diffusion model fitting and tractography: a primer

26
05/19/11 Why’n’how | Diffusion model fitting and tractography 1/25 Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging

Upload: ita

Post on 04-Feb-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Diffusion model fitting and tractography: A primer. Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging. White-matter imaging. Axons measure ~ m in width They group together in bundles that traverse the white matter - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

1/25

Diffusion model fitting and tractography: A primer

Anastasia Yendiki

HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging

Page 2: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

2/25

White-matter imaging

• Axons measure ~m in width

• They group together in bundles that traverse the white matter

• We cannot image individual axons but we can image bundles with diffusion MRI

• Useful in studying neurodegenerative diseases, stroke, aging, development…

From Gray's Anatomy: IX. NeurologyFrom the National Institute on Aging

Page 3: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

3/25

Diffusion in brain tissue

• Differentiate tissues based on the diffusion (random motion) of water molecules within them

• Gray matter: Diffusion is unrestricted isotropic

• White matter: Diffusion is restricted anisotropic

Page 4: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

4/25

How to describe diffusion

• At every voxel we want to know: Is this in white matter? If yes, what pathway(s) is it part of?

What is the orientation of diffusion? What is the magnitude of diffusion?

• A grayscale image cannot capture all this!

Page 5: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

5/25

Diffusion MRI

• Magnetic resonance imaging can provide “diffusion encoding”

• Magnetic field strength is varied by gradients in different directions

• Image intensity is attenuated depending on water diffusion in each direction

• Compare with baseline images to infer on diffusion process

No diffusion encoding

Diffusion encoding in direction g1 g2

g3

g4

g5

g6

Page 6: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

6/25

Need to know: Gradient directions

• True diffusion direction || Applied gradient direction Maximum attenuation

• True diffusion direction Applied gradient direction No attenuation

• To capture all diffusion directions well, gradient directions should cover 3D space uniformly

Diffusion-encoding gradient gDiffusion detected

Diffusion-encoding gradient gDiffusion not detected

Diffusion-encoding gradient gDiffusion partly detected

Page 7: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

7/25

How many directions?

• Acquiring data with more gradient directions leads to:+ More reliable estimation of diffusion measures– Increased imaging time Subject discomfort, more susceptible to artifacts due to motion, respiration, etc.

• DTI:– Six directions is the minimum– Usually a few 10’s of directions– Diminishing returns after a certain number

[Jones, 2004]

• HARDI/DSI:– Usually a few 100’s of directions

Page 8: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

8/25

Need to know: b-value

• The b-value depends on acquisition parameters:b = 2 G2 2 ( - /3)

the gyromagnetic ratio– G the strength of the diffusion-encoding gradient

the duration of each diffusion-encoding pulse

the interval b/w diffusion-encoding pulses

90 180 acquisition

G

Page 9: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

9/25

How high b-value?

• Increasing the b-value leads to:+ Increased contrast b/w areas of higher and lower diffusivity in principle

– Decreased signal-to-noise ratio Less reliable estimation of diffusion measures in practice

• DTI: b ~ 1000 sec/mm2

• HARDI/DSI: b ~ 10,000 sec/mm2

• Data can be acquired at multiple b-values for trade-off

• Repeat acquisition and average to increase signal-to-noise ratio

Page 10: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

10/25

Looking at the data

A diffusion data set consists of:• A set of non-diffusion-weighted a.k.a “baseline”

a.k.a. “low-b” images (b-value = 0)• A set of diffusion-weighted (DW) images acquired with

different gradient directions g1, g2, … and b-value >0

• The diffusion-weighted images have lower intensity values

Baselineimage

Diffusion-weightedimages

b2, g2 b3, g3b1, g1b=0

b4, g4 b5, g5 b6, g6

Page 11: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

11/25

Data analysis steps• Pre-process images

– FSL: eddy_correct, rotate_bvecs

• Fit a diffusion model at every voxel– DTK: DSI, Q-ball, or DTI– FSL: Ball-and-stick (bedpost) or DTI (dtifit)

• Compute measures of anisotropy/diffusivity and compare them between populations– Voxel-based, ROI-based, or tract-based

statistical analysis

• For tract-based: Reconstruct pathways– DTK: Deterministic tractography using DSI, Q-

ball, or DTI model– FSL: Probabilistic tractography (probtrack)

using ball-and-stick model

DTK: www.trackvis.org, FSL: www.fmrib.ox.ac.uk/fsl

Page 12: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

12/25

Models of diffusion

Model Software

Diffusion spectrum:Full distribution of orientation and magnitude

DTK (DSI option)

Orientation distribution function (ODF):No magnitude info

DTK (Q-ball option)

Ball-and-stick:Orientation and magnitude for up to N anisotropic compartments (default N=2)

FSL (bedpost)

Tensor:Single orientation and magnitude

DTK (DTI option)FSL (dtifit)

Page 13: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

13/25

A bit more about the tensor

• A tensor can be thought of as an ellipsoid

• It can be defined fully by:

– 3 eigenvectors e1, e2, e3 (orientations of ellipsoid axes)

– 3 eigenvalues 1 , 2, 3 (lengths of ellipsoid axes)

1 e12 e2

3 e3

Page 14: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

14/25

Tensor: Physical interpretation

• Eigenvectors express diffusion direction• Eigenvalues express diffusion magnitude

1 e1

2 e2

3 e3

1 e12 e2

3 e3

Isotropic diffusion:1 2 3

Anisotropic diffusion:1 >> 2 3

Page 15: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

15/25

Tensor: Summary measures

• Mean diffusivity (MD): Mean of the 3 eigenvalues

• Fractional anisotropy (FA): Variance of the 3 eigenvalues, normalized so that 0 (FA) 1

Fasterdiffusion

Slowerdiffusion

Anisotropicdiffusion

Isotropicdiffusion

MD(j) = [1(j)+2(j)+3(j)]/3

[1(j)-MD(j)]2 + [2(j)-MD(j)]2 + [3(j)-MD(j)]2

FA(j)2 =1(j)2 + 2(j)2 + 3(j)2

3

2

Page 16: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

16/25

Tensor: More summary measures

• Axial diffusivity: Greatest eigenvalue

• Radial diffusivity: Average of 2 lesser eigenvalues

• Inter-voxel coherence: Average angle b/w the major eigenvector at some voxel and the major eigenvector at the voxels around it

AD(j) = 1(j)

RD(j) = [2(j) + 3(j)]/2

Page 17: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

17/25

Tensor: Visualization

Direction of eigenvector corresponding to greatest eigenvalue

Image:

An intensity value at each voxel

Tensor map:

A tensor at each voxel

Page 18: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

18/25

Tensor: Visualization

Image:

An intensity value at each voxel

Tensor map:

A tensor at each voxel

Direction of eigenvector corresponding to greatest eigenvalue

Red: L-R, Green: A-P, Blue: I-S

Page 19: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

19/25

Tractography

• Use local diffusion orientation at each voxel to determine pathway between distant brain regions

• Local orientation comes from diffusion model fit (tensor, ball-and-stick, etc.)

????

• Deterministic vs. probabilistic tractography: – Deterministic assumes a single orientation at each voxel

– Probabilistic assumes a distribution of orientations

• Local vs. global tractography: – Local fits the pathway to the data one step at a time

– Global fits the entire pathway at once

Page 20: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

20/25

Deterministic vs. probabilistic

• Deterministic methods give you an estimate of model parameters

• Probabilistic methods give you the uncertainty (probability distribution) of the estimate

5

5

Page 21: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

21/25

Deterministic vs. probabilistic

Deterministic tractography:One streamline per seed voxel

…Sample 1 Sample 2

Probabilistic tractography:Multiple streamline samples per seed voxel (drawn from probability distribution)

Page 22: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

22/25

Deterministic vs. probabilistic

Probabilistic tractography:A probability distribution (sum of all streamline samples from all seed voxels)

Deterministic tractography:One streamline per seed voxel

Page 23: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

23/25

Local vs. global

Global tractography: Fits the entire pathway, using diffusion orientation at all voxels along pathway length

Local tractography: Fits pathway step-by-step, using local diffusion orientation at each step

Page 24: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

24/25

Local tractography

• Results are not symmetric between “seed” and “target” regions• Sensitive to areas of high local uncertainty in orientation

(e.g., pathaway crossings), errors propagate from those areas

• Best suited for exploratory study of connections

• All connections from a seed region, not constrained to a specific target region

• How do we isolate a specific white-matter pathway? – Thresholding?– Intermediate masks?

• Non-dominant connections are hard to reconstruct

Page 25: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

25/25

Global tractography

• Best suited for reconstruction of known white-matter pathways

• Constrained to connection of two specific end regions

• Not sensitive to areas of high local uncertainty in orientation, integrates over entire pathway

• Symmetric between “seed” and “target” regions

• Need to search through a large solution space of all possible connections between two regions:– Computationally expensive– Sensitive to initialization

Page 26: Diffusion model fitting and  tractography: A primer

05/19/11 Why’n’how | Diffusion model fitting and tractography

26/25

TRACULA• TRActs Constrained by UnderLying Anatomy

• Automatic reconstruction of probabilistic distributions of 18 major white-matter pathways

• No manual labeling of ROIs needed • Use prior information on pathway anatomy

from training data:– Manually labeled pathways in training subjects

– FreeSurfer segmentations of same subjects

– Learn neighboring anatomical labels along pathway

• Beta version available in FreeSurfer 5.1