developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files ›...

99
Developing kinetic mechanisms for larger hydrocarbon fuels 1

Upload: others

Post on 25-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Developing kinetic mechanisms for larger hydrocarbon fuels

1

Larger Fuel Chemistry

Boundary between ldquosmallrdquo and ldquolargerdquo fuel molecules is somewhat arbitrary however

C5 fuels have much more low T kinetics than C4

C6 fuels have much more low T kinetics than C5

C6 and larger molecules have lots of low T reaction pathways ldquocool flamesrdquo and lower ON values than smaller fuels

2

TF Lu CK Law lsquoToward accommodating realistic fuel chemistry in large‐scale computationsrsquoProgress in Energy and Combustion Science 35 (2009) 192ndash215

Methyl decanoate is a biomass fuel surrogate Detailed kinetic mechanism consists of 3036 species and 8555 reactions

Automatic Generation of kinetic mechanisms easily produces

Large Kinetic Models

Mechanism Size

3

Mechanism Size

Mechanism size grows with molecule size

4

Dominance of H2O2 Reactions

For nearly all hydrocarbon oxidation no matterhow large or small the fuel molecule at hightemperatures the reactions of H2O2 have thegreatest sensitivity controlling the overall rate ofreaction This is true in flames detonations shocktubes and many other practical combustors

5

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 2: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Larger Fuel Chemistry

Boundary between ldquosmallrdquo and ldquolargerdquo fuel molecules is somewhat arbitrary however

C5 fuels have much more low T kinetics than C4

C6 fuels have much more low T kinetics than C5

C6 and larger molecules have lots of low T reaction pathways ldquocool flamesrdquo and lower ON values than smaller fuels

2

TF Lu CK Law lsquoToward accommodating realistic fuel chemistry in large‐scale computationsrsquoProgress in Energy and Combustion Science 35 (2009) 192ndash215

Methyl decanoate is a biomass fuel surrogate Detailed kinetic mechanism consists of 3036 species and 8555 reactions

Automatic Generation of kinetic mechanisms easily produces

Large Kinetic Models

Mechanism Size

3

Mechanism Size

Mechanism size grows with molecule size

4

Dominance of H2O2 Reactions

For nearly all hydrocarbon oxidation no matterhow large or small the fuel molecule at hightemperatures the reactions of H2O2 have thegreatest sensitivity controlling the overall rate ofreaction This is true in flames detonations shocktubes and many other practical combustors

5

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 3: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

TF Lu CK Law lsquoToward accommodating realistic fuel chemistry in large‐scale computationsrsquoProgress in Energy and Combustion Science 35 (2009) 192ndash215

Methyl decanoate is a biomass fuel surrogate Detailed kinetic mechanism consists of 3036 species and 8555 reactions

Automatic Generation of kinetic mechanisms easily produces

Large Kinetic Models

Mechanism Size

3

Mechanism Size

Mechanism size grows with molecule size

4

Dominance of H2O2 Reactions

For nearly all hydrocarbon oxidation no matterhow large or small the fuel molecule at hightemperatures the reactions of H2O2 have thegreatest sensitivity controlling the overall rate ofreaction This is true in flames detonations shocktubes and many other practical combustors

5

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 4: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Mechanism Size

Mechanism size grows with molecule size

4

Dominance of H2O2 Reactions

For nearly all hydrocarbon oxidation no matterhow large or small the fuel molecule at hightemperatures the reactions of H2O2 have thegreatest sensitivity controlling the overall rate ofreaction This is true in flames detonations shocktubes and many other practical combustors

5

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 5: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Dominance of H2O2 Reactions

For nearly all hydrocarbon oxidation no matterhow large or small the fuel molecule at hightemperatures the reactions of H2O2 have thegreatest sensitivity controlling the overall rate ofreaction This is true in flames detonations shocktubes and many other practical combustors

5

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 6: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Combustion Chemistry Complexity

6

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Courtesy of Prof Tiziano Faravelli Politecnico di Milano

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 7: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

7

R + O2 harr RȮ2 Low TRȮ2 QOOH (~500 850 K)

QOOH + O2 harr Ȯ2QOOH Ȯ2QOOH RȮ + ȮH + ȮH

conversion

Reactor Temperature

Zhandong Wang Proc Natl Acad Sci 114(50) (2017) 13102ndash13107Zhandong Wang et al Combust Flame 187 (2018) 199ndash216

Evidence of further additions to O2 have been reported

Three distinct temperature regimes

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 8: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

8

Negative Temperature Coefficient Regime

Intermediate T (850 1100 K)RȮ2 rarr olefin + HȮ2 (NTC)

QOOH rarr cyclic ether + ȮH (NTC)

Three distinct temperature regimes

conversion

Reactor Temperature

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 9: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

9

Flame images taken by a CH-filtered digital stillcamera (a) Normal flame (U = 40 cms) (b) FREI (U= 20 cms) and (c) weak flames (U = 30 cms) Computed profiles of major species at U = 20 cms

Vertical dotted lines indicate the locations of HRR peaks

Akira Yamamoto Hiroshi Oshibe Hisashi Nakamura Takuya Tezuka Susumu Hasegawa Kaoru Maruta

Proceedings of the Combustion Institute vol 33 pp 3259‐3266 (2011)

Three distinct temperature regimes nC7H16

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 10: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

0

300

600

900

1200

1500

000 020 040 060 080 100

Tem

pera

ture

-K

Time - seconds

n-heptane RON = 0

heat release rateTemperature

Slide courtesy of Dr Charles Westbrook10

Three distinct temperature regimes nC7H16

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 11: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

11ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

Intermediate TḢ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

High TFuel = R + Rprime

R = olefin + ĊH3 or ḢḢ + O2 = Ouml + ȮH

ĊH3 + O2 = CH2O + ȮH

22

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 12: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

12

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Ḣ + O2 (+M) = HȮ2 (+M)RH + HȮ2 = R+ H2O2

H2O2 (+M) = ȮH + ȮH (+M)R + O2harr RȮ2

RȮ2 rarr olefin + HȮ2

Three distinct temperature regimes

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 13: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

13

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 14: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

14ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Importance of concerted HȮ2 elimination reaction

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 15: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

15

Intermediate temperature chemistrymdash Concerted eliminations are not well known ndash quantum chemistry

mdash Quelch et al1 first proposed Ċ2H5 + O2 = C2H4 + HȮ2 cyclic TS via concerted elimination

mdash Miyoshi23 variational TST and RRKMmaster equation (Ċ2iĊ3n‐s‐t‐Ċ4 + O2)

mdash Villano et al45 calculated 23 different straight and branched alkyl‐peroxyl radicals

mdash Goldsmith et al6 for the propyl + O2 system

Need for further studies of these reactions due to their high importance

1GE Quelch MM Gallo M Shen Y Xie HF Schaefer III D Moncrieff J Am Chem Soc 116 (1994) 4953ndash49622A Miyoshi J Phys Chem A 115 (2011) 3301ndash33253A Miyoshi A Int J Chem Kinet 44 (2012) 59ndash744SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 115 (2011) 13425ndash134425SM Villano LK Huynh HH Carstensen AM Dean J Phys Chem A 116 (2012) 5068ndash50896CF Goldsmith WH Green SJ Klippenstein J Phys Chem A 2012 116 3325ndash3346

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 16: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

16

1) Ḣ + O2 rarr Ouml + ȮHOuml + H2 rarr Ḣ + ȮH High T ( 1100 K)

OumlH + H2 rarr H2O + ḢNet 2H2 + O2 rarr ȮH + Ḣ + H2O

2) Ḣ + O2 (+M) rarr HȮ2 (+M) Intermediate TRH + HȮ2 rarr R + H2O2 (850 1100 K)H2O2 (+M) rarr ȮH + ȮH (+M) chain branching

RȮ2 rarr olefin + HȮ2 (NTC)QOOH rarr cyclic ether + ȮH (NTC)

3) R + O2 harr RȮ2 Low T (~500 850 K)

RȮ2 QOOH harr Ȯ2QOOH RȮ + ȮH + ȮH

Three distinct chain branching pathways

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 17: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

17

Few direct measurements of H‐atom abstraction by HȮ2 ndash lack of suitable precursors mdash CH2O + HȮ2 Jemi‐Alade et al1 using flash photolysismdash Walker et al23 made indirect relative rate measurementsmdash Scott and Walker4 review of alkanes aromatics and related compounds in 2002

Recent developments in quantitative measurements of HȮ2 radicals mdash Fluorescence assay by Gas Expansion by Blocquet et al5 (2013)mdash Dual‐modulation Faraday Spectroscopy67 (2014 2015)mdash Cavity ring‐down spectroscopy8 (2014)

These measurements are very useful in assessing mechanism performance1AA Jemi‐Alade PD Lightfoot R Lesclaux Chem Phys Lett 195 (1992) 25ndash302RR Baldwin RW Walker Proc Combust Inst 17 (1979) 525ndash5333RW Walker C Morley in Comprehensive Chem Kinetics (M J Pilling Ed) Elsevier Amsterdam 351 (1997)4M Scott RW Walker Combust Flame 129 (2002) 365ndash3775M Blocquet C Schoemaecker D Amedro O Herbinet F Battin‐Leclerc C Fittschen Proc Natl Acad Sci U S A 110 (2013) 20014ndash200176B Brumfield WT Sun Y Wang Y Ju G Wysocki Opt Lett 39 (2014) 1783ndash17867N Kurimoto B Brumfield X Yang T Wada P Dieacutevart G Wysocki Y Ju Proc Combust Inst 35(1) (2015) 457ndash4648M Djehiche NL Le Tan CD Jain G Dayma P Dagaut C Chauveau L Pillier A Tomas J Am Chem Soc 136 (2014) 16689ndash16694

93

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 18: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

18

CH3OH oxidation 855 O2 p = 40 atm and T = 885 K

Sensitivity to ignition delay timeU Burke WK Metcalfe SM Burke KA Heufer P Dagaut HJ Curran Combust Flame 165 (2016) 125ndash13694

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 19: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

19

CH3OH + HȮ2 = ĊH2OH + H2O2

05 10 15 20104

105

106

107

108

109

1010

1011

1012

rate

con

stan

t (k)

cm

3 mol

-1 s

-1

1000 K T

Altarawneh (2011) Olm et al (2017) Alecu and Truhlar (2011) Klippenstein (2011)

104

105

106

107

108

109

1010

1011

1012

2000 1500 1000 500T K

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 20: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

20

Klippenstein et al1 reported high sensitivity to CH3OH + HȮ2 also calculated k Altarawneh et al2 and Alecu and Truhlar3

Olm et al4 via computer optimization using direct and indirect measurements Alecu and Truhlar attributed differences with Klippenstein et al calculations to

differences in treatment of anharmonicity

Possible chemically activated reactions involving HȮ2 radicals

1SJ Klippenstein LB Harding MJ Davis AS Tomlin RT Skodje Proc Combust Inst 33 (2011) 351ndash3572M Altarawneh AH Al‐Muhtaseb BZ Dlugogorski EM Kennedy JC Mackie J Comp Chem 32 (2011) 1725ndash17333IM Alecu DG Truhlar J Phys Chem A 115 (2011) 14599ndash146114C Olm T Varga Eacute Valkoacute HJ Curran T Turaacutenyi Combust Flame 186 (2017) 45ndash64

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 21: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

21

Carstensen and Dean12 for CH4 C2H6 C3H8 C4H10 + HȮ2

Aguilera‐Iparraguirre et al3 CH4 C2H6 C3H8 nC4H10 iC4H10 + HȮ2

mdashAgree well with the determinations of Walker et al

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash1573J Aguilera‐Iparraguirre HJ Curran W Klopper JM Simmie J Phys Chem A 112 (2008) 7047ndash7054

Intermediate temperature chemistry RH + HȮ2 = R + H2O2

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 22: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

22ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

RH + CH3Ȯ2 = R + CH3O2H can also be important

HJ Curran P Gaffuri WJ Pitz CK WestbrookCombustion and Flame 129253ndash280 (2002)

iC8H18 oxidationφ = 10 in air p = 40 atm

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 23: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

23

RH + CH3Ȯ2 = R + CH3O2HĊH3 + O2 = CH3Ȯ2

RH + CH3Ȯ2 = R + CH3O2HCH3O2H = CH3Ȯ + ȮH

Carstensen and Dean1 for CH4C2H6 + ḢCH3Ȯ2C2H5Ȯ2

CarstensenDeanDeutschmann2 for CH4 C2H6 C3H8 C4H10 + HȮ2 CH3Ȯ2 C2H5Ȯ2 C3H7Ȯ2 C3H7Ȯ2 HC(O)Ȯ2 CH3C(O)Ȯ2

1H‐H Carstensen AM Dean Proc Combust Inst 30 (2005) 995ndash10032H‐H Carstensen AM Dean O Deutschmann Proc Combust Inst 31 (2007) 149ndash157

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 24: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

24ldquoDeveloping detailed chemical kinetic mechanisms for fuel combustionrdquo

nC5H12 in air p = 20 atm

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

Three distinct temperature regimes

6 8 10 12 141E-3

001

01

1

10 = 05 = 10 = 20

Igni

tion

dela

y tim

e (m

s)

10000 K T

1667 1250 1000 833 714Temperature (K)

Low TR + O2rarr RȮ2 QOOH QOOH + O2rarrȮ2QOOH RȮ + ȮH + ȮH

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 25: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

25

Rate rules for large molecular weight molecules

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 26: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

bull High temperature mechanismReaction class 1 Unimolecular fuel decompositionReaction class 2 H atom abstractions from fuelReaction class 3 Alkyl radical decompositionReaction class 4 Alkyl radical + O2 = olefin + HȮ2

Reaction class 5 Alkyl radical isomerizationReaction class 6 H atom abstraction from olefinsReaction class 7 Addition of radical species to olefinsReaction class 8 Alkenyl radical decompositionReaction class 9 Olefin decomposition

26Slide Courtesy of Dr William Pitz

Reaction rate rules for higher MW species

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 27: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

27Slide Courtesy of Dr William Pitz

Reaction classes for low temperature reactionsLow temperature mechanismReaction class 10 Alkyl radical addition to O2 (R + O2)Reaction class 11 R + RrsquoO2 = RȮ + RrsquoȮReaction class 12 Alkylperoxy radical isomerizationReaction class 13 RȮ2 + HȮ2 = ROOH + O2Reaction class 14 RȮ2 + H2O2 = ROOH + HȮ2Reaction class 15 RȮ2 + CH3Ȯ2 = RȮ + CH3Ȯ +O2Reaction class 16 RȮ2 + RrsquoȮ2 = RȮ + RrsquoȮ + O2Reaction class 17 ROOH = RȮ + ȮHReaction class 18 RȮ DecompositionReaction class 19 QOOH = Cyclic Ether + ȮHReaction class 20 QOOH = Olefin + HȮ2Reaction class 21 QOOH = Olefin + Aldehyde or Carbonyl + ȮHReaction class 22 Addition of QOOH to molecular oxygen O2Reaction class 23 Ȯ2QOOH isomerization to carbonylhydroperoxide + ȮHReaction class 24 Carbonylhydroperoxide decompositionReaction class 25 Reactions of cyclic ethers with ȮH and HȮ2

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 28: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

28

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 29: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

29

Class 12

RȮ2 QOOH isomerization reactions

6-membered ring isomerization k6 = 25times1010 exp(ndash20450RT)

5-membered ring isomerization k5 = 20times1011 exp(ndash26450RT)

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 30: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

30

primarytertiary

5-member TS 6-member TS

tertiaryprimary

RO

OH

O

OHR

secondary

Class 12

Activation energy depends on ring size and overall thermochemistryAmenable to rule generation

S M Villano L K Huynh H ndashH Carstensen A M DeanJ Phys Chem A 2011 115 13425ndash13442

Correlations between structure and reactivity

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 31: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

31

Pentane isomers

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 32: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

32

n‐Pentane

(RON = 617)

iso‐Pentane

neo‐Pentane

Success of reaction rate rules eg pentane isomers

J Bugler et al Combust Flame 163(1) (2016) 138ndash156

(RON = 923)

(RON = 855)

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air p = 10 bar

Temperature (K)

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 33: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

33

Rate rules applied to larger alkanes

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 34: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

34

Expanded for other classes eg Alcohols

Alcohols are less reactive than their corresponding alkanemdash n‐pentanol (RON = 80) slower to ignite compared to pentane (RON = 617)mdash Carbon alpha to ndashOH alcohol functional group is weakest mdash Da Silva et al1 showed concerted elimination reaction Ea = 114 kcal molndash1

1G da Silva JW Bozzelli L Liang JT Farrell J Phys Chem A 113 (2009) 8923ndash8933

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 35: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

35

Software for automatic mechanism development Semi‐detailed mechanisms using automatic reaction generator

MAMOX code (Ranzi and Faravelli 1995mdash1997)

Computer‐aided automatic generation for large aliphatic HC moleculesmdash Chevalier et al 1990 (did not include reaction rate details)mdash REACTION (Morley and Blurock 1993mdash1995)

Enhanced by Moreacuteac ndash generated nC7H16 nC10H22

mdash EXGAS ndash Battin‐Leclerc et al (2005) (initial work by Haux et al 1985mdash1988)

Comprehensive C0ndashC2 base with lumped secondary mechanism from KINGAS Thermodynamic parameters from THERGAS

mdash Genesys12 ndash Van Geem 2012mdash2015 (Ghent University) mdash Reaction Mechanism Generator (RMG) ndash Green and West (MITNorthwestern)

Mechanisms include elementary reaction steps Include species identifiers

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 36: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

8 10 12 14

01

1

10

100 = 10 RCM = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1200 1000 800

Temperature (K)

Neopentane oxidation in air at 10 atm

36

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 37: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

7 8 9

01

1

10 = 10 ST

Igni

tion

Del

ay T

ime

(ms)

104 T (K-1)

1400 1300 1200 1100

Temperature (K)

Neopentane oxidation in air at 10 atm

37

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 38: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

10 12 141

10

100

= 10 RCMIg

nitio

n D

elay

Tim

e (m

s)

104 T (K-1)

1000 900 800 700

Temperature (K)Neopentane oxidation in air at 10 atm

38

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 39: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Neopentane oxidation in an engine

39

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 40: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

40

Neopentane oxidation in an engine

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 41: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Model vs Experiments

n‐Pentane

iso‐Pentane

neo‐Pentane

41

7 8 9 10 11 12 13 14

01

1

10

100

104 T (K-1)

Igni

tion

Del

ay T

ime

(ms)

1400 1200 1000 800

= 05 in air

Temperature (K)

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 42: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

High Temperature Mechanism

(Eapp 30000 calmol)

Intermediate Temperature Mechanism

(Eapp 19000 calmol)

+ O2

OHbull + Cyclic Ethers

OHbull + bullRCHO + CnH2n

HO2bull + nC7H14

‐Decomposition Products

NTC

conv

ersi

on

Reactor Temperature

nC7H16

nC7H15

+ O2

R7OO

Q7OOH

+ O2

OOQ7OOH

DegenerateBranching Path

OQ7OOH + OHbull

Oxidation of alkanes

Courtesy of Prof Tiziano Faravelli Politecnico di Milano42

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 43: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Mechanism competitionTransition from the LT to the HT mechanism ruled by the decomposition of peroxy radicals

kadd= 109 [Lmols]kdec= 1013 exp (-28000RT) [1s]R + O2 ROO

Competitive pathways at high temperatures alkyl radicals are favored over the peroxy radicals or pyrolysis is favored over oxidation

Ceiling Temperature is the transition temperature from one mechanism to the other

At equilibrium the addition (forward) and the decomposition (reverse) reaction rates are equal

radd = rdec kadd [R][O2]=kdec [ROO]

Courtesy of Prof Tiziano Faravelli Politecnico di Milano43

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 44: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

R + O2 RO2

Ceiling temperature vs pressure

2

13

9

2800010 exp( )

10O

RT RTPx

2

13

92

2800010 exp( )

10dec

addO

R k RTPROO k O x

RT

001

01

1

10

100

1000

800 900 1000 1100 1200 1300Tceiling

p

Ceiling temperature increases with pressure higher oxygen concentration favors direct reaction of peroxy radical formation NTC region moves toward higher temperatures

Courtesy of Prof Tiziano Faravelli Politecnico di Milano44

R + O2 RO2

p in atm R = 00821 L atm K‐1 mol‐1

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 45: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

nC7H16

R7

R7OO

+O2

+

Kinetic Modelling of Hydrocarbon Pyrolysis and Oxidation

Tceiling

10E+02

10E+03

10E+04

08 09 10 11 12 13 14 15

Ignitio

n Delay Tim

e (s)

1000T [1K]

n‐heptaneair φ=10

45 atm

13 atm

Pelucchi et al Energy amp Fuels 2014Ciezki et al Combustion and Flame 1993

Ceiling temperature vs pressure

Bugler et al Journal of Physical Chemistry A 2015

Goldsmith et al Journal of Physical Chemistry A 2012

45Courtesy of Dr Matteo Pelucchi Politecnico di Milano

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 46: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Example data n‐Heptane

φ = 10 τ = 20 s 106 bar 05 fuelHerbinet et al Combust Flame 159 (2012) 3455-3471

46

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 47: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Hydrogen ignition delay times

47

Simulated using mechanism fromJ Li Z Zhao A Kazakov FL Dryer Int J Chem Kinet 36 (2004) 566ndash575

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 48: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

65 70 75 80

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s

10000 K T

ndash Butanol isomers (STRCM) (Dr Kenji Yasunaga Ministry of Defense)

bull T = 1150-1750 K p = 35 atm

K Yasunaga T Mikajiri SM Sarathy T Koike F Gillespie T Nagy JM Simmie H J Curran ldquoA Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanolsrdquo Combust Flame 159(6) (2012) 2009ndash2027

sec‐Butanol p = 35 atm iso‐Butanol p = 35 atm

60 65 70 75 80 85

100

1000 = 20 3 O2

= 10 6 O2

= 05 12 O2

Igni

tion

dela

y tim

e

s10000 K T

Lean Mixtures faster at High TLow p

48

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 49: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

75 80 85 90 95 100 105

100

1000

= 05 = 10 = 20

Igni

tion

dela

y tim

e

s

10000 K T

Rich Mixtures faster at Low THigh p

T Tsujimura W J Pitz F Gillespie H J Curran B W Weber Y Zhang C‐J Sung Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures Energy Fuels 26(8) (2012) 4871ndash4886

iso‐Pentanol p = 21 barDr Taku TsujimuraAdvanced Industrial Science Technology

49

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 50: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

NG Effect of Equivalence Ratio

06 07 08 09 10 11 12 13 14

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s

1000 K T07 08 09 10 11 12 13 14

001

01

1

10

100

RCM = 05 STD = 05 RCM = 10 RCM = 20 STD = 20

Igni

tion

dela

y tim

e m

s1000 K T

625 CH4200 C2H6100 C3H850 nC4H1025 nC5H12

8125 CH4100 C2H650 C3H8

25 nC4H10125 nC5H12

p = 20 atm

50

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 51: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

75 80 85 90 95 100

100

Igni

tion

dela

y tim

e

s

104 K T

=03 =05 =10 =20

n‐PB Effect of Equivalence Ration‐Propylbenzene at 30 atm

51

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 52: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Ignition of C3H8O2 in closed adiabatic system

- One or two stage ignition

‐ NTC between 650‐700 K

600

650

700

750

800

850

900

950

1000

time

Tempe

rature (K

)

No heat exchangeNo mass exchange

Courtesy of Prof Tiziano Faravelli Politecnico di Milano52

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 53: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

NTC Behavior

07 08 09 10 11 12 13 14

001

01

1

10

100

Wales 20 atm Wales 40 atm NUIGRCM 30 atm Duisberg 30 atm in Ar Duisberg 30 atm in N2

TAMU 30 atm Model prediction

Igni

tion

Del

ay ti

me

(ms)

1000 K T

1400 1300 1200 1100 1000 900 800 70021 C3H8 = 05

53

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 54: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

High p low T iC8H18 = 10 in air p = 40 atm

Reduced reactivity

54

H + O2 + (M) = HO2 + (M)H + O2 = O + OH

CH3 + HO2 = CH3O + OHCH3 + HO2 = CH4 + O2

RO2 = QOOHQOOH = CYCLIC ETHER + OH

FUEL + OH = XC8H17 + H2OH2O2 + (M) = OH + OH + (M)

RO2 =gt QOOHQOOH + O2 =gt O2QOOH

O2QOOH = KET + OHFUEL+CH3O2 =XC8H17+CH3O2H

R + O2 =gt RO2FUEL + RO2 = XC8H17 + RO2HFUEL + HO2 = XC8H17 + H2O2

HO2 + HO2 = H2O2 + O2R = BETA-SCISSION

-30 -20 -10 0 10 20 30 40 50 60 70

Sensitivity

725 K 825 K 1000 K

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 55: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Assign reaction rate rules by reaction classes

bull High temperature mechanismbull Reaction class 1 Unimolecular fuel decompositionbull Reaction class 2 H atom abstractions from fuelbull Reaction class 3 Alkyl radical decompositionbull Reaction class 4 Alkyl radical + O2 = olefin + HȮ2bull Reaction class 5 Alkyl radical isomerizationbull Reaction class 6 H atom abstraction from olefinsbull Reaction class 7 Addition of radical species to olefinsbull Reaction class 8 Alkenyl radical decompositionbull Reaction class 9 Olefin decomposition

55

Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 56: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Test molecule 4‐methyl heptane

Bond dissociation energies

Primary ~ 1015 kcalmol Secondary ~ 985 kcalmol Tertiary ~ 960 kcalmol

56

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 57: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

1 Unimolecular fuel decomposition

Very important for ignition delay times in a STndash High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

Usually need to account for fall‐off in rate constant

57

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 58: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

High p limit usually estimated in the reverse (exothermic) direction radical‐radical recombination with no Ea

58

1 Unimolecular fuel decomposition

k = 1014 cm3 mol-1 s-1

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 59: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

59

1 Unimolecular fuel decomposition

Very high activation energies are required (85‐95 kcalmol for CmdashC bond scission)

There are many unique bond scissions available in 4‐methylheptane

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 60: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

The geometric mean rule relates the selfcombination rate coefficients of two radicalsand their cross combination rate coefficient

kAB = 2(kAAkBB)05

Where kAB is the rate coefficient for the cross reaction and kAA and kBB are the rate coefficients for the self reactions

60

Klippenstein et al Phys Chem Chem Phys 2006 8 1133‐1147

1 Unimolecular fuel decomposition

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 61: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

2 H‐atom abstraction from fuel Abstraction of H atoms from the fuel by radical species (eg Ḣ ȮH HȮ2

ĊH3 etc) H atoms can be abstracted from primary (1o) secondary (2o) or tertiary

(3o) carbon sites The rate constant depends on the radical species and the type of H atom

being abstracted Primary H atoms have the strongest bond CmdashH energies are the most difficult to abstract while tertiary H atoms are the weakest and most easily abstracted

61

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 62: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Reaction rate rules make the assignment of reaction rate constants manageable

C-H type A (cm3 mol-1 s-1) n EA (cal)

1 222E+05 254 6756

Ḣ 2 650e+05 240 4471

3 602E+05 240 2583

1 176E+09 097 1586

ȮH 2 234E+07 161 -35

3 573E+10 051 63

1 151E-01 365 7154

ĊH3 2 755E-01 346 5481

3 601E-10 636 893

1 680E+00 359 17160

HȮ2 2 316E+01 337 13720

3 650E+02 301 12090

H‐ atom abstraction rate rules for alkanes

Fuel + (Ḣ ȮH ĊH3 HȮ2) =gt fuel radical + (H2 H2O CH4 H2O2) Class 2

62Courtesy of Dr William Pitz Lawrence Livermore National Laboratory

Orme et al J Phys Chem A 2006

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 63: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Ea in kJ mol-1

Allylic H Vinylic H

Primary Secondary Tertiary Secondary Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b E

Radical

108 07 25 106 07 13 105 07 5 107 07 36 108 07 32bullObull

48 25 10 44 25 -7 44 25 -12 56 25 51 56 25 41bullH

60 2 -1 62 2 -6 61 2 -11 60 2 12 60 2 6bullOH

-13 35 24 119 0 29 119 0 22 -17 35 54 -17 35 50bullCH3

35 26 58 35 26 52 42 26 45bullHO2

H‐abstractions RH + X R + HX

H

H

C C C CH

H

H

H

H H

There are more complex correlations of incremental type depending on the nature of RH and X (Atkinson 1986 Ranzi et al 1994)

Courtesy of Dr Pierre-Alexandre Glaude63

Correlations between structure and reactivity

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 64: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

ȮH and Ḣ are the most reactive

Ouml radical is also very reactive but usually is in small concentration

HȮ2 is notably less reactive but leads to H2O2 which decomposes into two ȮH radicals

64

2 H‐atom abstraction from fuel

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 65: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

65

2 H‐atom abstraction by ȮH radials

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 66: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

2 H‐atom abstraction by ȮH radials Finer considerations take into account next‐nearest‐neighbour (NNN)

configurations and different types of H atoms

66

Sivaramakrishnan et al J Phys Chem A 2009 113(17) 5047‐5060

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 67: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Uncertainty in fuel + HȮ2 rate

67

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 68: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Need more accurate rates constants for HȮ2 + alkanesUncertainty in rate of a factor of 3 ‐ 6

NUIG

CSM

C3H8+HȮ2 lt=gt iĊ3H7 + H2O2

Ignition very sensitive to this rate constant under RCM

conditions

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 69: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Uncertainty in fuel + HȮ2 rateEffect on shock tube ignition delay time

69

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 70: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Evans‐Polanyi type correlations Empirical relationships linking the activation energy to the internal energy of the reaction (chemical driving force) and to an intrinsic energy barrier E0 (chemical inertia)

LFER relationships

DaggerG = DaggerG0 + arG0

Allow to calculate k (Hammet equation)

Evans‐Polanyi relationships

Ea = DaggerH0 + a rH0

Valid for reactions going through the same reaction channel (similar structures of the TSs) Hazardous extrapolations

Courtesy of Dr Pierre-Alexandre Glaude70

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 71: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Correlation for H‐abstractions on a C‐atom or a N‐atom (Dean and Bozzelli 1999)

k = nH A Tn exp (ndashE0 ndashf(H0 ndashH)RT) cm3 mol‐1 s‐1nH number of equivalent abstractable H‐atoms

RH + X R + HX

Formation of a radical center on C‐atom reference ethane

O

O

CH2

H

H

HH

CH2H

978 990

857943

926

839

987

8721002

8261009 699Importance of thermo data and BDE

Courtesy of Dr Pierre-Alexandre Glaude71

Evans‐Polanyi type correlations

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 72: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

3 Alkyl radical decomposition Alkyl radicals undergo ‐scission of C C and C H bonds to form a radical and an alkene

Bond once removed (ie ) from the radical site breaks to form a stable molecule and radical

‐scissions of C H bonds are negligible compared to C C bond scission at T≲ 2000 K

How many ‐scissions are possible

72

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 73: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Correlation for the decomposition of alkyl free radicals by ‐scissiondetermined from the theoretical calculation (CBS‐QB3 level of theory) of a series of reference reactions (Sirjean 2007)

Ea = 060 rH0 + 143 kcalmolR Rrsquo + alkene

R H + alkene

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

bullC3H7 rarr bullCH3 + C2H4 228 289bullC4H9 rarr bullC2H5 + C2H4 220 278bullC5H11 rarr bullC3H7 + C2H4 228 282bullC6H13 rarr bullC4H9 + C2H4 227 280bullC7H15 rarr bullC5H11 + C2H4 227 280

1-hexen-6-ylerarr1-buten-4-yle+C2H4 228 2781-hexen-3-ylerarr13-butadiene+bullC2H5 157 250

Reactions ΔrHdeg(kcalmol)

Ea(kcalmol)

1-penten-5-ylerarrbullC3H5+C2H4 74 192bullC3H7 rarr C3H6 + H 320 340bullC4H9 rarr C4H8 + H 326 344

bullC5H11 rarr C5H10 + H 325 344bullC6H13 rarr C6H12 + H 324 344bullC7H15 rarr C7H14+ H 324 342

Reactions of acyclic radicals used to built the correlation

Courtesy of Dr Pierre-Alexandre Glaude73

Evans‐Polanyi type correlations

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 74: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

‐scission alkyl free radicals Correlation adapted to a large number of -scissions but not to some ring opening

60

50

40

30

20

10

0

Ea

(kca

lmol

)

6040200-20-40rH (kcalmol)

-scissions of acyclic radicals (C-C and C-H bonds) -scissions C-H of cycloalkyl radicals -scissions of alkyl groups on the cycle exo ring opening (all cycles) endo ring opening of C3 endo ring opening of C4 endo ring opening of C5 endo ring opening of C6 endo ring opening of C7 Evans-Polanyi correlation

Ea = 060 (plusmn 002) rH + 143 (plusmn 06) (kcalmol-1)

(1)

(2)

(3)

Courtesy of Dr Pierre-Alexandre Glaude74

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 75: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Alkyl radical decomposition

H3C CH2 CH2 OH -H

H3C CH2 CH OH

H3C CH CH2 OH

H2C CH2 CH2 OH

H3C CH2 CH2 O

75

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 76: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

76

n‐Propanol ‐radical decomposition

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 77: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

ldquoEnols Are Common Intermediates in Hydrocarbon OxidationrdquoCraig A Taatjes et al Science 308 1887 (2005)

Photoionization mass spectrometry of flames

ndash Detected substantial quantities of 2 3 amp 4‐carbon enols

ndash Ethenol detected for allene propyne benzene cyclohexane 13‐butadiene ethanol propene cyclopentene ethene and 1‐propanol

ndash Ethenol below detection for ethane methane propane and 2‐propanol flames

77

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 78: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Alkyl radical decomposition

H

EFER

C2H5C2H4 + H

78

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 79: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

79

n‐Propanol ‐radical decomposition

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 80: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Alkyl radical decomposition

Reaction A‐factor Tn Ea (calmol)C2H4 + H = C2H5 170 1010 107 1450C3H6 + H = iC3H7 424 1011 051 1230C3H6 + H = nC3H7 250 1011 051 2620C2H4 + CH3 = nC3H7 176 104 248 6130C2H4 + C2H5 = nC4H9 132 104 248 6130C3H6 + CH3 = sC4H9 176 104 248 6130C3H6 + CH3 = iC4H9 189 103 267 6850

iC4H8 + CH3 = neoC5H11 130 103 248 8520

80

HJ Curran Int J Chem Kinet 28(4) (2006) 250‐275

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 81: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Hydrogen addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 065 131 145

CH2=CH(CH3) 081 123

CH2=CH(OH) 072

CH(CH3)=CH2 196 234 262

CH(OH)=CH2 351 368

81

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 82: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Methyl addition

ReactionHoDagger kcal molndash1 Ea kcal molndash1

CBS‐QB3 CBS‐APNO 2006 Study

CH2=CH2 614 638 613

CH2=CH(CH3) 590 624 613

CH2=CH(OH) 641 662

CH(CH3)=CH2 731 753 685

CH(OH)=CH2 870 891

82

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 83: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Ethyl addition

ReactionHoDagger kcal molndash1

CBS‐QB3 CBS‐APNOCH2=CH(OH) 628 633CH(OH)=CH2 774 786

83

JM Simmie HJ Curran J Phys Chem A (2009) 113(27) 7834ndash7845

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 84: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

84

CH3CH2CHOH = products

Reaction Ar nr EarCH3CH2CH=O + H 800 1012 000 9500CH2=CHOH + CH3 176 104 248 6130CH3CH=CHOH + H 250 1011 051 2620

Af nf EafA 703 1009 099 32590B 501 1010 104 30450C 546 1011 034 35630

H3C CH2 CH OH CH2 CH OH + CH3

+H3C CH2 CH O H

HH3C CH CH OH +

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 85: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

CH3CH2CHOH = products

05 06 07 08 09 10 11 12 13

103

104

105

106

107

108

109

1010

1011k

s-1

1000 K T

C2H

3OH + CH

3

C2H

5CHO + H

CH3CHCHOH + H

85

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 86: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

05 06 07 08 09 10 11 12 13

105

106

107

108

109

1010

k s

-1

1000 K T

C3H

6 + OH

C2H

3OH + CH

3

H2C CCH3

H + OH H3C CCH2

HOH

H2C CH

OH + CH3

iC3H6OH = products

86

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 87: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

3 Alkyl radical decomposition

87

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 88: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

4 Alkyl radical isomerization

88

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 89: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

4 Alkyl radical isomerization The rate constant for these reactions depends on the nature of the

broken C‐H bond (ie primary secondary or tertiary) and on the ring strain energy barrier

Isomerization reactions involving 5‐member 6‐member and 7‐member transition state ring are most important

Radical isomerizations involving fewer than five and greater than seven members are much slower

How many unique isomerizations are there

89

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 90: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

4 Alkyl radical isomerization

90

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 91: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Isomerization of free radicals activation energy

CH

CH3

R

CH2

R

HCH 2H

R

Ea = Ering + Eabstr

Eabstr Energy contribution of the internal H-abstraction

Ering Strain energy of the ring created in the TS

Atoms in the cyclic TS 4 5 6 7 8 9

Ering 26000 6300 1000 6400 9900 12800

Hp Hs Ht

Eabstr 13500 11000 9000Data for the isomerization of an

alkyl radical

91Courtesy of Dr Pierre-Alexandre Glaude

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 92: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

So where are we now

92

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 93: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

H atom abstraction from alkenes

93

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 94: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Allylic radical decomposition Allylic radicals either undergo ‐scission or react with HȮ2 radicals to

generate allyloxy and ȮH radicals Allyloxy radicals decompose via ‐scission to generate an aldehyde and

a vinylic radical

94

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 95: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

C = C double bonds reduce low T reactivity

s s a v v a s s‐ C ndash C ndash C ndash C = C ndash C ndash C ndash C ‐s s a a s s

Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain

Allylic C ndash H bond sites are weaker than most others Therefore they are preferentially abstracted by radicals O2 is also very weakly bound at allylic sites and falls off rapidly

inhibiting low T reactivity

95

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 96: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Two double bonds make a huge difference

96

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 97: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Observed reactivity effect in hexene fuels

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

3-Hexene

2-Hexene

1-Hexene0

20

40

60

80

100

650 700 750 800 850 900T [K]

Igni

tion

dela

y tim

e [m

s]

Ignition delay times in a rapid compression machine of hexene isomers

(086‐109 MPa Φ=1)

C = C - C - C - C - C 1-hexene

C - C = C - C - C - C 2-hexene

C - C - C = C - C - C 3-hexene

RO2 isomerization initiates low temperature reactivity

Moving the double bond towards the center of the molecule ldquoinhibitsrdquo RO2 kinetics

Experimental data Vanhove et al PCI 2005Simulations Mehl Vanhove Pitz Ranzi Combustion and Flame 2008

97

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 98: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

Reaction Co‐ordinate Diagram

A + B

CE

D + F

reaction coordinate

energy

High pressure collisional stabilization dominates

C

DEF are lsquoProducts ofChemical Activationrsquo

98

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability

Page 99: Developing kinetic mechanisms for larger hydrocarbon fuels › sites › cefrc › files › day4_curran.pdf · 11 “Developing detailed chemical kinetic mechanisms for fuel combustion”

99

Outlook Kinetic mechanisms for ever larger fuel molecules are being

developed due to increasing computational ability

Lack of focus on accurate thermochemistry ATcT is a very good start but we need more than

Experimental measurements and accurate quantum chemistry calculations of important reactions involved in the C0ndashC4 system are vital for accurate predictions of ALL fuels

Rate rules are useful in building mechanisms for large molecular weight fuelsmdash ks for larger molecules can be calculated with increasing accuracy

due to increasing computational ability