development and implementation of …...entry pt(dba) 3 (mol %) (r,r)-l4 (mol %) [octene] (m) time...

56
Development and Implementation of Enantioselective Diboration of Mono-Substituted Alkenes via Platinum Catalyst and Sequential Cross-Coupling Tanner McDaniel Michigan State University 19 February 2014

Upload: others

Post on 24-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Development and Implementation of

Enantioselective Diboration of Mono-Substituted

Alkenes via Platinum Catalyst and Sequential

Cross-Coupling

Tanner McDaniel

Michigan State University

19 February 2014

Page 2: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Why are Simple Olefins a Good Starting Point?

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions

b) One-pot Synthesis of DCC Products

6. Conclusion

2

Page 3: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

3

The Thalidomide Tragedy

1950’s – Over-the-counter drug for:

• Insomnia

• Morning sickness for pregnant women

1961 – Withdrawn from human use world wide

Why?

Effective sedative Birth defects

Kelsey, F. O., J. Dent. Res. 1967, 46, 1199

Kim, J. H.; Scialli, A. R., Toxicol. Sci. 2011, 122, 1

Page 4: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

4

Alkenes

• Diverse

• Produced on Large Scales

• Inexpensive

• Functionalization

Page 5: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Substrate Directed Chemical Reactions

5 Hoveyda, A. H.; Evans, D. A.; Fu, G. C., Chem. Rev. 1993, 93, 1307

McKittrick, B. A.; Ganem, B. Tetrahedron Lett. 1985, 26,4895

Page 6: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

6

Sharpless

Xu, D.; Crispino, G. A.; Sharpless, K. B., J. Am. Chem.Soc.,1992, 114, 7570.

Sharpless, K. B.; et. al., J. Org. Chem. 1992, 57, 2768

Page 7: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Schlesinger

7

Suzuki

Ceron, P.; Finch, A.; Frey, J.; Kerrigan, J.; Parsons, T.; Urry, G.; Schlesinger, H. I., J. Am. Chem. Soc., 1959, 81, 6368

Miyaura, N.; Suzuki, A., Chem. Rev., 1995, 95, 2457

Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A., J. Am. Chem. Soc., 1993, 115, 11018.

Page 8: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

8

Suzuki

Smith and Iverson

Miyaura, N.; Suzuki, A., Chem. Rev., 1995, 95, 2457

Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A., J. Am. Chem. Soc., 1993, 115, 11018.

Iverson, C. N.; Smith, M. R., J. Am. Chem. Soc., 1995, 117, 4403-4404.

Iverson, C. N.; Smith, M. R., Organometallics 1996, 15, 5155-5165.

Page 9: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

9

Smith

Marder

…and many other

by products

Iverson, C. N.; Smith, M. R., Organometallics 1997, 16, 2757-2759. Marder, T. B.; Norman, N. C.; Rice, C. R., Tetrahedron Lett. 1998, 39, 155.

Page 10: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Alkenes

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions,

b) One-pot Synthesis of DCC Products

6. Conclusion

10

Page 11: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

11

So….why would diboration be useful for asymmetric synthesis?

Page 12: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Morken

12 Morgan, J. B.; Miller, S. P.; Morken, J. P., J. Am. Chem. Soc., 2003, 125, 8702-8703.

Page 13: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Hoveyda

13 Lee, Y.; Jang, H.; Hoveyda, A. H., J. Am. Chem. Soc., 2009, 131, 18234-18235.

Page 14: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Andersson

14 Paptchikhine, A.; Cheruku, P.; Engman, M.; Andersson, P. G., Chem. Commun. , 2009, 5996.

Page 15: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Morken

15 Burks, H. E.; Kliman, L. T.; Morken, J. P., J. Am. Chem. Soc., 2009, 131, 9134-9135.

Page 16: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

16

Morken’s Group Approach

Burks, H. E.; Kliman, L. T.; Morken, J. P., J. Am. Chem. Soc., 2009, 131, 9134-9135.

Page 17: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Platinum Catalyzed Diboration

Morken

17 Kliman, L. T.; Mlynarski, S. N.; Morken, J. P., J. Am. Chem. Soc., 2009, 131, 13210.

Page 18: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Ligand

18

Entry Ligand R solvent Yield (%) er

1 L1 H tol 24 80:20

2 L2 Me THF 84 95:05

3 L3 Me tol 81 92:08

4 L4 Et tol 83 96:04

5 L5 i-Pr THF 82 97:03

6 L6 i-Pr tol 84 97:03

7 L7 t-Bu tol 74 90:10

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222.

Page 19: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Catalyst Loading and Metal-Ligand Ratio

19

entry Pt(dba)3

(mol %)

(R,R)-L4

(mol %)

[octene]

(M)

Time

(h)

yield

(%)

er

1 3.0 6.0 0.1 3 89 97:3

2 0.5 1.0 1.0 11 88 96:4

3 0.2 0.4 1.0 28 60 96:4

4 3.0 3.6 0.1 1 88 98:2

5 1.0 1.2 1.0 3 82 97:3

6 3.0 3.0 0.1 3 75 86:14

7 1.0 1.0 1.0 3 66 94:6

8 1.0 0.75 1.0 3 39 80:20

9 1.0 0.5 1.0 3 30 64:36

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 20: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

20

Diboration vs Oxidation Step

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 21: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Alkenes

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions,

b) One-pot Synthesis of DCC Products

6. Conclusion

21

Page 22: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

22

General Mechanism

Olefin Coordination

Migratory Insertion

Reductive Elimination

Oxidative Addition

?

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222.

Iverson, C. N.; Smith, M. R., Organometallics 1996, 15, 5155.

Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. Organometallics 1996, 15, 5137.

.

Page 23: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Reaction Rate vs Substrate Concentrations

23

Alkene B2(pin)2 Pt(dba)3 Ligand

1.0 M 1.05 M 1 mol% 1.2 mol%

1.5 M 1.5 M 1 mol% 1.2 mol%

[Substrates]

Red line

Blue line

*Alkene = 1-tetradecene

Close to zero-order

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222.

Page 24: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Reaction Rate vs Catalyst Concentration

24

Alkene B2(pin)2 Pt(dba)3 Ligand

1.0 M 1.05 M 1 mol% 1.2 mol%

1.0 M 1.05 M 2 mol% 2.4 mol%

[Substrates]

Red line

Blue line

*Alkene = 1-tetradecene

1st order

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 25: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Proposed Mechanism

25

?

1 2

3 4

How to get near zero order for substrates?

Reversible

alkene

binding

3 → 4 = Rate Determining Step

RDS

Or

4 → 1 = Rate Determining Step

RDS

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Iverson, C. N.; Smith, M. R., Organometallics 1996, 15, 5155.

Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C., Organometallics 1996, 15, 5137.

.

Substrates = near zero order Catalyst = 1st order

Page 26: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Natural Abundance 13C Kinetic Isotope Effect (KIE)

26 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Singleton, D. A.; Thomas, A. A., J. Am. Chem. Soc., 1995, 117, 9357

Frantz, D. E.; Singleton, D. A.; Snyder, J. P., J. Am. Chem. Soc., 1997, 119, 3383.

(1) 𝑅

𝑅0

= (1 − 𝐹)(1

𝐾𝐼𝐸)−1

(2) 𝐾𝐼𝐸𝐶𝑎𝑙𝑐 = ln(1−𝐹)

ln[ 1−𝐹𝑅

𝑅0]

R = Enriched Integration (Recovered Starting Material)

R0 = “Unreacted” Integration (Original Starting Material)

F = Fractional Conversion of Reactants

KIE = 𝐾12

𝐾13

Singleton’s Method for Measuring Heavy Atom Kinetic Isotope Effect

Page 27: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

What if Migratory Insertion is Irreversible?

27

Two Carbons

with 13C KIE !

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Singleton, D. A.; Thomas, A. A., J. Am. Chem. Soc., 1995, 117, 9357.

Frantz, D. E.; Singleton, D. A.; Snyder, J. P., J. Am. Chem. Soc., 1997, 119, 3383.

Page 28: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

What if Migratory Insertion is Reversible?

28

One Carbon

with 13C KIE!

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Singleton, D. A.; Thomas, A. A., J. Am. Chem. Soc., 1995, 117, 9357.

Frantz, D. E.; Singleton, D. A.; Snyder, J. P., J. Am. Chem. Soc., 1997, 119, 3383.

Page 29: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Natural Abundance 13C Kinetic Isotope Effect (KIE)

29 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Singleton, D. A.; Thomas, A. A., J. Am. Chem. Soc., 1995, 117, 9357.

Frantz, D. E.; Singleton, D. A.; Snyder, J. P., J. Am. Chem. Soc., 1997, 119, 3383.

KIE = 𝐾12

𝐾13

Page 30: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

New Proposed Mechanism Based on 13C KIE

30

Olefin Coordination

Migratory Insertion

Reductive Elimination

Oxidative Addition

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 31: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Regioselectivity of Olefin

31

Pt-C Bond Formation on Internal C Pt-C Bond Formation on External C

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 32: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Model for Stereoselectivity

32 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

(R,R)- L becomes the (R) 1,2-diboronate

(S,S)- L becomes the (S) 1,2-diboronate

Page 33: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Alkenes

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions,

b) One-pot Synthesis of DCC Products

6. Conclusion

33

Page 34: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Aliphatic 1-Alkenes

34 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z., J. Am. Chem. Soc., 2008, 130, 5586.

Page 35: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Aromatic Alkenes

35 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 36: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Chiral Substrates

36

* 3.0% Pt(dba)3 and

3.6% (L4) (R,R or S,S)

was employed at 60 °C

for 12 hour.

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 37: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Selectivity

Sharpless

37

Morken

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Xu, D.; Crispino, G. A.; Sharpless, K. B., J. Am. Chem. Soc., 1992, 114, 7570-7571.

Page 38: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Unreactive Substrates

38 Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 39: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Alkenes

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions,

b) One-pot Synthesis of DCC Products

6. Conclusion

39

Page 40: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Why cross-coupling?

40

Page 41: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

41

General Reaction

Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 2457, 2483.

Page 42: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Potential Problem

Suzuki

42

Molander

Potential Solution

Molander, G. A.; Canturk, B., Angew. Chem. Int. Ed. 2009, 48, 9240.

Sato, M.; Miyaura, N.; Suzuki, A., Chem. Lett. 1989, 18, 1405

Page 43: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

43 Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 44: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

44

n-octyl 1,2-bis(boronate) versus n-octyl 1-boronate

Why?

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 45: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Plausible Explanations

45

A B

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Sandrock, D. L.; Jean-Gérard, L.; Chen, C.-y.; Dreher, S. D.; Molander, G. A., J. Am. Chem. Soc. 2010, 132, 17108.

Ridgway, B. H.; Woerpel, K. A., J. Org.Chem. 1998, 63, 458.

Molander

Woerpel

Outer-sphere pathway Inner-sphere pathway

Page 46: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Inversion or Retention

46

Suggests Inner-Sphere Pathway

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 47: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

47

Tandem DCC one-pot Synthesis of Chiral Benzylic Alcohols

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 48: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

48

Tandem DCC one-pot Synthesis of:

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 49: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

49

Tandem DCC one-pot Synthesis of Chiral Homoallylic Alcohols

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 50: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

50

Synthesis of (S)-Fenpropimorph

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 51: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

51

Synthesis of N-Boc(S)-amphetamine

Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Page 52: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

52

Next week on….

Page 53: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

1. Introduction

a) Importance of Chirality and Enantioselectivity

b) Alkenes

c) Classical Examples of Enantioselective Reactions

d) Brief History of Diboration

2. Development of Enantioselective Diboration

a) Examples of How to Access 1,2-Diboronates

b) Optimization

3. Mechanistic Investigation

a) Kinetic, Kinetic Isotope Effect, Trapping Experiments

4. Substrate Scope

a) Aliphatic, Aryl, Chiral Substrates

b) Selectivity and Limits of Reaction

5. Sequential Diboration Cross-Coupling (DCC) Reaction

a) Suzuki Coupling Conditions,

b) One-pot Synthesis of DCC Products

6. Conclusion

53

Page 54: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

54 Mlynarski, S. N.; Schuster, C. H.; Morken, J. P., Nature 2014, 505, 386.

Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc., 2013, 135, 11222

Page 55: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Thanks to:

Prof. Aaron Odom

Lab Mates: Amrendra, Ross, Brennan, Cody, Evan, Bailey, Arturo

Special Thanks to:

Elizabeth, Olivia, Yu-Ling, Travis, Kristin

55

Page 56: Development and Implementation of …...entry Pt(dba) 3 (mol %) (R,R)-L4 (mol %) [octene] (M) Time (h) yield (%) er 1 3.0 6.0 0.1 3 89 97:3 2 0.5 1.0 1.0 11 88 96:4 3 0.2 0.4 1.0 28

Thank you!

56