determining the masses of excited hadrons in qcd by ab initio calculations

17
Determining the masses of excited hadrons in QCD by ab initio calculations C. B. Lang © 2005 Nonperturbativ e QCD Challenges Dirac operator? Pion Interpolators and Propagators Variational method Interpolating field? Smeared sources Setting Mesons: du, us Baryons: uud, uus, uuu, sss Conclusion Determining the masses of excited hadrons in QCD by ab initio calculations C. B. Lang, Graz BernGrazRegensburg QCD collaboration Tommy Burch Christof Gattringer Leonid Glozman Christian Hagen Dieter Hierl Andreas Schäfer PR D69 (2004) 094513 NP B [PS] 129/130 (2004)251 PR D70 (2004)054502 NPB 140 (2005) 284 (LAT04) NPA755 (2005)481 (BAR04) Lattice 2005: PoS(LAT2005) ÖPG Jahrestagung Wien, 30.9.2005

Upload: chenoa

Post on 13-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

ÖPG Jahrestagung Wien, 30.9.2005. Determining the masses of excited hadrons in QCD by ab initio calculations. C. B. Lang, Graz. Tommy Burch Christof Gattringer Leonid Glozman Christian Hagen Dieter Hierl Andreas Schäfer. PR D69 (2004) 094513 NP B [PS] 129/130 (2004)251 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Determining the masses of excited hadrons in QCD by ab initio calculations

C. B. Lang, Graz

BernGrazRegensburg

QCD collaboration

Tommy BurchChristof GattringerLeonid GlozmanChristian HagenDieter HierlAndreas Schäfer

PR D69 (2004) 094513 NP B [PS] 129/130 (2004)251 PR D70 (2004)054502NPB 140 (2005) 284 (LAT04)NPA755 (2005)481 (BAR04)Lattice 2005: PoS(LAT2005)

ÖPG JahrestagungWien, 30.9.2005

Page 2: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Nonperturbative QCD

QCD on Euclidean lattices:

( ) ( ) (0)C t X t X ( )

{ }{ }e ( ) (0)mS U D

dU d d N t N

( )

{ }e (det det ...)u d

S U

m mdU D D

1 1 1[( ) ....]u u dD D D

Quark propagators

“quenched”approximation

t

mte

log ( )C t

Page 3: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Challenges

• Chirality

– Lattice chirality: Ginsparg-Wilson fermions– Chirally improved fermions– How close to the physical limit (or even the chiral limit) can we

come?– The pion is special (it is a Goldstone boson)

• Interpolators

– Quantum numbers– Coupling to the states: ground state dominance– Excited states?– Role of chiral symmetry breaking and quenching

Page 4: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

What Dirac operator to use?

16

1 21

....p pp P

D c l l l

We use:

“chirally improved fermions”= approximate GW-fermions

Gattringer PRD 63 (2001) 114501;Gattringer et al. Nucl. Phys. B697 (2001) 451

= systematic (truncated) expansion

…obeying the Ginsparg-Wilson relations approximately.

+ . . .+ +=

+

Page 5: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Hadron masses: pion

mres=0.002

M=280 MeV

GMOR

BGR, Nucl.Phys. B677 (2004)

Page 6: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Interpolators and propagator analysis

Propagator: sum of exponential decay terms:

'

31 21 2 3

0 | ( ) (0) | 0 0 | | | | 0

0 | | ' ' | | 0 ...

...

n

n

m t

m t

m tm t m t

X t X X n e n X

X n e n X

a e a e a e

…such a fit is highly unstable!

Previous attempts: biased estimators (Bayesian analysis), maximum entropy,...

ground state (large t)

excited states (smaller t)

Page 7: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Variational method

• Use several interpolating operators

• Compute all cross-correlations and then

• solve the (generalized) eigenvalue problem

• The spectral representation reads:

• Eigenvectors are dominated by physical states:

( ) ( ) (0) ( )i j i j i jC t X t X A A t

( ) (1 ( ))tE t Et e O e

Eigenvectors: best overlap with physical states - “wave functions”

ii iu A

Eigenvalues: masses!

(C. Michael 1985, Lüscher & Wolff 1990)

Page 8: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Which interpolating fields?

Inspired from heavy quark theory, e.g. for the nucleon:

1 5( ) ( ) ( ) ( )Tabc a b cx u x C d x u x

2 5( ) ( ) ( ) ( )Tabc a b cx u x C d x u x

3 4 5( ) ( ) ( ) ( )Tabc a b cx i u x C d x u x

(plus projections to parity)

1 2 3, , are not sufficient to identify the Roper (cf. Brömmel et al. PR D69 (2004) 094513 )

But:

…excited states have nodes!

Page 9: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Smeared quark sources

• Smear the quark sources (Jacobi smearing)• Allow for different smearing “widths”• Combine different quark sources in the hadron operators• Eigensystem analysis chooses “best physical states”

- =2.2 1.2

Page 10: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Summarizing our setting

• Lüscher-Weisz gauge action

• Chirally improved fermions (+HYP smearing)

• Lattice size• 123x24, a=0.148 fm, L~1.8 fm, m ~ 300 MeV• 163x32, a=0.148 fm, L~2.4 fm, m~ 280 MeV• 203x32, a=0.119 fm, L~2.4 fm, m ~ 280 MeV• 100 configurations each

• Nucleons interpolators: each for 6 quark source combinations: (nnn), (nnw), (wnn), (nww), (wwn), (www)

• Other Baryons and Mesons analogously

Page 11: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Mesons: typeud

pseudoscalar vector

Page 12: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Mesons: type us

pseudoscalar vector

Page 13: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Nucleon (uud)

?

RoperChiral approach affects different states differently

Level crossing (from + - + - to + - - +)?

Page 14: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Sigma (uus)

Page 15: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Delta (uuu) and Omega (sss)

Page 16: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Conclusions

• Excited states are hard to identify

• Variational analysis allows to disentangle mixed (physical) states

• Interpolating fields allowing for nodal “wave function”- important for finding the excited states

• Contact with ChPT: – ghost adds complications– quenched chiral logs not (yet) clearly seen

• All these techniques can be used for dynamical fermion results

Page 17: Determining the masses of excited hadrons in QCD by ab initio calculations

Determining the masses of excited hadrons in QCD by ab initio calculationsC. B. Lang© 2005

Nonperturbative QCD

Challenges

Dirac operator?

Pion

Interpolators andPropagators

Variational method

Interpolating field?

Smeared sources

Setting

Mesons:du, us

Baryons:uud, uus, uuu, sss

Conclusion

Exit