determination of the magnetocaloric parameters through ......determination of magnetocaloric...

17
R. Burriel Instituto de Ciencia de Materiales de Aragon CSIC – University de Zaragoza 50009 Zaragoza, Spain Determination of the magnetocaloric parameters through magnetic and thermodynamic methods in first-order transitions Delft Days on Magnetocalorics, Delft, Netherlands, 30-31 October, 2008 Collaborators: - E. Palacios - L. Tocado - G. Wang

Upload: others

Post on 21-Jan-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

R. BurrielInstituto de Ciencia de Materiales de AragonCSIC – University de Zaragoza50009 Zaragoza, Spain

Determination of the magnetocaloric parametersthrough magnetic and thermodynamic methods

in first-order transitions

Delft Days on Magnetocalorics, Delft, Netherlands, 30-31 October, 2008

Collaborators:- E. Palacios- L. Tocado- G. Wang

Page 2: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

● Determination of magnetocaloric parameters� Calorimetric methods

� Heat capacity. Practical limitations

� Direct measurements of ∆∆∆∆TS and ∆∆∆∆ST

� Magnetic methods� Magnetization. Maxwell relation

� Isothermal. Isofield. Other thermal and field paths� First-order transitions. Overestimation of ∆∆∆∆ST

� Adiabatic pulsed field� Adiabatic and isothermal magnetization

● Applicability of the Maxwell relation. Hysteretic compounds� Errors with isothermal magnetization curves

� Solutions� Magnetization M(T) at constant field

� Isothermal magnetization of appropriate thermal and field history

Outline

Page 3: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

� From heat capacity

∫=T

H dTT

TCTS Hp

0

,)(

)(

( )12

)()( HHS STSTT −=∆

∫−

=−=∆T HpHp

HHT dTT

TCTCTSTSS

0

,, 12

12

)()()()(

● Determination of the magnetocaloric parameters

�Calorimetric methods

• Good at low temperatures• Low precision at room T• Scarce C(T)H data

TC

S (T)B

Ent

rop

y, S

Temperature, T

S (T)B = 0

TC

S(T)B=0

S(T)B

∆TS

∆ST

∆ST

Page 4: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

� From direct measurements

∆∆∆∆TS = [T(S)H2- T(S)H1

]

∆∆∆∆ST = ∆Q/T = [S(T)H2- S(T)H1

]

L. Tocado, E. Palacios, R. BurrielJ. Magn. Magn. Mater.290-291, 719 (2005).

2 0 0 4 0 0 6 0 0 8 0 00 ,0

1 ,5

3 ,0

4 ,5

t ( s )

Pow

er (

mW

)

Magne

tic F

ield

(T)

- 2 0

- 1 0

0

1 0

2 0

T (m

K)

T = 1 5 4 .2 7 3 K

0

2

4

6

Sample holder

Adiabatic shield

Page 5: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

HpTp T

HTM

H

HTS

,,

),(),(

∂∂=

∂∂

� Magnetic methods

� From magnetizationdata

Using the Maxwell relation

dHT

HTM

HTC

TT

Hp

H

S

,0

),(

),(∫

∂∂×=∆

dHT

HTMS

Hp

H

T,

0

),(∫

∂∂=∆

Page 6: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

● Limited to ∆∆∆∆ST

� Calculation of ∆∆∆∆TS requires C(T, H)

● Discontinuities in first derivatives� Computational errors

● Maxwell relations valid for state functions� M(T,H) is not a state function in first-order transitions � It depends on history (hysteresis)

● Easy measurements� Isothermal magnetization� At constant field� Other thermal and field history

● Problems

Page 7: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

� Adiabatic pulsed fields

� Comparison of magnetization curves in adiabatic and isothermal processes

R.Z. Levitin, V.V. Snegirev, A.V. Kopylov, A.S. Lagutin, A. GerberJ. Magn. Magn. Mater.170, 223 (1997).

Page 8: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

relation Maxwell,,

,

2

,

,

2

,

pBpT

pBpT

pTpB

T

M

B

S

T

M

TB

GM

B

G

B

S

BT

GS

T

G

∂∂=

∂∂

∂∂−=

∂∂∂

⇒−=

∂∂

∂∂−=

∂∂∂

⇒−=

∂∂

VdpMdBSdTdG −−−=

● Applicability of the Maxwell relation. Hysteretic compounds

Page 9: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

300 320 340 3600

50

100

150

315 320 325 330

50

100

150

0 - 1 T 0 - 2 T 0 - 3 T 0 - 4 T 0 - 5 T 0 - 6 T 0 - 7 T 0 - 8 T 0 - 9 T

-∆S T

(J/

kg·K

)

T (K)

-∆S T

(J/

kg·K

)

T (K)

MnAs

300 320 340 3600

50

100

150

315 320 325 330

50

100

150

0 - 1 T 0 - 2 T 0 - 3 T 0 - 4 T 0 - 5 T 0 - 6 T 0 - 7 T 0 - 8 T 0 - 9 T

-∆S T

(J/

kg·K

)

T (K)

-∆S T

(J/

kg·K

)

T (K)

MnAs

310 320 330 340

7.5

8.0

8.5

9.0

6 T5 T4 T

3 T2 T

1 T0 T

S /

R

T(K)

Application to MnAs

∂S/∂T > 0

Page 10: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

0 2 4 6 80

40

80

120

isotherm 1 isotherm 2 isotherm 3 isotherm 4 isotherm 5 isotherm 6

M (

em

u/g

)B (T)

(dM)B

300 310 320 330 3400

2

4

6 65432

dx/dT

ParamagneticOrthorhombicB

(T

)

T (K)

dx/dB

FerromagneticHexagonal

1

Isothermal magnetization measurements:M(B)T

Ferromagnetic phase (x = 1) � Isotherms 1 and 2

Ferromagnetic phase (x) + Paramagnetic phase (1-x) � Isotherms 3 and 4

Paramagnetic phase (x = 0) � Isotherms 5 and 6

Phase diagram from M and Cp measurements

MnAs

310 320 330

2 3 4 5 61

(dM)B(dS)T

Page 11: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

310 320 330 340 3500

50

100

150 0 - 1 T 0 - 2 T 0 - 3 T 0 - 4 T 0 - 6 T 0 - 9 T

-∆S T

(J/

kg·K

)

T (K)

M = x·MF + (1-x)·MPB

PF

B

F

B

P

B T

xMM

T

Mx

T

Mx

T

M

∂∂−+

∂∂+

∂∂−=

∂∂

)()1(

dBB

xMMdB

T

MxdB

T

MxdS

TPF

B

F

B

P

∂∂−+

∂∂+

∂∂−= )()1(

∂∂−

Bt

BPF dB

T

xMM

0

)(

( )( ) 0

0,

0 =

=

= ∆=

∂∂

B

anomBp

B H

C

T

x

Calculation in a real process (isothermal magnetization)

dBT

MdS

B

∂∂=

dS = dS’ + dSex

Page 12: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

Solutions for hysteretic compounds

● Magnetization at constant fields M(T)B

● Isothermal magnetization (for increasing fields) after forcing the P state by heating and cooling

● Isothermal magnetization (for decreasing fields) after forcing the F state by cooling and heating

0

2

4

6

8

220 230 240 250 260 270 280

T (K)

B (

T)

Cooling

HeatingField

Temperature

0

2

4

6

8

220 230 240 250 260 270 280

T (K)

B (

T)

Cooling

HeatingField

Temperature

Mn1.1Fe0.9P0.82Ge0.18

Page 13: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

200 220 240 260 280 3000

30

60

90

120

150

M (

Am

2 /kg)

T (K)

Cooling B = 1 T B = 2 T B = 3 T B = 4 T B = 5 T B = 6 T B = 7 T B = 8 T B = 9 T

200 220 240 260 280 3000

30

60

90

120

150

M (

Am

2 /kg)

T (K)

Heating B = 1 T B = 2 T B = 3 T B = 4 T B = 5 T B = 6 T B = 7 T B = 8 T B = 9 T

210 220 230 240 250 260 270 280 2900

10

20

30

40

-∆S

(J/

kgK

)

T (K)

∆B = 1 T ∆B = 2 T ∆B = 3 T ∆B = 4 T ∆B = 5 T ∆B = 6 T ∆B = 7 T ∆B = 8 T ∆B = 9 T

Heating

210 240 2700

10

20

30

-∆S

(J/

kgK

)

T (K)

∆B = 1 T ∆B = 2 T ∆B = 3 T ∆B = 4 T ∆B = 5 T ∆B = 6 T ∆B = 7 T ∆B = 8 T ∆B = 9 T

Cooling

Mn1.1Fe0.9P0.82Ge0.18

Page 14: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

200 220 240 260 280 3000

5

10

15

20

25

30

35

-∆S

(J/

kgK

)

T (K)

∆B=1T ∆B=2T ∆B=3T ∆B=4T ∆B=5T ∆B=6T ∆B=7T ∆B=8T ∆B=9T

Increasing Field

220 230 240 250 260 270 280 290 3000

10

20

30

40

-∆S

(J/

kgK

)

T (K)

∆B=1T ∆B=2T ∆B=3T ∆B=4T ∆B=5T ∆B=6T ∆B=7T ∆B=8T ∆B=9T

Decreasing Field

220 240 260 2800

20

40

60

80

-∆S

(J/

kgK

)

T (K)

∆B=1T ∆B=2T ∆B=3T ∆B=4T ∆B=5T ∆B=6T ∆B=7T ∆B=8T ∆B=9T

Decreasing Field

210 220 230 240 250 260 270 280 2900

20

40

60

80

-∆S

(J/

kgK

)

T (K)

∆B=1T ∆B=2T ∆B=3T ∆B=4T ∆B=5T ∆B=6T ∆B=7T ∆B=8T ∆B=9T

Increasing Field

Isothermal magnetizationIsothermal magnetization

from P or F state

Page 15: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

MnAs

Adiabatic temperature changefor MnAs

• Direct ∆TS (symbols)• From Cp (lines)

Page 16: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

MnAs

Isothermal entropy changefor MnAs• Direct results (symbols)• From Cp (lines)

L. Tocado, E. Palacios, R. Burriel

J. Therm. Anal. Calorim.84, 213 (2006).

Page 17: Determination of the magnetocaloric parameters through ......Determination of magnetocaloric parameters Calorimetric methods Heat capacity. Practical limitations Direct measurements

� Importance of reliable estimates of ∆∆∆∆TS and ∆∆∆∆ST

� Practical results from M(T,H) in paramagnets and in second order transitions

� Materials with giant MCE: first-order transitions� Incorrect results from M(T,H)

� Overvaluedcalculations

� Limitations from Cp results for high temperature ∆∆∆∆ST calculations

� Direct measurement of ∆∆∆∆TS and ∆∆∆∆ST

� Importance of thermal history in M(H) measurements� Use ofisofield magnetization curves orcontrolled isothermal

curves� Practical results in first-order transition compounds

� Absence of spurious spikes, no evidence of colossal MCE

� Calculation of the spurious spikes

Conclusions