development of an air-cycle environmental control system for auto

Upload: albertus-danarto

Post on 05-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    1/231

    i

    DEVELOPMENTOFANAIRCYCLEENVIRONMENTALCONTROLSYSTEMFORAUTOMOTIVE

    APPLICATIONS

    Athesis

    Presentedto

    thefacultyofCaliforniaPolytechnicStateUniversity

    SanLuis

    Obispo

    InPartialFulfillmentof

    theRequirementsfortheDegreeof

    MasterofScienceinMechanicalEngineering

    by

    ChristopherJ.Forster

    December2009

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    2/231

    ii

    2009

    ChristopherJ.Forster

    ALLRIGHTSRESERVED

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    3/231

    iii

    APPROVAL

    PAGE

    TITLE: DEVELOPMENTOFANAIRCYCLEENVIRONMENTALCONTROLSYSTEMFORAUTOMOTIVE

    APPLICATIONS

    AUTHOR: ChristopherJamesForster

    DATESUBMITTED:

    CommitteeChair: Dr.PatrickLemieux

    CommitteeMember: Dr.ChrisPascual

    CommitteeMember: Dr.KimShollenberger

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    4/231

    iv

    Abstract

    DevelopmentofanAirCycleEnvironmentalControlSystemforAutomotiveApplications

    ChristopherJamesForster

    Mechanical

    Engineering

    Department

    CaliforniaPolytechnicStateUniversity,SanLuisObispo

    Anaircycleairconditioningsystem,usingatypicalautomotiveturbochargerasthecoreofthe

    system,wasdesignedandtested. Effectsonengineperformancewerekepttoaminimumwhile

    providingthemaximumamountofcoolingpossibleandminimizingweightandspace

    requirements. Ateststandutilizingshopcompressedairwasdevelopedtomeasurecomponent

    performance. Anunmodifiedautomotiveturbochargerwastestedinitiallyasabaselineina

    ReversedBraytonCycleaircoolingsystem. Oncethebaselinewasestablished, anotherair

    cyclemachine,assembledfromcommercialturbochargercomponentschosenindividuallyto

    optimizetheirperformanceforcoolingpurposes,wastestedtoimprovetheoverallcycle

    efficiency. Finally,oncetheaircycleairconditioningsystemwasoptimized,itwastestedonan

    engineto

    simulate

    more

    realistic

    operating

    conditions

    and

    performance.

    The

    shop

    air

    test

    stand

    experimentsshowedapeakdryairrated(DAR)coefficientofperformance(COP)of0.38anda

    DARcoolingcapacityof0.45tonsforthebaselineturbocharger,andapeakDARCOPof0.73

    andDARcoolingcapacityof1.5tonsfortheoptimizedsystemwithamodifiedturbocharger.

    TheonenginetestingwaslimitedduetoathrustbearingfailureintheACM. However,thedata

    collectedatlowerengineloadandspeedindicatesaDARCOPof0.56andaDARcooling

    capacityof0.72tons. Onenginetestingwasplannedtoincludeoperatingpointswherethe

    stockturbochargerwasutilizingturbinebypasstolimitboostpressure. Whileitwasn'tpossible

    tocontinuetesting,itisexpectedthatDARCOPandcoolingcapacitywouldhaveincreasedat

    higherengineloadandspeed,whereturbinebypassoperationtypicallyoccurs.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    5/231

    v

    Acknowledgements

    IwouldliketothankDr.PatrickLemieuxforhissupportandkeepingmeontaskthroughoutthis

    project. IwouldalsoliketothankDr.GlenThorncroftandJimGerhardtfortheirhelpwith

    instrumentationandlabequipmenttroubleshooting.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    6/231

    vi

    TableofContents

    Nomenclature

    .................................................................................................................................

    ix

    ListofTables................................................................................................................................... xi

    ListofFigures................................................................................................................................. xii

    Chapter1:Introduction................................................................................................................... 1

    Chapter2:Background.................................................................................................................... 4

    2.1SimpleCycle........................................................................................................................... 5

    2.2TwowheelBootstrapCycle................................................................................................... 6

    2.3ThreewheelBootstrapCycle................................................................................................. 7

    2.4ProjectGoals.......................................................................................................................... 7

    2.5COPDefined......................................................................................................................... 10

    2.6PreviousworkperformedatQueensUniversity,Belfast.................................................... 11

    2.7TheoreticalACMPerformance............................................................................................. 12

    Chapter3ExperimentalApparatus,Procedures,andConditions................................................. 19

    3.1ShopairTestConfiguration................................................................................................. 19

    3.2OnengineTestingConfiguration......................................................................................... 23

    3.3ACM

    Turbine

    Compressor

    Matching

    ...................................................................................

    25

    3.4PrimaryCompressorResizingforACMoperation............................................................... 25

    Chapter4:Results,Conclusions,andFutureWork....................................................................... 28

    4.1ResultsandDiscussionfromUnmodifiedGT1241ShopAirTestStand.............................. 28

    4.2ResultsandDiscussionfromModifiedGT1244ShopAirTestStand................................... 31

    4.3ResultsandDiscussionfromGT1244OnEngineTesting.................................................... 38

    4.4ComparisonofACMtoR134aSystems............................................................................... 39

    4.5Conclusion............................................................................................................................ 42

    4.6FutureWork......................................................................................................................... 44

    References..................................................................................................................................... 46

    AppendixAUncertaintyAnalysis................................................................................................ 47

    A.1CompressorEfficiency......................................................................................................... 47

    A.2ACMMassFlowRate........................................................................................................... 49

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    7/231

    vii

    A.3CompressorPower.............................................................................................................. 50

    A.4TurbinePower..................................................................................................................... 50

    A.5CoolingCapacity.................................................................................................................. 50

    A.6TurbineEfficiency................................................................................................................ 51

    A.7IntercoolerEffectiveness..................................................................................................... 51

    A.8IntercoolerPressureDrop................................................................................................... 52

    A.9NumericalUncertaintyPropagationAnalysis...................................................................... 52

    AppendixBDerivationofEquationsforAircycleAnalysis......................................................... 53

    B.1IsentropicCompressorPowerRequirement....................................................................... 53

    B.2IsentropicTurbinePower.................................................................................................... 56

    B.3BearingLosses...................................................................................................................... 59

    B.4Isentropic

    Efficiency

    .............................................................................................................

    60

    B.4.1CompressorIsentropicEfficiencyMeasurement.......................................................... 60

    B.4.2TurbineIsentropicEfficiencyMeasurementwithBearingLossesCombined..............60

    B.4.3TurbineIsentropicEfficiencyMeasurementwithoutBearingLossesCombined.........61

    B.5CompressorDischargeTemperature................................................................................... 63

    B.6CorrectedCompressorFlowRate........................................................................................ 64

    B.7CorrectedCompressorSpeed.............................................................................................. 64

    B.8TurbineDischargeTemperature.......................................................................................... 64

    B.9CorrectedTurbineFlowRate............................................................................................... 65

    B.10CorrectedTurbineSpeed................................................................................................... 66

    B.11DryAirRatedTemperature............................................................................................... 66

    AppendixC CompressorTurbineMatchingProcess................................................................... 66

    AppendixD DetailedCalibrationProcedure................................................................................ 71

    AppendixE SensorCalibrationCharts......................................................................................... 74

    E.1PressureTransducerCalibration...................................................................................... 74

    E.2Laminar

    Flow

    Element

    and

    Differential

    Pressure

    Transducer

    Calibration

    .......................

    75

    E.3ThermocoupleCalibration............................................................................................... 78

    AppendixF PerkinsDieselPerformance,StockTurbocharger.................................................... 79

    AppendixG PerkinsDieselPerformance,VNTTurbocharger...................................................... 83

    AppendixH SandenR134aCompressorPerformanceChart....................................................... 87

    AppendixI ACMPerformancePredictionCodeinMatlab......................................................... 88

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    8/231

    viii

    AppendixJ ACMPerformancePredictionCodeinEES.............................................................. 143

    AppendixK ACMSinglePointPerformanceComparisoninEES............................................... 147

    AppendixL ACMComponentEfficiencyVariationSimulation.................................................. 150

    AppendixM ACMPostprocessingCodeinMatlab................................................................... 153

    AppendixN PerkinsDieselPostprocessingCodeinMatlab..................................................... 175

    AppendixO PerkinsPostprocessingComparisoninMatlab..................................................... 213

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    9/231

    ix

    Nomenclature

    P1C Compressorinletpressure

    P2C Compressordischargepressure

    P1T

    Turbineinlet

    pressure

    P2T Turbinedischargepressure

    T1C Compressorinlettemperature

    T2C Compressordischargetemperature

    T1T Turbineinlettemperature

    T2T Turbinedischargetemperature

    PRC Compressorpressureratio

    PRT Turbinepressureratio

    cp Specificheatcapacity

    NC Physicalcompressorspeed

    CorrectedcompressorspeedNT Physicalturbinespeed CorrectedturbinespeedWC Physicalcompressormassflowrate CorrectedcompressormassflowrateWT Physicalturbinemassflowrate Correctedturbinemassflowrate CompressorPower TurbinePowerR Gasconstant

    UniversalgasconstantM Molecularweighth Specificenthalpy

    Greek: RatioofspecificheatsAcronyms:

    ACM Aircyclemachine

    BSFC

    Brakespecific

    fuel

    consumption

    CFM Cubicfeetperminute

    DAR Dryairrated

    SCFM Standardcubicfeetperminute

    LFE Laminarflowelement

    CHRA Centerhousingrotatingassembly

    CI Compressionignition

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    10/231

    x

    SI Sparkignition

    COP Coefficientofperformance

    VE Volumetricefficiency

    EGT Exhaustgastemperature

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    11/231

    xi

    ListofTablesTable2.1Ambientconditionsfortheoreticalperformancemodel............................................... 15Table2.2Tabulateddatafromparametricstudyofperformanceanalysisforarelativehumidityof50%............................................................................................................................. 17Table4.1OperatingConditionsforsinglepointcomparisonoftheoreticalandactualperformance.................................................................................................................................. 38Table4.2Resultsofsinglepointcomparisonoftheoreticalandactualperformance..................38Table4.3ACMcomponentweightbreakdown............................................................................. 40TableA.1MeasurementUncertaintyBasedonCalibrationInstrumentation............................... 47TableA.2ValuesusedincalculatinguncertaintyinACMcompressorefficiencycalculations.....49TableA.3Conditionsforevaluatinguncertaintyinmassflowrate............................................... 49TableA.4ConditionsforevaluatinguncertaintyinACMcompressorpower............................... 50

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    12/231

    xii

    ListofFiguresFigure1.1PvdiagramforanOttoCycle......................................................................................... 3

    Figure2.1Simpleaircyclemachineschematic............................................................................... 5

    Figure2.2Bootstrapaircyclemachineschematic.......................................................................... 6

    Figure2.3

    On

    engine

    two

    wheel

    bootstrap

    schematic.

    ..................................................................

    9

    Figure2.4ComparisonoftheReverseBraytonAirCoolingCycleandtheBraytonCycle............14

    Figure2.5ParametricstudyofACMperformanceforacompressorwith60%efficiencyand

    varyinglevelsofturbineefficiencyandheatexchangereffectiveness......................................... 16

    Figure2.6ParametricstudyofACMperformanceforacompressorwith80%efficiencyand

    varyinglevelsofturbineefficiencyandheatexchangereffectiveness......................................... 16

    Figure3.1Shopairtestingconfiguration...................................................................................... 19

    Figure3.2PhysicalACMteststandusingshopair........................................................................ 21

    Figure3.3Onenginetestingconfigurationschematic.................................................................. 23

    Figure3.4Primaryenginecompressormatchingprocesswithanengineoperatingpointof

    1600rpmandfullload.................................................................................................................... 26

    Figure3.5PrimaryenginecompressormatchwiththePerkinsdieselboostcurveandthe

    targetboostcurvewiththeACMoperating.................................................................................. 27

    Figure4.1DryairratedCOPfortheunmodifiedGT1241turbocharger. Datapointsin

    Figures4.14.3haveaonetoonecorrespondence...................................................................... 29

    Figure4.2DryairratedACMcoolingcapacity. DatapointsFigures4.14.3havea

    onetoonecorrespondence.......................................................................................................... 29

    Figure4.3IntercoolereffectivenessvariationwithmassflowrateintheGT1241ACMwith

    theelectricfan. DatapointsFigures4.14.3haveaonetoonecorrespondence....................... 30

    Figure4.4DryairratedCOPforthemodifiedGT1244turbocharger. Datapoints

    Figures4.44.5haveaonetoonecorrespondence...................................................................... 32

    Figure4.5DryairratedACMcoolingcapacity. DatapointsFigures4.44.5havea

    onetoonecorrespondence.......................................................................................................... 32

    Figure4.6IntercoolereffectivenessvariationwithACMmassflowrateusingtheelectricfan.

    DatapointsFigures4.44.5haveaonetoonecorrespondence.................................................. 33

    Figure4.7DryairratedCOPforthemodifiedGT1244turbocharger. Datapoints

    Figures4.74.9haveaonetoonecorrespondence...................................................................... 34

    Figure4.8DryairratedACMcoolingcapacity. DatapointsFigures4.74.9havea

    onetoonecorrespondence.......................................................................................................... 35

    Figure

    4.9

    Intercooler

    effectiveness

    variation

    with

    ACM

    mass

    flow

    rate.

    Data

    points

    Figures4.74.9haveaonetoonecorrespondence...................................................................... 35

    Figure4.11Pvdiagramforfourstrokegasolineengine.............................................................. 41

    FigureA.1UncertaintyinACMcompressorefficiencyduringtypicaloperatingconditions.........48

    FigureB.1Compressorcontrolvolumeanalysis............................................................................ 53

    FigureB.2Turbinecontrolvolumeanalysis................................................................................... 56

    FigureB.3Bearingsystemcontrolvolumeanalysis....................................................................... 59

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    13/231

    xiii

    FigureC.1GT1244compressorperformancemap........................................................................ 67

    FigureC.2GT1244turbineperformancemap............................................................................... 67

    FigureD.1Thermocouplemeasurementnoise(prefiltered)beforeandaftershielding

    thewires........................................................................................................................................ 72

    FigureD.2Temperaturemeasurementoutputafteroversamplingandaveraging...................... 72

    FigureE.1

    MAP

    sensor

    calibration

    chart.

    .......................................................................................

    74

    FigureE.2 ThisschematicshowstheconfigurationoftheLFE,differentialpressure

    transducer,andresistor................................................................................................................. 75

    FigureE.3Laminarflowelementcalibrationcurve.DataisprovidedbyMeriamProcess

    Technologies.................................................................................................................................. 76

    FigureE.4Differentialpressuretransducerandresistorcombinedcalibration........................... 77

    FigureE.5Laminarflowelementsetupcalibration....................................................................... 78

    FigureF.1BSFCcontourmapusingthestockturbocharger.......................................................... 79

    FigureF.2VEcontourmapusingthestockturbocharger............................................................. 79

    FigureF.3Intercoolereffectivenesscontourmapusingthestockturbocharger......................... 80

    FigureF.4

    Pressure

    differential

    between

    the

    exhaust

    and

    intake

    manifolds.

    (P_int

    P_exh)

    ......

    80

    FigureF.5Engineturbochargercompressorefficiency................................................................. 81

    F.6Engineturbochargerturbineefficiency................................................................................... 81

    F.7Enginefuelmassflowrate....................................................................................................... 82

    FigureG.1BSFCcontourmapusingtheVNTturbocharger........................................................... 83

    FigureG.2VEcontourmapusingtheVNTturbocharger.............................................................. 83

    FigureG.3IntercoolereffectivenesscontourmapusingtheVNTturbocharger.......................... 84

    FigureG.4differentialbetweentheexhaustandintakemanifolds.(P_int P_exh)....................84

    FigureG.5Engineturbochargercompressorefficiency................................................................ 85

    FigureG.6Engineturbochargerturbineefficiency........................................................................ 85

    FigureG.7Enginefuelmassflowrate........................................................................................... 86

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    14/231

    1

    Chapter1:Introduction

    Automotiveairconditioningsystemsareintheprocessofundergoingsomemajorchangesdue

    toenvironmentalconcerns. Thenewchangesaretopreventglobalwarming,inadditionto

    ozonedepletion. Thesechangestendtohavenegativeimpactsonairconditioningperformance

    duetoashiftinrefrigerantselectioncriteria,frommaximumcoefficientofperformance(COP)

    tolifecycleenvironmentalimpactofthesystem.Thenewcriteriaconsidersdesignsthathave

    lowerCOPbutmaystillhavelessoverallnegativeimpactontheenvironmentthroughoutthe

    lifecycleofthesystem. Someoftheotherconsiderationsinselectingarefrigerant,arethe

    systemweight,manufacturingcosts,refrigeranttoxicity,andeffectsofpotentialleaks. Looking

    intothefuture,additionalchangestoautomotiveairconditioningsystemsarelikely,anduseof

    arefrigerantthatisnaturallyavailableanddoesnotneedtoberetrofittedisconvenient.

    Aircyclemachines(ACM)convenientlyuseairastherefrigerantandhavethepotentialto

    provideconvenientairconditioningforhighperformancevehicles,whereweightisata

    premium. AtypicalACMcanconsistofacompressor,heatexchanger,andcoolingturbine,

    whichissuppliedwithpressurizedair. Themaincomponentsofanaircyclecoolingsystemare

    thecompressionprocess,heatremoval,andcontrolledexpansion. Thecoolairfromtheturbine

    outletcanberouteddirectlyintothepassengercabin.

    Inracingapplicationsairconditioningisasecondaryconsiderationinvehicledesign,andoften

    notused

    due

    to

    weight

    and

    power

    requirements.

    Any

    amount

    of

    cooling

    that

    can

    be

    provided

    withoutlossinengineperformanceandminimalweightincreaseisconsideredtobean

    improvement. Ableedaircontrolconfigurationisbestsuitedtoracingapplicationsbecausethe

    amountofcoolingrequiredisnotset,anycoolingprovidedisbeneficial. Thebleedair

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    15/231

    2

    configurationrequiresaforcedinductionsystemastheprimarysourceofcompressedairfor

    theReverseBraytonCycletooperate. Thisconfigurationwillworkwitheitherasupercharged

    orturbochargedsystem. Thelatterispreferredtominimizetheparasiticpowerlossonthe

    enginecausedbytheACMoperation.

    Insteadof"wastegating",aprocessinwhichafractionoftheexhausttobypasstheturbine

    stagetolimitcompressoroutletpressure,thecompressoroutletpressurecanbelimitedby

    bleedingairthroughtheACM. Thishasareducedimpactonpowerconsumptionfromthe

    enginebecausethepowerwouldhavegonetowasteifnotusedforcooling.

    Avariablenozzleturbine(VNT)canbeusedtoachieveadesiredcoolingcapacitywhile

    maintainingboostlevelswithincreasedprimarycompressorpowerrequirementsduringfull

    ACMoperationbyvaryingturbinepower. Thisconfigurationcanbedesignedtoincreaseoverall

    systemefficiencybyminimizinglowerlooplosses,whichisimportantforminimizingfuel

    consumption. ThelowerlooplossescanbeseenonthePvdiagramoftheOttoCycle,inFigure

    1.1. ThelowerlooponeithertheOttoorDieselCyclesrepresentsthenetpumpinglosses

    inducedontheenginebytheexhaustandintakesystems. Thenetpowercanbedeterminedby

    integratingthePvcurveforwardthroughtheintakeandexhauststrokes. Thesumofthe

    signedareasresultsinthenetpowerconsumed. Anintakepressuregreaterthantheexhaust

    backpressurewillresultinanegativepumpingloss,orincreasedenginepower.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    16/231

    T

    d

    A

    d

    c

    c

    heVNTcontr

    emonstrates

    CMeffective

    emonstratet

    mponentst

    nberedesi

    olmethodw

    thatthepri

    lyinableed

    hefeasibility

    designanA

    gnedtosupp

    Figure1.1

    asfoundtob

    aryturboch

    airconfigura

    ofusingco

    CMunit;and

    orttheaddit

    3

    vdiagramfo

    ethemostp

    rgercansup

    ion. Therea

    merciallyav

    ,2)demonst

    ionalairflow

    ranOttoCycl

    racticaltoi

    plythenece

    retwoobjec

    ilableauto

    ratethatan

    requiredbyt

    .

    plementfor

    saryairflow

    ivesinthisp

    otiveturboc

    ngineturbo

    heACM.

    histesting,

    ooperateth

    roject;1)

    harger

    chargersyst

    ndit

    e

    m

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    17/231

    4

    Chapter2:Background

    Aircycletechnologyhasbeeninusesincethe1940sinaircraftenvironmentalcontrolsystems

    (ECS)[1]. Untilthenitwasconsideredcommerciallyunfeasibleduetoitsrelativelylow

    coefficientofperformance(COP)comparedtootherrefrigerationmethodsavailable,namely

    vaporcyclesystemsanddryice. Theappealthatmadeitaconsiderationforuseinaircraftis

    thesizeandweightofatypicalACM. Inadditiontothis,thereisaconvenientsourceof

    compressedaironboardalready,thejetenginescompressorstages. Forcomparablesystems,

    intermsofcoolingcapacity,aircyclesystemscanreducespacerequirementsbyapproximately

    25%andweightby50%[1]. Thisisimportantinracingandhighperformanceapplications

    becauseenginebaysaretypicallyverytightonspace,andweightcandiminishaccelerationand

    handling.Theincreasedweightcanbeespeciallydetrimentalinvehicleswithdownforcesince

    theincreaseinweightdoesnotnecessarilyincreasethelateralloadcapabilitybyaproportional

    amount.

    Theaircyclemachineisbasedaroundtheconceptofacoolingturbine. Thisisthecommon

    componentamongallofthevariousACMconfigurations,suchasthesimple,twowheel,or

    threewheelbootstrapcycles. Thecoolingturbineoperatesbyprovidingacontrolledexpansion

    ofair;anadiabatic,controlledexpansionrequirestheairtodoworkonitsboundariesto

    provideanycoolingeffect. Theworkdoneontheturbinewheelistransmittedbytheshafttoa

    compressororfantoutilizethispower. Thecompressorandfanaremethodsofdissipating

    turbinepowertodousefulworkinthesystem.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    18/231

    2

    T

    D

    t

    e

    t

    t

    f

    a

    p

    h

    T

    .1Simple

    hemainadv

    ecreasedco

    emainjete

    changerwit

    mperature

    rbineforex

    n. Theturb

    retwo

    comp

    owerderived

    eatexchang

    hefactthatt

    Cycle

    ntagetousi

    ponentnu

    gineistypic

    hhigheffecti

    spossible.

    ansion. The

    inepowerco

    nentsto

    co

    fromtheair

    reffectivene

    hesimplecy

    Figure2.1Sim

    gthesimple

    bersreduce

    allyinthera

    venesstoge

    ncetheairi

    powerprod

    rrespondsto

    lingthe

    air;

    flowreduces

    ssbyincreas

    leutilizesaf

    5

    pleaircycle

    aircyclesys

    weightands

    geof4006

    theaircool

    cooledbyt

    cedbythet

    theenthalp

    )Heat

    rejec

    enthalpyan

    ingtheairflo

    ananddoes

    achineschem

    em,asthen

    pacerequire

    0oF. Thisair

    ddowntoa

    eheatexch

    urbineistran

    changeint

    ionfrom

    the

    airtemper

    overthec

    notrelyonly

    atic.

    ameimplies,

    ments. The

    isthenpasse

    sclosetothe

    nger,itisint

    smitted,by

    eairpassing

    ACMinterc

    ture. Thefa

    ldsideofth

    onramairf

    issimplicity.

    ircomingfr

    dthrougha

    ramair

    roducedinto

    irectdrive,t

    throughit.

    oler;2)

    Turb

    helpsimpr

    heatexcha

    rcoolingthe

    m

    eat

    the

    othe

    here

    ine

    ve

    ger.

    heat

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    19/231

    e

    a

    f

    2

    T

    in

    a

    t

    c

    t

    p

    changerall

    pplicationsw

    bricationre

    .2Two-w

    hemostnoti

    steadofafa

    nddoesnot

    rbinedischa

    ncernsabo

    rbinewheel

    ressureratio

    wsittoprov

    iththeinten

    uiredforma

    eelBoot

    F

    eablediffer

    n,andaseco

    rovidecooli

    rgetempera

    tfreezingth

    itself,itcan

    acrossthetu

    idecoolingw

    ofusingtyp

    nufacturing

    trapCycl

    igure2.2Boot

    ncesfromth

    ndheatexch

    gwhilethe

    ures. Thetu

    moistureo

    uilduptoa

    rbineandde

    6

    hiletheplan

    icalautomoti

    ndinstalling

    e

    strapaircycle

    esimpleair

    anger. Whil

    ircraftissta

    rbinedischar

    toftheairfl

    amounttha

    creasingper

    eisstationar

    iveturbocha

    thefanont

    machinesche

    yclemachin

    thissystem

    ionary,itdo

    getemperat

    ow. Althoug

    trestrictsair

    ormance.

    y. Thisisnot

    gercompon

    eturbinesh

    matic.

    earetheuse

    reliesonra

    esprovidesi

    ureislowen

    theicedoe

    flowtothec

    idealfor

    ntsbecause

    ft.

    ofacompre

    airforcooli

    nificantlylo

    ughtohave

    snotformo

    bin,reducin

    of

    sor,

    ng

    er

    the

    gthe

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    20/231

    7

    Theairisdrawnfromoneofthemainenginecompressorstagesandcooledthroughaprimary

    heatexchanger,justasthesimplecycledoes. Next,thecoolerairentersthesecondary

    compressorstage. Thisprovidesanotherpressurerisetofurthercompressandheattheair.

    Thepowerrequiredbythesecondarycompressortoaccomplishthistaskisprovidedbythe

    coolingturbine. Theairexitingthesecondarycompressorstageiscooledbyanotherheat

    exchangerbeforeenteringtheturbine. Theturbineinthebootstrapconfigurationreceivesair

    atapproximatelythesametemperatureasthesimplecycle,butatasignificantlyhigher

    pressureratioacrosstheturbine. Thisishowthebootstrapaircyclemachineisabletoprovide

    lowerturbinedischargetemperaturesthanthesimplecycle.

    2.3Three-wheelBootstrapCycle

    Thethreewheeledbootstrapcycleisessentiallythesameasthetwowheeledassemblywith

    theadditionofafanmountedonthesameshaftastheACMcompressorandturbineorgear

    drivenfromtheshaft. Thefanensuresadequateairflowonthecoldsideoftheintercooler,but

    itwillconsumepowerfromtheturbineandreducethepressureratioacrossthecompressor.

    ThisconfigurationrequiresoneoffdesignandfabricationofACMcomponentsthatarenot

    readilyavailablewithautomotiveparts.

    2.4ProjectGoals

    ThegoalofthisprojectistodemonstratethatanACMairconditioningunitcanbe

    manufacturedfromexistingautomotiveturbochargercomponentsandprovideacceptable

    coolingwith

    aminimal

    performance

    penalty.

    There

    are

    many

    choices

    for

    ACM

    configuration,

    butsomeofthemlendthemselvesmoreeasilytoautomotiveapplicationsthanothers.

    Thesimplecyclehasfewcomponents,buttheturbochargercompressorwouldhavetobe

    replacedbyafan. Thisrequiresasignificantamountoffabricationanddoesnotmeetthegoal

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    21/231

    8

    ofusingexistingautomotiveturbochargercomponents. Usingafanmountedontheturbine

    shaftrequiresductingthatmaybedifficulttopackageinacarenginebay.

    Thethreewheelbootstrapconfigurationmakesforanicelypackagedrotatingassembly. The

    mainconcernwiththissetupisthemanufacturingandbalancingofacomplicatedrotating

    assembly. Thisrequiresextensivemodificationtoaturbochargerandisnotappropriatefor

    meetingthegoalsofthisproject.

    Thetwowheelbootstrapconfigurationrequiresmorecomponents,butthereisacompressor

    turbineassemblythatallowstheuseofaturbochargertopackagethosecomponents. An

    electricfanisneededtoprovideairflowovertheintercooleratlowvehiclespeeds. Thisallows

    forsimplerpackaginginasmallenginebaythanductingairfromaremotelylocatedfan. The

    twowheelconfigurationprovidesthelowestturbinedischargetemperatureofallthesetups.

    Thisisimportantinanautomotiveapplicationbecausethepressureratiosavailablearelimited

    duetoengineconstraints. Alowerpressureratiowillreducethetemperaturedropacrossthe

    turbine,assumingeverythingelseremainsconstant. Thetwowheelbootstrapconfigurationis

    usedforthisprojectbecauseitmeetsthegoalsthathavebeenset. Thisconfiguration,inthe

    contextoftheenginemountedsystemtobetestedinthisproject,canbeseenbelow.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    22/231

    T

    p

    o

    p

    c

    al

    T

    g

    e

    p

    heonengine

    ressurizedin

    intakemani

    ressure. Boo

    mpressoro

    llowsforafr

    heturbineb

    ting"becau

    nergy.Thec

    reventingex

    Fig

    ACMconfig

    aketubing

    t

    foldpressur

    stcontrolist

    tletpressur

    ctionofthe

    passvalveis

    eanyfractio

    mpressorbl

    essiveboost

    re2.3Onen

    rationopera

    the

    intake

    orboost,a

    ypicallyperf

    andcloses

    exhaustgast

    commonlyr

    noftheexh

    edconfigur

    .

    9

    inetwowhee

    tesbybleedi

    anifold.Th

    ommonna

    rmedbyusi

    ropensafla

    obypassthe

    ferredtoas

    ustthatisall

    tionusesthi

    lbootstrapsc

    ngairfromt

    bleed

    air

    c

    ereferringt

    ngapneuma

    ppervalvelo

    turbine,limi

    awastegate

    lowedtobyp

    swastedene

    ematic.

    heengine'sf

    nfiguration

    ointakeman

    ticactuatort

    catednextt

    tingturbine

    . Itisreferre

    asstheturbi

    rgytopower

    rcedinducti

    llowsfor

    co

    ifoldgauge

    hatsenses

    theturbine.

    owerandb

    dtoas"wast

    eiswasted

    theACMwh

    on

    trol

    This

    ost.

    e

    ile

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    23/231

    10

    Whiletheonengine,twowheelbootstrapconfigurationistheprimarygoalofthisproject,the

    turbinecompressormatchmustfirstbevalidated. Thisisperformedonastandalonetest

    standwithcompressedairsuppliedtotheACMbytheshopaircompressorsystem. This

    configurationcanbeseeninFigure3.1.

    2.5COPDefined

    TraditionallyCOPisdefinedastheratioofcoolingloadcomparedtothepowerrequiredtodrive

    thesystem. Thisisapracticaldefinitionformostairconditioningsystemswherethe

    compressor,dynamicorfixeddisplacement,isdrivenfromamotororengine. Thepower,with

    anassociated

    cost,

    going

    to

    the

    air

    conditioning

    system

    is

    easier

    to

    determine

    than

    that

    of

    the

    turbochargerbasedsystemdescribedinthisprojectsincethereisaphysicalconnection

    betweenthemotorandcompressor.

    ,(Eqn.2.1)ThisisnotasclearwhenconsideringanACMpoweredbytheenginesturbocharger;notallof

    thepowerdeliveredtotheACMhasacostassociatedwithit. Aportionofthepowerthatwent

    todrivetheprimarycompressorwasfromheatenergythatwouldhavebeenwastedthrough

    theexhaustanywaysorlostthroughwastegating.

    AnewmethodfordeterminingpowerconsumptionspecificallybytheACMisproposed.This

    canbedonebyfindingthechangeinfuelflowratewithandwithouttheACMoperatingand

    usingbrake

    specific

    fuel

    consumption

    (bsfc)

    to

    calculate

    power

    used

    by

    the

    ACM.

    This

    representstheeffectivepowertodrivetheACM,inotherwords,onlypowerthathasan

    associatedincreaseinfuelcost. ThisappliestoACMoperationoutsideofnormalwastegate

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    24/231

    11

    operationtolimitboost. ACMoperationtolimitboostlevelsinsteadofusingthewastegate

    hasminimalimpactonenginefuelconsumption,lendingtoasignificantlyincreasedCOP.

    (Eqn.

    2.2)

    , (Eqn.2.3)COPeffectiveisnottheonlyconcerninACMdesign;thecoolingcapacityisthedrivingrequirement

    inthedesignprocess. Inoptimizingthesystem,whilemeetingcoolingcapacityrequirements,

    COPismaximizedforagivensetofambientandACMinletconditions. TheeffectiveCOPand

    coolingcapacitytogetherarereferredtoasACMperformance.

    2.6PreviousworkperformedatQueensUniversity,Belfast

    Totheauthor'sknowledge,therehasonlybeenoneotherrecentgrouptoperformaircycle

    researchforautomotiveapplications. Theideaofusingaircycleairconditioningforthistypeof

    applicationiswellfoundedbytheory,butpracticallimitationsinimplementingthesystemcan

    considerablydecrease

    the

    performance

    of

    an

    ACM.

    This

    can

    be

    observed

    in

    the

    previous

    work

    describedbelow.

    AresearchgroupatQueensUniversity,Belfast,hasdesignedandimplementedasupercharger

    basedACMforrefrigeratedtrailersinroadtransportapplications[2,3]. Thegroupimplemented

    atwowheelbootstrapcyclesimilartotheoneinthisproject. Theprimarycompressorisgear

    drivenfrom

    the

    crankshaft,

    and

    it

    feeds

    compressed

    air

    to

    the

    typical

    bootstrap

    ACM.

    Instead

    ofbleedingairfromtheengineintakemanifoldasdoneinthisproject,thesuperchargeris

    dedicatedtosupplyingairtotheACM. ThisconfigurationsomewhatdecouplesengineandACM

    operation,makingiteasiertocontrolandquantifyACMperformance. Ithasasevere

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    25/231

    12

    shortcominginthatitwillalwaysbeaparasiticpowerlossfromtheenginecrankshaft,rather

    thanfreepowerfromaturbochargerbasedsystemthatisdemonstratedinthissystem. The

    theoreticalCOPoftheirACMwas0.294,correspondingtotheCOPtraditionaldefinedabove,while

    anoptimizedmodelshowedapossibilityof0.62. Theirperformancegoalwasnotachieveddue

    toexcessivelylowefficiencyofthegearboxtodrivethesupercharger,heatexchanger

    performance,andexcessivelylargeturbochargerbearinglosses. Overall,thefuelconsumption

    oftheenginewasapproximatelythreetimesgreaterwiththeACMoperating,andnoactual

    COPfigureswereprovidedfromthistesting. Whiletheirtestingdidnotshowpromisingresults,

    thelowerthanexpectedperformancelikelycamefromlimitationsincomponentsselected

    ratherthantheaircycleconceptitself.

    TheturbochargerbasedACMdiffersfromthesuperchargerbasedunitbecausethereisenergy

    availablethatwouldhavebeenwastedduringtheturbinebypassprocess,wastegating,without

    thepresenceoftheACM. Insteadofwastingthisenergy,itcanbeutilizedforpoweringthe

    ACMwithoutanyadditionalcosttotheengine. Thisisessentiallyfreecooling,orinfiniteCOP.

    Sincetheuseofaturbochargerastheairsourceallowsincreasedupperlimitsofperformance

    thanthesuperchargerbasedsystem,thereisanimprovedlikelihoodofsuccess.

    2.7TheoreticalACMPerformance

    Aircycleanalysiscanbeperformedassumingdryormoistair. Theanalysisforthisproject

    assumesdryair,exceptforusingthedryairrated(DAR)analysisforcoolingcapacity. DAR

    temperatureis

    the

    equivalent

    temperature

    ifthe

    entrained

    water

    or

    ice

    in

    the

    air

    exiting

    the

    turbineisadiabaticallyevaporated[4]. Dryair isassumedbecause,formostofthesystem,the

    differenceinenthalpychangeacrosscomponentsisminimalbetweenthetwomethods. This,

    however,isnottruefortheturbinebecausetheairtemperaturefallsbelowthatoftheambient

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    26/231

    13

    conditionsandmoisturecandropoutasaliquid,orpossiblyice. Thiscanhaveasignificant

    impactintheenthalpychangeacrosstheturbine,affectingturbinepoweranddischarge

    temperature. Dryairisassumedforsimplicityindesigningthefirstprototype. Detailed

    derivationsofthedryair,perfectgasequationscanbefoundinAppendixB.

    TheturbinecompressormatchingprocessforanACMisdifferentthanthatofamatch

    performedforanengineapplication. Thisisprimarilyduetothedifferenceinturbineinlet

    conditions. Correctedparameters,suchasflowandspeed,fortheturbinearedependentupon

    temperature. TheturbineinlettemperatureissignificantlylowerforanACMthantypical

    exhaustgas

    temperatures

    of

    either

    diesel

    or

    gasoline

    engines.

    This

    presents

    achallenge

    becausecommercialturbochargersaredesignedforengineapplications,anditrequiresanew

    compressortobematchedtotheturbinetomaximizeperformanceintheACMapplication. The

    compressorturbinematchingprocesscanbefoundinAppendixC. Thedifferencesinthetypical

    onengineapplicationandtheACMapplicationbecomeapparentwhenviewingaTsdiagram

    withboththeBraytonandReverseBraytoncycles. TheBraytonCycleismodelingtheengineas

    aheatinputtotheturbochargersystem. Figure2.4showstherelativetemperatureandentropy

    changesthrougheachcycle.

    Theprocessstartsatthecompressorinletandthevolumedecreasesasthepressureincreases.

    TheBraytonAirStandardCycleismodeledwiththeengineasacontinuousthermodynamic

    machineandwithamassfractionbypassingtheturbinetopreventoverpressurizingtheintake.

    Theintake

    air

    is

    then

    drawn

    into

    the

    engine

    where

    it

    goes

    through

    the

    combustion

    process

    wheretheburnedfueladdsheattotheflowbeforeitisdischargedintotheexhaustmanifold.

    Theexhaustflowincreasevolumeanddecreasesinpressureasitexpandsthroughtheturbine.

    Alineconnectingtheturbineoutletandthecompressoroutletrepresentstheairpossiblybeing

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    27/231

    r

    e

    t

    d

    T

    e

    a

    s

    cycledatso

    nergythanc

    ecompress

    ifferentappr

    heelproves

    aximizingtu

    Figur

    hereare

    afe

    nergybalanc

    renoleaksin

    me. Withth

    epointand

    mparedtot

    randturbin

    oachtothec

    obeabette

    rbineefficien

    2.4Comparis

    things

    kno

    e,andopera

    thesystem,

    eassumptio

    closesthec

    eBraytonC

    ,lowercom

    ompressort

    matchforr

    cy,whilestill

    onoftheRev

    nabout

    the

    ingspeedso

    themassflo

    thatthebe

    14

    cle. TheRev

    cle. Thisre

    pressorpres

    rbinematch

    ducingexce

    keepingco

    rseBraytonA

    system,

    as

    fthecompre

    ratethrou

    aringlosses

    erseBrayton

    ultsinchang

    ureratios,a

    ingprocess.

    ssivecorrect

    pressoreffi

    irCoolingCycl

    ithmany

    sys

    ssorandtur

    hthecompr

    renegligible

    Cycleinvolv

    esincorrect

    drequiresa

    Arelativelyl

    dturbinesp

    iencyinmin

    eandtheBra

    tems,such

    a

    inewheels.

    essorandtur

    ,whichisthe

    esmuchless

    dcondition

    somewhat

    rgercompr

    eedsfor

    .

    tonCycle.

    smass

    balan

    Assumingth

    binewillbet

    caseinmos

    for

    ssor

    e,

    re

    he

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    28/231

    15

    engineapplicationswheretheuncertaintyofmanyotherparametersoutweighthis,thepower

    outputoftheturbinewillbematchedbythecompressorpowerrequirementinsteadystate

    operation. Consideringthecompressorandturbinewheelsaredirectlymountedonthesame

    shaft,theshaftspeedswillbeequal. Evenwithasmanyknownparametersasthereare,itisan

    iterativeprocesstofindamass,power,andspeedbalancebecauseofthegraphicalnatureof

    thecompressorandturbineperformancemaps.

    ItisimportanttoinvestigatetheeffectsofvariouscomponentperformancesonoverallACM

    performance. AparametricstudyofACMcomponentefficiencieswasconductedandthe

    resultsare

    in

    Figure

    2.5

    2.6

    and

    Table

    2.2.

    With

    the

    results

    from

    the

    parametric

    study,

    attention

    canbegiventothemostcriticalcomponentsfirst. Theanalysispresentednextshowsthatheat

    exchangereffectiveness(E_htxr2,Figure2.52.6)andturbineefficiency(Eta_t2,Figure2.52.6)

    aremoreimportanttooverallsystemperformancethancompressorefficiency. Thedatainthe

    followingfiguresarecalculatedassumingaprimarycompressorefficiencyof70%andambient

    conditionssimilartothosefoundatthetestinglocation. Thecompressorefficiencychosenis

    representativeofattainableperformanceoverawiderangeinairflowinmodernautomotive

    turbochargersystems[6]. Thecodeusedtogeneratethefollowingplotscanbefoundin

    AppendixK.

    Table2.1Ambientconditionsfortheoreticalperformancemodel.

    AmbientCondition

    Temperature[Deg.F] 70Pressure[psia] 14.69

    RelativeHumidity[] 0.50

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    29/231

    16

    Figure2.5ParametricstudyofACMperformanceforacompressorwith60%efficiencyandvaryinglevels

    ofturbineefficiencyandheatexchangereffectiveness.

    Figure2.6ParametricstudyofACMperformanceforacompressorwith80%efficiencyandvaryinglevels

    ofturbineefficiencyandheatexchangereffectiveness.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    30/231

    17

    Thisanalysisindicatesthatminimumacceptableintercoolereffectivenessisapproximately0.70

    beforerapidlydecreasingoverallACMperformance. Whilecompressorandturbineefficiencies

    remainconstant,thecurvesforACMCOPdecreasebylargeramountsasheatexchanger

    effectivenessdecreases.

    Usingrepresentativevaluesfromthepreviousanalysis,attainableperformancewithautomotive

    turbochargercomponents,forintercoolereffectiveness,turbineefficiency,andcompressor

    efficiency,thefollowingtablewasconstructed:

    Table2.2Tabulateddatafromparametricstudyofperformanceanalysisforarelativehumidityof50%.

    PressureRatio

    []

    Intercooler

    Effectiveness[]

    Turbine

    Efficiency[]

    Compressor

    Efficiency[]COPDAR[]

    1.5 0.80 0.80 0.600.80 1.051.25

    0.600.80 0.80 0.821.25

    0.60 0.80 0.600.80 0.861.07

    0.600.80 0.80 0.611.07

    Itcanbeobservedthattheturbineperformanceismorecriticaltotheoverallcycle

    performance. Thisistobeexpectedbecausethemoreefficienttheturbineis,themoreheat

    willberemovedfromtheairexpandingthroughtheturbine,andthemorepowerwillbe

    extractedtodrivehigherpressureratiosacrossthecompressor. Thehigherpressureand

    temperatureenteringtheheatexchangerallowsmoreheattoberemovedbeforeenteringthe

    turbine. Obviously,thereisalimittothiscycleandasteadystateoperatingpointbecauseof

    thedecreasingenergycontentintheairflowtotheturbineasmoreheatisremovedbythe

    intercooler.

    ItshouldbenotedthattheACMinthistestingisoperatedatthelowerpressureratiorangedue

    toboostlimitationsonthetestengineandtypicalboostpressuresforgasolineengines. The

    theoreticalanalysisisextendedtotheupperlimitsofpressureratiosthatcanbeachievedby

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    31/231

    18

    singlestagecompression. Thisisrepresentativeofwhatcanbeseeninoperatingintake

    pressuresindieselengines.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    32/231

    T

    d

    d

    p

    3

    T

    b

    ai

    c

    c

    hapter3

    herearetwo

    esignedtov

    esiredperfor

    erformance.

    .1Shop-a

    hefirstseto

    etweencom

    irsourceand

    mpressora

    mpressorh

    Experim

    testingconfi

    rifythecom

    mancecanb

    rTestCo

    testsconsist

    onentspow

    thelocation

    dlargeairst

    stosupplyt

    entalAp

    gurationsne

    ressorturbi

    eachieved.

    figuratio

    Figure3.1

    softheACM

    redby

    shop

    ofthesens

    oragetanks.

    hetankswit

    19

    aratus,

    dedtocom

    nematchfor

    hesecondt

    n

    hopairtestin

    turbocharg

    air.Figure

    3

    rs. Thetest

    Arelativelyl

    125psig,an

    rocedur

    letetesting

    theACMits

    stisdesigne

    gconfiguratio

    r,intercoole

    .1shows

    the

    facilityhasa

    argeshopai

    theACMai

    s,andC

    orthisproje

    lfandtode

    dtodemons

    n

    r,andrequir

    connectiont

    75hprecipr

    supplyisne

    rsupplyisre

    nditions

    ct. Thefirsti

    onstrateth

    rateonengi

    dducting

    othe

    compr

    cating

    ededbecaus

    ulateddow

    s

    tthe

    ne

    ssed

    the

    toa

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    33/231

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    34/231

    21

    Figure3.2PhysicalACMteststandusingshopair.

    TypeTthermocoupleswereusedbecausetheyworkwellwiththelowertemperaturerange

    thattheACMwillbeoperatingin. Inadditiontothis,thestandardlimitoferrorfortypeT

    thermocouplesis1oC,comparedto2.2oCfortypeK. Eachthermocouplewascalibratedwithin

    thestandardlimitoferror. Allsensorswerecheckedperiodicallybetweensetsofexperiments

    toensurequalitydata. ThecalibrationdataareinAppendixE.

    ThistestingconfigurationgathereddataforabaselineusinganunmodifiedGT12turbine41mm

    compressorwheelassemblyfortheACMandaGT12turbine44mmcompressorwheel

    assemblyforimprovedefficiency. Thelargercompressorreducedcorrectedturbinespeedsto

    improveperformance.The41mmcompressorwheelplacedcorrectedturbinespeedoperating

    pointoffthehighendoftheturbineperformancemap. Thecompressorprovidedsimilar

    efficiencycontourstothesmallercompressorwheel,sotherewasn'tasignificantdecreasein

    performanceonthatend. ThedifferencesintheunmodifiedGT1241andmodifiedGT1244

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    35/231

    22

    compressorturbinematchesareduetothedifferencesinthecomponentinletoperating

    conditionsfortheintendedapplications,asdiscussedinSection2.7.

    Theinstallationofthenewcompressorrequiredmanufacturingashaftadapterduetoalarger

    boresizeinthelargercompressorwheel. ThespecificationsfromGarrettTurbochargers

    indicatedthatboreinsideto outsidediameterrunoutandperpendicularitytotheendfaces

    needtobewithin0.0001inch. Ashaftadapterwasproducedthatmettheacceptablevibration

    limitsatpeakoperatingspeeds. Thiswasverifiedbeforecontinuingwithtestingbyslowly

    increasingtheturbochargerspeed,whiledirectlymeasuringshaftspeedandbearinghousing

    vibrationlevels.

    TheprocedureforperformingthetestsonboththeunmodifiedGT1241andmodifiedGT1244

    assembliesincluded:blowingoutliquidwaterfromtheshopairlinesandtanks,gatheringlocal

    ambientconditions,andmanuallyregulatingtheACMinletpressuretoachievedesired

    operatingpointsandsteadystateconditionsbeforecollectingeachdataset. Steadystate

    operatingconditionscanbedetectedandverifiedseveralways,suchasmonitoringshaftspeed,

    temperatures,andpressures.

    Thecomponentthatcontributedmosttothelengthoftimerequiredtoreachsteadystatewas

    theintercooler. Ithasarelativelylargemassandtooksometimetoreachasteady

    temperature. Itisveryimportanttowaitforsteadystateconditionsbeforecollectingdata

    becausefictitiouslyhighperformancenumberscanbeobserved. Thisisbecauseofthethermal

    capacitanceofthealuminumcomprisingtheintercoolercoreandendcaps;itprovidesasecond

    meansofheatremovalfromtheairflowuntiltheintercoolerissaturatedwithheat. Oncethe

    intercooleris"heatsoaked",theonlymeansofdissipatingheatistothecoldairflowstream,

    insteadoftransferringheatfromthehotairstreamtothethermalcapacitanceofthealuminum

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    36/231

    a

    d

    el

    T

    a

    u

    e

    S

    n

    3

    ndtothecol

    uringthetra

    liminatingthi

    heshopairs

    dequatecom

    seableACM

    ficiency. Th

    ction4.2. T

    iththe

    com

    extstepison

    .2On-eng

    airflowstr

    sientperiod

    seffect.

    andtesting

    pressorturbi

    peratingran

    resultsoft

    heuncertain

    ressorturbi

    enginetesti

    ineTesti

    Fig

    am. Initialt

    . Alldatawa

    emonstrate

    inematch,w

    gebyincrea

    eshopairte

    ycalculation

    ematch

    ver

    ng.

    gConfigu

    ure3.3Onen

    23

    stingshowe

    scollecteda

    thattheba

    hilethemodi

    ingtheeffici

    ststandexp

    sforthese

    ifiedand

    the

    ration

    inetestingco

    dlargeappa

    steadystat

    elineGT124

    ifiedGT1244

    encyoverth

    rimentsare

    easurement

    performanc

    nfigurationsc

    entintercoo

    conditionsf

    turbocharg

    turbocharge

    trangeclos

    discussedin

    canbefoun

    of

    the

    ACM

    ematic

    lereffectiven

    orthisproje

    rprovideda

    providedal

    rtothepea

    ection4.1a

    dinAppendi

    optimized,t

    ess

    t,

    n

    arger

    d

    xA.

    e

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    37/231

    24

    TheonengineconfigurationusesthesameACMteststandconfigurationwiththeexceptionof

    thecompressorinletbeingfedcompressedairfromtheintakemanifoldofthedieselengine.

    Thiswasachievedusingaypipeaftertheprimary,orengine,intercooler. Theflowcontrol

    valveislocatedbeforetheACMcompressorinletandiscapableofturningtheflowtotheACM

    onoroffandthrottlingflow. TheconnectionfromtheenginetotheACMisillustratedinFigure

    3.3.

    TheengineusedinthisexperimentisasixliterPerkinsdieselengine. Itisafourstroke,inline

    sixcylinderengine. Thischoiceofengineplatformisrelevanttosportscarandracing

    applicationsbecause

    the

    engine

    displacement

    is

    similar,

    even

    though

    the

    speed

    range

    is

    lower.

    Thisisnotnecessarilyaproblembecausetheengineturbocharger'sturbineissizedforthe

    engineinconsideration,andintheworstcase,itwillprovidealowerlimitforloadandspeed

    thattheACMcanbeeffectivelyoperated. Since,inracingapplications,theengineistypicallyat

    higherloadandspeed,thisisnotaconcern.

    Theengineisfullyinstrumentedandisconnectedtoadynamometer. Theengine

    dynamometersetupispartofanengine'sclass,andthesensorsarecalibrated. Acalibrationlog

    ismaintained,butevenso,thesensorswereverifiedtomatchtheirpreviouscalibrations.

    ThePerkinsdieselenginewasfirsttestedwiththestockturbochargertosetabaselinefor

    comparisonofthenewcompressorfortheprimary,orengine,turbocharger. Thesecond

    turbochargerissizedtoefficientlyaccommodatetheadditionalairflowrequiredforthe

    operationoftheengineandACM. Thenewturbochargerhasalargercompressorandavariable

    nozzleturbine.

    TheexperimentsperformedtoassesstheeffectsofACMoperationonengineperformance

    wereconductedbyrunningtheengineatanoperatingpointallowingmaximumboostlevelsto

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    38/231

    25

    bereachedbeforeopeningthedivertervalvetotheACM. ThisdemonstratestheeffectofACM

    systemairflowrequirementsonboostlevelavailabletotheengineandchangeinfuel

    consumption,thetwoprimaryfactorsconsideredinaracingapplication.

    3.3ACMTurbine-CompressorMatching

    ThematchingprocessfortheACMrotatingassemblyfollowsthemethodpresentedinAppendix

    C,buttherearesomenewconsiderationsregardingtheACMapplication. Theturbineand

    compressorsthatarepairedonproductionturbochargersarewellmatchedforgasolineor

    dieselengineapplications,wherethereishotexhaustgasdrivingtheturbine. Thistemperature

    differencein

    the

    engine

    and

    ACM

    applications

    causes

    alarge

    change

    in

    corrected

    turbine

    speed

    andcorrectedmassflowrate,twoparametersusedtomapturbineperformance. Sincethe

    ACMturbineinletconditionswillalwaysbecoolerthantheoriginalengineapplication,alarger

    compressorwillbeneededtoreducecorrectedturbinespeeds. Thecompressormatching

    techniqueisessentiallyunchanged,sincethecompressorconditionsaresimilarinboth

    applications.

    3.4PrimaryCompressorResizingforACMoperation

    Resizingtheprimaryengineturbochargercompressorwasrequiredtoaccommodatethe

    additionalairflowrequiredduringACMoperationbutstillhasasufficientsurgemarginforsafe

    engineoperation. Themethodemployedinsizinganewcompressorforthisprojectsplitthe

    operatingpointssymmetricallyaroundtheimaginarylinethatpassesthroughthecenterofthe

    efficiencycontours

    up

    the

    map.

    This

    is

    graphically

    demonstrated

    below.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    39/231

    S

    e

    t

    c

    a

    c

    n

    p

    c

    igure3.4Pri

    littingthe

    o

    ficiencyifth

    ecase. Ho

    cleisunkno

    asnot50%d

    ailablecom

    nstantwhet

    earestefficie

    rocess,butd

    rvesforthis

    aryengineco

    peratingpoin

    eACMwaso

    ever,sincet

    nanda50

    uetoavailab

    ressorsize

    herornotth

    ncycontour.

    etailed,appli

    projectares

    mpressormat

    tsaround

    th

    peratedthe

    isprojectd

    dutycyclei

    lecommerci

    aschosen.

    eACMisope

    Thereisopp

    cationspecif

    howninthe

    26

    chingprocess

    fullload.

    epeak

    efficie

    ameamoun

    esnotinvol

    assumed.

    alcompresso

    heprimary

    ratingbypla

    ortunityfor

    icdataisreq

    igurebelow.

    ithanengin

    ncyline

    pro

    oftimeasit

    easpecific

    hesplitont

    rassemblies.

    ompressore

    cingtheope

    ptimizingth

    uired.Theco

    operatingpo

    idesthe

    best

    wasoff. Thi

    pplication,t

    eactualco

    . Therefore,

    fficiencyrem

    atingpointo

    ecompresso

    mpressorop

    intof1600rp

    average

    sisnotlikely

    eactualdut

    pressormat

    henearest

    ainsnearly

    neachside

    rselection

    eratingboos

    and

    tobe

    h

    fthe

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    40/231

    T

    c

    Figure3.5Pri

    hecompress

    ithouttheA

    mpressoro

    maryenginec

    rselected

    f

    Moperating

    erspeed,wh

    ompressorma

    curve

    rthe

    Perkin

    . Thismatch

    ileoptimizin

    27

    tchwiththeP

    withtheACM

    dieselengin

    providesas

    efficiencya

    erkinsdieselb

    operating.

    eallows

    for

    f

    ufficientsurg

    muchaspo

    oostcurvean

    ullengine

    op

    emarginand

    ssibleforthis

    thetargetb

    erationwith

    lowriskof

    project.

    ost

    and

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    41/231

    28

    Chapter4:Results,Conclusions,andFutureWork

    4.1ResultsandDiscussionfromUnmodifiedGT1241ShopAirTest

    Stand

    TheunmodifiedGT1241turbochargerwasusedasaperformancebaselineforcomparisonof

    modificationstotheturbocharger,anditperformedbetterthanexpected. TheACM

    performanceisshowninFigures4.1and4.2. Anaccuratepredictionofperformancewashard

    toobtainduetolimitedcompressorandturbineperformancedatafromthemanufacturer. This

    isbecausetheACMoperatingconditions,specificallyturbineinlettemperatureandpressure,

    causedanincreaseincorrectedturbinespeed,comparedtoanonengineapplication. TheACM

    operatingconditionsputthetargetcorrectedturbinespeedoutsideoftheknownturbine

    performancemap. However,theincreasedcorrectedturbinespeeddidnotcauseasharp

    turbineefficiencydrop,whichwaslikelytooccurduetoexcessivespeedfromtherelatively

    smallcompressor. Thelimitingfactorinthisconfigurationwastheintercooler,whichcanbe

    seeninFigure4.3. Therelativelylowintercoolereffectivenesslimitedheatremovalfromtheair

    enteringtheturbine. Thisisdetrimentaltoperformanceasanincreaseinturbineinlet

    temperaturewillgenerallycauseanincreaseinturbineoutlettemperature,decreasingthe

    coolingcapacityoftheACM. ThedatapointsinFigures4.14.3werecollectedsimultaneously,

    sothemassflowratecanberelatedtotheACMpressureratio,DARCOP,andDARcooling

    capacity. Forexample,thethirdpointfromtherightinFigure4.1correspondstothethirdpoint

    fromthe

    right

    in

    Figure

    4.2

    4.3.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    42/231

    29

    Figure4.1DryairratedCOPfortheunmodifiedGT1241turbocharger. DatapointsinFigures4.14.3have

    aonetoonecorrespondence.

    Figure4.2DryairratedACMcoolingcapacity. DatapointsFigures4.14.3haveaonetoone

    correspondence.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    43/231

    30

    Thecoolingcapacityrequiredinaperformanceautomotiveapplicationisapproximatelyoneton

    ofcooling.ThiswasdeterminedfromreviewingR134acompressorperformancemapsfrom

    Sanden[AppendixH]. ThisisdiscussedingreaterdetailinSection4.4.

    Figure4.3IntercoolereffectivenessvariationwithmassflowrateintheGT1241ACMwiththeelectricfan.

    Datapoints

    Figures

    4.1

    4.3

    have

    aone

    to

    one

    correspondence.

    TheACMintercoolereffectivenesswaslimitedbecauseofpoorelectricfanperformance. The

    heatexchangerperformancewasshowntohaveasignificantimpactonoverallACM

    performanceinSection2.7,sothiswasremediedinlatertestsbymanuallyregulating

    compressedairtopassoverthecoldsideoftheheatexchanger. However,tocontinuewith

    testingonschedule,thenextcompressorwasinstalledbeforetheheatexchangerperformance

    wasimproved. TheDARCOPhasapeakbecauseasthepressureratioacrosstheACMstartsat

    unityandincreases,boththeACMcompressorandturbinewillpassthroughtheirpeak

    efficiencies. TheDARcoolingcapacitywillincreaseuntilboththecompressorandturbinehave

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    44/231

    31

    passedtheirpeakefficienciesandbegintodeclineinperformanceasthepressureratioacross

    theACMisfurtherincreased.

    ThepeakdryairratedCOP,withthe70%primarycompressorefficiencyassumption,isonpar

    withaCOPofthetheoreticaloptimizationoftheACMfromQueen'sUniversity,Belfast[3],a

    COPof0.62. However,themaximumcoolingcapacitydoesnotoccuratthemaximumCOP;the

    dryairratedCOPfallstoapproximately0.48atthatpoint.

    4.2ResultsandDiscussionfromModifiedGT1244ShopAirTestStand

    TheinitialtestingoftheGT1244turbochargerusedthesameintercoolerfanassemblyasthe

    previoustesttohaveadirectcomparisonofasinglecomponentchangeinthesystem. The

    changeinthecompressorwheelandhousingdidnotchangethepeakdryairratedCOPofthe

    ACM,butitdidgreatlyexpandtheusefuloperatingrangeoftheACMandincreasethesystem

    coolingcapacity,pushingitclosertoonetonofcabincooling. ThiscanbeseeninFigures4.4

    4.5. Theperformanceimprovementsfromthecompressorwheelandhousingchangefromthe

    unmodifiedGT1241configurationareshownbelow. Theintercoolereffectivenessis

    approximatelythesameasintheunmodifiedGT1241testing,Figure4.6. Theintercoolerisstilla

    limitingfactor.However,withitsperformanceapproximatelythesameasintheGT1241ACM

    testing,theresultsstillshowarelativeimprovementofthe44mmcompressorwheeloverthe

    previous41mmcompressorwheel. Thedatapointswerecollectedsimultaneouslyduringthis

    testing,andeachpointcorrespondstothesamedatapointnumberintheotherplotsinFigure

    4.44.6.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    45/231

    32

    Figure4.4DryairratedCOPforthemodifiedGT1244turbocharger. DatapointsFigures4.44.5havea

    onetoonecorrespondence.

    Figure4.5DryairratedACMcoolingcapacity. DatapointsFigures4.44.5haveaonetoone

    correspondence.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    46/231

    33

    Figure4.6IntercoolereffectivenessvariationwithACMmassflowrateusingtheelectricfan. Datapoints

    Figures4.44.5haveaonetoonecorrespondence.

    Next,theintercoolercoldsideairflowproblemwasfixed. Thiswasachievedbyrouting

    manuallyregulatedcompressedairoverthecoldside. Theairflowoverthecoldsideofthe

    intercoolerwaskeptwithinreasonablelevelsthatcouldbeobtainedwithatypicalconfiguration

    seeninautomotiveapplications. Thiswasdeterminedtobeapproximately350CFM,andthis

    agreeswithvolumetricflowratesobservedinR134acondensers[9]. Basedonintercoolercold

    flowentrancearea,thisresultsinanaverageairvelocityofapproximately8.5ft/senteringthe

    faceoftheintercoolercore. Thisiseveneasiertoachievewhenthevehiclewouldbemoving.

    The

    results

    from

    the

    improved

    intercooler

    configuration

    can

    be

    seen

    below.

    The

    intercooler

    performanceincreaseimprovedbothACMCOPandDARcoolingcapacity,Figure4.74.8.The

    increaseinintercoolereffectivenesscanbeseeninFigure4.9. Thedatapointswerecollected

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    47/231

    34

    simultaneouslyduringthistesting,andeachpointcorrespondstothesamedatapointnumber

    intheotherplotsinFigure4.74.9.

    Figure4.7DryairratedCOPforthemodifiedGT1244turbocharger. DatapointsFigures4.74.9havea

    onetoonecorrespondence.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    48/231

    35

    Figure4.8DryairratedACMcoolingcapacity. DatapointsFigures4.74.9haveaonetoone

    correspondence.

    Figure4.9IntercoolereffectivenessvariationwithACMmassflowrate. DatapointsFigures4.74.9havea

    onetoonecorrespondence.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    49/231

    36

    TheACMintercoolerprovedtobeacriticalcomponentinoverallACMperformance. The

    improvedintercoolereffectivenessapproximatelydoubledthedryairratedCOPandcooling

    capacity.

    Thetheoreticalperformanceanalysiswasshowntobeagoodapproximationoftheactual

    performanceoftheACM. Theflowpredictionfromthecompressorturbinematchandthe

    turbinepressureratioflowprofileandactualflowconditionsareoverplottedonthe

    compressorperformancemapforthe44mmcompressorwheel. Atlowerpressureratios,all

    measurementsandcorrespondingpredictedvaluesagreewithin7%differenceorbetter. At

    higherpressure

    ratios

    across

    the

    ACM

    the

    dry

    air

    rated

    COP

    and

    DAR

    cooling

    capacity

    calculationsbothmatchedactualperformancewithinapproximately13%,butthemassflow

    ratedeviatesmore. Themassflowratedeviatesupto12%differencefromthemeasuredmass

    flowrate. Atthispoint,thepressureratioacrosstheACMisapproximately1.84. Theresultsof

    thecompressoroperatingpointscomparisoncanbeseeninFigure4.10. TheDARcooling

    capacityandDARCOPcomparisonsagreewellandareshowninTable4.2.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    50/231

    Si

    p

    b

    c

    li

    si

    a

    Figure4.10L

    ncetheoper

    erformance

    alancepoint

    mpletelocu

    iteddata,t

    mulationma

    ndEngineeri

    atchingpro

    cusoftheore

    ationofthe

    atacollecte

    couldbeob

    sofoperatin

    hepartofth

    tcheswell

    wi

    gEquationS

    essdescribe

    icalandactua

    CMplacedt

    bytheturb

    ained. Ifmo

    gpointscoul

    locusofop

    ththe

    experi

    olver(EES),

    inAppendi

    37

    loperatingpo

    heoperation

    chargerma

    recompone

    beobtaine

    ratingpoint

    mentaldata.

    setheequa

    C. Acompa

    intsoverplott

    oftheACM

    ufacturer,li

    tperforman

    withtheco

    thatwasob

    The

    compu

    ionsderived

    risonofthet

    edonGT1244

    attheouterl

    itedspeed,

    cedatawas

    mputersimu

    tainedfrom

    ersimulatio

    inAppendix

    heoreticalan

    compressor

    imitsof

    power,and

    vailable,a

    lation. Even

    hecompute

    s,in

    both

    M

    Bandthe

    dactual

    ap.

    ass

    ore

    with

    atlab

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    51/231

    38

    operationusingtheconditionsspecifiedinTable4.1resultsintheperformancepresentedin

    Table4.2.

    Table4.1OperatingConditionsforsinglepointcomparisonoftheoreticalandactualperformance.

    AmbientandOperatingConditions Value Units Uncertainty[+/]

    AmbientTemperature 531 [Deg.R] 1.7

    AmbientPressure 14.69 [psia] 0.02

    AmbientRelativeHumidity 0.4 [] 0.08

    ACMCompressorInletTemperature 526 [Deg.R] 1.7

    ACMCompressorInletPressure 26.95 [psia] 0.02

    ACMCompressorEfficiency 0.72 [] 0.02

    ACMCompressorOutletPressure 37.08 [psia] 0.02

    ACMIntercoolerEffectiveness 0.83 [] 0.04

    ACMIntercooler

    Pressure

    Drop

    0.3

    [psi]

    0.03

    ACMMassFlowRate 13.73 [lbm/min] 0.6

    ACMTurbineInletTemperature 536 [Deg.R] 1.7

    ACMTurbineEfficiency 0.56 [] 0.02

    Table4.2Resultsofsinglepointcomparisonoftheoreticalandactualperformance.

    PerformanceParameter

    Theoretical

    Operation

    Actual

    Operation Uncertainty[+/]

    COP,DryAirRated[] 0.61 0.64 0.04

    CoolingCapacity,DryAirRated[ton] 1.7 1.5 0.06

    4.3ResultsandDiscussionfromGT1244On-EngineTesting

    TheonenginetestingwaslimitedbecauseofabearingfailureintheACMturbocharger.

    However,oneoperatingpointwastestedbeforethefailureoccurred. Thetestingthatwas

    completedbeforefailurewasstillasuccesswithgoodperformance. TheCOPbasedonchange

    inbsfcandfuelflowratesindicatedaCOPof0.56,withacorresponding0.72tonsofcooling

    capacity. ThetheoreticaloptimizationoftheACMfromQueen'sUniversity,BelfasthadaCOPof

    0.62,whileactualperformancebeingmuchless[2,3]. Theiractualperformancenumberwas

    notstated,otherthanbeinglessthanexpected. TheCOPfortheonenginetestingforthis

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    52/231

    39

    projectisassumingtheACMisrunningatatimetheengine'sturbochargerwouldnothavebeen

    wastegating,otherwisetheCOPisessentiallyinfinitebecausethepotentialpowerwouldhave

    beenwastedintheturbinebypassfreeexpansionprocess.

    ThetestingconductedwiththeACMbeingpoweredbythePerkinsdiesel'sturbochargerhad

    reducedperformancefromtheshopairteststand. TheDARcoolingcapacitydecreasedfrom

    approximately0.90to0.72tons,andtheDARCOPdecreasedfromapproximately0.73to0.56

    forcorrespondingoperatingpointsoftheshopairtestingoftheGT1244andtheonengine

    testing. ThisisduetomuchhigherACMinlettemperaturescomingfromtheintakemanifoldof

    theengine.

    The

    on

    engine

    testing

    conditions

    represent

    real

    world

    operation

    more

    accurately

    thantheshopairteststand.

    4.4ComparisonofACMtoR134aSystemsThetargetcoolingcapacityfortheACMwasdeterminedbyobservingtheaveragecooling

    capacitybasedontheSandenperformancechartsoftheSD5H09R134asystemcompressors

    [AppendixH]. ThisperformancechartindicatesthecoolingcapacityofatypicalR134asystem

    usingtheSandencompressor. Thecoolingcapacitywillvarywithsuctionsuperheatand

    operatingpressures. TheaveragerangewasselectedfromtheSandencharttorepresentthe

    targetcoolingcapacity. Thisisapproximatelyonetonofcoolingcapacity(12000BTU/hr). The

    SandenperformancechartwasusedbecauseSandenisaworldwidemanufacturerof

    automotiveairconditioningcompressors,usedinalltypesofvehicles[10]andwouldcreatea

    goodapproximation

    of

    the

    cooling

    requirements

    for

    ahigh

    performance

    vehicle.

    While

    the

    GT1244ACMfellalittlebitshortofthecoolingcapacitygoal,theR134asystemsareprecharge

    pressureandenginespeedsensitive. Theiractualcapacityvariessomewhatandareseldom

    usedatfulldutycycleatalltimes(i.e.cabinfanspeedandtemperatureshutoffswitch).

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    53/231

    40

    ThesystemweightforatypicalR134asystemvariesbetween6075lbf1. TheACMsystem

    weightandestimatedbracketweightstotalsat40lbf. Thisisapproximatelya40%weight

    reduction. Thephysicalsizeandnumberofcomponentsofthesystemissmallerthancompared

    toR134aorFreonsystems[1].

    Table4.3ACMcomponentweightbreakdown.

    Component Weight[lbf]

    TurbochargerAssy. 10

    IntercoolerCore 10

    ICend

    caps

    4

    electricfan 5.6

    ducting 2.5

    Clamps 1

    siliconeconnectors 2

    Brackets(forvehicle) 5

    Total 40

    Anotheraspect

    of

    the

    ACM

    that

    differs

    from

    typical

    R134a

    air

    conditioning

    systems

    is

    that

    the

    ACMdoesnotalwaysinduceaparasiticlossontheenginecrankshaft,asopposedtoabelt

    drivenR134acompressor. ThiscanbeseenonaPvdiagramforafourstrokeengine.

    12008emailtoVintageAir;unreferenced

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    54/231

    41

    Figure4.11Pvdiagramforfourstrokegasolineengine.

    ThelowerlooponthePvdiagramisanindicatorofthepumpinglossesontheengine. The

    pumpinglossesaretheareaundertheexhaustlineminustheareaundertheintakelinein

    Figure4.11orFigure1.1. ItshouldbenotedthatinFigure1.1,theexhaustpressureisgreater

    thantheintakepressure. Apositivelowerlooplossistypicalofnaturallyaspiratedengines. In

    Figure4.11thenetpumpinglossesarenegative,indicatingthataforcedinductionsystemis

    creatingahigherengineintakemanifoldpressurethanexhaustbackpressure. Turningthe

    R134asystem

    compressor

    on

    will

    induce

    aload

    on

    the

    engine

    and

    always

    hurt

    engine

    performance. Ontheotherhand,aturbochargercanactuallycreateahigherintakepressure

    thanexhaustbackpressure. Thisisduetotheturbinerecoveringwastedexhaustheat,with

    someexhaustbackpressure,providingenoughworktothecompressortodeliverhigherthan

    exhaustpressurestotheengine'sintakemanifold. Thishelpstominimizeenginebsfc.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    55/231

    42

    4.5Conclusion

    TheshopairstandtestingsuccessfullydemonstratedthatanACMcanbedesignedaround

    automotiveturbochargercomponents. Theuseofautomotiveturbochargercomponentsis

    criticaltoreducingcostindevelopmentofcommercialsystemsforautomotiveuse. Anoffthe

    shelfturbochargercanbeusedincertainapplicationswithoutmodificationandprovide

    adequateperformance. ThetestingontheunmodifiedGT1241turbochargerindicatedapeak

    DARCOPofapproximately0.38,andaDARcoolingcapacityof0.45tons. Theperformancewas

    somewhatlimitedduetotheintercoolereffectivenessinitially,inthefirsttwoexperimentsof

    theGT1241andGT1244,beforetheheatexchangerissuewasremedied. Itisexpectedthatif

    theintercoolereffectivenesswasincreasedwiththisturbochargerconfiguration,the

    performancewouldbesignificantlyincreased,asseeninthemodifiedGT1244testing.

    TheGT1244wasoptimizedoverthebaselineGT1241turbocharger. TheACMturbineand

    compressorwereselectedfortheACMoperatingconditions,asopposedto thetypicalon

    engineapplicationtheseturbochargersarenormallyusedfor. Initially,thepeakDARCOPand

    DARcoolingcapacitywasapproximatelythesameasthebaselineGT1241configuration.

    However,evenwiththeintercoolerperformancebeinglimited,theoperatingrangewas

    significantlyincreased(Figure4.44.5). Oncetheintercoolereffectivenesswasincreasedby

    providingadequateairflowacrossthecoldsideoftheheatexchangercore,thepeakDARCOP

    reached0.73withapeakDARcoolingcapacityof1.5tons(Figure4.74.9). TheDARCOPfigures

    fortheshopairtestingweredeterminedbyassumingaprimarycompressorefficiencyof70%.

    Thisprimarycompressorefficiencyistypicalofmodernturbochargersinapplication. For

    reference,thecompressorusedfortheonenginetestinginthisprojecthasanisentropic

    efficiencyof70%,orgreateratthetargetboostpressureof11psig,overamassflowrangeof

    approximately1632lbm/min.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    56/231

    43

    Theonenginetestinghasshownthatanaircycleairconditioningsystemcanbeeffectivefor

    racingapplications,wherethereisplentyofopportunitytotakeadvantageoftimethatwould

    haveotherwisebeenspentwastegating. ThetestingperformedpriortotheACMthrust

    bearingfailureindicatedaDARCOPof0.56andDARcoolingcapacityof0.72tons. This

    operatingpointwasnotatfullboostpressureduetothelowerengineloadandspeedoperating

    pointinitiallytested,andthefullbenefitofthesetup,operationduringtypicalwastegating

    conditions,couldnotbetested.

    IncomparisontopreviousworkatQueen'sUniversity,Belfast,theACMinthisproject

    performedwell.

    The

    theoretical

    COP

    of

    the

    previous

    work

    was

    0.294

    [1,2].

    They

    performed

    a

    theoreticaloptimizationofthesamesystemwithanexpectedCOPof0.62. Thetheoretical

    optimizationusedcompressorandturbineefficienciesofstateoftheartcomponents.

    However,theirfinalresultsfromactualtestingwerenotpresentedotherthanashortstatement

    sayingthatfuelconsumptionoftheengineincreasedoverthreetimestheamountforthe

    vaporcompressioncycletheyimplementedaswell. Thegroupattributedthelessthan

    expectedperformancetoexcesslossesincomponentssuchastheACMbearingsandprimary

    compressorontheengine.

    IftheACMbearingfailurehadnotoccurred,thenextoperatingpointwouldhavebeenathigher

    loadandspeedtoprovideabettercomparisontothewastegatedturbochargeroperation. The

    operatingpointtestedcorrespondstoapointwherethestockturbochargerwasnotyetwaste

    gating.

    Thismeans

    that

    the

    boost

    pressure

    can

    be

    increased

    to

    the

    original

    limit,

    resulting

    in

    increasedcoolingcapacityduetoincreasedpressureratioacrosstheACM. Also,theeffectson

    engineperformancecanbedecreasedbecausetheACMwillbeconsumingasmallerfractionof

    theoverallengineairflow. Atlargerengineloadsandspeeds,thereissignificantexcessturbine

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    57/231

    44

    powerthatwouldnormallybelimitedbywastegateoperation. Factorsthatinfluenceturbine

    powerareturbinemassflowrate,exhaustgastemperature,andpressureratioacrossthe

    turbine. Bothturbinemassflowrateandexhaustgastemperaturetypicallyincreasewith

    engineloadandspeed. Withthisinmind,engineoperatingpointscorrespondingtowastegate

    operationareexpectedtohaveincreasedDARCOPfollowingtheproposeddefinitionof

    COPEffective inEqn. 2.2.

    Theengineturbochargermatchingcriteriahaspotentialtobefurtheroptimizedforspecific

    applications. ThiswillminimizeeffectsofACMoperationonengineperformance. Thenominal

    ACMmass

    flow

    rate

    relative

    to

    the

    engine

    mass

    flow

    rate

    at

    typical

    engine

    operating

    conditions

    isanimportantconsiderationbecausetoolargeofanACMandtheprimarycompressorwillnot

    beabletomaintaindesiredboostpressuresathighercombinedsystemmassflowrates. Theair

    flowtotheACMcanbethrottled,butthiswillreducethepotentialcoolingcapacityofanACM

    beingdesignedforthevehicle. WhilethrottlingtheACMmaybenecessaryissomeengine

    operatingconditions,itisnotoptimalforperformanceandshouldbeavoidedasmuchas

    possible.

    4.6FutureWork

    WhilethereisaconsiderableamountofworktostillbedoneindesigninganACMfor

    production,mostofitcanbeeasilyhandledbyaturbochargermanufacturer. Theconditions

    theACMturbochargercompressorisoperatinginaresimilartoasecondturboinaseries

    turbochargersetup

    used

    on

    modern

    diesel

    engines

    to

    more

    efficiently

    handle

    increased

    boost

    pressures. ThemainconsiderationisthebearingsystemfortheACM. Thebearingsystem

    experienceshigherthrustloadingbecauseitneedsalargercompressorwheelrelativetothe

    turbinewheel. Thisisbecausethecompressorinletseeshigherthanatmosphericpressures

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    58/231

    45

    whiletheturbinestillexitstoambientpressure,andwithalargercompressorwheel,thereis

    increasedareafortheinletpressuretoactupon. Stabilityoftherotatingassemblyisthefirst

    priority.However,thebearingsystemefficiencyisincreasinglycriticalinlowtemperature

    applicationsbecausethereislesspowerbeingtransmittedbytheshaft,andthesameamount

    ofbearingdragwillnowbealargerfractionofthepowertransmitted. Toincreasestabilityand

    decreasebearinglosses,magneticorairbearingsmaybeconsidered[5,7].

    TheACMturbochargercanoperateinasmallerrangethanatypicalonengineapplication,and

    thisallowsformoreoptimizationofthecompressorandturbinedesignsforhigherpeak

    efficiencyat

    the

    cost

    of

    usable

    mass

    flow

    rate

    range

    [8].

    Once

    aparticular

    application

    is

    well

    defined,thecompressorandturbinecanbedesignedtooperateinanarrowerrangethatis

    adequatefortheapplication. Thisrequiresaconsiderableamountofresearchanddevelopment

    andwouldonlybepracticalforlargerproductionquantities.

    Tocompletelyproveouttheconceptwithspecificpackagingrequirements,aninvehicle

    demonstrationwouldbeideal. Thetypeofvehiclecouldbeanythingperformanceoriented

    withamediumtolargeengine,duetotheminimizesizeofturbochargersavailableforACM

    design. TheturbochargerusedfortheACMinthisprojectisthesmallestcommerciallyavailable

    fromGarrettTurbochargers. Theinvehicledemonstrationwouldallowforanoperationduty

    cycletoberecordedandfacilitateinoptimizingtheengineturbocharger'scompressormatching

    process.

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    59/231

    46

    References

    1.Scofield,PaulC.(1949).AirCycleRefrigeration.RefrigeratingEngineers,57,[558563,611

    612].

    2.Spence,

    Stephen

    W.T.,

    Doran,

    W.

    John,

    &

    Artt,

    David

    W.

    (2004).

    Design,

    construction

    and

    testingofanaircyclerefrigerationsystemforroadtransport.InternationalJournalof

    Refrigeration,27,503510.

    3.Spence,StephenW.T.,Doran,W.John,Artt,DavidW.,&McCullough,G.(2005).Performance

    analysisofafeasibleaircyclerefrigerationsystemforroadtransport.International

    JournalofRefrigeration,28,381388.

    4.Arora,CP.(2000).Refrigerationandairconditioning.WestPatelNagar:TataMcGrawHill

    PublishingCompanyLimited.

    5.Murray,

    Charles

    J.

    (1994).Magnetic

    Bearing

    Improves

    Air

    Cycle

    Cooling

    Reliability.

    Design

    News, 49,8586.

    6.TurboTech101.Retrievedfrom

    http://www.turbobygarrett.com/turbobygarrett/tech_center/turbo_tech101.html

    7.Burgmeler,Lyman,&Poursaba,Matt(1994).CeramicHybridBearingsinAirCycleMachines.

    InternationalGasTurbineandAeroengineCongressandExposition,94GT393,19.

    8.DresserRand,Olean&WellsvilleOperations.(2006).RangeVersusEfficiencyADilemmafor

    CompressorDesignersandUsers[Brochure].Olean,NY:JamesM.Sorokes.

    9.Hosnoz,M.,&Direk,M.(2006).Performanceevaluationofanintegratedautomotiveair

    conditioningandheatpumpsystem.EnergyConversion&Management,47,545559.

    10.Retrievedfromwww.sanden.com

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    60/231

    47

    AppendixAUncertaintyAnalysis

    UncertaintyofadependentvariableF(x,y,z),ingeneralcanbecalculatedas:

    (Eqn.

    A.1)

    whereuFistheuncertaintyintheparameterofinterest,suchascompressorefficiency,andux,

    uy,anduzarethemeasurementuncertainties.

    TableA.1MeasurementUncertaintyBasedonCalibrationInstrumentation

    Measurement MeasurementUncertainty

    Pressure 0.02[psi]

    Temperature 1.7[Deg.F]

    VolumetricFlowRate approx.5[CFM]

    A.1CompressorEfficiency

    ThecompressorefficiencyuncertaintywascalculatedusingconditionsrepresentativeofACM

    operatingconditions. Indoingsosomeassumptionsarerequired. Itisassumedthecompressor

    andturbineefficiencyare70%andtheintercoolereffectivenessis70%.

    Thecompressorefficiencycanbecalculatedas:

    (Eqn.A.2)Thepartialderivatesarecalculated:

    (Eqn.A.3)

    (Eqn.A.4)

    (Eqn.A.5)

  • 8/2/2019 Development of an Air-cycle Environmental Control System for Auto

    61/231

    48

    (Eqn.A.6)Equations

    A.3

    6can

    be

    used

    to

    find

    the

    total

    uncertainty

    in

    efficiency

    by,

    1

    1

    (Eqn.A.7)

    Theresultsforuncertaintyincompressorefficiencyare:

    FigureA.1UncertaintyinACMcompressorefficiencyduringtypicaloperatingconditions.

    Theuncertaintygrowslargeatlowcompressorpressu