detailed target analyses using high resolution dem and

35
DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Detailed target analyses using high resolution DEM and WorldView satellite imagery: spatial and spectral fusion Bill Baugh |DigitalGlobe PD & L| Colorado, USA 08 April 2014 Mt Everest | Digital Elevation Model | 0.5 m | WorldView 2 | 2m | False Color IR Drape

Upload: others

Post on 19-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Detailed target analyses using high resolution DEM and WorldView satellite imagery: spatial and spectral fusion

Bill Baugh |DigitalGlobe PD & L| Colorado, USA 08 April 2014

Mt Everest | Digital Elevation Model | 0.5 m | WorldView 2 | 2m | False Color IR Drape

Page 2: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. 2 Mt Everest Summit | Digital Elevation Model | 0.5 m | WorldView 2 | 2m | False Color IR Drape

Mt Everest, Nepal Sediments

Metamorphic Rocks

Qomolangma detachment

Graphic: Searle, et al., 2003

Everest Changtse Lhotse

Page 3: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

DEM + spectral analysis = useful data fusion!

3

Outline • Uluru, Australia • Digital Elevation Models (DEM) • Spectral reflectance of rocks • WorldView satellites • Cuprite, USA • Smoke penetration • Rooftops • Sydney, Australia

Page 4: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

4 Uluru, AU | Digital Elevation Model | 2 m | WorldView 1 and 2 | 6 perspectives

Page 5: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

5 Uluru, AU | Digital Elevation Model | 2 m | Hillshade and Elevation Color Gradient

Page 6: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

6 Uluru, AU | Digital Elevation Model | 2 m | WorldView 2 False Color IR Drape

Page 7: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

7 Uluru, AU | Digital Elevation Model | 2 m | WorldView 2 False Color IR Drape

Page 8: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

8 Uluru, AU | Digital Elevation Model | 2 m | WorldView 2 False Color IR Drape

Page 9: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

9

85

Uluru, AU | Digital Elevation Model | 2 m | WorldView 2 False Color IR Drape

Page 10: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Uluru, Australia

10

Legend Conglomerate Arkose Folded Proterzoic sedimentary rocks Igneous and metamorphic rocks Palaeozoic rocks Alluvial sediments

Graphic Source:

Uluru, AU | Geologic Map and Cross Section

Page 11: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. 11

DEM Definitions

•Digital Terrain Model (DTM) = Earth surface without vertical objects.

•Digital Surface Model (DSM) = Earth surface with vertical objects (e.g. trees, buildings).

•Digital Height Model (DHM) = [DSM – DTM] leaving ONLY vertical features.

Page 12: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Stereo Satellite Imaging Geometry 12

Satellite Stereo Collection

~ 35 degree forward

~ 35 degree aft

+/- 10 degrees off nadir

•Stereo derived from single pass fore and aft collections.

•Coincident multispectral imagery.

Page 13: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Aircraft verses Satellite Stereo Imaging Geometry 13

Aerial Camera axes are parallel.

Satellite Camera axes angled.

Stereo Pairs

Page 14: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Why Reflectance? radiance vs reflectance

Radiance is what a satellite measures. It is ‘how much energy’. - Things look different when they are brightly or dimly lit. - This is radiance.

14

Page 15: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Why Reflectance? radiance vs reflectance

Reflectance is a constant, predictable property of the material. - Reflectance is a ratio. OUT/IN = reflectance - This is reflectance.

In In

Out Out

“Percent of light that is reflected!” 50% 50%

15

Page 16: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Light-Matter Interaction

Water Molecule | Light-Matter interaction

The Options 1. Reflect 2. Absorbed as heat

“Spectral scientist wants both”

Page 17: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.9 1.4 1.9 2.4

Refle

ctan

ce

Wavelength (um)

WV3 Bands Calcite Kaolinite Blue Tarp Oil

Hyperspectral verses Super-Spectral

Page 18: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.9 1.4 1.9 2.4

Refle

ctan

ce

Wavelength (um)

WV3 Bands Calcite Kaolinite Blue Tarp Tarp WV3 Oil

18

Hyperspectral verses Super-Spectral

Page 19: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary and Business Confidential

DigitalGlobe » Overview 19

WorldView-3

Introducing the 1st multi-payload, super-spectral, high-resolution commercial satellite.

Late 2014

8 SWIR + atmospheric correction bands

WorldView bus: High-agility platform

Resolution: .31 meter, < 3.5 m CE90

Instrument: Panchromatic + 8 Multispectral

Page 20: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary and Business Confidential

ASTER • Multispectral: 10 bands VNIR - SWIR. • Pixels: 15, 30 m. • SWIR failed. CASI/SASI • Airborne Hyperspectral: 186 bands VNIR -

SWIR. • Pixels vary depending on altitude.

WorldView-3 • Multispectral: 16 bands VNIR-SWIR. • Pixels: 1.2, 3.7 m. • CAVIS instrument for atmospheric retrievals.

Sensor Introduction

Expected launch: mid-2014

Page 21: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 21

WV-3 and SWIR (Short Wave Infrared)

Landsat 8 (30 m)

ASTER (15/30 m)

WV 2 - 3 (1.2 / 3.7)

WV 3 only

Visible (V)

Iron Rocks Man made Veg Picture

Near Infrared (NIR) Short Wave Infrared (SWIR)

Page 22: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Hydrothermal Ore Deposit Model 22

Hydrothermal Ore Deposit Model

Typical for acid-sulfate systems Note patterns of: Alunite, Calcite, Illite, and Kaolinite. Understanding patterns can help us find the ore deposit!

Graphic Source: Livo, et al., USGS PP 1717

Ore Deposit!

Page 23: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. 23

Hydrothermal Ore Deposit Model

Clay Zones Kaolinite Alunite

Graphic Source: Taranik, et al., 2010.

Zonation aids in predicting location of precious metals.

Hydrothermal Ore Deposit Model

Ore Deposit!

Page 24: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Cuprite, Nevada USA | AVIRIS| 3.7 m | WorldView 1 Panchromatic Simulation

Exploitation Panchromatic “WV-1”

Page 25: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Cuprite, Nevada USA | AVIRIS| 3.7 m | WorldView 2 Color Simulation

Exploitation True Color “GE-1, WV-2”

Page 26: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. Cuprite, Nevada USA | AVIRIS| 3.7 m | WorldView 3 SWIR Mineral Index Simulation

Exploitation Mineral Indices “WV-3”

Clay

Carbonates

Mica

Page 27: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. To Update Footer, Find Header & Footer in Insert Tab and Apply to All 27

Mineral Ore Extraction Boddington Mine, Australia

Vertical Volume Change

Page 28: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. To Update Footer, Find Header & Footer in Insert Tab and Apply to All 28

Vertical Perspective

Mineral Ore Extraction Boddington Mine, Australia

Page 29: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Smoke Penetration in SWIR • Station Fire, Los Angeles National Forest, CA • Advanced Land Imager (ALI) 03 SEP 2009

“Seeing a better world”

29

True color SWIR-6 (2215 nm)

Cloud Cloud

Active Fire

Smoke

Station Fire, Los Angeles, CA | ALI Image | WV3 Simulation | 30 m

Page 30: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Exploitation SWIR rooftop classification

True Color: R, G, B Rooftop spectral classification

Los Angeles area, California USA | AVIRIS| 3.4 m | WV-3 Roof Spectral Classification

Page 31: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Sydney, Australia

31 Sydney, AU | Digital Elevation Model | 2 m | WorldView 2 | 50 cm

Vertical Perspective

Page 32: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Sydney, Australia

32 Sydney, AU | Digital Elevation Model | 2 m | WorldView 2 | 50 cm

Vertical Perspective

Page 33: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved.

Summary

33

• High resolution DEMs can be made from 1+ satellite passes. • DEM resolution (post spacing) near image resolution. • Image-DEM drapes facilitate rock outcrop mapping. • SWIR bands provides information about material type. • Anticipated WV-3 will have ASTER-like SWIR bands at high spatial

resolution, and 0.31 meter panchromatic. • DEM + spectral analysis = useful data fusion:

- Texture - Structure - Vertical and horizontal relationships - Material categories or types - Remote field logistics

Page 34: Detailed target analyses using high resolution DEM and

Acknowledgements • Chad Bleiler • Chuck Chaapel • Milan Karspeck

Page 35: Detailed target analyses using high resolution DEM and

DigitalGlobe Proprietary. ©DigitalGlobe. All rights reserved. 35

DEM Specifications

Product Accuracy Mapping Precision Very High Precision

Resolution 8 m 4 m 2 m Relative Vertical (LE90) 5 m 2 m 1 m

Absolute Vertical (LE90) 8 m 4 m 2 m

Relative Horizontal (CE90) 8 m 4 m 2 m

Absolute Horizontal (CE90) 10 m 5 m 3 m

The vertical accuracies are based on low to medium relief areas that generally have a slope less than 30%. For rugged areas that have a consistent slope >30%, the values above can be scaled by 1.5.

Source: DigitalGlobe web site “Advanced Elevation Series”