diatomic molecules: potential curvesthe 60 transition metal (tm) diatomic molecules mean absolute...

45
Francisco B. C. Machado , Rene Felipe Keidel Spada Instituto Tecnológico de Aeronáutica , SP, Brazil DIATOMIC MOLECULES: POTENTIAL CURVES Web page: http://www.univie.ac.at/columbus

Upload: others

Post on 11-Jun-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Francisco B. C. Machado, Rene Felipe Keidel SpadaInstituto Tecnológico de Aeronáutica , SP, Brazil

DIATOMIC MOLECULES:

POTENTIAL CURVES

Web page: http://www.univie.ac.at/columbus

Page 2: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

1 1

N MA

i A iA

Z

r= =

−1

1N N

i j i ijr=

+H =

2

1

1

2

M

A

A=

− 1 1

M MA B

A B AB

Z Z

R=

+

Nuclear kinetic energy Nuclear-nuclear repulsion

Electron kinetic energyElectron-Electron repulsion

Electron-nuclear attraction

2

1

1

2

N

i

i=

H E =

Hamiltonian Operator

Page 3: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

( , ) ( ; ) ( )ele nucr R r R R =

Eletronic Spectra

Vibracional Spectra

Rotational Spectra

( )nuc R

( ; )ele r R

Born-Oppenheimer Approximation

Page 4: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

1 1

N MA

i A iA

Z

r= =

−1

1N N

i j i ijr=

+ˆele

H =2

1

1

2

N

i

i=

ˆ ( ; ) ( ) ( ; )ele ele ele eleH r R E R r R =

ˆ ( ) ( )nuc nuc nucH R E R =

ˆnuc

H = 2

1 1 1 1

1 1

2

N N N N MA

i

i i j i i Aij iA

Z

r r= = = =

− + − +

2

1

1

2

M

A

A=

− 1 1

M MA B

A B AB

Z Z

R=

+

I)

II)

Page 5: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

2 3 4 5 6 7 8 9 10 11-1663,92

-1663,90

-1663,88

-1663,86

-1663,84

-1663,82

-1663,80

-1663,78

-1663,76

R (a0)

E(R

) (u

.a)

2 3 4 5 6 7 8 9 10 11-1663,92

-1663,90

-1663,88

-1663,86

-1663,84

-1663,82

-1663,80

-1663,78

-1663,76

R (a0)

E(R

) (u

.a)

<∆E0<∆E0

∆E0

∆E0

Page 6: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Hydrogen Molecule (H2):

5

R (Å)

E(R

) (u

.a)

0,74

1 2 1 2( , )x x X X =eR R 1 2(1 ') (1 '')jX C s C s= +

1 1(1 ') 0(1 '')X s s +

2 0(1 ') 1(1 '')X s s +

1 2 1 2( , )x x X X =1 2(1 ') (1 '')jX C s C s= +

1

1(1 ') (1 '')

2X s s +

2

1(1 ') (1 '')

2X s s −

5

R (Å)

E(R

) (u

.a)

0,74

eR R

Page 7: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Hydrogen Molecule (H2):

5

R (Å)

E(R

) (u

.a)

0,74

1 2 1 2( , )x x X X =eR R 1 2(1 ') (1 '')jX C s C s= +

1 1(1 ') 0(1 '')X s s +

2 0(1 ') 1(1 '')X s s +

1 2 1 2( , )x x X X =1 2(1 ') (1 '')jX C s C s= +

1

1(1 ') (1 '')

2X s s +

2

1(1 ') (1 '')

2X s s −

5

R (Å)

E(R

) (u

.a)

0,74

eR R

Page 8: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Hydrogen Molecule (H2):

5

R (Å)

E(R

) (u

.a)

0,74

1 2 1 2( , )x x X X =eR R 1 2(1 ') (1 '')jX C s C s= +

1 1(1 ') 0(1 '')X s s +

2 0(1 ') 1(1 '')X s s +

1 2 1 2( , )x x X X =1 2(1 ') (1 '')jX C s C s= +

1

1(1 ') (1 '')

2X s s +

2

1(1 ') (1 '')

2X s s −

eR R

E

Re R>>Re

Page 9: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Multireference Methods

➢In Re Hartree-Fock ≈ 99% Eexact

➢Erro ≈1% ≈ 1 eV ≈ 100 kJ/mol ≈ 25 kcal/mol

➢Chemical bond ≈ 1 eV ≈ 100kJ/mol ≈ 25 kcal/mol

(energy difference)

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑒𝑥𝑎𝑐𝑡 − 𝐸𝐻𝐹

Correlation energy

Page 10: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Multireference Methods

• Separation of the whole calculation into two steps: (i) areference configuration set describing the most relevant part(quasi-degeneracies, nondynamic or static electroncorrelation), using the multiconfiguration self consistent field(MCSCF) method and (ii) configuration interaction (CI) withall single and double excitations (dynamic electroncorrelation) – MR-CISD

• Size extensivity corrections: Davidson correction (+Q)

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

Page 11: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Multiconfigurational self-consistent field (MCSCF)

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

I IMCSCFI

c =

1

1,2,....,K

i iX C i K

=

= =

I 1 2... ...i b NX X X X X=

Page 12: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

?I =Active

(CAS)

Inactive

(DOCC)

Not occupiedSometime, easy, dificult, impossible ...

Chemical information about the system

Necessary: MO occupation 0.1 – 1.9

Ideally: MO occupation 0.02 - 1.98

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

Complete active space self-consistent field (CASSCF)

Page 13: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Complete active space self-consistent field (CASSCF)

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

CuB (1S+) – HOMO (9s2) CAS (7s8s9s10s11s3p4p5p1d)

CuB- 2P – HOMO (4p1)

Page 14: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

0

r

a

rs

ab

1 2... ...N N r s kX X X X X+ +

1 2... ...a b NX X X X XOccupeid Orbitals

Virtual Orbitals

1 2... ...a b NX X X X X=

1 2... ...r b NX X X X X=

1 2... ...r s NX X X X X=

Configuration Interaction, CI

1

1,2,....,K

i iX C i K

=

= =H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

Page 15: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

MRSDCI

0 0

r r rs rs

a a ab abMRSDCIa bar

r s

c c

= + +

0 ? =

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

Davidson correction (+Q)2

0(1 )( )Q CISD HFE c E E = − −

S. R. Langhoff, E. R. Davidson, Inter. J. Quant.Chem., 8, 61, (1974)

Page 16: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

• Methodology

• CASSCF (active space = valence )

• MRCI

• Basis set

• Nuclear Equation – DSITA Program

• Transition Probabilities

• 𝑨𝝂´𝝂´´ = < 𝝂´ 𝝁𝑻𝑴 𝑹 𝝂´´ >𝟐𝝂𝝂´𝝂´´𝟑

𝟐−𝜹𝟎,𝚲´+𝚲´´

𝟐−𝜹𝟎,𝚲´

• Radiative Lifetimes (1/An´n´´)

• photoionization transition

• 𝑰(𝝂´, 𝝂´´) ∼ 𝑴𝒆𝟐 < 𝝂´´ |𝝂´ >

𝟐= 𝑴𝒆

𝟐𝑸𝝂´´𝝂´

Page 17: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Diatomic Molecules – State of art

➢Natural candidates to test methodologies.

➢Ideally, full CI : Very expensive.

➢Dissociation energies, electronic and rovibrational

Spectroscopy, excited states: require multireference methodologies.

➢ Main group elements: CASSCF/MRCI

➢ More challenge: systems with, at least, one transition metal atom

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

Page 18: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

MRCI: Performance of the Contract MethodsMolecule State PC-MRCI FIC-MRCI SC-MRCI SC-MRCI(L.Ext) ∆ER

CH 2Π 0.8 1.2 3.9 9.1 0.32∆ 0.8 4.3 9.0 0.32S- 1.6 4.3 9.0 0.6

CN 2S+ 3.7 9.3 23.1 0.62Π 4.1 9.5 24.4 0.9

CO 1S+ 3.3 4.5 11.3 27.5 1.51Π 6.1 15.9 33.4 1.71S- 5.5 12.9 30.5 1.01∆ 5.0 12.9 30.4 0.9

CO+ 2S+ 2.4 3.1 9.0 19.3 0.92Π 4.4 10.6 22.0 1.8

2-2S+ 4.7 11.9 22.8 2.1

N21S+ 3.4 4.1 9.5 25.6 0.81Π 5.6 13.8 30.8 0.91S- 6.1 12.7 30.4 1.0

O21∆ 5.1 6.3 11.8 37.5 1.5

1S+ 5.7 11.2 37.5 1.23S+ 5.7 7.3 13.9 38.0 2.1

OH 2Π 1.6 2.0 5.6 18.3 0.42S+ 2.4 5.8 18.6 0.9

H. Lischka, et al., Chem. Rev., 118, 7293 (2018)

K. Sivalingam, et al., J. Chem. Phys. 145, 054104 (2016).

in [mEh])

(a) the reference relaxationcomputed with uc-MRCI (ΔER) plays a minor role; (b) FIC-MRCI misses 2%−3% of the correlation energy; (c) The error ranges are substantially larger for SC-MRCI with values about 4%−6%; (d) the orbital noninvariance calculatedcomparing SC-MRCI and SC-MRCI with localized virtual orbitals (SC -MRCI[LExt]) does not affect the excitation energies due to error cancellation; (e) the excitation energies are in excellent agreement with the uc-MRCI results

Page 19: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Deviations in the calculated dissociation energy from the exp. values for the 60 transition metal (TM) diatomic molecules

Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-

breaking of TM. For some cases it is 15 kcal mol−1.

Suggestion: most of the experimentally derived values require careful revision. H. Lischka, et al., Chem. Rev., 118, 7293 (2018) Y. A. Aoto, et al., J. Chem. Theory Comput. 13, 5291 (2017)

Page 20: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Electronic excitation energy calculations for diatomic transitionmetal oxides and compared with available experimental data

Erros: Better accurate is around 100 cm−1. Most exceeds1000 cm−1, especially for the higher lying states

H. Lischka, et al., Chem. Rev., 118, 7293 (2018) J. Tennyson, et al., J. Phys. B At. Mol. Opt. Phys., 49, 102001 (2016)

Page 21: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Characterization: Potential Energy Curves - Strategy

Previous Information?• Ground State Configuration? • Excited State Configuartion?• Molecular Orbital Diagram?• Experimental Assignment?• Assintotic Limit – Atomic Level – in

general available

Wigner-Witmer Rules

G. Herzberg, Molecular Spectra and Molecular Structure. Vol. 1, van Nostrand Reinhold, New York, 1950.

Page 22: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Wigner-Witmer Rules

Page 23: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Studied Molecules: AlC, GaC

Electronic states Spin multiplicity Dissociation channels Energy (cm-1)

1st Σ+, Π(2), Δ, Σ−(2) doublet, quartet Al / Ga (2Pu) + C (3Pg) 0

2nd Σ+, Π(3), Δ(2), Σ−(2) doublet Al / Ga (2Pu) + C (1Du) 10192

3rd Σ− Π doublet Al / Ga (2Pu) + C (1Su) 21648

4rd Σ− Π doublet, quartet Al / Ga (2Sg) + C (3Pg) 25347/24788

Electronic states correlated to the first dissociation channels of AlC and GaC molecules.

AlC

Al(2Pu) and C (3Pg)

Active Space: Valence (7e,8o) + 4s (Al) +2s + 1p

Avoided crossing: P statesAl(2Pu) → Al(2Sg)

GaC

Ga (2Pu) and C (3Pg)

AlC: Emission coefficient as function of the wavelength

Chem . Phys. Lett., 687, 171 (2017)

Page 24: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Studied Molecules: AsCl, GeB

Chem . Phys. Lett., 601, 26 (2014)

GeB

Chem . Phys. Lett., 634, 66 (2015)

AsCl

Page 25: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Studied Molecules: XB (X = C, Si, Ge, Sn, Pb)

J. Quant. Spectrosc. Radiat. Transfer, 209, 156 (2018)

Page 26: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Studied Molecules: CuB, CuAl, CuB+, CuAl+

J. Chem. Phys., 139, 124316 (2013)

[core] {active}

◼ Outer valence (OV) Cu [1s22s22p63s23p63d10] {4s14p0}

X [1s2] {2s22pNx}

◼ “Full” valence (FV)

Cu [1s22s22p63s23p6] {3d104s1}

X [1s2] {2s22pNx}◼ Inner valence (IV)

Cu [1s22s22p63s23p6] {3d104s14p0}

X [1s2] {2s22pNx}

FV ~100,000 CFS

OV ~100 CFS

IV ~800 CFS

OV+IV ~900 CFS

Page 27: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

J. Chem. Phys., 139, 124316 (2013)

CuB, CuAl, CuB+, CuAl+

CuAl (X – 1S+). Exp. Morse potential with experimental data for Re, we and De.

Page 28: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

3 4 5 6 7 8 9 10

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

R (a0)

Rela

tive P

ote

ntial E

nerg

y (

cm

−1)

Cu(2S

1/2,g)+B(

2P

3/2,u)

CuB (1S

+)

CuB (1P)

CuB (3S

+)

CuB (3P)

CuB+ (

2S

+)

CuB+ (

2P)

Cu+ (

1S

0,g) + B (

2P

3/2,u)

CuB, CuAl, CuB+, CuAl+

4 6 8 10 12

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000Cu (

2S

1/2,g) + Al

+ (

1S

0,g)

Cu(2S

1/2,g)+Al(

2P

3/2,u)

R (a0)

Rela

tive P

ote

ntial E

nerg

y (

cm

−1)

CuAl (1S

+)

CuAl (1P)

CuAl (3S

+)

CuAl (3P)

CuAl+ (

2S

+)

J. Chem. Phys., 139, 124316 (2013)

CuB (left) and CuAl (right) potential energy curves obtained with MRCI+Q/A5Z

Page 29: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

CuB, CuAl, CuB+, CuAl+

Method Reference

set

Te

(cm−1

)

Re

(a0)

we

(cm−1

)

weχe

(cm−

)

D0

(eV)

(X)1S

+

MRCI+Q

OV --- 2.406 261 1.1 1.89

IV --- 2.369 276 1.6 1.97

OV+IV --- 2.369 275 1.4 1.98

FV_select --- 2.389 264 0.5 1.94

MRCI+Q+C.G

OV --- 2.363 277 1.3 2.03

IV --- 2.329 293 1.7 2.13

OV+IV --- 2.329 292 1.5 2.14

FV_select --- 2.348 284 2.9 2.09

Exp.* --- --- 2.339 294 --- 2.3(15)

Method Reference

set

Te

(cm−1

)

Re

(a0)

we

(cm−1

)

weχe

(cm−

)

D0

(eV)

(A)1P

MRCI+Q

OV 13124 2.438 186 3.7 0.28

IV 13227 2.408 200 1.6 0.35

OV+IV 13238 2.389 209 3.3 0.37

FV_select 13205 2.413 198 0.6 0.31

MRCI+Q+C.G

OV 13726 2.382 206 3.6 0.35

IV 14522 2.392 189 -0.9 0.35

OV+IV 13865 2.338 229 3.4 0.44

FV_select 13853 2.360 215 -1.1 0.38

Exp.* --- 14892 2.353 224 --- 0.4(7)

Molecular constants of CuAl electronic ground state. Molecular constants of CuAl first singlet excited state.

J. Chem. Phys., 139, 124316 (2013)

*J. M. Behm, C. A. Arrington, J. D. Langenberg and M. D. Morse J. Chem. Phys., 99, 6394 (1993).

Page 30: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

CuB (left) and CuAl (right) photoionization spectra.

CuB, CuAl, CuB+, CuAl+

J. Chem. Phys., 139, 124316 (2013)

Page 31: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Previous Information?

Applications : O2 O: term symbol : 3Pu

Exp. 3Sg−

Dh

D2h

HF: 1ag21b1u

22ag22b1u

23ag21b2u

21b3u21b2g

11b3g1 3b1u

0

3B1g

Basis set: 6-31G* Active Space: valenceCAS(12,8) = 2ag2b1u1b2u1b3u1b2g1b3g

Potential curves for 2 states

Exp. Re (A) D0 (cm-1) Te (cm-1)

X3Sg− 1.2075 41260 0.00

A3Su+ 1.5215 5862 35398

Page 32: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 33: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 34: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 35: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 36: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 37: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 38: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 39: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 40: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 41: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Applications : O2

Page 42: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Nuclear Equation - DS-ITA

• From Columbus → Solve electronic Schrödinger equation;

• Access Rovibrational spectroscopic information → Solve the Nuclear Hamiltonian;• Energy levels;• Transition Probabilities;• Radiative Lifetimes;

Page 43: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Nuclear Equation - DS-ITA

DS-ITA

• Modern Fortran → Easy to read the code, easy to right input files and easy to read the outputs;

• Calculate a numerical Hamiltonian through the finitte difference method with “arbitrary” order of approximation;

• Only the desired eigenvalues are calculated;

Page 44: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Nuclear Equation - DS-ITA

DS-ITA

• The solution trustworth does not deppend on the quality of the potential fit;

• Since the eigenvalues are calculated, there is no need for a first guess (Numerov like methods);

• The code can be linked against OpenBlas and use OpenMP parallelization.

Page 45: DIATOMIC MOLECULES: POTENTIAL CURVESthe 60 transition metal (TM) diatomic molecules Mean absolute deviation (MAD) of 3.3 kcal mol−1. Very high. Complexity to describe the bond-breaking

Nuclear Equation - DS-ITA

DS-ITA

• Available from February for alpha test;

• Contact the developer → Rene F. K. Spada <[email protected]>

• Thanks.