development of biomaterials & devices from renewable resources · development of biomaterials...

8
Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn Institute for Forest Utilization and Works Science Werthmannstrasse 6 79085 Freiburg im Breisgau Germany Contact: [email protected] [email protected]

Upload: others

Post on 27-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

Development of Biomaterials & Devices from Renewable Resources

Prof. Dr. Marie-Pierre Laborie

Dr. ir. Pieter Samyn

Institute for Forest Utilization and Works ScienceWerthmannstrasse 679085 Freiburg im Breisgau GermanyContact: [email protected]

[email protected]

Page 2: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

06.12.2010 2

Valorization of (woody) biomass into novel biocomposites and products for building, transportation, biomedicals, packaging, membranes, …

Cellulose whiskers in thermosetting phenolic structural adhesives1

Some Examples...

Crosslinked chitosan /

chitin nanocrystal membranes4

Ecological alternative coatings and barrier materials for textiles and packaging3

1 H. Liu, M.P. Laborie, Soc Wood Science and Technology, Geneva (2010).2 G. Siquiera, C. Frachini, J. Bras, A. Dufresne, M.P. Laborie, ACS Spring Meeting ,San Francisco (2010). 3 P. Samyn, G. Schoukens, D. Stanssens, L. Vonck, H. Van den Abbeele, Prog. Org. Coat 69 (2010), 442. 4 A.P. Mathew, M.P. Laborie, K. Oksman, Biomacromolecules 10 (2009), 1627.

Polycaprolactone Nanocomposites2

CNW MFC

Page 3: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

Tailoring

biomass to

fully bio-based

functional

materials

06.12.2010 3

Research Vision

WP‐4  SUSTAINABILITY  

Fundamental understanding of cell wall 

Progress in nanotech 

manipulation

Structure‐property  

relationships

Cellulose Microfibrils

Cellulose  Whiskers 

Lignin Nanospheres

Physico‐chemical interface control

Nanoscale adhesion control

Nanoscale hydrophobization &  functionalization

CHEMICAL SURFACE MODIFICATION

TOP‐DOWN SHAPE ENGINEERINGHemicellulose platelets

ACTIVE FUNCTIONAL DEVICES

FUNCTIONAL BIOPOLYMER NANOCOMPOSITE 

BIOPOLYMER MATRIX 

2D ‐ Electrospinning 2D‐Nano‐objectpositioning 

Exploitation of nano‐scale polymeric wood constituents

S E N S I N G

C O L O R I N G 

R E L E A S I N G 

C O N D U C T I N G

S E L F C L E A N I N G

S T A B I L I T Y

A D H E S I O N 

W E T T A B I L I T Y

1.3

mm

Extraction products 

Cellulose

Hemicellulose

Lignin

Water

10 µm

Page 4: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

Frequency

Temperature

06.12.2010 4

Fundamental understanding of the cell-wall

- Polymer physics models such as the cooperativity model work on wood

- No detectable difference in cooperativity for yellow-poplar and spruce

- Orientation has an impact on lignin Tg and intermolecular cooperativity:

orientation of lignin due to intimacy with cellulose microfibrils?

- Hot pressing wood influences the segmental relaxation of lignin

- Impregnation of phenolics in wood enhances cooperativity: IPN formation

- Correlate lignin structure and chemistry to its performance in the cell wall

- Biomechanics: understand the basis for performance in the cell wall

- Use Tg and cooperativity as tool to study wood variability

- Apply such models to hemicelluloses?

- Understand the impact of various treatments on the woody cell wall

Modelling the relaxation behaviour of wood:

What is next:

Laborie & al. 2005, Holzforschung Laborie 2005, in Characterization of the Cellulosic Cell Wall

 

n110

nc (T)τωn1(T)τ

What’s next:

Page 5: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

06.12.2010 5

Top-down shape engineering

- Novel “green-chemistry” procedures for extraction of nano-scale components from lignocellulosic biomass

- Link between forestry and biomass attributes

- Upgrading of pulp fiber rejects into nano-scale components

- Upgrading of by-products from pulping process (lignin, hemicellulose)

- Control of the morphology, dispersibility, stability depending on source and processing

x-

Chemical dissolution Mechanical Shear

+

Ionic liquids Homogenizer

Microfibrillated cellulose

Cellulose nanowhiskers

Lignin nano- spheres

Xylan platelets

Pulp fiber rejects Black liquor

Page 6: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

06.12.2010 6

Chemical surface modification

Plasma-surface modification and polymerization

Adhesive control

Hydrophobicity control & Functionalization

In-situ dry formation of (surface-active or responsive) micro- to nano- structured surfaces and composites.

Control of interactions near the functional hydroxyl groupsat micro- to nanoscale level.

Tailoring dispersibility, wettability and surface functionalities of constituents by hybrid nanoparticles replacing surfactants

and acting as release mechanisms.

- Control of dispersability

- Interfacial compatibility in biopolymer composites

- “Green” surface modification in aqueous or solvent-free media

Page 7: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

06.12.2010 7

Functional biocomposites and devices

Link local molecular processes and dynamics to macroscopic properties of biocomposites:

- Crystallization and cure kinetics modeling: effects surface chemistry, confinement

- Rheological modeling

- Molecular dynamics with relaxation studies, fragility, physical aging etc…

- Reinforcing and functional properties

New processing / manufacturing methods of cellulosic materials and devices

Can a cross-linked network of BC and fibrin provide elasticity and stiffness for blood vessels?

Gluteraldehyde treated BC and BC/Fibrin composite have tensile & creep properties that best mimic those of native blood vessels (E = 100- 150 GPa)

- Bottom-up assembly in 3D devices comprising nanocellulose and other

nano-objects

- Ink jet and printing technologies for the design of cellulose nanowhisker

devices

- Electrospinning of cellulose with other biopolymers

- Integrated production of BC with active compounds:

Page 8: Development of Biomaterials & Devices from Renewable Resources · Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn

06.12.2010 8

Instrumentation and equipment to develop...

Preparation of wood-based nanoscale objects- Refiner, reactors, high pressure homogeneizer

Processing equipment- Electrospinning- Mini extruder, mini injection molder - Hot press

Analytical characterization- DMA, DSC, TGA, Rheometer- FTIR, AFM

Thank you!