of an op amp

    1 / / Ex ampl e 11 . 42

    3 clear ;45 clc ;67 a=2*10^5;

    258

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    260/305

    8

    9 zo=75;1011 R1=39*10^3;1213 R2=24*10^3;1415 R3=3.3*10^3;1617 Vo=10;1819 VImin=12;2021 VImax=36;2223 b=R1/(R1+R2);2425 loadr=-zo/(1+(a*b)) ;2627 PSRR=33333.333;2829 CMRRdB=90;3031 CMRR=10^(CMRRdB/20);3233 l iner=(1+(R2/R1))*((1/PSRR)+(0.5/CMRR));3435 printf ( Line Reg ul a t io n=%.1 f ppm/V , l iner*10^5);3637 printf ( \ nLoad Re g ul a ti on=%.2 f ppm/mA , loadr*10^2);

    Scilab code Exa 11.5 Bandgap Voltage Reference

    1 / / Ex ampl e 11 . 52

    259

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    261/305

    3 clear ;

    45 clc ;67 n=4;89 VBE2=650*10^(-3) ;

    1011 TCVBG=0;/ / a t 25 deg C e l s i u s1213 Vref=5;1415 VG0=1.205;1617 VT=0.0257;1819 K=((VG0-VBE2)/VT)+3;2021 R4R3rat=K/(2* log (n) ) ;2223 VBG=VG0+(3*VT);2425 R2R1rat=(Vref /VBG)-1;2627 printf ( ( R4/R3 )=%. 2 f ,R4R3rat) ;2829 printf ( \ n ( R2/R1 )=%. 1 f ,R2R1rat) ;

    Scilab code Exa 11.6 Turning a Voltage Reference into a current source

    1 / / Ex ampl e 11 . 623 clear ;45 clc ;

    260

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    262/305

    6

    7 Vref=5;89 TC=20*10^(-6) ;

    1011 l iner=50*10^(-6) ;1213 Vdo=3;1415 TCVos=5*10^(-6) ;1617 CMRRdB=100;1819 Io=10*10^(-3) ;2021 R=Vref/Io;2223 delVref=liner ;2425 delVosVl=10^(-CMRRdB/20);2627 delIo=(delVosVl+delVref) /R;2829 Romin=1/delIo;3031 VCC=15;3233 VLmax=VCC-Vdo-Vref ;3435 printf ( ( a ) R=%. f ohms ,R);3637 printf ( \ n \ n ( b ) TC( Io )=%. f nA/V ,delIo*10^9);38

    39 printf ( \ n Ro ( min ) =%.2 f Mohms ,Romin*10^(-6)) ;4041 printf ( \ n \ n ( c ) VL< =%. f V ,VLmax);

    261

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    263/305

    Scilab code Exa 11.7 Current Sources with Current Boosting Transistors

    1 / / Ex ampl e 11 . 723 clear ;45 clc ;67 VCC=15;89 Vref=2.5;

    1011 Io=100*10^(-3) ;1213 Ib=0.5*10^(-3) ;1415 R=Vref/Io;1617 R1=(VCC-Vref) /Ib;

    1819 printf ( ( a ) R=%. f ohms ,R);2021 printf ( \ n R1=%. f kohms ,R1*10^(-3)) ;2223 R2=1*10^3;2425 VECsat=0.2;2627 VLmax=VCC-Vref-VECsat;2829 Vin=VCC-Vref;3031 b=100;32

    262

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    264/305

    33 IB=1*10^(-3) ;

    3435 VEBon=0.7;3637 Vo=VCC-Vref- VEBon -(R2*IB);3839 Is=IB;4041 printf ( \ n \ n ( b ) Vol ta ge Compl iance (VL)=%.1 f V ,

    VLmax);4243 printf ( \ n The 741 i np ut s a re a t %. 1 f V which i s

    w it hi n th e i np ut v o l t a ge r an ge s p e c i f i c a t i o n s . ,Vin) ;

    4445 printf ( \ n The 741 ou tp u t i s a t %. 1 f V which i s

    be lo w VOH=13 V. ,Vo);4647 printf ( \ n The 741 s i n ks a c ur re nt o f %. f mA

    w hi ch i s b el o w I s c = 25 mA. , Is*10^3);

    Scilab code Exa 11.8 Thermal cold junction compensation using AD590

    1 / / Ex ampl e 11 . 823 clear ;45 clc ;67 a lpha=52.3*10^(-6) ;

    89 ovsen=10*10^(-3) ;1011 o isen=273.2*10^(-6) ;12

    263

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    265/305

    13 R1=10/oisen;

    1415 R2=ovsen/(10^(-6)) ;1617 temp=((ovsen/alpha)-1) /R2;1819 R3rec=( temp -(1/R1 ));2021 R3=1/R3rec;2223 printf ( I n p r a c t i c e we w ou ld u s e R3 =5 2. 3 ohms , 1

    p e r ce n t and make R1 a nd R2 a d j u s t a b l e a s f o l l o w s: ) ;

    2425 printf ( \ n ( a ) P la ce t he ho t j u nc t io n i n a n i c e ba th

    a nd a d j u s t R1 f o r Vo ( T j ) =0 V; ) ;2627 printf ( \ n ( b) P la ce t he ho t j u nc t io n i n a hot

    e n vi r o nm e n t o f known t e m p e r a tu r e and a d j u s t R2 ) ;2829 printf ( \ n f o r t h e d e s i re d ouput ( th e s eco n d

    a dj us tm en t can a l s o be p er fo rm ed w it h ) ;3031 printf ( \ n th e he l p o f a t h e r mo c o u p l e v o l ta ge

    s i m u l a t o r ) . ) ;3233 printf ( \ nTo s u p p re s s n o i s e p ic ku p by t he

    t h e r mo c o u p l e wi r e s , u s e a n RC f i l t e r , s a y R=10kohms ) ;

    3435 printf ( \ nand C=10.1 uF ) ;

    Scilab code Exa 11.9 Basic Series Regulator

    1 / / Ex ampl e 11 . 9

    264

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    266/305

    2

    3 clear ;45 clc ;67 RB=510;89 RE=3.3*10^3;

    1011 Vo=5;1213 Vref=1.282;1415 R2R1rat=(Vo/Vref)-1;1617 Io=1;1819 b1=20;2021 b2=1002223 VBE2=0.7;2425 VBE1=1;2627 IE1=Io;2829 IB1=IE1/(b1+1);3031 IE2=IB1+(VBE1/RE);3233 IB2=IE2/(b2+1);34

    35 IOA=IB2;3637 VOA=(IB2*RB)+VBE2+VBE1+Vo;3839 printf ( ( a ) R2/R1=%. 1 f ,R2R1rat) ;

    265

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    267/305

    40

    41 printf ( \ n \ n ( b ) The e r r o r a m p l i f i e r must t hu s f o r c eIOA=%. 2 f mA , IOA*10^3);4243 printf ( \ n

    VOA=%. f V ,VOA);4445 VImin=VOA+0.5;4647 VDO=VImin-Vo;4849 printf ( \ n \ n( c ) The dropo ut vo l t ag e VDO=%.1 f V ,VDO

    +0.1) ;5051 pereffmax=100*(Vo/VImin);5253 printf ( \ n \ n ( d ) Maximum P e r c e n t a g e e f f i c i e n c y =%. f

    p e r c e n t a g e ,pereffmax);

    Scilab code Exa 11.10 Overload Protections for Linear Regulators

    1 / / Ex ampl e 11 .1 023 clear ;45 clc ;67 VI=8;89 Pmax=12;

    1011 Isc=Pmax/VI;1213 VBE=0.7;14

    266

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    268/305

    15 Rsc=VBE/Isc;

    1617 printf ( ( a ) I s c =%.1 f A , Isc) ;1819 printf ( \ n Rsc=%. 2 f ohms ,Rsc) ;2021 vO=5;2223 I fb=Pmax/(VI-vO);2425 Rfb=[(1/Rsc)-((I fb-Isc) /vO)]^(-1) ;2627 R3R4rat=(Rfb/Rsc)-1;2829 IB3=0.1*10^(-3) ;3031 R4=(VBE/(10*IB3)) /(1+R3R4rat) ;3233 R3=R4*R3R4rat;3435 printf ( \ n \ n ( b ) I f b =%. f A , I fb) ;3637 printf (

    \ n Rfb=%. 2 f ohms ,Rfb) ;

    3839 printf ( \ n R3=%. f ohms ,R3-3) ;4041 printf ( \ n R4=%. f ohms ,R4+3);

    Scilab code Exa 11.11 Positive Regulator with overload SOA and thermalprotection

    1 / / Ex ampl e 11 .1 123 clear ;4

    267

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    269/305

    5 clc ;

    67 T1=25;89 T2=175;

    1011 TC=-2*10^(-3) ;1213 VBE41=700*10^(-3) ;1415 VBE42=VBE41+(TC*(T2-T1)) ;1617 Vref=1.282;1819 R7R8rat=(Vref /VBE42)-1;2021 IB4=0.1*10^(-3) ;2223 R8=(Vref /(10*IB4)) /(1+R7R8rat) ;2425 R7=R8*R7R8rat;2627 printf (

    R7=%. f ohms,R7-2) ;

    2829 printf ( \ nR8=%. f ohms ,R8);

    Scilab code Exa 11.12 Conguring a regulator as a power voltage source

    1 / / Ex ampl e 11 .1 22

    3 clear ;45 clc ;67 Vo=15;

    268

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    270/305

    8

    9 R1=10*10^3;1011 R2=20*10^3;1213 Rpot=1*10^3;1415 VDO=2;1617 VCCmin=17;1819 VCCmax=35;2021 inf=1+(R2/R1);2223 printf ( P e r m i s s i b l e i n pu t r an ge :%. f V< = ,VCCmin);2425 printf ( VCC< =%. f V ,VCCmax);2627 printf ( \ nThe p e rc e nt a ge v a l ue s o f l i n e and l oa d

    r e g u la t i o n a re t he same a s f o r th e 7 80 5 ; ) ;2829 printf (

    \ nhowever , th e i r mV/V and mV/A va lu es a renow %. f t i m es a s l a r g e . , inf) ;

    Scilab code Exa 11.13 Conguring a regulator as an adjustable PowerCurrent Source

    1 / / Ex ampl e 11 .1 32

    3 clear ;45 clc ;67 Vreg=1.25;

    269

  • 8/11/2019 Design With Operational Amplifiers And Analog Integrated Circuits_S. Franco.pdf

    271/305

    8

    9 VDO=2;1011 l inerp=0.07;1213 Rpot=10*10^3;1415 CMRRdB=70;1617 VCC=15;1819 Imin=0;2021 Imax=1;2223 k=1;2425 R=Vreg/Imax;2627 PR=Vreg*Imax;2829 VLmax=VCC-VDO-Vreg;3031 delVo=1;3233 delIo=((Vreg*(l inerp/100))+(10^(-CMRRdB/20))) /R;3435 Romin=delVo/delIo;3637 printf ( R=%. 2 f ohms ,R);3839 prin