dhanasekaran, toxicology lett, 2014, 229, 349-356

Upload: danny-balanta

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    1/8

    Synthetic

    cathinones: A khat and mouse game

    Daniel P. Katz, Dwipayan Bhattacharya, Subhrajit Bhattacharya, Jack Deruiter,C. Randall Clark, Vishnu Suppiramaniam, Muralikrishnan Dhanasekaran*

    Department of Drug Discovery and Development, Auburn University, Auburn, AL 36830, USA

    H I G H L I G H T S

    Frequent chemical modications of synthetic designer drugs enable clandestine manufacturers to avoid governmental bans and promote widespread

    distribution.

    Comparable mechanisms of action between the synthetic cathinones and amphetamines are mainly attributed to the similarities in their chemicalstructures.

    The stimulatory effects of synthetic cathinones are engendered by elevations in synaptic catecholamine concentrations. The physical symptoms attributed to synthetic cathinones, observed in mammals, reects increased sympathomimetic and dopaminergic surge. If synthetic cathinones are designed carefully, they might denitely have a signicant therapeutic value.

    A R T I C L E I N F O

    Article history:

    Received 2 May 2014

    Received in revised form 9 June 2014

    Accepted 10 June 2014

    Available online 25 June 2014

    Keywords:

    Bath salts

    Synthetic cathinone

    Designer drug

    MDPV

    Stimulant

    Addiction

    A B S T R A C T

    The birth of the twenty rstcentury has provokeda substantial rise in the use of designer drugs, such as

    syntheticcathinones,because of a decrease in theavailabilityandpurityof otherdrugsof abuse.Thekhat

    plant or Catha edulis, contains cathinone, theparent compound. Synthetic cathinones are sold under the

    name bathsalts asa ploy to circumvent legislation frombanning theiruse. Constantmodicationof the

    chemical structure by covert laboratories allows manufacturers to stay one step ahead of the legal

    process. Currently, the widespread distribution of bath salts has negative consequences for law

    enforcement ofcials and public health resources. Comparable mechanisms of action, between the

    synthetic cathinones and amphetamine, cocaine, and MDMA are attributed to the similarities in their

    chemical structures. Synthetic cathinones potent stimulatory effects, coupled with their high abuse

    potential, and propensity for addiction demands additional pharmacological and toxicological

    evaluations for these existing and new designer drugs of abuse. If these drugs are designed carefully,

    they might also have a signicant therapeutic value.

    2014 Elsevier Ireland Ltd. All rights reserved.

    1. Introduction

    Synthetic cathinones, the active component in bath salts,

    have surfaced asapopularalternative toother illicitdrugsofabuse,

    such as cocaine, MDMA (ecstasy), and methamphetamine, due to

    their potent psychostimulant and empathogenic effects. Mephe-

    drone (4-methylmethcathinone), methylone (3,4-methylenediox-

    ymethcathinone), MDPV (3,4-methylenedioxypyrovalerone),

    3-FMC (3-uoromethcathinone), 4-FMC (4-uoromethcathinone),

    buphedrone (a-methylamino-butyrophenone), butylone (beta-

    keto-N-methyl-3,4-benzodioxyolybutanamine), methedrone

    (4-methoxymethcathinone), and naphyrone (naphthylpyrovaler-

    one) are a few synthetic cathinones, among others (Karila and

    Reynaud, 2011). Fig. 1 illustrates the structural modications of

    methcathinone that prouce several designer cathinones. The

    parent compound, cathinone, is found in the leaves of Catha edulis

    Forsk, the khat plant (Fig. 2). C. edulis was discovered in Yemen by

    Peter Forskal, an eighteenth century botanist (Feyissa and Kelly,

    2008). Cathinones stimulatory effects have been known for

    centuries, mostly prevalent in Middle Eastern countries ranging

    from SouthernAfrica to theArabian Peninsula (Krikorian,1984).As

    khat ages, cathinone undergoes rapid enzymatic degradation to

    cathineandnorephedrine, the inactivemetabolites (Al-Obaid et al.,

    1998). Exposure to heat or sunlight accelerates this degradative* Corresponding author.

    E-mail address: [email protected] (M. Dhanasekaran).

    http://dx.doi.org/10.1016/j.toxlet.2014.06.020

    0378-4274/ 2014 Elsevier Ireland Ltd. All rights reserved.

    Toxicology Letters 229 (2014) 349356

    Contents

    lists

    available

    at

    ScienceDirect

    Toxicology Letters

    journa l homepage: www.elsevier.com/locate/ toxlet

    mailto:[email protected]://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://www.sciencedirect.com/science/journal/03784274http://www.elsevier.com/locate/toxlethttp://www.elsevier.com/locate/toxlethttp://www.sciencedirect.com/science/journal/03784274http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.toxlet.2014.06.020&domain=pdf
  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    2/8

    process,

    therefore

    cultivators

    commonly

    wrap

    the

    leaves

    and

    shoots

    in

    banana

    peels

    to

    preserve

    freshness

    and

    moisture

    (Yousef

    et al., 1995). Users amass a large bolus of leaves and shoots to

    macerate against the lining of the cheek, for buccal absorption

    (Sawair

    et

    al.,

    2007).

    Absorption

    also

    occurs

    from

    the

    stomach

    and

    small

    intestine

    following

    the

    deglutition

    of

    discharged

    juices.

    In

    2006, an estimated 10 million people abuse khat worldwide(Rosenbaum et al., 2012).

    Aura, Bliss, Energy

    1, Hurricane

    Charlie, and

    White

    rush

    are

    common

    bath

    salt

    product

    names

    (Table

    1)

    intended

    to

    entice consumers, even though packages are clearly labeled not

    for human consumption (Shanks et al., 2012; Spiller et al., 2011;

    Ross

    et

    al.,

    2012).

    Bath

    salts are

    manufactured

    by

    surreptitious

    labs

    then

    sold

    on

    the

    internet

    and

    in

    legal

    retail

    outlets

    as

    incense,

    air fresheners, and plant food to evade the law, preventing

    legislation from outlawing these drugs (Vardakou et al., 2011).

    Frequent chemical modications of synthetic designer drugs

    enable

    manufacturers

    to

    avoid

    governmental

    bans

    and

    promote

    widespread distribution (Brandt et al., 2010; Shanks et al., 2012).

    Synthetic cathinone development paradoxically contradicts the

    ethical

    development

    of

    drugs.

    Drug

    development

    follows

    a

    distinct

    set

    of

    guidelines

    and

    steps:

    development

    of

    a

    lead

    compound,

    animal testing, pharmacokinetic studies, safety and efcacy

    studies, and human trials. A reversed development phenomenon

    occurs, in which bath salts are synthesized, packaged, distributed,and

    sold

    directly

    to

    the

    consumer

    (without

    FDA

    approval).

    Meanwhile, critical safety evaluations and other testing remain

    unassesseduntilwell after thedrughasbeenexposed to thepublic.

    Additional

    modications

    to

    new

    and

    existing

    synthetic

    cathinones

    will

    necessitate

    pharmacological

    and

    toxicological

    evaluations;

    therefore, this longstanding tortuous battle between synthetic

    chemists and the drug enforcement administration will remain an

    obstacle

    to

    conquering

    our

    war

    on

    drugs.

    2. Prevalence

    Cathinone

    derivatives

    began

    to

    appear

    rst

    in

    the

    European

    recreational

    drug

    market

    in

    the

    mid-

    2000s.

    At

    that

    time

    to

    2010,

    the most commonly encountered cathinones on the Europeanclandestine market were mephedrone, methylone, and MDPV.

    Since

    this

    time

    there

    have

    been

    more

    than

    5500

    drug

    seizures

    of

    MDPV

    in

    Europe,

    either

    in

    bulk

    form

    or

    solid

    dosage

    forms

    (tablets,

    capsules, powders), and 107 non-fatal intoxications and 99 deaths

    associated with this drug alone. Also since 2010 there have been

    increasing

    reports

    of

    more

    designer

    cathinone

    analogues

    in

    Europe,

    as

    well

    as

    their

    appearance

    in

    the

    US

    clandestine

    drug

    market.

    According to the American Association of Poison Control

    Centers,

    the

    number

    of

    closed

    human

    exposures

    regarding

    synthetic

    cathinones

    substantially

    increased

    from

    306

    to

    6137,

    in 2010 and 2011; respectively (aapcc, 2013). The drug abuse

    warning network (DAWN) reported that of the 2.5 million

    emergency

    department

    visits

    related

    to

    the

    misuse

    or

    abuse

    ofdrugs in 2011; 22,904 of these visits were due to bath salt

    exposure (DAWN, 2013). The 2011 rise in the abuse of bath salts

    became known as Americas new drug problem (Bath Salts Drug,

    2011). This surge in bath salt consumption is attributed to a

    decrease in the availability and purity of the more common drugs

    of abuse (caffeine,MDMA, cocaine). Illicitdrugmanufacturershave

    frugally resorted to cuttingMDMA with synthetic cathinones to

    dilute their purity (Brunt et al., 2011). The Netherlands observed a

    drop of MDMA potency in ecstasy tablets, from greater than 90% of

    tablets containing MDMA before 2009, to just below half being

    completely devoid of MDMA. Piperazine derivatives and meph-

    edrone were substituted for MDMA in these pseudo-ecstasy

    tablets (Brunt et al., 2011). Similarly, law enforcement ofcials in

    the

    UK

    reported

    a

    considerable

    decrease

    in

    the

    purity

    of

    cocaine,

    Fig. 1. Chemical structures of Synthetic Cathinones derived from Methcathinone.

    (Hanson, 2012), catching up with bath salts and spice. In: 08/01/2012.

    Fig. 2. Fresh leaves and shoots of the khat plant, Catha edulis Forsk.

    (Scottdouglas, 2013), Yemen-country of khat. http://www.suncoastrehabcenter.

    com/wp-content/uploads/2013/08/khat.jpg.

    Table 1

    Alternative product names for Bath Salts.

    (Show, 2011), alternate names for the bath salt drug [online]. http://www.

    doctoroz.com/videos/alternate-names-bath-salt-drug.

    Arctic blast Euphoria Red dove

    Bayou ivory ower Gold rush Route 69

    Bloom Hurricane Charlie Scarface

    Blue magic Ivory fresh Snow day

    Blue silk Ivory wave Tranquility

    Bolivian bath Lady bubbles Vanilla sky

    Bonsai

    winter

    boost

    Lunar

    wave

    White

    doveCloud 10 Mr. Nice guy White lightening

    Cloud 9 Mystic White rush

    Cotton cloud Ocean snow Wicked X

    Dynamite plus Pure white Zoom

    350 D.P. Katz et al./ Toxicology Letters 229 (2014) 349356

    http://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpghttp://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpghttp://www.doctoroz.com/videos/alternate-names-bath-salt-drughttp://www.doctoroz.com/videos/alternate-names-bath-salt-drughttp://www.doctoroz.com/videos/alternate-names-bath-salt-drughttp://www.doctoroz.com/videos/alternate-names-bath-salt-drughttp://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpghttp://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpg
  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    3/8

  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    4/8

    derivatives, such as MDPV which has a 3,4-methylenedioxyar-

    omatic ring, a pyrrolidine ring and propyl side chain are typically

    prepared by reacting a suitably ring substituted bromophenylal-

    kanone with pyrrolidine, giving rise to racemic products (Fig. 3B).

    The required substituted bromophenylalkanone intermediate is

    obtained

    by

    reaction

    of

    the

    appropriate

    phenylalkanone

    with

    bromine (Fig. 3B). The phenylalkanones can be prepared by

    sequential treatment of commercially available substituted benz-

    aldehyde (i.e., piperonal) with butylmagnesium bromide followed

    by

    oxidation

    with

    chromium

    reagents.

    Theb-ketophenethylaminemoiety is theunique feature amongall synthetic cathinones, imparting the structural and pharmaco-

    logical differences of methcathinone from methamphetamine and

    methylone

    from

    MDMA

    (Gibbons

    and

    Zloh,

    2010). The

    ketone

    attached to the beta carbon augments the polarity of the molecule,

    rendering the synthetic cathinones hydrophilic; hence, they are

    less able to cross the blood brain barrier (BBB) to produce

    psychostimulant

    effects

    (Gibbons

    and

    Zloh,

    2010). In

    fact,

    molecular

    modeling

    studies

    have

    shown

    cathinone

    log

    P

    values

    are one unit lower than their methyl-amphetamine complements

    (Gibbons and Zloh, 2010). Higher doses are required to produce

    equivalent

    effects

    accompanied

    by

    ineluctable

    side

    effects

    (Hill

    and

    Thomas,

    2011).

    On

    the

    other

    hand,

    the

    pyrrolidine

    derivatives

    3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylene-dioxy-alpha-pyrrolidinopropriophenone (MDPPP) display supe-

    rior

    lipophilicity

    with

    concomitant

    potency

    (Gibbons

    and

    Zloh,

    2010).

    The

    tertiary

    amino

    group

    in

    MDPV

    enables

    the

    molecule

    to

    be easily dissolved in organic solvents (caymanchem, 2014).

    The metabolism of methylone, ethylone, and butylone is

    initiated

    by

    phase

    I

    demethylation

    of

    the

    methylenedioxy

    ring,

    converting

    the

    parent

    drug

    to

    a

    catechol

    metabolite.

    This

    metabolite is then methylated by catechol O-methyltransferase

    (COMT) to produce the 40-hydroxy-30-methoxy or 30-hydroxy-40-

    methoxymethcathinone

    metabolites.

    The

    O-methylation

    metabo-

    lites undergo phase II partial conjugation, by glucuronides and

    sulfates, increasing the molecular weight and water solubility of

    the

    drug

    while

    yielding

    inactive

    metabolites

    for

    renal

    excretion

    (Zaitsu et al., 2009). Methylone, ethylone, and butylone may alsoundergo some N-demethylation and ketone reduction, but these

    appear to be minor pathways of metabolism for these drugs.

    Mephedrone

    undergoes

    metabolism

    by

    N-demethylation

    to

    a

    primary

    amine,

    ketone

    reduction

    to

    the

    corresponding

    alcohol,

    and

    toluyl methyl group oxidation to the alcohol. The alcohols formed

    from mephedrone oxidation are conjugated as glucuronides and

    sulfates

    and

    excreted

    (Meyer

    et

    al.,

    2010b).

    MDPV

    metabolism,

    in

    hepatocytes,

    begins

    with

    the

    opening

    of

    the

    methylenedioxy

    ring,

    the conversion to a catechol ring by demethylation, a methylation

    by COMT, and nally glucuronidation and sulfation, similar to that

    observed

    with

    other

    3,4-methylenedioxyphenyl

    cathinoes

    (i.e.,

    methylone)

    (Strano-Rossi

    et

    al.,

    2010). MDPV

    may

    also

    be

    metabolized by other oxidative pathways including hydroxylation.

    The

    cytochrome

    P450

    (CYP450)

    liver

    isoenzymes

    CYP2C19,CYP2D6,

    CYP2B6,

    and

    CYP1A2

    are

    enzymes

    implicated

    in

    the

    metabolism

    of

    synthetic

    cathinones

    (Meyer

    et

    al.,

    2010a).

    5. Detection

    Gas

    chromatography/mass

    spectrometry

    (GC/MS)

    or

    liquid

    chromatography/mass spectrometry (LC/MS) is essential for the

    identication and conrmation of synthetic cathinones. ELISA-

    based

    screening

    of

    synthetic

    cathinones

    is

    ineffective

    because

    the

    immunoassay

    may

    produce

    false

    positive

    screens

    for

    metham-

    phetamine (Torrance and Cooper, 2010). MDPV has also been

    shown to cross react with immunoassays creating false positives

    for

    phencyclidine

    (PCP)

    (Macher

    and

    Penders,

    2013). Rat

    studies

    show

    that

    methylone

    is

    thoroughly

    incorporated

    in

    hair

    while

    cathinone and methcathinone are inadequately incorporated

    (Kikura-Hanajiri et al., 2007). Drug testing laboratories must

    constantly create new methods for novel designer cathinones that

    can accurately quantify the levels of synthetic cathinones in urine,

    blood, and hair. Method development requires research, time, and

    man

    power

    that

    may

    hinder

    drug

    testing

    laboratories

    from

    keeping

    up to date testing.

    6. Pharmacology

    Analogous mechanisms of action between the synthetic

    cathinones and amphetamines are attributed to the similarities

    in their chemical structures (Prosser and Nelson, 2012). Fig. 4

    compares

    the

    structures

    of

    amphetamine

    and

    methamphetamine

    with the b-ketoamphetamines. The stimulatory effects of syn-thetic cathinones are engendered by elevations in synaptic

    catecholamine concentrations (Coppola and Mondola, 2012),

    primarily

    via

    two

    mechanisms.

    First,

    these

    molecules

    bind

    to

    and

    inhibit

    the

    monoamine

    uptake

    transporters

    for

    dopamine

    (DAT), norepinephrine (NET), and serotonin (SERT), diminishing

    their clearance from the synaptic cleft (Cozzi et al.,1999). Second,

    as

    substrate

    releasers,

    they

    exhibit

    non-exocytotic

    neurotransmit-

    ter

    release

    from

    intracellular

    stores

    by

    reversal

    of

    transporter

    ux

    and inhibiting the vesicular monoamine transport receptor(VMAT2) (Prosser and Nelson, 2012). MDMA has been suggested

    to

    compete

    for

    substrate

    binding

    sites

    on

    VMAT2,

    a

    proton-

    monoamine

    antiporter,

    as

    well

    as

    scattering

    intravesicular

    pH

    gradients mandatory for vesicular monoamine accumulation and

    transport (Rudnick and Wall, 1993; Sulzer and Rayport, 1990).

    Amphetamine

    binds

    to

    the

    trace

    amine

    associated

    receptor

    1

    (TAAR1),

    a

    G

    protein-coupled

    receptor,

    in

    the

    presynaptic

    neuron, diminishing dopamine receptor ring rate and activating

    protein kinase A and protein kinase C, then phosphorylating DAT.

    Phosphorylated

    DAT

    will

    reverse

    transporter

    ux

    or

    deposit

    neurotransmitter into the presynaptic neuron terminating trans-

    port (Miller, 2011). A PKC-modulated DAT internalization event

    reduces

    the

    number

    of

    dopamine

    transporters

    on

    the

    presynaptic

    membrane preventing the reuptake of dopamine (Xie and Miller,2009). Theb-ketoamphetaminesdisplay roughly a 10 fold reducedafnity for TAAR1 when compared to the non-b-ketoamphet-amines

    (Simmler

    et

    al.,

    2013).

    The

    relative

    selectivity

    of

    synthetic

    cathinones

    to

    inhibit

    monoamine transporters (DAT, NET, and SERT) and promote

    substrate release differentiates their effects on neurotransmission.

    Simmler

    et

    al.

    classies the

    synthetic

    cathinones

    into

    three

    groups

    depending

    on

    their

    potencies

    at

    the

    transporters

    and

    as

    substrate

    releasers. The cocaine-MDMA-mixed cathinones containing

    mephedrone, methylone, ethylone, butylone, and naphyrone all

    Fig. 4. Structural similarities of amphetamine and methamphetamine with their

    b-Keto

    equivalent.(Brock,

    2013),

    cathinones-illicit

    drugs.

    352 D.P. Katz et al./ Toxicology Letters 229 (2014) 349356

  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    5/8

    display nonselective monoamine uptake inhibition as well as

    MDMA-like5-HT release,barring naphyrone (Simmler et al.,2013).

    Their data illustrates that cocaine-MDMA-mixed cathinones

    display greater dopaminergic monoamine transport inhibition

    when compared to theirnon-b-ketone amphetamine counterparts(Simmler

    et

    al.,

    2013). The

    methamphetamine-like

    cathinones,

    including cathinone, methcathinone, and ephedrone, exert their

    effects as preferential catecholamine inhibitors and dopamine

    releasers (Simmler et al., 2013). Cozzi et al. states methcathinone

    and

    methylone

    are

    potent

    inhibitors

    of

    plasma

    membrane

    catecholamine transporters but have very limited effect on

    inhibiting VMAT2 (Cozzi et al., 1999). Pyrovalerone and MDPV,

    the pyrovaleronecathinones, are both potent and selective

    monoamine

    uptake

    inhibitors

    with

    no

    action

    as

    substrate

    releasers

    (Simmler et al., 2013).

    MDPV is a potent monoamine transporter inhibitor with

    relative potencies for DAT>NET>>SERT (Baumann et al., 2013b;

    Simmler

    et

    al.,

    2013), but

    is

    a

    feeble

    substrate

    releaser.

    The

    >100

    DAT/SERT

    inhibition

    ratio

    for

    MDPV

    trumps

    the

    methamphet-

    amine and cocaine ratio, >10 and 3.1, respectively (Simmler et al.,

    2013), revealing ahigh abuse potential (Baueret al.,2013). A recent

    study

    from

    Aarde

    et

    al.

    revealed

    that

    the

    amount

    of

    MDPV

    self-

    administered

    intravenously

    by

    lever

    presses

    in

    rats

    was

    far

    greater

    than that of methamphetamine (Aarde et al., 2013). Ratsunderwent lever press training in which 45mg pellets were

    delivered

    under

    a

    xed-ratio,

    that

    is,

    a

    one-press-per-reinforcer

    schedule

    (FR1).

    Additional

    testing

    to

    quantify

    the

    rats desire

    to

    redosewasmeasured by increasing the numberof leverpresses for

    a single infusion. Interestingly, the average numberof leverpresses

    for

    an

    infusion

    of

    methamphetamine

    was

    60,

    while

    MDPV

    showed

    a

    remarkable

    600

    lever

    presses,

    10

    times

    the

    amount

    of

    methamphetamine (Aarde et al., 2013). Some rats desire for

    redosing was so intense, a single infusion of MDPV was delivered

    after

    3000

    lever

    presses

    (Aarde

    et

    al.,

    2013). Excessive

    release

    of

    dopamine in the synapse plays a major role in feelings of pleasure,

    motivation, and satisfaction. Feelings of satisfaction become

    desired;

    therefore,

    repeated

    behaviors

    that

    cause

    the

    release

    of

    dopaminewill be favored. Increased dopaminergic transmission inlimbic nuclei, particularly from the ventral tegmental area to the

    nucleus accumbens (reward center), underlies the reinforcing

    effects

    of

    drugs

    of

    abuse.

    Previously,

    Watterson

    et

    al.

    proposed

    a

    dose-dependent

    decline

    in

    reward

    thresholds

    when

    MDPV

    was

    administered by intra-cranial self-stimulation (Watterson et al.,

    2012). Also, MDPV induced a greater extent of overall behavior

    when

    compared

    to

    methamphetamine,

    indicating

    a

    positive

    place

    preference

    and

    greater

    reward

    value

    (Aarde

    et

    al.,

    2013). The

    synthetic cathinones served as a reliable replacement for

    amphetamine and MDMA when administered to rats trained to

    distinguish

    between

    the

    two (Dal

    Cason

    et

    al.,

    1997).

    The

    prototypical

    change

    in

    behavior,

    in

    rats

    and

    mice,

    observed

    after psychomotor stimulant exposure, is a rise in locomotor

    activity,

    often

    linked

    to

    addiction

    (Calabrese,

    2008;

    Wise

    andBozarth,

    1987). Species

    specic hyperlocomotion

    is

    more

    favorable

    in

    Sprague-Dawley

    rats

    when

    compared

    to

    Wistar

    rats,

    during

    mephedrone exposure. Additionally, mephedrones rapid clear-

    ance strengthens the users tendency to redose, in a binge

    paradigm,

    when

    compared

    to

    MDMA

    (Kehr

    et

    al.,

    2011).

    MDPV

    is

    superior

    to

    mephedrone

    and

    methylone

    at

    inducing

    locomotor

    activity (Fantegrossi et al., 2013). The MDPV-treated rat wheel

    activity is two-phased, generating greater total rotations at

    reduced

    doses

    and

    fewer

    rotations

    at

    elevated

    doses,

    while

    mephedrone

    displays

    monophasic

    rises

    in

    wheel

    activity,

    as

    seen

    in MDMA (Huang et al., 2012). From our previous studies with

    MDMA-analogs,we reported thatMDMA and its structural analogs

    exhibited

    stimulatory

    activity

    as

    compared

    to

    amphetamines

    and

    their

    parent

    compound.

    MDMA

    and

    MDMA-analogs

    exhibited

    similar pharmacological activities such as enhanced reactive

    oxygen species generation and inhibition of mitochondrial

    complex-I activity. Thus, MDPV and its structural analogs also

    can induce similar pharmacological/toxicological activities due to

    their pharmacophore and structural resemblance (Karup-

    pagounder

    et

    al.,

    2014).

    Rat studies indicate that the activities of the monoamine

    biosynthetic enzymes, tyrosine hydroxylase, and tryptophan

    hydroxylase are greatly reduced following multiple methcathi-

    none

    administrations

    and

    consequentially

    the

    levels

    of

    dopamine,

    serotonin,and theirmetabolitesaredecreased in the frontal cortex,

    hippocampus, and neostriatum (Gygi et al., 1996; Sparago et al.,

    1996). As expected, striatal [3H] dopamine and hippocampal [3H]

    5-HT

    synaptosomal

    uptake

    are

    also

    reduced

    (Gygi

    et

    al.,

    1997).

    Gygi

    et al. revealed that dopamine and serotonin tissue concentrations

    are depleted for 30 days after administration. The selective D1

    antagonist and selective D2 antagonist, SCH23390, and eticlopride,

    respectively,

    prevented

    a

    decrease

    in

    tyrosine

    hydroxylase

    activity

    but

    had

    no

    effect

    on

    tryptophan

    hydroxylase

    (Gygi

    et

    al.,

    1997).

    Den Hollander et al. reported a signicant reduction in the rate

    of spontaneous alternations with mephedrone-treated mice when

    compared

    to

    saline-treated

    mice

    in

    the

    T-maze,

    a

    test

    for

    measuring

    the

    willingness

    of

    rodents

    to

    explore

    a

    new

    environ-

    ment, suggesting detrimental effects on spatial working memory,whereas methylone-treated mice exhibited no changes when

    compared

    to

    the

    saline

    control

    (Den

    Hollander

    et

    al.,

    2013).

    The

    reduction

    in

    spontaneous

    alternations

    refers

    to

    the

    rat

    showing

    less of a tendency to explore a previously visited arm. Additionally,

    Morris water maze tests revealed no correlation between drug

    treatment

    and

    the

    capacity

    for

    mice

    to

    escape

    opaque

    water

    by

    learning

    the

    location

    of

    the

    hidden

    platform

    in

    a

    large

    circular

    pool,

    indicating no effect on long term spacial learning and memory

    (Den Hollander et al., 2013). Binge mephedrone administration in

    rats,

    ensued

    by

    5

    weeks

    of

    abstinence,

    spawned

    deterioration

    in

    novel object recognition, hinderingmemory performance (Motbey

    et al., 2012). The regulation of body temperature is dependent on

    the

    recurrence

    of

    exposure.

    Hypothermia

    is

    observed

    in

    rats

    during

    acute exposure of mephedrone (Miller et al., 2013; Shortall et al.,2013) while repeated binge administration, in rats and mice,

    results in hyperthermia (Angoa-Perez et al., 2012; Baumann et al.,

    2012).

    Elevated

    temperatures

    lead

    to

    hyperthermia

    during

    acute

    exposure

    to

    MDPV,

    while

    ambient

    temperatures

    provide

    no

    change

    in body temperature (Fantegrossi et al., 2013). Administration of

    high doses of mephedrone to group-housed rats depleted brain

    serotonin

    levels

    (Hadlock

    et

    al.,

    2011),

    while

    binge

    dosing

    to

    single

    housed

    rats

    produced

    no

    long

    term

    effects

    on

    neurotransmitter

    levels (Baumann et al., 2012), indicating a populated environment,

    such as night clubs, may worsen adverse effects (Baumann et al.,

    2013a).

    The

    physical

    symptoms

    of

    synthetic

    cathinones,

    observed

    in

    humans, reects increased sympathomimetic surge, including:

    tachycardia,

    hypertension,

    hyperthermia,

    diaphoresis,

    seizures,tremors,

    mydriasis,

    rhabdomyolysis,

    and

    emesis.

    Users

    also

    report

    panic

    attacks,

    insomnia,

    nausea,

    headache,

    dizziness,

    confusion,

    anhedonia, suicidal thoughts, paranoia, panic attacks, psychosis,

    anorexia, kidney damage, hyponatremia, chest pain, S-T segment

    alterations,

    trismus,

    bruxism,

    abdominal

    pain,

    tolerance,

    and

    dependence(Winstock

    et

    al.,

    2010;

    Borek

    and

    Holstege,

    2012;

    Durham, 2011; Penders and Gestring, 2011; Regan et al., 2011;

    Drugs-forum, 2014). The effects of synthetic cathinones on

    different

    organ

    systems

    are

    listed

    in

    Table

    2.

    An

    outstanding

    toxidrome,

    resulting

    in

    severe

    intoxication

    delirium, due to bath salt ingestion, occurred after an admitted

    patient to the ER, was found at his home suffering from severe

    hallucinations

    (Kasick

    et

    al.,

    2012).

    Outside

    the

    ER,

    the

    patient

    showed

    typical

    physical

    signs

    of

    bath

    salt

    consumption

    including

    D.P. Katz et al./ Toxicology Letters 229 (2014) 349356 353

  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    6/8

    tachycardia, hyperthermia, and premature ventricular contrac-

    tions (Kasick et al., 2012). Overdosing on bath salts will lead to

    violence, homicidal combative behavior, self-mutilation, coma,

    and death. Cases have resulted in users lacerating themselves with

    knives and assaulting relatives (Ross et al., 2012). Thus, synthetic

    cathinones have been linked to several deaths. One occurrence

    brought about excited delirium syndrome (ExDS), from MDPV

    consumption (Murray et al., 2012), which spurred an overdose and

    superuousmonoaminergicneurotransmission (Mash et al., 2009;

    Ruttenber

    et

    al.,

    1997).

    This

    40-year-old

    man

    had

    ceased

    his

    cocaineuse and switched to bath salts. Afterexposurehe showedaggression, acted uncontrollably, became delusional, removed his

    raiment, and ran out in public. The man resisted arrest, displaying

    superhuman

    strength

    and

    violent

    behavior

    (Murray

    et

    al.,

    2012).

    Excited delirium syndrome symptoms include delirium, agitation,

    hyperthermia, tachycardia, a period of conceding defeat, and

    cardiac arrest (Takeuchi et al.,2011). This case hasbeen reported as

    the

    rst

    death

    due

    to

    MDPV

    consumption

    (Murray

    et

    al.,

    2012).

    More

    deaths

    can

    be

    expected

    to

    follow,

    so

    expanding

    our

    knowledge on the symptoms associated with bath salt induced

    deaths will assist emergency physicians and toxicologists on the

    diagnosis

    and

    treatment

    of

    poisoned

    individuals.

    At

    present

    there

    are

    no

    published

    studies

    detailing

    the

    addictive

    potential or withdrawal syndromes associated with synthetic

    cathinone use. However, in one British survey over 50% ofmephedrone

    users

    reported

    that

    they

    considered

    the

    drug

    to

    be

    addictive,

    and

    in

    another

    survey

    nearly

    half

    of

    the

    mephedrone

    uses reported continuous use for more than 48h. Furthermore,

    over 30% reported having more than three of the diagnostic and

    statistical

    manual

    IV

    criteria

    for

    dependence

    including

    increased

    tolerance, continuing to takedespitehavingproblemswithuse and

    impaired control of use.

    Therapeutic uses of synthetic cathinones are scant, but a few

    have been documented. Bupropion, a ring substituted cathinone, is

    prescribed as an antidepressant and as a smoking-cessation aid

    (EMCDDA, 2010). Amfepramone and pyrovalerone are antiquated,

    but were once used as anorectics (EMCDDA, 2010). MDPVs

    notorious amphetamine and cocaine-like effectsobserved at larger

    doses are correlated with mild stimulatory effects at small doses,

    similar

    to

    methylphenidate

    (Ritalin),

    which

    boosts

    concentration,

    alertness, socialization and sexual performance (Erowid, 2011).Future probable structural congeners of synthetic cathinones may

    display therapeutic potential by increasing stimulant activity via

    sympathetic

    neurotransmission,

    reducing

    the

    abuse

    potential,

    and

    minimizing any adverse effects. Structural congeners must also be

    avoided because they exacerbate disease states, very much a ip

    of a coin. Table 3 lists several disease states in which bath salts

    may

    provide

    therapeutic

    potential

    or

    may

    be

    harmful

    to

    the

    user.

    7. Conclusion

    Drug

    abuse

    is

    a

    severe

    complication

    contributing

    to

    the

    downward

    spiral

    of

    populations

    worldwide.

    The

    abuse

    of

    drugs

    remains of great concern due to its detrimental effects on law

    enforcement ofcials and public health resources. The neurotoxicmechanisms

    of

    bath

    salts

    are

    not

    very

    clearly

    established

    compared

    to

    other

    drugs

    of

    abuse.

    Therefore,

    understanding

    the

    molecular mechanisms mediating the insults of bath salts is of

    immense importance for international public health. Clandestine

    bath

    salt

    manufacturers

    will

    continue

    to

    synthesize

    new

    analogues,

    while

    relying

    on

    downtime,

    before

    legislation

    can

    schedule and ban the new designer drugs of abuse. Manufacturers

    will participate in this circuitous cat and mouse game for the

    foreseeable

    future.

    A

    coordinated

    multi-pronged

    approach,

    be-

    tween

    the

    medicinal

    chemist,

    pharmacologist,

    and

    toxicologist

    is

    crucial for determining potential drug candidates operating by

    similar or distinct mechanisms of action to those of well-

    established

    drugs.

    Predicting

    efcacious

    synthetic

    cathinones

    and

    performing

    pharmacological

    testing,

    before

    their

    release

    intosociety, will obviate the strung out legal process drug manufac-

    turers depend on. Hence, additional research is essential for

    understanding

    and

    elucidating

    the

    pharmacological/toxicological

    proles of bath salts needed to raise public awareness on the

    dangers and potential therapies of synthetic cathinones.

    Conict

    of

    interest

    The authors declare that there are no conicts of interest.

    Transparency

    document

    The Transparency document associated with this article can be

    found

    in

    the

    online

    version.

    Table 2

    Effects of bath salts/MDPV-analogues.

    Organ system Actions of cathinones

    Central nervous system Euphoria, hallucination, delirium, anxiety, anoxic brain injury

    Opthalmic system Mydriasis, blurred vision, nystagmus

    Cardiovascular system Tachycardia, cardiac arrest, coagulopathy

    Pulmonary system Respiratory arrest, acidosis

    Gastroirtestinal system Loss of appetite, nausea, emisis

    Renal system Renal failure, CPK elevation, hypovolemia

    Hepatic

    system

    HepatotoxicityReproductive system Increase sexual drive

    Skeletal muscle Rhabdomylosis, muscle pain

    Others Hyperthermia, bone pain, Necrotizing fascitis, Serotonin syndrome

    Table 3

    Therapeutic potential/contraindications of disease states with synthetic cath-

    inones.

    Therapeutic potential Contraindicated

    ADHD Anxiety

    Appetite suppressant Arrythmia

    Analeptic Epilepsy

    Bradycardia glaucoma

    Benign prostatic Hiccups

    Hyperplasia Hypertension

    Bulimia Induce cardiac arrest

    Cardiac stimulant Insomnia

    Chronic fatigue syndrome Migraine

    Depression Pheochromocytoma

    Horners syndrome PTSD

    Hyperkalemia Tachycardia

    Induce childbirth Tremors

    Nervosa

    Narcolepsy

    Miosis

    Orthostatic hypotension

    Sexual dysfunction

    Shock

    Syncope

    354 D.P. Katz et al./ Toxicology Letters 229 (2014) 349356

  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    7/8

    http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0215http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0215http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0215http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0210http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0210http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0210http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0205http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0205http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0205http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0205http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0205http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0200http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0200http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0200http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0195http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0195http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0195http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0195http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0195http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0190http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0190http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0190http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0190http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0190http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0185http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0185http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0185http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0180http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0180http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0175http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0175http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0175http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0170http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0170http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0165http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0165http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0165http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0165http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0160http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0160http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0160http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0160http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0155http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0155http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0155http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0150http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0150http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0150http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0145http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0145http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0140http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0140http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0140http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0140http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0135http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0135http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0120http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0120http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0120http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0120http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0115http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0115http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0115http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0115http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0110http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0110http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0110http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0105http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0105http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0100http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0100http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0095http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0095http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0095http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0095http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0090http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0090http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0085http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0085http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0085http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0085http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0075http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0075http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0075http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0070http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0070http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0070http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0070http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0065http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0065http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0065http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0060http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0060http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0060http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0055http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0055http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0055http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0045http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0045http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0045http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0040http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0040http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0040http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0035http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0035http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0035http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0035http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0030http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0030http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0025http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0025http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0025http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0025http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0015http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0015http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0015http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0015http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0015http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0010http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0010http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0010http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0005http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0005http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0005http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0005
  • 8/10/2019 Dhanasekaran, Toxicology Lett, 2014, 229, 349-356

    8/8

    Penders, T.M., Gestring, R., 2011. Hallucinatory delirium following use of MDPV:bath salts. Gen. Hosp. Psychiatry 33 (5), 525526 doi:http://dx.doi.org/10.1016/j.genhosppsych.2011.05.014 Case Reports.

    Prosser, J.M., Nelson, L.S., 2012. The toxicology of bath salts: a review of syntheticcathinones. J. Med. Toxicol. 8 (1), 3342 doi:http://dx.doi.org/10.1007/s13181-011-0193-z Review.

    Regan, L., Mitchelson, M., Macdonald, C., 2011. Mephedrone toxicity in a Scottishemergency department. Emerg. Med. J. 28 (12), 10551058 doi:http://dx.doi.org/10.1136/emj.2010.103093 Review.

    Rosenbaum, C.D., Carreiro, S.P., Babu, K.M., 2012. Here today, gone tomorrow andback again? A review of herbal marijuana alternatives (K2, Spice), synthetic

    cathinones

    (bath

    salts),

    kratom,

    Salvia

    divinorum,

    methoxetamine,

    andpiperazines J. Med. Toxicol. 8 (1), 1532 doi:http://dx.doi.org/10.1007/s13181-011-0202-2 Review.

    Ross, E.A., Reiseld, G.M., Watson, M.C., Chronister, C.W., Goldberger, B.A., 2012.Psychoactive bath salts intoxicationwithmethylenedioxypyrovalerone. Am.J.Med. 125 (9), 854858 doi:http://dx.doi.org/10.1016/j.amjmed.2012.02.019Review.

    Rudnick, G., Wall, S.C., 1993. Non-neurotoxic amphetamine derivatives releaseserotonin through serotonin transporters. Mol. Pharmacol. 43 (2), 271276 InVitro Research Support, Non-U.S. Govt Research Support, U.S. Govt, P.H.S.

    Ruttenber, A.J., Lawler-Heavner, J., Yin, M.,Wetli, C.V., Hearn, W.L., Mash, D.C.,1997.Fatal excited delirium following cocaine use: epidemiologic ndings providenew evidence for mechanisms of cocaine toxicity. J. Forensic Sci. 42 (1), 2531Research Support, U.S. Govt, P.H.S.

    Sawair, F.A., Al-Mutwakel, A., Al-Eryani, K., Al-Surhy, A., Maruyama, S., Cheng, J.,Saku, T., 2007. High relative frequency of oral squamous cell carcinoma inYemen: qat and tobacco chewing as its aetiological background. Int.J. Environ.Health Res. 17 (3), 185195 doi:http://dx.doi.org/10.1080/09603120701254813Research Support, Non-U.S. Govt.

    Scottdouglas,J., 2013. Fresh leaves and shoots of the khat plant, Catha edulis ForskYemen- country of khat. http://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpg.

    Shanks, K.G., Dahn, T., Behonick, G., Terrell, A., 2012. Analysis of rst and secondgeneration legal highs for synthetic cannabinoids and synthetic stimulants byultra-performance liquid chromatography and time of ight mass spectrome-try. J. Anal. Toxicol. 36 (6), 360371 doi:http://dx.doi.org/10.1093/jat/bks047.

    Shortall, S.E.,Macerola,A.E., Swaby, R.T., Jayson, R., Korsah, C., Pillidge,K.E., King,M.V., 2013. Behavioural and neurochemical comparison of chronic intermittentcathinone, mephedrone and MDMA administration to the rat. Eur. Neuro-psychopharmacol. 23 (9), 10851095 doi:http://dx.doi.org/10.1016/j.euro-neuro.2012.09.005 Research Support, Non-U.S. Govt.

    Show, T.D.O., 2011. Alternative product names for bath salts. Alternate names forthe bath salt drug [Online]. http://www.doctoroz.com/videos/alternate-names-bath-salt-drug.

    Simmler, L.D., Buser, T.A., Donzelli, M., Schramm, Y., Dieu, L.H., Huwyler, J., Liechti,M.E., 2013. Pharmacological characterization of designer cathinones in vitro. Br.J. Pharmacol. 168 (2), 458470 doi:http://dx.doi.org/10.1111/j.1476-

    5381.2012.02145.x

    Research

    Support,

    Non-U.S.

    Gov

    t.Sparago, M.,Wlos,J., Yuan, J.,Hatzidimitriou,G., Tolliver,J.,Dal Cason, T.A., Ricaurte,G., 1996. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. J.Pharmacol. Exp. Ther. 279 (2), 10431052 Research Support, U.S. Gov't, P.H.S.

    Spiller, H.A., Ryan, M.L., Weston, R.G., Jansen, J., 2011. Clinical experience with andanalytical conrmation of bath salts and legal highs (synthetic cathinones)

    in the United States. Clin. Toxicol. (Phila) 49 (6), 499505 doi:http://dx.doi.org/10.3109/15563650.2011.590812.

    Strano-Rossi, S., Cadwallader, A.B., de la Torre, X., Botre, F., 2010. Toxicologicaldetermination and in vitro metabolism of the designer drug methylenediox-ypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquidchromatography/quadrupole time-of-ight mass spectrometry. Rapid Com-mun. Mass Spectrom. 24 (18), 27062714 doi:http://dx.doi.org/10.1002/rcm.4692.

    Sulzer, D., Rayport, S., 1990. Amphetamine and other psychostimulants reduce pHgradients in midbrain dopaminergic neurons and chromafn granules: amechanism of action. Neuron 5 (6), 797808 Research Support, Non-U.S. Gov't

    Research

    Support,

    U.S.

    Gov't,

    P.H.S.Takeuchi, A., Ahern, T.L., Henderson, S.O., 2011. Excited delirium. West. J. Emerg.

    Med. 12 (1), 7783.Torrance, H., Cooper, G., 2010. The detection of mephedrone (4-methylmethcathi-

    none) in 4 fatalities in Scotland. Forensic Sci. Int. 202 (1-3), e62e63 doi:http://dx.doi.org/10.1016/j.forsciint.2010.07.014 Letter.

    Vardakou, I., Pistos, C., Spiliopoulou, C., 2011. Drugs for youth via Internet and theexample of mephedrone. Toxicol. Lett. 201 (3), 191195 doi:http://dx.doi.org/10.1016/j.toxlet.2010.12.014 Case Reports Review.

    Watterson, L.R., Kufahl, P.R., Nemirovsky, N.E., Sewalia, K., Grabenauer, M., Thomas,B.F., Olive, M.F., 2012. Potent rewarding and reinforcing effects of the syntheticcathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict. Biol. doi:http://dx.doi.org/10.1111/j.1369-1600.2012.00474.x.

    Winstock,A.,Mitcheson, L.,Marsden, J., 2010.Mephedrone: still available and twicetheprice. Lancet376 (9752),1537doi:http://dx.doi.org/10.1016/S0140-6736(10)62021-1 Letter.

    Wise, R.A., Bozarth, M.A., 1987. A psychomotor stimulant theory of addiction.Psychol. Rev. 94 (4), 469492 doi:http://dx.doi.org/10.1037/0033-295x.94.4.469.

    Xie, Z., Miller, G.M., 2009. Trace amine-associated receptor 1 as a monoaminergicmodulator in brain. Biochem. Pharmacol. 78 (9), 10951104 doi:http://dx.doi.org/10.1016/j.bcp.2009.05.031 Research Support, N.I.H., Extramural.

    Yousef, G., Huq, Z., Lambert, T., 1995. Khat chewing as a cause of psychosis. Br. J.Hosp. Med. 54 (7), 322326 Case Reports.

    Zaitsu, K., Katagi, M., Kamata, H.T., Kamata, T., Shima, N., Miki, A., Mori, Y., 2009.Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci. Int. 188 (1-3), 131139 doi:http://dx.doi.org/10.1016/j.forsciint.2009.04.001 .

    Further reading

    http://www.aapcc.s3.amazonaws.com/les/library/Bath_Salts_Web_Data_-through_12.2013_3 pdf (visited January 17, 2014).

    http://www.bathsaltsdrug.blogspot.com/2011/04/americas-new-drug-problem-snorting-bath.html (visited April 25, 2014).

    http://www.caymanchem.com/pdfs/10624 pdf (visited February 16, 2014).http://www.drugs-forum.com (visited January 28, 2014).http://www.emcdda.europa.eu/online/annual-report/2010/boxes/p92 (April 25,

    2014).http://www.erowid.org/experiences/subs/exp_MDPV.shtml (January 28, 2014).http://www.justice.gov/dea/druginfo/ds.shtml (visited April 25, 2014).http://www.samhsa.gov/data/spotlight/spot117-bath-salts-2013 pdf (visited April

    25, 2014).

    356 D.P. Katz et al./ Toxicology Letters 229 (2014) 349356

    http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0225http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0230http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0235http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0240http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://dx.doi.org/10.1016/j.toxlet.2014.06.020http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0245http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0250http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0255http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0260http://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpghttp://www.suncoastrehabcenter.com/wp-content/uploads/2013/08/khat.jpghttp://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.elsevier.com/S0378-4274(14)00265-3/sbref0270http://refhub.e