detectors for the experiments at flash, lcls, scss and xfel

85
SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 1 MPI Halbleiterlabor MPI Semiconductor Laboratory UNIVERSITÄT SIEGEN CFEL inside Detectors for the experiments at FLASH, LCLS, SCSS and XFEL – The fine art of high speed X-ray imaging –

Upload: others

Post on 19-Mar-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 1

MPI Halbleiterlabor MPI Semiconductor Laboratory

UNIVERSITÄT SIEGEN

CFEL inside

Detectors for the experiments at FLASH, LCLS, SCSS and XFEL – The fine art of high speed X-ray imaging –

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 2

MPI für extraterrestische Physik (MPE) The MPI Semiconductor Laboratory

High speed, low noise, low power, radiation hard, high Q.E. .....

Home made imaging X-ray detectors systems

M. Schnecke, R. Richter, A. Wassatsch

Max-Planck-Institut für Physik

P. Holl, P. Lechner, R. Eckardt, A. Bechtel, O. Jaritschin, R.

Hartmann, K. Heinzinger, C. Koitsch, H. Soltau, G. Lutz, C. Reich, G. Signeri, F. Hempelmann,

PNSensor GmbH

E. Lama, N. Kimmel, O. Hälker, S. Herrmann,T. Lauf, E. Hyde, N. Meidinger, D. Miessner,

G. Hasinger, F. Schopper, G. Schaller,M. Porro, J. Treis, S. Wölfel, C. Zhang,

I. Radivojevic, R. Andritschke, L. StrüderMPI für extraterrestrische Physik

Feb – 7, 2007

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 3

Prepared by1. MPI-HLL (MPE and MPP)

Lothar Strüder, Rainer Richter, Matteo Porro, Florian Schopper, Gabi Schächner, Danilo Miessner, Martina Schnecke, Thomas Lauf,Gerhard Schaller, Norbert Meidinger, Sven Herrmann, Laci Andricek,Gerhard Fuchs, Johannes Treis, Nils Kimmel, Robert Andritschke, Zdenka Albrechtskirchinger, Valentin Fedl, Giulio de Vita, Georg Weidenspointner, A. Wassatsch, Hans-Günther Moser, Admir Ramic, Gerhard Fuchs

Daniel Pietschner, Johannes Elbs, Olaf Hälker, Toboas Panzner, Stefanie Ebermayer, Sebastian Hasinger, Florian Aschauer, Alexander Bähr,

2. PNSensor and PNDetectorHeike Soltau, Robert Hartmann, Peter Lechner, Peter Holl, Rouven Eckhart, Adrian Nicolae, Klaus Heinzinger, Christian Koitsch, Andreas Liebel, Alois Bechteler, Uwe Weichert, Olga Jaritschin, Gerhard Lutz, Sebastian Ihle, Gabriele Signeri, Ivan OrdavoChristian Reich, Christian Thamm, Kathrin Hermenau, Markus Kufner Adrian Niculae, Armin Schön, Barbara Titze, Samantha JeschkeMelanie Schulze

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 4

OUTLINEFully depleted, high speed, monolithic, large format pnCCDs and DePFETs are being – or will be - used from 50 eV to 25 keV for spectroscopic and intensity imaging at the FLASH, Petra III, LCLS and XFEL synchrotrons:

SDDs

pnCCDs LSDDs

DEPFET APS gatable DEPFETs RNDRConclusion, Summary

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 4

OUTLINEFully depleted, high speed, monolithic, large format pnCCDs and DePFETs are being – or will be - used from 50 eV to 25 keV for spectroscopic and intensity imaging at the FLASH, Petra III, LCLS and XFEL synchrotrons:

SDDs

pnCCDs LSDDs

DEPFET APS gatable DEPFETs RNDRConclusion, Summary

first part

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 4

OUTLINEFully depleted, high speed, monolithic, large format pnCCDs and DePFETs are being – or will be - used from 50 eV to 25 keV for spectroscopic and intensity imaging at the FLASH, Petra III, LCLS and XFEL synchrotrons:

SDDs

pnCCDs LSDDs

DEPFET APS gatable DEPFETs RNDRConclusion, Summary

second part

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 5

Requirements of the FLASH, LCLS and XFEL

FLASH, LCLS + XFEL pnCCD and DePFET system

single photon resolution yes yes

energy range 0.05 < E < 24 (keV) 0.05 < E < 25 [keV]

pixel size (µm) 100 75 (250)

sig.rate/pixel/bunch 103 (105) 103 - 104

quantum efficiency > 0.8 > 0.8 from 0.3 to 12 keV

number of pixels 512 x 512 (min.) 1024 x 1024 and 2048 x 2048

frame rate/repetition rate 10 Hz - 120 Hz up to 250 Hz with pnCCD

XFEL burst mode 5 MHz (3.000 bunches) > 5 MHz (3.000 bunches) with DePFET system

Readout noise < 150 e- (rms) < 30 e- (rms) (2 e- possible)

cooling possible - 20o C optimum

room temperature possible

vacuum compatibility yes yes

preprocessing no (yes) ? possible upon request

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 6

Time structure: difference with “others”

600 µs99.4 ms

100 ms 100 ms

200 ns

FELprocess

X-ray photons50 - 100 fs

Electron bunch trains; up to 3000 bunches in 600 µsec, repeated 10 times per second.Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

What is the challenge for Detectors @ XFEL ?

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 6

Time structure: difference with “others”

600 µs99.4 ms

100 ms 100 ms

200 ns

FELprocess

X-ray photons50 - 100 fs

Electron bunch trains; up to 3000 bunches in 600 µsec, repeated 10 times per second.Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

What is the challenge for Detectors @ XFEL ?

30 000 bunches/sbut

99.4 ms (%) no photons

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 7

What is limiting the quantum efficiency ?

The thickness of Silicon !!

Q.E. = 60 % @ 24 keVd = 2 mm

Q.E. = 22 % @ 24 keVd = 0.5 mm

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 8

Thin entrancewindow

Silicon entrance windowwith x nm of SiO2

and y nm of Si3N4 plus

z nm of Al (optical shield)

optical light attenuation: 5 • 106

50 eV

Monolithic Integration of optical blocking filters

5 keV

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 9

I. the pnCCD for operations up to 250 frames per sec

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 9

II. the DePFET active pixel sensor for 200 ns frame acquisition time

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 10

CCD basics

• full depletion (50 µm to 500 µm)• back side illumination• radiation hardness • high readout speed• pixel sizes from 36 µm to 650 µm• charge handling: more than 106 e-/pixel• high quantum efficiency

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 11

How many charges can be stored

What determines the charge handling capacity in a pixel ?

pixel volume: 20x40x12 µm3 ≈ 1x104µm3

Doping: 102 P per µm3

CHC = 1 x 106 per pixel

can be increased by external voltages

can be increased by doping

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 12

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 13

Hard X-ray SASE Free Electron Lasers

LINAC COHERENT LIGHT SOURCELCLS

SCSS SPring-8 Compact SASE Source

European XFEL Facility

2009

2010

2013

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 13

Hard X-ray SASE Free Electron Lasers

LINAC COHERENT LIGHT SOURCELCLS

SCSS SPring-8 Compact SASE Source

European XFEL Facility

2009

2010

2013FLASHin operation

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 13

Hard X-ray SASE Free Electron Lasers

LINAC COHERENT LIGHT SOURCELCLS

SCSS SPring-8 Compact SASE Source

European XFEL Facility

2009

2010

2013FLASHin operation

FLASH:the ice breaker for

XFELs

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 13

Hard X-ray SASE Free Electron Lasers

LINAC COHERENT LIGHT SOURCELCLS

SCSS SPring-8 Compact SASE Source

European XFEL Facility

2009

2010

2013FLASHin operation

FLASH:the ice breaker for

XFELs

FLASH: 5 Hz, 10 Hz and 5 MHz

LCLS: 120 Hz

SCSS: 60 Hz

XFEL: 5 Hz, 10 Hz and 5 MHz

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 14

Detectors for FLASH+LCLS+XFEL

insensitive gaps: ≈ 800 µm

Full Frame imagingarea per chip512 x 1024

pixel size75x75 µm2

Total sensitive system area:

59 cm

The full sensitive areaof the system is 59 cm2

with 75 µm pixels, 1024 x 1024

CMX

CMX

CMX

CMX

CMX

CMX

CMX

CMX

total areaper chip:29.5 cm2

readout time per frame: 4 ms i.e. 250 fps

can be triggered externally

device fabrication isfinished now

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADCADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

16 ADCoutputs

16 ADCoutputs

hole diameter: 3 mm

transfer of signal charges

Chip 2: area 29.5 cm2

format: 1024 x 512

Chip 1: area 29.5 cm2

format: 1024 x 512

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 15

pnCCD: 1024 x 512, 30 cm2

1024 p

ixel, 7.

8 cm

512 pixel, 3.7 cm

Area:

29.6 c

m2

for 6 keV X-rays the system delivers 4k x 4k resolution pointsin all the area with less than one photon per pixel (typ. 90 %)

Imaging 7.8 x 3.7 cm2 = 29.6 cm2

75 x 75 µm2

1024 parallel read nodes2 e- @ 250 fps

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 16

Flex lead

Flex lead

Flex lead

Flex lead for - power - control - signal out - sequencing

ceramic carrier for thermal andstructural support

look at radiation entrancewindow side

CCD1

CCD2

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 17

CCD1

CCD2

Electrical components

Mechanical – thermal structure

Centerhole

Ceramic board

Electrical components

pnCCDs overlapping in the center

Electrical components

Electrical components

800 µm insensitive gap

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 18

The CFEL-ASG Chamber

Reaction microscope: Many particle ion and electron imaging spectrometer Velocity map imagingAdditional feautures: Integration of jet-targets,ports for lasers, special injectors support structures for fixed targets, etc. . .

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 19

The CFEL-ASG Chamber

Imaging system: For inside view the housing of C1 and C2 is drawn transparently. Detector 1 can have any position between Pmin with d(PIA;Pmin) = 5 cm

and Pmax with d(PIA;Pmax) = 300 mm. Detector 2 is mounted fixed at d(PIA;PD2) = 500 mm.

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 20

The Imager of the CFEL-ASG Chamber

Imaging system: (a) format 1024x1024, pixel size 75x75 µm2, 8x8 cm2 focal surface

(b) center hole, typically 3 mm

Due to overlap of the two detectors, effective insensitive

area can be reduced to 1.6 mm, insensitive gaps: 0.8 mm

(c) movement in y-direction: up to 45 mm

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 21

The Imager of the CFEL-ASG Chamber

System alignment: Detector 1 is movable in Y, Z and X (limited), 400 mm Ø Detector 2 is fixed, 250 mm Ø

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 22

Detectors for FLASH+XFEL+PETRA III

Full Frame imaging,format per chip1024 x 1024

pixel size75x75 µm2

The full sensitive areaof the system is 239 cm2

with 75 µm pixels, 2048 x 2048

CMX

CMX

CMX

CMX

total area per chip:59 cm2, per system:

236 cm2

readout time per frame: ≈ 8 ms

i.e.≈ 125 fps

devices are scheduledfor fabrication end 2009ready: end 2010

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADCADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

16 ADCoutputs

Chip 1: area 59 cm2

format: 1024 x 1024

transfer of charges

This system is 3 – sidebuttable, can be extended toa 2048 x 2048 array

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 23

2048 x 2048 CCD array(resolution points: 8kx8k)

pixel size: 75 x 75 µm2

total area: 236 cm2

readout time: < 8 ms

read noise < 15 electrons

Charge handling capacity: > 1000 photons pp

Energy 0.1<E<24 keV

thickness: 500 µm

operation temperature:-10oC

FLASH, PETRA III and XFEL

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 24

Recent pnCCDs fabrications

prototype eROSITA version format: 256 x 256 x 2 pixel area: 3.7 cm2 + 2.5 cm2 pixel size: 75 x 75 µm2

flight type eROSITA versionformat: 384 x 384 x 2 pixel area: 8.4 cm2 + 5.6 cm2 pixel size: 75 x 75 µm2

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 25

256 parallel low noise

readout channels with

2 or 4 output nodes

Frame store area

256 x 256 pixel

Imaging area256 x 256 pixel

Measurements with512x256 pnCCDs

@ FLASH + BESSY

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 26

CAMEX block diagram

CD

S- fi

lter

JFET

- am

plifi

er

sam

ple

& h

old

cabl

e dr

iver

digital control

communication

seria

lizer

curr

ent s

ourc

e

IN

Vbst

Vsss

Sin

Stst

G1

G2

Sr1 S1 ... S8

Ss&hSmux

BW1 BW2

BW3

G4

Sr1

G3

pass

ive

low

pass

filte

r

Tst

OUT-

OUT+

Vdd

master reference DAC(s)Vref

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 27

CAMEX eROSITA 128I-JD

CMX internal SEQ(shiftregister 16x64)

configurationregisters

differentialoutput buffer BIAS DACs BIAS master

reference

9153 um

6080

um

128 xcurrent source

128 xAMP &CDS-filter

S&HMUX

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 2829

Development status: Flex lead + frontend PCB

- connects CCD module to front-end PCB by wedge bonds - front-end PCB: • analog output buffers (for the ADCs, one per CAMEX)• LVDS receivers • generators of the analog CCD clock pulses (PHI drivers) • connectors as electric interface to the camera electronics

DUO flex lead:→ performance testedeROSITA flex lead: → circuit diagram: under way→ layout: under way

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 29

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 30

Molecules atomic resolution

Lysozyme R. Neutze, J. Haidu et al., Nature 406, 752 (2000)Radiation damageand Coulomb explosion

Structure determination with a FELCrystal

J. Kirz, Nature Physics 2, 799 (2006)

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 31

Clusters “in the Flight”

FEL beam

MCP detector +phosphor screenskimmer

nozzle

CCD camera

beam dump

550 nm visible light

plane mirror

aperture

VUVscattered light

skimmer

cluster beam

aperture

Xe clusters CFEL Detectors

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 32

FLASH set-up in T.M. Beamline

planar detector geometry in reflection mode

X-ray Beam @ 90 eV

CCD detector

MultilayerX-rayMirror

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 33

First observation of 32 nm Xe – nanocluster

simulation of 90 eV X-raysscattering at single Xenanoclusters with 32 nm size(C. Bostedt et al.)

field of view of the pnCCD during the experiment atthe FLASH X-ray free electronlaser facility at DESY, Hamburg

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 34

90 eV X-rays in single photon counting mode !!!

FWHM: 38.9 eV

Spectrum from 4.000 frames with 0.05 photons/pixel/frame

T = -50° C

E = 90 eV➩25 ± 1.7 e-h pairsENC = 2.5 e- (rms)

trigger

threshold

30 eV

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 35

Set-up in T.M. Beamline @ FLASH

pnCCD110o – 25o

pnCCD342o – 80o

pnCCD220o – 40o

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 36

Clusters “in the Flight”

Collaboration: TU Berlin, MPI-HLL, MPI-K: Bostedt, Rupp, Adolph, Möller, Hartmann, Strüder, Rudenko, et al.

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 37

Screen-Shots: To be evaluated!

Free Electron Lasers

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 37

Screen-Shots: To be evaluated!

Free Electron Lasers

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

Collaboration: TU Berlin, MPI-HLL, MPI-K: Bostedt, Rupp, Adolph, Möller, Hartmann, Strüder, Rudenko, et al.

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

angle / deg

inte

nsity

/ pho

tons

per

pixe

l

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

angle / deg

inte

nsity

/ pho

tons

per

pixe

l

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

detector 1

detector 2 detector 3

angle / deg

inte

nsity

/ pho

tons

per

pixe

l

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

detector 1

R = 83 nm

detector 2 detector 3

angle / deg

inte

nsity

/ pho

tons

per

pixe

l

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

detector 1

R = 83 nm R = 80 nm

detector 2 detector 3

angle / deg

inte

nsity

/ pho

tons

per

pixe

l

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 38

Clusters “in the Flight”

detector 1

R = 83 nm R = 80 nmWith strongly increased absorption!

detector 2 detector 3

angle / deg

inte

nsity

/ pho

tons

per

pixe

l Structure and Dynamics!

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 39

In energy space: E = hc/(2*D*sin α)

E ≈ 6.2/(α*D)Peak distance : E n+1 – En ≈1/D

Bragg´s law in energy space

In angular space: λ=2 D sin α Peak distance : sinα n+1 – sinαn ≈ 1/DChanging footprint area

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 40

Useable spectral range

Emission spectrum of BESSY II (1.7 GeV)Absorption by Air Usable energy range (measurement + calc.)

Energy resolution of the detector < 150 eV

Useful spectrum 5 ... 30 keV

0.7 m air

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 41

Langmuir-Blodgett-Filmfixed angle of incidenceFew minutes counting

1.000 to 10.000 photons per frame

400 to 1.000 frames per second

typical measurement times: 100 s to 1.000 s

position,time and energy resolvedphotons per spectrum: typ 108

αi = 0.8 deg

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 42

pnCCD operating parameters

Parameter Frame Store pnCCD XMM type pnCCDpixel size 36 µm, 48 µm, 51 µm and 75 µm 150 µm

format 2562x2, 2642x2, 3842x2, 512x1024 64x200, 400x400

active area (image only) 3.9 cm2, 1.9 cm2, 8.3 cm2, 29 cm2 3 cm2, 36 cm2

sensitive depth 450 µm 300 µm

readout noise 2 – 2.5 electrons (rms) 5 electrons (rms)

Q.E. ≥ 90 % from 0.4 to 11 keV ≥ 90 % from 0.4 to 10 keV

charge handling ≥ 5 x 105 electrons per pixel ≥ 5 x 105 e per pixel

CTI @ 6 keV 1 x 10-5 50 x 10-5

Δ E 40 eV @ 300 eV, 125 eV @ 6 keV -- , 150 eV @ 6 keV

readout time 10 µs or 20 µs per row 25 µs per row

pixel rate 13 Mpix or 25 Mpix per second 2.8 Mpix per second

frame rate up to 900 fps, 20 fps for eROSITA 14 fps

out-of –time events 0.2 % in the case of eROSITA 6%

power dissipation in FP eROSITA: 0.5 W per 9 cm2 0.7 W for 36 cm2

power dissipation per pix. eROSITA: 0.2 µJ per pixel readout 0.33 µJ per pixel readout

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 43

Time structure: difference with “others”

600 µs99.4 ms

100 ms 100 ms

200 ns

FELprocess

X-ray photons50 - 100 fs

Electron bunch trains; up to 3000 bunches in 600 µsec, repeated 10 times per second.Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

What is the challenge for Detectors @ XFEL ?

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 44

Vdrift ≈ 13 µm/ns (i.e. ~3.5V/30µm bias) Tdrift, max = 1000 ns

1.28 cm(64 pixels)

on-chip electr.

on-chip electr.

128 channels

128 channels

1.28 cm(64 pixels)

1 MHz frame

200µm pixel

E=2-20 keV

103 X-rays

QE>80%@10keV

ENC~50 el.

Expandable to:

512x512 (monolithic)

1000 ns

1000 ns (Δx=200µm,Δt=15 ns)

Original LSDD Concept: reduce number of readout channels by time multiplexing

Limitations of that concept: frame rate limited to 1 MHz limited dynamic range, limited occupancy system noise difficult to achieve @ 5 ns shaping

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 45

esa´s, NASA‘sand JAXA‘sIXO missionin 2021

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 46

Circular DEPMOSFET pixels

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 46

Circular DEPMOSFET pixels

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 47

matrix organisation

• common back contact

» thin, homogeneous entrance window » fill factor 100 %

• row-wise connection of gate, clear, clear gate

• column-wise connection of source / drain

» individually addressable pixels » windowing option

DEPFET Active Pixel Sensor

operation philosophy

• one active row

• all other pixels turned off

» low power consumption

• all operations in a row in parallel

» fast processing

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 47

matrix organisation

• common back contact

» thin, homogeneous entrance window » fill factor 100 %

• row-wise connection of gate, clear, clear gate

• column-wise connection of source / drain

» individually addressable pixels » windowing option

DEPFET Active Pixel Sensor

operation philosophy

• one active row

• all other pixels turned off

» low power consumption

• all operations in a row in parallel

» fast processing

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 47

matrix organisation

• common back contact

» thin, homogeneous entrance window » fill factor 100 %

• row-wise connection of gate, clear, clear gate

• column-wise connection of source / drain

» individually addressable pixels » windowing option

DEPFET Active Pixel Sensor

operation philosophy

• one active row

• all other pixels turned off

» low power consumption

• all operations in a row in parallel

» fast processing

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 47

matrix organisation

• common back contact

» thin, homogeneous entrance window » fill factor 100 %

• row-wise connection of gate, clear, clear gate

• column-wise connection of source / drain

» individually addressable pixels » windowing option

DEPFET Active Pixel Sensor

operation philosophy

• one active row

• all other pixels turned off

» low power consumption

• all operations in a row in parallel

» fast processing

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 47

matrix organisation

• common back contact

» thin, homogeneous entrance window » fill factor 100 %

• row-wise connection of gate, clear, clear gate

• column-wise connection of source / drain

» individually addressable pixels » windowing option

DEPFET Active Pixel Sensor

operation philosophy

• one active row

• all other pixels turned off

» low power consumption

• all operations in a row in parallel

» fast processing

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 48

SIMBOL-X-Hybrid

3.2 cm

3.2 cm

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 49

8.2 cm

8.2

cm

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 50

DePMOS Active PixelSensor

Connecting Bumps• 1 per pixel

CMOS Layer• Signal processing• Signal storage & output

X-rays

Hybrid Pixel Detector Approach

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 51

DePFET system overview

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 52

Basic concept

Internal gate extends below large area source

Small signal charge is collected below transistor channel

Large signal charges distributed also over outer regions of internal gate; only the fraction below channel steers the transistor current efficiently

This arrangement leads to a non linear characteristics

The shape of this characteristics can be tuned by the doping profile of the internal gate

Clearing electrode is not shown in the picture

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 53

pixel size: 200x200 µm2

can be realized from 75 x 75 µm2 to300 x 300 µm2

5 deep n implants for the graded internal gate

clear

source

drain

gate

drift ring

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 54

Non-linear DEPFET: Simulation

37 consecutive steps of

10-14 C charge deposition were simulated: i.e.

37 x 62.500 e- = 2.312.500 e-

Resulting drain current

Δ I = 130 µA

and

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 55

DePFET output characteristics

this corresponds to 40 × 6.25 x 104 e- = 2.5 x 106 e-

i.e. 1.000 photons of 10 keV per pixel

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 56

Timing behaviour of the DePFET

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 57

Radiation damage tests

Generation and saturation of surface states

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 58

Surface charge generation

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 59

Charge cloud expansion

Plasma effects are not included

Deformation of the local electric field is not included

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 60

potential

electronconcentrationafter50 ps

electronconcentrationafter1.3 ns

electron dynamics

injection of400.000 electrons

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 61

Mechanical, thermal, electrical interconnections

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 62

What is achieved (by simulation) up to now:

high dynamic range from single photon counting @ 1 keV up to 1.000 photons @ 10 keV in one single pixel

the maximum voltage swing at the on-chip amplifier never exceeds 1 V

highest resolution @ low signals, lowest resolution

@ the highest photon densities. Intensity resolution

is matched with the precision of the Poisson statistics

of the incoming photons

the charge collection, the signal processing and the charge

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 63

Development system philosophy

prototype systemwith64 x 64 or128 x 128pixel

breadboard system with512 x 128pixel

full quadrant system with at least512 x 512 pixel

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 64

Full DePFET system (1k x 1k)

one quadrant, composedby 4 ladders

fill factor: ≈ 90 %

a qualified prototypeshould be availablein 3 years

the breadboard systemin 4.5 years

and the full system in6 years from now

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 65

Conclusions:1. the proposed DePFET detector covers • the dynamic range • the required noise performance • pixel size • area fill factor • charge collection, signal filtering and reset are within 200 ns

2. the anticipated pixel area of 200 x 200 µm2

allows for the integration of a pixelwise analog signal processing, digitization and data storage with a 130 nm process

3. radiation hardness for X-rays seem to be sufficient

4. mounting, interconnection and cooling can be realized with "conventional" techniques

SLAC, Menlo Park 27. 8. 2008 Lothar Strüder, MPI Halbleiterlabor and Universität Siegen 66

Conclusions

Phase I + II ❒ fast pnCCD systems will cover the parameter space for FLASH, LCLS, SCSS and XFEL

except for the 5 MHz operation Phase III ❒ DePFET type active pixel sensors will cover the ultrafast imaging modes up to 5 MHz frame rates in 2014

Both systems are: highly efficient, high speed, low noise and radiation hard