designing’a’decision’support’systemfor harvest(management...

7
Decision Support and Great Lakes Lake Whitefish in a Changing Climate www.glisa.msu.edu Designing a Decision Support System for Harvest Management of Great Lakes Lake Whitefish in a Changing Climate Abigail J. Lynch, Principal Investigator, University Distinguished Fellow William W. Taylor, University Distinguished Professor in Global Fisheries Systems Center for Systems Integration and Sustainability Michigan State University East Lansing, Michigan This project was funded by the Great Lakes Integrated Sciences + Assessments Center through a 2011 Great Lakes Climate Assessment Grant. Recommended Citation: Lynch, A.J., W.W. Taylor, 2013. Designing a Decision Support System for Harvest Management of Great Lakes Lake Whitefish in a Changing Climate. In: GLISA Project Reports. D. Brown, D. Bidwell, and L. Briley, eds. Available from the Great Lakes Integrated Sciences and Assessments (GLISA) Center. For further questions, please contact Abigail Lynch at [email protected].

Upload: others

Post on 22-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

Decision  Support  and  Great  Lakes  Lake  Whitefish  in  a  Changing  Climate    

   www.glisa.msu.edu  

                   

 

Designing  a  Decision  Support  System  for  Harvest  Management  of  Great  Lakes  Lake  Whitefish  in  a  Changing  Climate  

Abigail  J.  Lynch,  Principal  Investigator,  University  Distinguished  Fellow  William  W.  Taylor,  University  Distinguished  Professor  in  Global  Fisheries  Systems  

Center  for  Systems  Integration  and  Sustainability  Michigan  State  University  East  Lansing,  Michigan  

 This  project  was  funded  by  the  Great  Lakes  Integrated  Sciences  +  Assessments  Center  

through  a  2011  Great  Lakes  Climate  Assessment  Grant.    Recommended  Citation:  

Lynch,  A.J.,  W.W.  Taylor,  2013.  Designing  a  Decision  Support  System  for  Harvest  Management  of  Great  Lakes  Lake  Whitefish  in  a  Changing  Climate.  In:  GLISA  Project  Reports.  D.  Brown,  D.  Bidwell,  and  L.  Briley,  eds.  Available  from  the  Great  Lakes  Integrated  Sciences  and  Assessments  (GLISA)  Center.  

 For  further  questions,  please  contact  Abigail  Lynch  at  [email protected].    

Page 2: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 2  www.glisa.umich.edu   Last  updated:  6/9/2015  

 

 

Contents  Project  Objectives  ..............................................................................................................................................................................................................................  3  Importance  of  lake  whitefish  ........................................................................................................................................................................................................  3  Lake  whitefish  recruitment  ...........................................................................................................................................................................................................  3  Potential  impacts  of  climate  change  ..........................................................................................................................................................................................  3  Modeling  climate  relationships  with  lake  whitefish  recruitment  in  the  1836  Treaty  waters  .........................................................................  4  Modeling  methods  .............................................................................................................................................................................................................................  4  Results  to  date  .....................................................................................................................................................................................................................................  5  Modeling  implications  .....................................................................................................................................................................................................................  5  Decision-­‐maker  engagement  ........................................................................................................................................................................................................  5  Anticipated  outcomes  ......................................................................................................................................................................................................................  6  References  .............................................................................................................................................................................................................................................  6  

       

Page 3: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 3  www.glisa.umich.edu   Last  updated:  6/9/2015  

Project  Objectives  The  goal  of  this  project  was  to  design  a  decision  support  system  for  sustainable  harvest  management  of  Lake  Whitefish  in  the  upper  Laurentian  Great  Lakes  in  a  changing  climate.    Upon  completion,  this  project  will  synthesize  the  current  state  of  lake  whitefish  ecological  knowledge  and  provide  an  opportunity  to  assist  decision  makers  allied  with  the  fisheries  to  adaptively  respond  to  climate  change  processes  in  the  Great  Lakes  region  (Figure  1).  Our  research  that  was  funded  by  GLISA  emphasized  the  development  of  a  quantitative  fishery  model  which  will  serve  as  the  foundation  for  decision  support  tool.    The  full  project  objectives  were  to:    • Develop  a  lake  whitefish  production  model,  including  

influential  climatic  factors;  • Engage  scientists,  managers,  and  fishermen  to  assess  

decision-­‐support  needs  and  ensure  the  climate-­‐lake  whitefish  production  model  is  relevant  to  their  management  needs;  and,    

• Design  an  interactive,  user-­‐friendly  interface  to  display  the  outcomes  of  the  climate  -­‐  lake  whitefish  production  modeling  outcomes.  

Importance  of  lake  whitefish  Lake  whitefish  (Coregonus  clupeaformis)  are  an  economically,  culturally,  and  ecologically  important  species  in  the  upper  Laurentian  Great  Lakes  (Lakes  Huron,  Michigan,  and  Superior).    Ecologically,  lake  whitefish  are  primarily  a  benthivores  and  serve  as  a  key  energy  transfer  vector    from  lower,  benthic  food  webs  to  the  upper,  pelagic  food  webs  (Nalepa,  Mohr  et  al.  2005),  and  are  an  important  

food  source  for  humans.    They  are  and  have  been  a  staple  food  source  and  focus  of  livelihoods  for  aboriginal  people  in  the  region  (Cleland  1982).  Today,  populations  of  lake  whitefish  support  the  most  robust  and  economically  valuable  commercial  fishery  in  the  upper  Laurentian  Great  Lakes  (Lakes  Huron,  Michigan,  and  Superior;  annual  catch  value  =  US$16.6  million;  Mohr  and  Ebener  2005;  Madenjian,  O'Connor  et  al.  2006;  Ebener,  Kinnunen  et  al.  2008).      

Lake  whitefish  recruitment  Stock-­‐recruitment  relationships  estimates  are  inherently  stochastic  but  much  of  that  variability  can  be  attributed  to  variation  in    spawning  stock  size  and  environmental  influences  on  growth  and  survival  of  young  fish  (Quinn  and  Deriso  1999).    However,  one  of  the  most  difficult  problems  in  fisheries  science  is  determining  the  influence  of  the  environment  upon  recruitment  (Myers  2001).    For  lake  whitefish,  both  stock  size  and  environmental  factors  have  been  shown  to  influence  recruitment  (Taylor,  Smale  et  al.  1987).    In  particular,  previous  studies  of  Great  Lakes  lake  whitefish  indicate  that  key  environmental  drivers  that  will  be  impacted  by  climate  change,  water  temperature,  ice  cover,  and  storm  intensity,  affect  recruitment  (Christie  1963;  Lawler  1965;  Taylor,  Smale  et  al.  1987;  Freeberg,  Taylor  et  al.  1990).  

Potential  impacts  of  climate  change  Climate  change  is  expected  to  increase  surface  temperatures  of  the  Great  Lakes  by  as  much  as  6oC  (Trumpickas,  Shuter  et  al.  2009)  while  average  wind  speed  is  expected  to  decline  (Sousounis  and  Grover  2002),  and  ice  

 Figure  1.  Conceptual  model  of  the  design  of  a  decision  support  system  for  Great  Lakes  Lake  Whitefish  harvest  management  strategies  in  a  changing  climate.    

Page 4: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 4  www.glisa.umich.edu   Last  updated:  6/9/2015  

cover  is  expected  to  be  substantially  reduced  (Assel,  Cronk  et  al.  2003).    In  their  current  habitat  space,  increased  water  temperature,  increased  wind  speed,  and  decreased  ice  cover  are  projected  to  inhibit  the  success  of  recruitment  to  the  lake  whitefish  fishery  (Lynch,  Taylor  et  al.  2010).    However,  the  warming  trends  associated  with  predicted  climate  change  could  increase  suitable  thermal  habitat  volume  for  lake  whitefish  (Magnuson,  Webster  et  al.  1997)  because  the  species  will  be  able  to  shift  northwards  in  the  lake  system  as  well  as  live  deeper  in  the  water  column  to  maintain  access  to  optimal  thermal  habitats  (Regier  and  Meisner  1990).      

Modeling  climate  relationships  with  lake  whitefish  recruitment  in  the  1836  Treaty  waters  The  1836  Treaty  waters  are  regions  of  Lakes  Huron,  Michigan,  and  Superior  that  were  ceded  from  the  local  tribes  to  the  United  States.    The  tribes,  however,  did  not  relinquish  their  right  to  fish  in  the  ceded  waters.    In  1979,  United  States  v.  State  of  Michigan  (Fox  Decision)  reaffirmed  the  rights  of  the  tribes  for  commercial  fishing  of  lake  whitefish  and  other  species.    To  ensure  that  the  fishery  is  managed  and  regulated  cooperatively,  the  2000  Consent  Decree  established  guidelines  for  management  of  this  fishery  under  the  purview  of  the  Chippewa  Ottawa  Resource  Authority  (CORA)  and  the  Michigan  Department  of  Natural  Resources  when  the  management  units  are  shared.    Currently,  a  Technical  Fisheries  Committee  and  a  Modeling  Subcommittee  conduct  stock  assessments,  establish  total  allowable  catches,  and  designate  harvest  regulations  for  the  14  lake  whitefish  management  units  in  these  waters.    The  harvest  from  the  1836  Treaty  waters  management  units  comprise  approximately  a  quarter  of  the  total  harvest  of  lake  whitefish  in  the  entire  Great  Lakes  (M.  Ebener,  CORA,  personal  communication).    For  lake  whitefish  in  the  1836  Treaty  waters,  harvest  objectives  have  not  yet  been  formalized  but  the  co-­‐managers  (the  State  of  Michigan  and  the  Chippewa-­‐Ottawa  tribes)  desire  high  yields,  low  interannual  variability  in  yield,  and  avoidance  of  low  stock  sizes  (Deroba  and  Bence  2012).    To  achieve  these  goals,  the  Modeling  subcommittee  uses  statistical  catch-­‐at-­‐age  models  to  estimate  lake  whitefish  population  metrics,  including  recruitment  (Deroba  and  Bence  2009)  in  order  to  optimally  regulate  harvest  rates.      

Modeling  methods  We  chose  the  1836  Treaty  Waters  of  Lakes  Huron,  Michigan,  and  Superior  as  our  study  area  because  they  have  a  latitudinal  gradient,  comprise  approximately  a  quarter  of  the  total  lake  whitefish  harvest  in  the  entire  Great  Lakes  (M.  

Ebener,  personal  communication),  and  have  established  statistical  catch-­‐at-­‐age  models  to  determine  total  allowable  catches  which  are  used  to  designate  harvest  regulations  for  13  management  units  (Figure  2).    We  used  the  spawning  stock  biomass  and  recruitment  estimates  from  1976-­‐2011  to  integrate  5  climate  variables  into  a  Ricker  stock-­‐recruitment  model  because  lake  whitefish  recruitment  is  density  dependent  (Taylor,  Smale  et  al.  1987).    The  Ricker  model  was  transformed  to  a  linear  function  by  taking  the  natural  log:  

𝑙𝑛𝑅!𝑆!= 𝑙𝑛𝛼! −  𝛽!𝑆! + 𝜖!  

 For  a  given  yearclass,  i,    Ri  is  recruitment,  Si    is  spawning  stock,  αi  is  the  productivity  parameter,  β1  is  the  density  dependent  shape  parameter,  and  ϵi  is  normally  distributed  random  error.    We  developed  25  climate  variable  combination  models,  with  the  full  model  including  three  climate  variables:      

𝑙𝑛𝑅!𝑆!= 𝛼! + 𝛽!𝑆! + 𝛽!𝑖𝑐𝑒! + 𝛾!𝑓𝑎𝑙𝑙! + 𝛾!𝑠𝑝𝑟𝑖𝑛𝑔! + 𝜖!  

Where:  • icei  is  the  proportion  of  mid-­‐December  ice  cover  over  spawning  habitat  for  a  given  management  unit  and  β1  is  its  density  dependent  shape  parameter,  

   Figure  2.    Management  units.  

Page 5: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 5  www.glisa.umich.edu   Last  updated:  6/9/2015  

• falli  is  the  mean  fall  (October  –  December)  air  temperature  for  land-­‐based  stations  within  5  miles  of  a  given  management  unit  and  γ1  is  its  density  independent  shape  parameter,    

• springi  is  the  mean  spring  (March  –  May)  air  temperature  for  land-­‐based  stations  within  5  miles  of  a  given  management  unit  and  γ2  is  its  density  independent  shape  parameter.  

 We  used  Akaike’s  Information  Criterion  (AIC),  which  examines  goodness  of  fit  with  a  penalty  for  number  of  parameters,  to  compare  the  different  model  combinations  of  variables  for  each  of  the  13  management  units.  

Results  to  date  In  three  of  the  13  management  units,  data  were  not  sufficient  to  complete  model  comparison.    In  three  other  units,  the  standard  stock-­‐recruitment  model  was  the  best  model  fit.    In  the  remaining  seven  units,  AIC  comparisons  between  the  standard  stock-­‐recruitment  model  and  the  models  indicated  that  climate  variables  improved  model  fit  (Table  1).    These  results  indicate  that  seasonal  temperature,  ice  cover,  and  the  interaction  between  ice  cover  and  stock  size  improve  the  ability  of  the  stock-­‐recruitment  model  to  represent  recruitment  data  and  that  these  variables  are  able  to  explain  a  proportion  of  the  variability  in  lake  whitefish  recruitment  beyond  what  is  

explained  by  stock  size  alone.  

Modeling  implications  Our  findings  show  that  seasonal  temperatures  and  ice  cover  improves  stock-­‐recruitment  model  fit  and  suggest  that  fall  temperatures  and  ice  cover  are  important  for  egg  development,  spring  temperatures  are  important  for  larval  survival,  and  all  three  are  important  for  determining  year-­‐class  strength  of  lake  whitefish  in  the  1836  Treaty  Waters.  Great  Lakes  lake  whitefish  stocks  are  characterized  by  spatial  and  temporal  variation  (Deroba  and  Bence  2012)  and  previous  site-­‐based  correlational  studies  have  also  indicated  indicate  seasonal  temperature  and  ice  cover  influences  recruitment  (Christie  1963;  Lawler  1965;  Taylor,  Smale  et  al.  1987;  Freeberg,  Taylor  et  al.  1990;  Brown,  Taylor  et  al.  1993).    Christie  (1963)  found  that  cold  autumn  temperatures  and  warm  spring  temperatures  correlated  to  strong  year-­‐classes  in  Lake  Ontario  and  the  reverse  combination  produced  weak  year-­‐classes.    Lawler  (1965)  found  a  similar  correlation  in  Lake  Erie  and  attributed  the  relationship  to  optimal  spawning  temperature,  incubation,  and  development  while  Freeberg  et  al.  (1990)  proposed  a  different  mechanism  for  correlations  with  spring  temperatures  for  Lake  Michigan,  that  temperature  influences  the  timing  and  production  of  copepod  zooplankton,  prey  for  larval  lake  whitefish.            The  relationship  between  seasonal  temperatures,  ice  cover,  and  lake  whitefish  recruitment  have  significant  implications  for  the  fishery  in  the  context  of  climate  change.    Climate  change  is  expected  to  increase  surface  temperatures  of  the  Great  Lakes  by  as  much  as  6oC  (Trumpickas,  Shuter  et  al.  2009).    The  positive  relationship  between  spring  temperatures  and  recruitment  with  climate  change  suggests  the  potential  for  increased  lake  whitefish  production  in  the  Great  Lakes,  if  habitat  is  not  limiting  and  sufficient  food  resources  are  available  when  the  larvae  hatch.    However,  the  negative  relationship  between  fall  temperatures,  ice  cover,  and  recruitment  may  inhibit  egg  survival  and,  consequently,  lake  whitefish  production.    Future  research  will  investigate  the  impact  of  water  temperature  and  storm  intensity  on  recruitment  and  use  the  full  suite  of  climate  variable  to  project  our  model  analysis  using  potential  climate  scenarios.  

Decision-­‐maker  engagement  In  presenting  our  climate-­‐lake  whitefish  production  model  to  state,  tribal,  provincial,  and  federal  managers,  fishery  scientists,  and  tribal  fishermen,  we  are  soliciting  their  input  through  in-­‐person  and  online  surveys  on  how  they  would  recommend  that  this  model  be  best  integrated  into  a  decision-­‐support  tool  that  could  be  used  to  inform  adaptive  

 Management  unit   Selected  model  

WFH_Northern_Huron   S  +  ice  +  fall  WFH_05   S  WFM_01   S  +  ice  +  fall  +  S:ice    WFM_02   Spring  WFM_03   Data  insufficient  WFM_04   S  WFM_05   S  +  ice  +  S:ice  WFM_06   Fall  WFM_08   Data  insufficient  WFS_04   Data  insufficient  WFS_05   S  +  ice  +  spring  +  S:ice  WFS_07   S  +  ice  WFS_08   S  

 Table  1.  The  management  units  and  model  selected  through  Akaike’s  Information  Criterion  (AIC)  comparisons.  S  =  stock  size;  ice  =      the  proportion  of  mid-­‐December  ice  cover  over  spawning;  fall  =    the  mean  fall  (October  –  December)  air  temperature  for  land-­‐based  stations  within  5  miles;  spring  =    the  mean  spring  (March  -­‐  May)  air  temperature  for  land-­‐based  stations  within  5  miles;  and  S:ice  =  the  interaction  between  stock  and  ice  cover.    

Page 6: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 6  www.glisa.umich.edu   Last  updated:  6/9/2015  

decision  making  for  fishermen  and  fishery  managers  while  at  the  same  time  being  useful  to  educate  the  students  and  public  of  potential  impacts  of  climate  change  to  the  Great  Lakes  region  and  its  fisheries  resources.    To  date,  we  have  surveyed  over  31  individuals  (managers,  scientists,  and  fishermen).    Initial  results  indicate  that  survey  participants  believe  that  decision-­‐support  tools  can  be  useful  for  fisheries  management  (77%  somewhat  or  completely  agree;  none  disagree;  Figure  3).    The  participants  suggest  that  invasive  species  (87%),  bycatch  (84%),  market  forces  (84%),  allocation  (81%),  climate  change  (81%),  and  communication  between  fishermen  and  managers  (81%)  are  among  the  most  important  issues  for  the  future  of  lake  whitefish  management.                Using  these  results,  we  will  incorporate  their  recommendations  into  our  tool  design  to  ensure  that  the  tool,  which  will  be  housed  on  the  Michigan  Sea  Grant  website,  is  practical  and  useful  to  the  users  and,  ultimately,  lead  to  a  more  sustainable  and  prosperous  fishery  resources  and  coastal  communities  in  the  future.  

Anticipated  outcomes  This  decision-­‐support  tool  developed  will:  • Provide  assistance  for  sustainable  management  to  lake  whitefish  managers  including:  the  1836  Treaty  Waters  Technical  Fisheries  Committee,  the  Michigan  Department  of  Natural  Resources,  and  the  Chippewa-­‐Ottawa  Resource  Authority  and  other  management  agencies  by  example;  

• Communicate  the  potential  impacts  of  climate  change  on  the  ecology  and  management  of  Great  Lakes  fisheries  and  coastal  communities  to  fishermen,  managers,  students,  and  the  public;  

• Serve  as  an  example  regional  climate  change  case-­‐study  for  Michigan  Sea  Grant  Extension  Educators,  the  Great  Lakes  Integrated  Sciences  and  Assessments  Center,  and  other  educational  users;  

• Inform  future  proposals  for  National  Oceanic  and  Atmospheric  Administration  climate  change  funding  initiatives,  including  the  Great  Lakes  Integrated  Sciences  and  Assessment;    

• Help  build  prosperous  and  adaptive  coastal  Michigan  communities  by  encouraging  adaptive  strategies;  and,  

• Support  the  completion  and  dissemination  of  student  research  (Abigail  Lynch’s  dissertation).  

References  Assel,  R.,  K.  Cronk,  et  al.  (2003).  "Recent  trends  in  Laurentian  

Great  Lakes  ice  cover."  Climatic  Change  57(1-­‐2):  185-­‐204.  Brown,  R.  W.,  W.  W.  Taylor,  et  al.  (1993).  "FACTORS  AFFECTING  

THE  RECRUITMENT  OF  LAKE  WHITEFISH  IN  2  AREAS  OF  NORTHERN  LAKE-­‐MICHIGAN."  Journal  of  Great  Lakes  Research  19(2):  418-­‐428.  

Burnham,  K.  P.  and  D.  R.  Anderson  (2002).  Model  Selection  and  Multimodel  Inference:  A  Practical  Information-­‐Theoretic  Approach.  New  York,  NY,  Springer.  

Christie,  W.  J.  (1963).  "Effects  of  artificial  propagation  and  their  weather  on  recruitment  in  the  Lake  Ontario  whitefish  fishery."  Journal  of  the  Fisheries  Research  Board  of  Canada  20(3):  597-­‐646.  

Cleland,  C.  E.  (1982).  "The  inland  shore  fishery  of  the  northern  Great  Lakes:  it  development  and  importance  in  prehistory."  Society  for  American  Archaeology(47):  761-­‐784.  

Deroba,  J.  J.  and  J.  R.  Bence  (2009).  "Developing  Model-­‐Based  Indices  of  Lake  Whitefish  Abundance  Using  Commercial  Fishery  Catch  and  Effort  Data  in  Lakes  Huron,  Michigan,  and  Superior."  North  American  Journal  of  Fisheries  Management  29(1):  50-­‐63.  

Deroba,  J.  J.  and  J.  R.  Bence  (2012).  "Evaluating  harvest  control  rules  for  lake  whitefish  in  the  Great  Lakes:  Accounting  for  variable  life-­‐history  traits."  Fisheries  Research  121:  88-­‐103.  

Ebener,  M.  P.,  R.  E.  Kinnunen,  et  al.  (2008).  Management  of  Commercial  Fisheries  for  Lake  Whitefish  in  the  Laurentian  Great  Lakes  of  North  America.  International  Governance  of  Fisheries  Ecosystems:  Learning  from  the  Past,  Finding  Solutions  for  the  Future.  M.  G.  Schechter,  N.  J.  Leonard  and  W.  

 Figure  3.    Survey  response  from  31  lake  whitefish  (Coregonus  clupeaformis)  fishermen,  managers,  and  scientists  to  the  question:  Can  decision-­‐support  tools  be  useful  for  fisheries  management?  

Page 7: Designing’a’Decision’Support’Systemfor Harvest(Management ...glisa.umich.edu/media/files/projectreports/GLISA_ProjRep_Lake_Whitefish.pdfJun 09, 2015  · !Figure!1.(Conceptual(model(of(the(design(of(a(decision(support(system(for(Great(Lakes(Lake(Whitefish(harvest(management(strategies

PROJECT  BRIEF:  GREAT  LAKES  LAKE  WHITEFISH  IN  A  CHANGING  CLIMATE    

 7  www.glisa.umich.edu   Last  updated:  6/9/2015  

W.  Taylor.  Bethesda,  Maryland,  American  Fisheries  Society  Press:  99-­‐143.  

Freeberg,  M.  H.,  W.  W.  Taylor,  et  al.  (1990).  "Effect  of  egg  and  larval  survival  on  the  year-­‐class  strength  of  lake  whitefish  in  Grand  Traverse  Bay,  Lake  Michigan."  Transactions  of  the  American  Fisheries  Society  119(1):  92-­‐100.  

Lawler,  G.  H.  (1965).  "Fluctuations  in  the  success  of  year-­‐classes  of  whitefish  populations  with  special  reference  to  Lake  Erie."  Journal  of  the  Fisheries  Research  Board  of  Canada  22(5):  1197-­‐1227.  

Lynch,  A.  J.,  W.  W.  Taylor,  et  al.  (2010).  "The  influence  of  changing  climate  on  the  ecology  and  management  of  selected  Laurentian  Great  Lakes  fisheries."  Journal  of  Fish  Biology.  

Madenjian,  C.  P.,  D.  V.  O'Connor,  et  al.  (2006).  "Evaluation  of  a  lake  whitefish  bioenergetics  model."  Transactions  of  the  American  Fisheries  Society  135(1):  61-­‐75.  

Magnuson,  J.  J.,  K.  E.  Webster,  et  al.  (1997).  "Potential  effects  of  climate  changes  on  aquatic  systems:  Laurentian  Great  Lakes  and  Precambrian  Shield  Region."  Hydrological  Processes  11(8):  825-­‐871.  

Mohr,  L.  C.  and  M.  P.  Ebener  (2005).  Description  of  the  fisheries.  The  state  of  Lake  Huron.  M.  P.  Ebener.  Ann  Arbor,  MI,  Great  Lakes  Fishery  Commission  Special  Publication.  05-­‐02:  19-­‐26.  

Myers,  R.  A.  (2001).  "Stock  and  recruitment:  generalizations  about  maximum  reproductive  rate,  density  dependence,  and  variability  using  meta-­‐analytic  approaches."  Ices  Journal  of  Marine  Science  58(5):  937-­‐951.  

Nalepa,  T.  F.,  L.  C.  Mohr,  et  al.  (2005).  Lake  whitefish  and  Diporeia  spp.  in  the  Great  lakes:  an  overview.  Proceedings  of  a  workshop  on  the  dynamics  of  lake  whitefish  (Coregonus  clupeaformis)  and  the  amphipod  Diporeia  spp.  in  the  Great  Lakes.  L.  C.  Mohr  and  T.  F.  Nalepa.  Ann  Arbor,  Michigan:  3-­‐20.  

Quinn,  T.  J.  and  R.  B.  Deriso  (1999).  Quantitative  Fish  Dynamics.  New  York,  Oxford  University  Press.  

Regier,  H.  A.  and  J.  D.  Meisner  (1990).  "Anticipated  effects  of  climate  change  on  fresh-­‐water  fishes  and  their  habitat."  Fisheries  15(6):  10-­‐15.  

Sousounis,  P.  J.  and  E.  K.  Grover  (2002).  "Potential  future  weather  patterns  over  the  Great  Lakes  region."  Journal  of  Great  Lakes  Research  28(4):  496-­‐520.  

Taylor,  W.  W.,  M.  A.  Smale,  et  al.  (1987).  "Biotic  and  abiotic  determinants  of  lake  whitefish  (Coregonus  clupeaformis)  recruitment  in  northeastern  Lake  Michigan."  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  44:  313-­‐323.  

Trumpickas,  J.,  B.  J.  Shuter,  et  al.  (2009).  "Forecasting  impacts  of  climate  change  on  Great  Lakes  surface  water  temperatures."  Journal  of  Great  Lakes  Research  35(3):  454-­‐463.